
ECE-320: Linear Control Systems 
Homework 8 

 
Due: Tuesday October 25 at 2 PM 
 
1) For the plant 

2
2

( ) 1 2 1
p

n n

KG s
s sζ

ω ω

=
+ +

 

a) If the plant input is   and the output is( )u t ( )x t , show that we can represent this system 
with the differential equation 
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b) Assuming we use states 1( ) ( )q t x t= and 2 ( ) ( )q t x t= , and the output is ( )x t , show that 
we can write the state variable description of the system as 
 

[ ] [ ]

1 1
2 2

2 2

1

2

0 1 0( ) ( )
( )

2( ) ( )

( )
( ) 1 0 0 ( )

( )

n n n

q t q td u t
Kq t q tdt

q t
y t u t

q t

ω ζω ω
⎡ ⎤ ⎡⎡ ⎤ ⎡ ⎤

= +⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣
⎡ ⎤

= +⎢ ⎥
⎣ ⎦

⎤
⎥
⎦  

or 
( ) ( ) ( )
( ) ( ) ( )

q t Aq t Bu t
y t Cq t Du t

= +
= +

 

 Determine the A, B, C and D matrices. 
 
c) Assume we use state variable feedback of the form ( ) ( ) ( )pfu t G r t kq t= − , where is 
the new input to the system, is a prefilter (for controlling steady state error), and is 
the state variable feedback gain vector. Show that the state variable model for the closed 
loop system is  
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d) Show that the transfer function (matrix) for the closed loop system between input and 
output is given by 
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and if  is zero this simplifies to D
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e) Assume  and . Show that, in order for ( ) 1r t = 0D = lim ( ) 1
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Note that the prefilter gain is a function of the state variable feedback gain! 
 
 



If matrix is given as P
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and the determinant of is given by P ad bc− . This determinant will also give us the 
characteristic polynomial of the system. 
 
2) For each of the systems below: 
 

• determine the transfer function when there is state variable feedback 
• determine if and exist (1k 2k [ ]1 2k k k= ) to allow us to place the closed loop 

poles anywhere. That is, can we make the denominator look like  for 
any  and any . If this is true, the system is said to be controllable. 
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a)  Show that for  
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[ ]0 1 [0]y q= + u  
the closed loop transfer function with state variable feedback is 
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b) Show that for  
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[ ]0 1 [0]y q= + u  
the closed loop transfer function with state variable feedback is 
 

2
2 1

( )
( 1)

pfsG
G s

s k s k
=

+ − +
 

c) Show that for  
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the closed loop transfer function with state variable feedback is 
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3) Consider the state variable model of a plant 
 

0 1 1
1 0 1

q q u
⎡ ⎤ ⎡ ⎤

= +⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

[ ]0 1 [0]y q= + u  
 
a) Show that the plant transfer function is  
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b) The eigenvalues of the A  matrix are determined by setting the determinant of the 
matrix A Iλ− 0 equal to 0, i.e. they are solutions to| |A Iλ− = . Find the eigenvalues of 
the plant analytically. The equation | |A I 0λ− =  is the same as the equation | | . 
However, the determinant of gives us the characteristic equation of the plant 
transfer function . Hence the eivenvalues of 

0sI A− =
sI A−

( )pG s A  are the poles of the plant transfer 
function. 
 
c) Show that the closed loop transfer function with state variable feedback is 
 

1 2 1 2

( 1)
( )

( )( ) ( 1)(
pfs G

G s
s k s k k k 1)

+
=

+ + − − −
 

 
 
d) Show that, for  and 1pfG = 1 2 0k k= = , the closed loop transfer function is the same as 
that of the original system (plant). This is important! State variable feedback only 
changes the gain of the system and the location of the closed loop poles. It does not 
increase the order of the system or add zeros to the transfer function. 
 
e) Show that for 1 2k =  and , the closed loop system has poles at -1 and -3. 2 2k =
 
f) Find the eigenvalues of analytically, and show they are equal to the poles of 
the closed loop transfer function. The equation | (

A Bk−
) | 0A Bk Iλ− − =  is the same as the 

equation | ( . However, the determinant of ) |sI A Bk− − = 0 )(sI A Bk− − gives us the 
characteristic equation of the closed loop transfer function. Hence the eivenvalues of 

 are the poles of the closed loop transfer function. A Bk−
 
g) Show that this system is not controllable. 



4) For one of the rectilinear systems in lab, I found the following state variable 
representation: 
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[ ]1 0 [0]y q= + u  
a) Show that the closed loop transfer function with state variable feedback is 
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To get the transfer function from the state space model in Matlab, use the ss2tf command. 
See closedloop_driver.m 
 
 
b) Design I 
 

• Determine feedback gains  and  so the resulting system has real poles and a 
bandwidth of 2 Hz. Set the second pole twice as far from the origin as the first 
pole.   

1k 2k

• Use the final value Theorem to determine the prefilter gain so the steady state 
error for a step input is zero. 

• Estimate the settling time for the step response based on the system bandwidth. 
• Use Matlab to plot the Bode plot of the closed loop system (to verify the 

bandwidth) and plot the step response (to verify the estimated settling time). 
 
You should get numbers like 0.028,  0.0069, 0.06,  and 0.32. When you look at the 
Bode plot, the bandwidth will not be 2 Hz, primarily because the second pole is too 
close to the first pole. 

 
c) Design II 
 

• Determine  feedback gains  and  so the resulting (ideal second order) system 
has a percent overshoot of 15% and a settling time of 0.5 seconds.  

1k 2k

• Use the final value Theorem to determine the prefilter gain so the steady state 
error for a step input is zero. 

• Use Matlab to plot  the step response (to verify the percent overshoot and settling 
time). 

• Determine (analytically) the steady state output if the input to the closed loop 
system is cm  and determine the time delay between the input and 
the output. 

r(t) = 1 cos(4t)

 
You should get numbers like 0.0128, 0.0026, 0.047, and a time delay of 0.07 seconds. 
Your step response should be fairly close to the requirements. 



 
 
5) For one of the rotational systems in lab, I found the following state variable 
representations: 
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[ ]1 0 [0]y q= + u  
a) Show that the closed loop transfer function with state variable feedback is 
 

2
2 1

938.3581
( )

(1.2501 938.3581 ) (329.8427 938.3581 )
pf

o

G
G s

s k s
=

+ + + + k
 

 
b) Design I 
 

• Determine feedback gains  and  so the resulting system has real poles and a 
bandwidth of 3 Hz. Set the second pole twice as far from the origin as the first 
pole.   

1k 2k

• Use the final value Theorem to determine the prefilter gain so the steady state 
error for a step input is zero. 

• Estimate the settling time for the step response based on the system bandwidth. 
• Use Matlab to plot the Bode plot of the closed loop system (to verify the 

bandwidth) and plot the step response (to verify the estimated settling time). 
 
You should get numbers like 0.4058, 0.058939, 0.76,  and 0.2. When you look at the 
Bode plot, the bandwidth will not be 3 Hz, primarily because the second pole is too 
close to the first pole. 

 
c) Design II 
 

• Determine  feedback gains  and  so the resulting (ideal second order) system 
has a percent overshoot of 10% and a settling time of 0.8 seconds.  
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• Use the final value Theorem to determine the prefilter gain so the steady state 
error for a step input is zero. 

• Use Matlab to plot the step response (to verify the percent overshoot and settling 
time). 

• Determine (analytically) the steady state output if the input to the closed loop 
system is  and determine the time delay between the input and 
the output. 

or(t) = 15  cos(10t)

 
You should get numbers like -0.27, 0.009, 0.076, and a time delay of 0.18 seconds. 
Your step response should be fairly close to the requirements. 
 



Preparation for Lab 8 
 
6) You will be using this code and the following designs in Lab89, so come prepared! 
 
a) The one degree of freedom Simulink model (Basic_1dof_State_Variable_Model.mdl) implements a 
state variable model for a one degree of freedom system. This model uses the Matlab code 
Basic_1dof_State_Variable_Model_Driver.m to drive it. Both of these programs are available on the 
course website. 
 
a) Get the state variable model files for your systems. Since you will be implementing 
these controllers during lab , if you have any clue at all you and your lab partner will do 
different systems! 
 
You will need to have Basic_1dof_state_Variable_Model_Driver.m load the correct state 
model into the system! 
 
b) You need to set the saturation_level to the correct level for your system. Assume we 
have an input step of 1 cm or 15 degrees. 
 
c) Design a state variable feedback system using pole placement for your system. For 
this method, we basically guess the pole locations and simulate the system. To set the 
location of the closed loop poles, find the part of the code that assigns poles to the 
variable p, and change the elements of p (much like you did for the diophatine method). 
You will need to choose the closed loop pole locations (This is a guess and check sort of 
thing. The biggest problem is making sure the control effort is not too large.) Your 
resulting design must have a settling time of 0.5 seconds or less and must have a percent 
overshoot of 10% or less. Your design should not saturate the system (control effort) and 
you should use a constant prefilter so the steady state error is zero for a step input. 
 
d) Run your simulation for 2.0 seconds. Plot both the system output (from 0 to 2 seconds) 
and the control effort (from 0 to 0.2 seconds). Plot the control effort only out to 0.2 
seconds since the control effort is usually largest near the initial time. If your control 
effort reaches its limits, you need to go back and modify your design. Turn in your plot 
with your closed loop poles and your gains (you can just write these on your plot). 
 
e)  An alternative method for determining the feedback gains is based on what is called a linear 
quadratic regulator. The linear quadratic regulator finds the gain K  to minimize 
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For our one degree of freedom systems, is a 2x2 positive definite matrix, and Q R is a scalar. Since we 
will use a diagonal matrix for  and for our system  is a scalar, we can rewrite as Q ( )u t J
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This is very similar to the quadratic optimal control we already discussed in class for transfer functions. 
A large value of R penalizes a large control signal, a large value of will penalize the position of the 
first cart, while a large value of  will penalize a large value of the velocity of the first cart. All of the 

should be zero or positive. 
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iq
 
 It's easiest to find K  using the following command in Matlab: 1 2( , , ([ ]), )K lqr A B diag q q R=  
 
Try different values of the to find an acceptable controller. Turn in your plot with your 
closed loop poles and your gains (you can just write these on your plot). 

iq

 
Turn in your code. 

 


