
ECE-320: Linear Control Systems 
Homework 9 

 
Due: Tuesday  November 1 at 2 PM 
 
 
1)  Consider the plant  
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where 3 is the nominal value of 0α  and 0.5 is the nominal value of 1α . In this problem we 
will investigate the sensitivity of closed loop systems with various types of controllers to 
these two parameters. We will assume we want the settling time of our system to be 0.5 
seconds and the position error for a unit step input to be less than 0.1. 
 
a)  (ITAE Model Matching) Since this is a first order system, we will use the first order 
ITAE model, 
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i) For what value of oω will we meet the settling time requirements and the position error 
requirements? 
 
ii) Determine the corresponding controller . ( )cG s
 
iii) Show that the closed loop transfer function (using the parameterized form of  
and the controller from part ii) is 
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iv) Show that the sensitivity of to variations in ( )oG s 0α  is given by 
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v) Show that the sensitivity of to variations in ( )oG s 1α  is given by 
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b) (Quadratic Optimal) For , show that the quadratic optimal closed loop 
transfer function is approximately 
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Hence the results of both of our model matching methods will be very nearly the same. 
 
 
c) (Proportional Control) Consider a proportional controller, with 2.5pk = . 
 
i) Show that the closed loop transfer function is 
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ii) Show that the sensitivity of to variations in ( )oG s 0α  is given by 
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iii) Show that the sensitivity of to variations in ( )oG s 1α  is given by 
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d) (Proportional+Integral Control) Consider a PI controller with 4pk =  and . 40ik =
 
i) Show that the closed loop transfer function is 
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ii) Show that the sensitivity of to variations in ( )oG s 0α  is given by 
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iii) Show that the sensitivity of to variations in ( )oG s 1α  is given by 
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e) (Diophantine Equations) Consider a controller designed using the Diophantine 
equations. Assume we want a type 1 system and closed loop poles both at -8. 
 
i) Show that the controller is given by 
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ii)  Show that the sensitivity of to variations in ( )oG s 0α  is given by 
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iii) Show that the sensitivity of to variations in ( )oG s 1α  is given by 
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f) Using Matlab, simulate the unit step response of each type of controller (except the 
quadratic optimal). Plot all responses on one graph. Use different line types and a legend. 
Turn in your plot and code. 
 
g) Using Matlab and subplot, plot the sensitivity to 0α  for each type of controller (except 
the quadratic optimal) on one graph at the top of the page, and the sensitivity to 1α  on 
one graph on the bottom of the page. Be sure to use different line types and a legend.  
Turn in your plot and code. Only plot up to about 8 Hz (50 rad/sec) using a semilog scale 
with the sensitivity in dB (see below). Do not make separate graphs for each system! 
 
In particular, these results should show you that the model matching methods, which 
essentially try and cancel the plant, are generally more sensitive to getting the plant 
parameters correct that either the PI or the Diophantine methods for low frequencies. 
However, for higher frequencies the methods are all about the same. The P controller, the 
simplest of the four, is always the worst. 
 

Hint: If 2
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,  plot the magnitude of the frequency response using: 

 
T = tf([2 0],[1 2 10]); 
w = logspace(-1,1.7,1000); 
[M,P]= bode(T,w); 
Mdb = 20*log10(M(:)); 
semilogx(w,Mdb); grid; 
xlabel('Frequency (rad/sec)'); 
ylabel('dB'); 



Preparation for Lab 9 (No Maple) 
 
2) In this derivation we will make a state variable model for a regular pendulum (a 
pendulum hanging down) attached to the first cart. It will be easier to measure the 
parameters for a regular pendulum since it is a stable system. In the lab we will initially 
try and control the regular pendulum. Once this is working, we will try to control an 
inverted pendulum. To go from the model of a regular pendulum to the model of an 
inverted pendulum we use the substitution .  l l→−

 
Consider the  configuration for the regular pendulum  shown below: 
 

 
 
The equations of motion for the regular pendulum can be written as 
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The mass of the cart is M , the mass at the center of mass of  the pendulum is m , the moment of inertial 
of the pendulum about its center of mass is , J L  is the length of the pendulum, and l is the distance 
from the pivot to the center of  mass of the pendulum. The angleθ  is measured counterclockwise from 
straight up, x  is the displacement of the first cart (positive to the right), and is the gravitational 
constant. 

g

 
a) Using a small angle/small velocity assumption, show that we can approximate the above equations of 
motion as 

( )
2( )J ml mlx mgl 0

M m x ml cx kx F
θ θ

θ
+ + + ≈
+ + + + ≈

 

b) We can rewrite the first equation above as 
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What is 2
θω ? 



c) If we assume the cart is fixed, then 0x =  and we have 
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This is the equation for a simple pendulum. If the pendulum is deflected a small angle and released, it 
will oscillate with frequency θω . If we measure the period of the oscillations Tθ  how do we find θω ? 
 
d) We can rewrite the second equation from  (a) as 
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Find expressions for 1ω , 1ζ , , and  in terms of m , 1K 2K M , , c,  and l . If we assume there is no input 
( ) and the pendulum does not move very much (

k
0F = 0θ ≈ ) then we can use the log-decrement method 

to get initial estimates of 1ω and 1ζ . 
 
e) Assuming we apply a step input of amplitude A  to the cart, show that in steady state we get 
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f) Show that 
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We need to measure the gravitational constant in cm, since all other distances are measured in cm. 
 
g) Show that 
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We can use this expression to determine  and get better estimates of 1K 1ω and 1ζ . 
 



h) We can rewrite our linearized dynamical equations as 
 

2 2

2 2
1 1 1 1 1 2 1

1

2

x
g

2x x x K K

θ θθ ω ω θ

ζ ω ω ω θ ω

≈ − −

≈ − − − + F
 

 
By substituting the second equation into the first equation, show that we get 
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and substituting the first equation into the second equation we get 
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i) Defining , , 1q x= 2q x= 3q θ= , and 4q θ= , show that we get the following state equations 
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j) If we now want to model the inverted pendulum (  to go back to the inverted pendulum), which 
terms change in the matrices above? 
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k) When we try and fit the frequency response data we see in the lab we will often get an unusual 
response. To understand this response we will analytically try and show what is happening. If you've not 
screwed up, you should have obtained values of 
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If we assume that the mass of the cart and pendulum attachment is much larger than the mass at the 
center of mass of the pendulum, then we have M  is much larger than . Secondly, is the moment of 
inertia about the center of mass of the pendulum, m is the mass at the center of mass of the pendulum, 
and l is the distance from the pivot to the center of mass of the pendulum. For our systems, the 
pendulum bars have negligible mass and all of the mass is essentially concentrated at the center of mass. 
Hence is much larger than .Using these two assumptions, show that . 
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That is, there is a pole/zero cancellation! This is the effect you will often see in lab. 
 
3) Modify Basic_2dof_State_Variable_Model.mdl, and Basic_2dof_State_Variable_Model_Driver.m 
to work with the regular pendulum model. (These files and the  state model for the regular pendulum 
are available one the course website.) Specifically, you need to  

 
• Modify the code to access the correct states. Specifically,  set 
      get_desired_states = [1 0 0 0 0 0 0 0; 
                                         0 1 0 0 0 0 0 0; 
                                         0 0 0 0 0 0 1 0; 
                                         0 0 0 0 0 0 0 1]; 
• Rename the output states to be  m_x1, m_x1_dot, m_theta, m_theta_dot 
• Plot the position of the cart, the velocity of the cart, the position of the pendulum, and the 

velocity of the pendulum, the system output (probably the position of the pendulum), and the 
control effort.  All plots should be neatly organized on one page. 

• Set the input of the system to zero (this is a regulator problem, in that we are just trying to hold 
the pendulum in place) 

• The output of the system is the position of the pendulum, so modify the C vector accordingly. 
• Set the initial value of the pendulum to 0.05 radians and all other initial conditions to zero. 
•  Utilize the linear quadratic regulator or pole placement method to control the position of the 

pendulum and the cart. The goal is to keep the pendulum pointing straight down and keep the 
cart from moving more than about 2.5 cm in each direction. The control effort should also be less 
than 0.4 and the system should come to steady state in less than 1.0 seconds.   

 
You will need to turn in you plot, your Simulink code, and your Matlab code.  
 
4) Utilize the results of problem 3 to model the inverted pendulum. The only thing you should need to 
change is the state model. (The state model is available one the course website.) Specifically, you need 
to  
 

• Set the input of the system to zero (this is a regulator problem, in that we are just trying to hold 
the pendulum in place) 

• Set the initial value of the pendulum to 0.05 radians and all other initial conditions to zero. 



•  Utilize the linear quadratic regulator or pole placement method to control the position of the 
pendulum and the cart. The goal is to keep the pendulum pointing straight up and keep the cart 
from moving more than about 2.5 cm in each direction. The control effort should also be less 
than 0.4. Limiting the cart motion is usually the most difficult part. Often your controller for the 
regular pendulum will work for this part too, but not always. 

 
You will need to turn in your plot for this part. 

 


