
ECE-320: Linear Control Systems
Homework 7

Due: Tuesday October 18 at 2 PM

1) For the plant

1()
(2pG s

s s
=

)+

show that the first order controller that put the closed loop poles at 1 j− ± and -3 is
. () 2cG s =

2) For the plant

1()
1pG s

s
=

+

a) Determine a controller so the closed loop pole is at -10, then determine a prefilter so
the steady state error for a unit step is zero.

b) Determine a controller so the system is a type 1 system and the closed loop poles
are at . Show that the resulting closed loop transfer function is

()cG s
2 j− ±

2

3 5()
4 5o

sG s
s s

+
=

+ +

and determine the steady state error for a unit ramp.

3) For the plant
1()
1p

sG s
s
−

=
+

a) Determine a strictly proper controller so the closed loop poles are at ,
determine the closed loop transfer function, and find a constant prefilter so the steady
state error for a unit step is zero. Show that the resulting closed loop transfer function
(without the prefilter) is

()cG s 2 j− ±

2

1()
4 5o
sG s

s s
− +

=
+ +

b) Determine a strictly proper controller so the closed loop poles are at
and -5 (), and the system is a type one system. Show that the
resulting closed loop transfer function is

()cG s 2 j− ±
3 2() 9 25 25oD s s s s= + + +

3 2

(25 21)(1)()
9 25 2o

s sG s
s s s 5
− − −

=
+ + +

Preparation for Lab 7

4) In this problem we are going to be adding a diophantine equation solver to your
closedloop_driver.m , then reproducing the results from problems 1 and 2 (This solver
won't work for problem 3, since there are some unusual requirements in that problem.)

a) Download the function solve_diophantine.m from the class web site.

b) Make the plant transfer function the same as in problem 1 and set the input amplitude
to 0.5.

c) Comment out all of the other controllers, and add the lines

p = [-1+j -1-j -3]; % desired closed loop pole locations
m = 1; % the order of the controller

Gc = solve_diophantine(Gp,p,m);
if (isempty(Gc))
 return;
end;

d) Set the saturation_level to something like 100, temporarily.

e) Run the code to check your answers for problem 1. Turn in your plot. Be sure to run
the simulation long enough to reach steady state, and be sure your constant prefilter is set
correctly to give you a steady state error of 0.

5) Modify the code to duplicate the results from problem 2. Run the code and check your
answers for both parts of problem 2. Turn in your plots. Again use an input amplitude of
0.5. Be sure to run the simulation long enough to reach steady state, and be sure your
constant prefilter is set correctly to give you a steady state error of 0.

6) You will be using this code and the following designs in Lab 7, so come prepared!

a) Get the state variable model files for your systems. Since you will be implementing
these controllers during lab 7, you and your lab partner are to simulate different
systems!

You will need to have closedloop_driver.m load the correct state model into the system
and set the saturation level back to what it should have been! You should have an input
of 0.5 cm or 10 degrees (converted to radians). Your output should be in degrees if you
are using the Model 205.

b) Design a type 0 controller for your system using the diophantine equation method.
You will need to choose the closed loop pole locations (This is a guess and check sort of
thing. The biggest problem is making sure the control effort is not too large.) Your
resulting design must have a settling time of 1.0 seconds or less and must have a percent
overshoot of 25% or less. Your design should not saturate the system (control effort),
your controller must be stable, and you should use a constant prefilter.

c) Run your simulation for 2.0 seconds. Plot both the system output (from 0 to 2 second)
and the control effort (from 0 to 0.2 seconds). Plot the control effort only out to 0.2
seconds since the control effort is usually largest near the initial time. If your control
effort reaches its limits, you need to go back and modify your design. Turn in your plot
and your controller (you can just write this on your plot).

d) Modify your design from part b to implement a type 1 controller, with all other
conditions the same (you may have to modify the closed loop pole locations). The
prefilter should be a constant and the controller should be stable. Turn in your plot.

e) (Potentially Tricky!) Modify your design from part d to use a dynamic prefilter to
cancel the zeros of the closed loop transfer function and produce a steady state error of
zero. Here the denominator of the prefilter is the numerator of the closed loop transfer
function, and the numerator is set for a position error of zero (Think!) Turn in your plot,
your controller, and your prefilter (you can write the controller and prefilter on the
graph). The prefilter must be stable, hence the numerator must have all of its zeros in the
LHP. You may have to modify your pole locations from part d. For my systems, I had
some complex conjugate poles with imaginary parts larger than the real parts, but this
may not help you. You will probably need to iterate here.

Turn in your code and plots.

