
 
ECE-320: Linear Control Systems 

Homework 5 
 
Due: Tuesday October 4 at 1 PM  Midterm Exam October 6!! 
 
 
1) For the following problem, assume we are using the following control system 
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where the plant is given by 
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For the following controllers, sketch the root locus with arrows showing the direction of travel as k  
increases. If there are any poles going to zeros at infinity, you need to compute the centroid of the 
asymptotes ( cσ )  and the angles of the asymptotes. 
 

 
You may (and should) check your answers with Matlab (use the rlocus command), but you need to do 
this by hand. 
  
a) G s  ( proportional (P) controller) ( )c k=
 

b) ( )c
kG s  (an integral (I) controller) 
s

=

 

c) (( )c
k s z)

s
+

=G s  (a proportional + integral (PI) controller) Write the centroid cσ as a function of z. 

For what values of z will the two asymptotes be in the right half plane? (For plotting purposes, assume z  
is equal to 2.) 
 
d) G s  (a proportional+derivative (PD) controller)  ( ) ( )c k s z= +

e) 1( )(( )c
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=G s  (a proportional+integral+derivative (PID) controller) Sketch this for the case 

where both zeros are real and then when both zeros are complex conjugates. 
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)  ( a lead controller, ) Write an expression for p z> cσ as a function of the distance  

between the pole and the zero, l p z= − . What happens to the asymptotes as l  gets larger? (For plotting 
purposes, assume  p is 5 and z is 1.) 
 
 
 
2) For the following problem, assume we are using the following control system 
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where the plant is given by 
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Want to determine if it is possible to meet the following constraints 
 

•  1secsT ≤
• Steady state error for a unit step input < 0.1 

 
with P, I, PD, and PID (real zeros and complex conjugate zeros) controllers. For each of these 
controllers, you need to 
 

• Sketch the root locus with arrows showing the direction of travel as  increases. If there are any 
poles going to zeros at infinity, you need to compute the centroid of the asymptotes (

k
cσ ) and the 

angles of the asymptotes. 
 

• State whether it is possible, based only on the closed loop pole locations, to meet the constraints. 
If it is necessary to put constraints on , , or to meet the constraints, you must specify them. 
(At this point you can only put conditions on k to meet the steady state  error constraints.) 

k p z

 
• Determine if it is possible for the output to oscillate (nonzero dω ) 
 

You may (and should) check your answers with Matlab (use the rlocus command), but you need to do 
this by hand. 
  
 
 
 



 
 
 
3) A different approach to the root locus... 
Consider the following closed loop control system with a lead controller ( ), where 
k, p, and z are values to be determined. We would like the 

p z>
dominant poles of the closed 

loop system to be at and the6 2 j− ±  steady state error  (for a unit step) to be less than or 
equal to 0.08. We will assume k, p, and z are positive values. 
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a) Show that the closed loop poles are roots of the equation 
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b) Since s is a complex variable, we can write the results for part (a) as a magnitude 
condition and a phase condition. Show that these conditions are given as 
 
magnitude condition: 

| | 5 1
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phase condition: 
  ( ) 5 ( ) ( 1) ( 2) 180os z s p s s∠ + +∠ −∠ + −∠ + −∠ + = ±

 
c) Since we want the point  to be on the root locus, show that when we evaluate 
the above expressions using  we get the equations 

6 2 j− +
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magnitude condition: 
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phase condition: 
1 12 2tan tan 131.6
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Note that once we choose p and z that meet the phase condition, we can always find a k to 
meet the magnitude condition. Hence the phase condition is the most difficult to meet. 



 
 
 
d) Now use the "identity" 
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to show we can write the phase condition as 
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Note that this identity does not take into account the two argument nature of the 
arctangent function. Hence the results can sometimes be off by 180 degrees. However, for 
most cases it is quite helpful. 
 
e) The numerator of the above function is zero when z = 5.144, and the denominator is 
zero when p = 4.224. Usually places where the numerator or denominator is zero indicate 
where there is some type of change. To answer the following questions, if may prove 
useful to put in a value of z and find the corresponding p value to determine what is 
wrong. Remember we want a lead controller and the dominant poles at  6 2 j− ±
 
i) If z > 5.144 we will not get an acceptable lead controller. Why? 
 
ii) If 4.224 < z < 5.144 we will not get an acceptable controller. Why? 
 
iii) If z < 2, we will not get an acceptable lead compensator. Why? (Hint: Sketch a root 
locus plot) 
 
f) Show that the condition to meet the steady state error requirement can be written as 
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g) We must determine k, p, and z to satisfy the requirements 
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Make a table showing your guess for z, the corresponding p and k, and then kz/p. If you 
think about your results this should not take very long. 
 
h) Determine the location of all of the closed loop poles and verify that the dominant 
poles are at  (the Matlab command rlocus may help) 6 2 j− ±



4)  One of the things that will be coming up in lab more and more is the limitation of the 
amplitude of the control signal, or the control effort. This is also a problem for most 
practical systems. In this problem we will do some simple analysis to better understand 
why Matlab's sisotool won't give us a good estimate of the control effort for some types 
of systems, and why dynamic prefilters can often really help us out here. 
a) For the system below, 
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 show that U(s) and R(s) are related by 
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b) For many types of controllers, the maximum value of the control signal is just after the 
step is applied, at .  Although most of the time we are concerned with steady state 
values and use the final value Theorem in the s-plane, in this case we want to use the 
initial value Theorem, which can be written as 
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If the system input is a step of amplitude A, show that  
 

( ) ( )
(0 ) lim

1 ( ) (
c pf

s
p c )

AG s G s
u

G s G s
+

→∞
=

+
 

 
This result shows very clearly that the initial control signal is directly proportional to the 
amplitude of the input signal, which is pretty intuitive. 
 
c) Now let's assume  
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If we want to look at the initial value for a unit step, we need to look at 
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Let's also then define 
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and 
deg deg max deg deg deg ,deg deg degpf c c pf p p pfU N D N D N D D⎡ ⎤= − − + − +⎣ ⎦  

 
where deg is the degree of polynomial Y. Y
 
d) Since we are going to take the limit as , we need the degree of  to be less 
than or equal to zero for a step input to have a finite 

s →∞ ( )U s
(0 )u + . Why? 

 
For our 1 dof systems in lab, we have deg 0pN =  and deg 2pD = . Use this for the 
remainder of this problem 
 
e) If the prefilter is a constant, show that in order to have a finite (0 )u + we must have 
 

deg degc cD N≥  
f) If the numerator of the prefilter is a constant, then in order to have a finite  we 
must have 

(0 )u +

 
deg deg deg 0c c pfD N D− + ≥  or 2 deg 0pfD− + ≥  

 
g) For P, I, D, PI, PD, PID, and lead controllers, determine if (0 )u +  is finite if the 
prefilter is a constant. 
 
Note: Although it may appear that the control effort is sometimes infinite, in practice this 
is not true since our motor cannot produce an infinite signal. This large initial control 
signal is referred to as a set- point kick. There are different ways to implement a PID 
controller to avoid this, and we will cover two of them in Lab 6. 



Preparation for Lab 5 
 
5) In this problem we are going to be adding a PID controller to your 
closedloop_driver.m  file. Once the PID controller is implemented, we can easily form 
any of the common controllers (P,I, PI,  and PD) by settling coefficients to zero. 
 
You will be using this code and these designs in Lab 5, so come prepared! 
 
a) Get the state variable model files for one of your 1 degree of freedom systems. Since 
you will be implementing these controllers during lab 5, if you have any clue at all you 
and your lab partner will do different systems! 
 
You will need to have closedloop_driver.m load the correct state model into the system! 
 
b) Comment out all of the other controllers, and add the lines 
 
kp = 0.2;      % just a dummy value 
ki = 0.02;     % and even dummer value 
kd = 0.002;  % way stupid value 
 
Gc = tf(kp,1) + tf(ki,[1 0]) + tf([kd 0],[1/50 1]); 
 
Note that we have modified the derivative controller so that it is in series with a one pole 
lowpass filter with pole at 50 (about 8 Hz). This will help smooth out the derivatives. 
 
c) You will need to be able to determine the PID controller coefficients from the 
controller. This is easiest done by equating coefficients. For example, if the PID 
controller is given by 

2( )( ) a s bs cC s
s
+ +

=  

show that the coefficients are determined by dk a= , pk ab=  , and ik ac= . 
 
d) Using Matlab's sisotool, design two PID controllers (with complex conjugate zeros, 
one with real zeros) for your system. Initially limit your gains as in the lab 
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Your resulting design must have a settling time of  1.0 seconds or less and must have a 
percent overshoot of 25% or less. Note that sisotool defaults to an input of 1, that's OK 
for design purposes. If you don't know how to get the correct plant transfer function, run 
closedloop_driver.m (with the correct model file) and it will put the correct transfer 
function Gp(s) into your Matlab workspace. 
 



e) Implement the PID controller in closedloop_driver.m. Be sure the saturation limits are 
set appropriately for your ECP system (rectilinear or torsional). Use a step with amplitude 
0.5 cm or 10 degrees (convert to radians!)  in your closedloop_driver.m file. 
 
f) Simulate the system. Plot the control effort only out to 0.2 seconds since the control 
effort is usually largest near the initial time. If your control effort reaches its limits, you 
need to go back to part (d) and modify your design.  If your control effort is not near the 
limit, you can increase the gains, particularly the derivative gain. 
 
g) Run your simulation for 2.0 seconds. Plot both the system output (from 0 to 2 seconds) 
and the control effort (from 0 to 0.2 seconds). Put a title on your plot to identify kp, ki, 
and kd. Look at previous code to determine how to do this. Turn in your plot. 
 
Since the PID controller makes the system a type 1 system, we don't need a prefilter to 
have a steady state error of zero. However, sometimes we can use the prefilter to make 
the transient response a bit nicer, or reduce the control effort. However, this is done at the 
expense of a block outside the control loop, which may be bad. Never the less, we 
continue anyway... 
 
h) Our new transfer function has introduced finite zeros into the closed loop transfer 
function. We now want to use a dynamic prefilter to eliminate these zeros, so long as 
they are in the left half plane. We also need (0) 1pfG = . Hence we have 
 

(0)( )
( )

o
pf

o

NG s
N s

=  

 
For us, we set the prefilter Gpf(s) to num_Go(end)/num_Go. (This should all be done in 
Matlab! Comment out your old code and add this new code.) This will cancel out the 
zeros of the closed loop system. Your numerator polynomial for Go(s), which is denoted 
as , should be second order. If it is not, be sure you have not removed the lines ( )oN s
 
num_Gp = (abs(num_Gp) > tol*ones(1,length(num_Gp))).*num_Gp; 
 den_Gp = (abs(den_Gp) > tol*ones(1,length(den_Gp))).*den_Gp; 
 
 Rerun part (g) with the dynamic prefiler and turn in your plot. How have the results 
changed?  
   
Turn in your final code! 
 


