
 
ECE-320: Linear Control Systems 

Homework 4 
 
Due: Tuesday September 27 at 1PM   Midterm Exam October 6!! 
 
1) For the following systems 
 
a)  Determine the system type (0, 1, 2, ...) 
 
b) If the system is type 0 assume 1pfG = and determine the position error constant pK  
and the steady state error for a unit step input. Then determine the value of  to make 
this error zero.  If the system is type 1, assume 

pfG
1pfG =  and determine the steady state 

error for a unit step, the velocity error constant , and the steady state error for a unit 
ramp. Is there any constant value of  that can change the velocity error? 
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2) In this problem we explore a slight change to the standard quadratic optimal controller. 
We assume we have the following system, with prefilter , plant  and controller 
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a) Assume the plant is  
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and we want to design a quadratic optimal controller with 0.001q = . Show that 
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in order to have a steady state error for a unit step of zero. 
 
Simulate the system with a unit step input. Your results should look like that in Figure 1. 
Turn in this plot. 
 
b) Assume we utilize the quadratic optimal algorithm as above to determine, G  but 
rather than utilizing a prefilter, we scale the closed loop transfer function so 
thatG . Show that we then get 
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Simulate the system using this controller and prefilter with a unit step input. Your results 
should look like that in Figure 1.  
 
Note that we are not guaranteed we will be able to get an implementable transfer 
function if we scale G  so that G0 ( )s 0 (0) 1= , but if we can, we get a type 1 system and 
there is no scaling outside the of the feedback loop ( 1pfG =  )! Why do we care? See part 
c, d, and e below. 
 
c) Assume that despite your best efforts, you did not get the model for the plant exactly 
correct, and instead, the correct transfer function for the plant is 
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Simulate  this system with a unit step input using the controller and prefilter from part (a) 
using this plant instead. Your results should look like those in Figure 2. 
 
d) Now simulate this system (plant from part c) with a unit step input using the controller 
and prefilter from part (b). You should get results like those in Figure 3. Turn in your 
graph. 
 
e)  Assume that your fool of a lab partner copied down the numbers incorrectly, and the 
plant is more accurately modeled as 
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Show (analytically) that the steady state error for the original system for a step input with 
amplitude A is 0.68A, while the corresponding steady state error for the type 1 system is 
still 0. Simulate this plant using the original control system (part a) and the modified 
control system (part b). You should get results like those in Figures 4 and 5. Turn in your 
graphs. 
 
The moral of this problem is that, if we can, we are usually better off if we do not depend 
on anything outside the feedback loop! Type 1 system can help alot with modeling errors 
if we want a zero position error. However, it may take a long time to reach the zero 
position error. 
 
3) Assume we have the following system 
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where 1( )
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s
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+
.  We want to design a model matching controller so that  

• the closed loop system is a second order  
• the state error for a step input is zero  
• the bandwidth of the closed loop system is 2 Hz.  

 
Luckily I have an uncle who sells good poles cheap, so I obtained a pole at 10π−  rad/sec 
for your system. You are to determine the closed loop transfer function (i.e., find the 
other pole and the numerator) and then the controller to meet these specifications. (Hint: 

Read Chapter 7 of the notes!,  Ans. 
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4) Consider the following simple feedback system, with which we want to use model 
matching to determine the controller .  ( )cG s
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However, the plant  has zeros in the right half plane, and we cannot cancel these poles or we will 
have an unstable controller. Let's denote the plant 
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where we have partitioned the numerator polynomial of the plant into  which contains the zeros of 
the plant in the open left half plane, and  which contains the zeros of the plant in the closed right 
half plane. Let's assume then that the desired closed loop transfer function is written as 
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a) Show that the controller for this system is given by 
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b) Insert the expression for the plant and the expression for the controller from part (a) into the block 
diagram, cancel where appropriate, and show by simplifying the block diagram that  
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Did the controller cancel the right half plane zeros of the plant? Did the controller cancel the left half 
plane zeros of the plant? Did the controller cancel the poles of the plant? 
 
 



 
 
5)  Consider the following control system.  
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We can compute the position error constant  as pK (0) (0)p c pK G G=  
 
a) Determine an expression for the closed loop transfer function (from input to output) 

 in terms of , , and G . ( )oG s pfG ( )cG s ( )p s
 
b) For a steady state error of zero for a step input we want G (0) 1o = . Use this 
information to show that we can determine the prefilter gain to be 
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that we can determine the prefilter gain to be 
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Note that if (or equivalentlypK = ∞ 0sse = ), we get G 1pf = . 1)  
 
6)  Consider the following control system: 
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a) If the input to the system is , what is the steady state output? ( ) 8 ( )r t u t=
 
b) If the input to the system is ( ) 8sin(3 ) ( )r t t u t= , what is the output in steady state? 
What is the time lag between the input signal and the output signal?  
Hint: you can write ( )dt t tω θ ω− = −  if θ  is measured in radians. 

Answers: ( ) 8, ( ) 8 10 sin(3 71.57 ), 0.416secdy t y t t t= = − =  



 
 
 
7) The following four plots display the frequency response (magnitude only) for four 
different systems with real poles. Estimate the settling time for each system. 
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pproximate Answers. (Not in the correct order) 0.6, 0.2, 4, 0.8 seconds. 
 
A
 



8) Assume we have the following system 
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.  We want to design a model matching controller so that  

• the closed loop system is a second order  
• the state error for a step input is zero  
• the settling time of the closed loop system is 3 seconds 
• the percent overshoot of the closed loop system is 20% 

 
. You are to determine the closed loop transfer function and then the controller to meet 
these specifications.   
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Figure1. The step response for the correct plant and original controller (Problem 2, part a) 
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Figure 2. The step response for the new plant and the original controller (Problem 2, part c) 
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Figure 3. Step response of the new plant with the type 1 controller (Problem 2, part d) 
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Figure 4. Step response of the new plant with the original controller (Problem 2, part e)   
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Figure 5. Step response of the new plant with the type 1 controller (Problem 2, part e) 

 Note that we trade off zero position error for a longer settling time.  
 


