
Lab 6: PI-D and I-PD Control with Dynamic Prefilters 
  
Overview 
 
In this lab you will be controlling the one degree of freedom systems you previously 
modeled using PI-D and I-PD controllers with and without dynamic prefilters.  
 
You will need your Simulink model and the closedloop_driver.m  file from your 
homework for this lab. 
 
Design Specifications: For each of your systems, you should try and adjust your 
parameters until you have achieved the following: 
 
Torsional Systems (Model 205) 
 

• Settling time less than 1.0 seconds. 
• Steady state error less than 2 degrees for a 15 degree step, and less than 1 degree 

for a 10 degree step (the input to the Model 205  must be in radians!) 
• Percent Overshoot less than 25% 

 
Rectilinear Systems (Model 210) 
 

• Settling time less than 1.0 seconds. 
• Steady state error less than 0.1 cm  for a 1 cm step, and less than 0.05 cm for  a 

0.5 cm step 
• Percent Overshoot less than 25% 

 
As a start, you should initially limit your gains as follows: 
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Your memo should include four graphs for each of the 1 dof systems you used (one PI-D 
and one I-PD controller with and without dynamic prefilters.) Be sure to include the 
values of , , and  in the captions for each figure. Your memo should compare the 
difference between the predicted response (from the model) and the real response (from 
the real system) for each of the systems. How does the use of a dynamic prefilter change 
the response? Attach your Matlab driver file closedloop_driver.m 
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Background:  While PID controllers are very versatile, they have a number of 
drawbacks. One of the major drawbacks is that for a unit step input, the control effort 

 can be infinite at the initial time. This is referred to as a set-point kick. There are two 
commonly used configurations of PID controls schemes that utilize a different structure, 
the PI-D and the I-PD controllers. These are a bit more difficult to model using Matlab’s 
sisotool, but it can be done and we get to explore more of sisotool. 
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The PI-D controller avoids the set-point kick by putting the derivative in the feedback 
path, while the I-PD controller avoids the set-point kick by placing both the derivative 
and proportional terms in the feedback path. Both types of controllers can be 
implemented using the following Simulink model, which you should construct and name 
appropriately: 
 

 
 
For the PI-D controller,  we have 
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while for the I-PD controller we have 
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Note that for both controllers we continue to use a lowpass filter (with a cutoff of 50 
rad/sec) in series with a differentiator. 
 
For both of these controllers, if we ignore the prefilter (assume it is unity),  the transfer 
function from input to output is 
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Next we need to use sisotool to help determine reasonable values for , , and . pk ik dk
 
When you start sisotool, you need to click on FS to get the proper configuration. Note 
that sisotool uses a + sign after the , where we are using a – sign. ( )F s
 

 

Click on FS 
until you get 
this controller 
configuration 

 
 
Sisotool will allow us to modify both  and , but it is much easier to modify 

. We will have to iterate between both of these. 
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For practice, let’s assume our plant is 2
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 and we want to use a PI-

D controller.  In this case, for simulation purposes, we have ( ) dF s k s=  (we won’t worry 
about the lowpass filter here) . We will start off assuming 0.01dk = , but this is just a 
guess! However, since we have the wrong sign on the summer after , we enter the 
gain as a negative number in sistool. Hence for this guess we enter a gain of -0.01 and a 
zero at 0 (which gives us a differentiator). This is shown below : 
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Note the gain 
is negative 
here! 

 
After entering this into sisotool (and leaving ( ) 1C s = , the default), we get the following 
root locus plot: 
  

 
 

What’s important to notice here is that we do not see any of the effects of our 
differentiator (we expect to see a zero at the origin)! 
 



Next we’ll enter the PI part of the controller into . As a starting point, let’s assume ( )C s
0.15( 15)( ) sC s

s
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=  

 

 

The gain is 
not negative 
here 

 
We will get the following root locus plot 

 

 
 
Here we can see the pole at the origin and the zero at -15 due to . This looks like the 
root locus plot for a PI controller. At this point we can drag the zero around and also drag 
the red squares around (which change the gain value). However, we can do nothing to 
change  except to edit it. 
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The step response for this controller configuration is: 
 

 
 
 
Note that, compared to a normal PID controller, the control effort is not infinite at 0, and 
actually builds as time goes on (like an integral controller). At this point we might want 
to go back modify  to see if we get acceptable performance. If we cannot get 
acceptable performance we may then have to try another value for .  
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If we assume these controllers are OK, then for our systems we will enter 
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Note that we now use the positive coefficient for . ( )F s
 
Now we’ll assume we want to control the same plant, but this time use an I-PD 
controller. We first have to guess a PD controller. For the systems I tired, I found that the 
zero should be fairly small, between -1 and -5. As a start, we’ll try the following PD 
controller 
 



( ) 0.01( 1)F s s= +  
When we implement this controller in sisotool, we need to be sure the gain is negative, as 
shown below: 
 
 

 

Note the 
gain is 
negative 

 
 
The root locus plot at this point ( ( ) 1C s = ) is shown below 
 

 
 

 
Note that, again, we cannot see any of the poles or zeros due to . ( )F s



Next we have to try an I controller for . Let’s assume ( )C s 1.5( )C s
s

= . After entering this 

into sisotool, we have the following root locus plot.  
 

 
 
Note that this looks like the root locus plot for an I controller!  The step response for this 
configuration is shown below. Note that the control effort is very small at the initial time. 
If the step response is not acceptable, first try modifying then . ( )C s ( )F s
 

 
 



 
 
To implement this controller in Simulink, we would have  
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Step 1:  Set up the 1 dof  system exactly the way it was when you determined its model 
parameters. 
 
Step 2: Modify closedloop_driver.m to read in the correct model file and implement the 
new structure. In particular, it must now determine C(s) and F(s), as well as the prefilter.  
 
Step 3:  Modify the ECP driver file and rename appropriately. You cannot use 
Model205_Closedloop.mdl or  Model210_Closedloop.mdl as before. 
 
Step 4:  PI-D Control  
 

• Design a PI-D controller to meet the design specs (you may have already done 
this in the homework). Use a constant prefilter (i.e., a number, most likely the 
number 1). Be sure to observe the limits on the other gains. 

 
• Implement the correct gains into closedloop_model.m 

 
• Simulate the system for 1.5 seconds. Be sure to use radians for the Model 205 

system! If the design constrains are not met, or the control effort hits a limit, 
redesign your controller (you might also try a lower input signal) 

 
• Compile the correct closed loop ECP Simulink driver, connect to the system, and 

run the simulation.  
 

• Use the compare1.m file (or a modification of it) to plot the results of both the 
simulation and the real system on one nice, neatly labeled graph. The results for 
the torsional systems must be displayed in degrees. You need to include this graph 
in your memo. Be sure to include the values of , , and in your memo.  pk ik dk

 
• Change the prefilter to cancel the zeros of the closed loop system and still have a 

position error of zero. Rerun the simulation, recompile the ECP system, run the 
ECP system, and compare the predicted with the measured response. You also 
need to include this graph in your memo. Be sure to include the values of , , 
and in your memo.  
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Step 5:  I-PD Control  
 

• Design an I-PD controller to meet the design specs (you may have already done 
this in the homework). Use a constant prefilter (i.e., a number, most likely the 
number 1). Keep the zero of the PD controller small, between -1 and -5, and be 
sure to observe the limits on the other gains. 

 
• Implement the correct gains into closedloop_model.m 

 
• Simulate the system for 1.5 seconds. Be sure to use radians for the Model 205 

system! If the design constrains are not met, or the control effort hits a limit, 
redesign your controller (you might also try a lower input signal) 

 
• Compile the correct closed loop ECP Simulink driver, connect to the system, and 

run the simulation.  
 

• Use the compare1.m file (or a modification of it) to plot the results of both the 
simulation and the real system on one nice, neatly labeled graph. The results for 
the torsional systems must be displayed in degrees. You need to include this graph 
in your memo. Be sure to include the values of , , and in your memo.  pk ik dk

 
• Change the prefilter to cancel the zeros of the closed loop system and still have a 

position error of zero. Rerun the simulation, recompile the ECP system, run the 
ECP system, and compare the predicted with the measured response. You also 
need to include this graph in your memo. Be sure to include the values of , , 
and in your memo.  
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