
Lab 6: PI-D and I-PD Control with Dynamic Prefilters

Overview

In this lab you will be controlling the one degree of freedom systems you previously
modeled using PI-D and I-PD controllers with and without dynamic prefilters.

You will need your Simulink model and the closedloop_driver.m file from your
homework for this lab.

Design Specifications: For each of your systems, you should try and adjust your
parameters until you have achieved the following:

Torsional Systems (Model 205)

• Settling time less than 1.0 seconds.
• Steady state error less than 2 degrees for a 15 degree step, and less than 1 degree

for a 10 degree step (the input to the Model 205 must be in radians!)
• Percent Overshoot less than 25%

Rectilinear Systems (Model 210)

• Settling time less than 1.0 seconds.
• Steady state error less than 0.1 cm for a 1 cm step, and less than 0.05 cm for a

0.5 cm step
• Percent Overshoot less than 25%

As a start, you should initially limit your gains as follows:

0.5
5

0.01

p

i

d

k
k
k

≤
≤
≤

Your memo should include four graphs for each of the 1 dof systems you used (one PI-D
and one I-PD controller with and without dynamic prefilters.) Be sure to include the
values of , , and in the captions for each figure. Your memo should compare the
difference between the predicted response (from the model) and the real response (from
the real system) for each of the systems. How does the use of a dynamic prefilter change
the response? Attach your Matlab driver file closedloop_driver.m

pk ik dk

Background: While PID controllers are very versatile, they have a number of
drawbacks. One of the major drawbacks is that for a unit step input, the control effort

 can be infinite at the initial time. This is referred to as a set-point kick. There are two
commonly used configurations of PID controls schemes that utilize a different structure,
the PI-D and the I-PD controllers. These are a bit more difficult to model using Matlab’s
sisotool, but it can be done and we get to explore more of sisotool.

()u t

The PI-D controller avoids the set-point kick by putting the derivative in the feedback
path, while the I-PD controller avoids the set-point kick by placing both the derivative
and proportional terms in the feedback path. Both types of controllers can be
implemented using the following Simulink model, which you should construct and name
appropriately:

For the PI-D controller, we have

() i
p

kC s k
s

= + , () 1 1
50

dk sF s
s

=
+

while for the I-PD controller we have

() ikC s
s

= , () 1 1
50

d
p

k sF s k
s

= +
+

Note that for both controllers we continue to use a lowpass filter (with a cutoff of 50
rad/sec) in series with a differentiator.

For both of these controllers, if we ignore the prefilter (assume it is unity), the transfer
function from input to output is

() ()()
() 1 () () () ()

p

p p

C s G sY s
R s F s G s C s G

=
+ + s

Next we need to use sisotool to help determine reasonable values for , , and . pk ik dk

When you start sisotool, you need to click on FS to get the proper configuration. Note
that sisotool uses a + sign after the , where we are using a – sign. ()F s

Click on FS
until you get
this controller
configuration

Sisotool will allow us to modify both and , but it is much easier to modify

. We will have to iterate between both of these.
()C s ()F s

()C s

For practice, let’s assume our plant is 2

938.4()
1.25 329.8pG s

s s
=

+ +
 and we want to use a PI-

D controller. In this case, for simulation purposes, we have () dF s k s= (we won’t worry
about the lowpass filter here) . We will start off assuming 0.01dk = , but this is just a
guess! However, since we have the wrong sign on the summer after , we enter the
gain as a negative number in sistool. Hence for this guess we enter a gain of -0.01 and a
zero at 0 (which gives us a differentiator). This is shown below :

()F s

Note the gain
is negative
here!

After entering this into sisotool (and leaving () 1C s = , the default), we get the following
root locus plot:

What’s important to notice here is that we do not see any of the effects of our
differentiator (we expect to see a zero at the origin)!

Next we’ll enter the PI part of the controller into . As a starting point, let’s assume ()C s
0.15(15)() sC s

s
+

=

The gain is
not negative
here

We will get the following root locus plot

Here we can see the pole at the origin and the zero at -15 due to . This looks like the
root locus plot for a PI controller. At this point we can drag the zero around and also drag
the red squares around (which change the gain value). However, we can do nothing to
change except to edit it.

()C s

()F s

The step response for this controller configuration is:

Note that, compared to a normal PID controller, the control effort is not infinite at 0, and
actually builds as time goes on (like an integral controller). At this point we might want
to go back modify to see if we get acceptable performance. If we cannot get
acceptable performance we may then have to try another value for .

()C s
()F s

If we assume these controllers are OK, then for our systems we will enter

0.15(15)() sC s
s
+

= , 0.01() 1 1
50

sF s
s

=
+

Note that we now use the positive coefficient for . ()F s

Now we’ll assume we want to control the same plant, but this time use an I-PD
controller. We first have to guess a PD controller. For the systems I tired, I found that the
zero should be fairly small, between -1 and -5. As a start, we’ll try the following PD
controller

() 0.01(1)F s s= +
When we implement this controller in sisotool, we need to be sure the gain is negative, as
shown below:

Note the
gain is
negative

The root locus plot at this point (() 1C s =) is shown below

Note that, again, we cannot see any of the poles or zeros due to . ()F s

Next we have to try an I controller for . Let’s assume ()C s 1.5()C s
s

= . After entering this

into sisotool, we have the following root locus plot.

Note that this looks like the root locus plot for an I controller! The step response for this
configuration is shown below. Note that the control effort is very small at the initial time.
If the step response is not acceptable, first try modifying then . ()C s ()F s

To implement this controller in Simulink, we would have

1.5()C s
s

= , 0.01() 0.01 1 1
50

sF s
s

= +
+

Step 1: Set up the 1 dof system exactly the way it was when you determined its model
parameters.

Step 2: Modify closedloop_driver.m to read in the correct model file and implement the
new structure. In particular, it must now determine C(s) and F(s), as well as the prefilter.

Step 3: Modify the ECP driver file and rename appropriately. You cannot use
Model205_Closedloop.mdl or Model210_Closedloop.mdl as before.

Step 4: PI-D Control

• Design a PI-D controller to meet the design specs (you may have already done
this in the homework). Use a constant prefilter (i.e., a number, most likely the
number 1). Be sure to observe the limits on the other gains.

• Implement the correct gains into closedloop_model.m

• Simulate the system for 1.5 seconds. Be sure to use radians for the Model 205

system! If the design constrains are not met, or the control effort hits a limit,
redesign your controller (you might also try a lower input signal)

• Compile the correct closed loop ECP Simulink driver, connect to the system, and

run the simulation.

• Use the compare1.m file (or a modification of it) to plot the results of both the
simulation and the real system on one nice, neatly labeled graph. The results for
the torsional systems must be displayed in degrees. You need to include this graph
in your memo. Be sure to include the values of , , and in your memo. pk ik dk

• Change the prefilter to cancel the zeros of the closed loop system and still have a

position error of zero. Rerun the simulation, recompile the ECP system, run the
ECP system, and compare the predicted with the measured response. You also
need to include this graph in your memo. Be sure to include the values of , ,
and in your memo.

pk ik

dk

Step 5: I-PD Control

• Design an I-PD controller to meet the design specs (you may have already done
this in the homework). Use a constant prefilter (i.e., a number, most likely the
number 1). Keep the zero of the PD controller small, between -1 and -5, and be
sure to observe the limits on the other gains.

• Implement the correct gains into closedloop_model.m

• Simulate the system for 1.5 seconds. Be sure to use radians for the Model 205

system! If the design constrains are not met, or the control effort hits a limit,
redesign your controller (you might also try a lower input signal)

• Compile the correct closed loop ECP Simulink driver, connect to the system, and

run the simulation.

• Use the compare1.m file (or a modification of it) to plot the results of both the
simulation and the real system on one nice, neatly labeled graph. The results for
the torsional systems must be displayed in degrees. You need to include this graph
in your memo. Be sure to include the values of , , and in your memo. pk ik dk

• Change the prefilter to cancel the zeros of the closed loop system and still have a

position error of zero. Rerun the simulation, recompile the ECP system, run the
ECP system, and compare the predicted with the measured response. You also
need to include this graph in your memo. Be sure to include the values of , ,
and in your memo.

pk ik

dk

