5.0 Impulse Response, Step Response, and Convolution

In this chapter we confine ourselves to systems that can be modeled as linear and time-invariant, or LTI systems. For these types of systems, we can determine the output of the system to any input in a very systematic way. We can also determine a great deal about the system just by looking at how it responds to various types of inputs. The most fundamental of these inputs is the impulse response, or the response of a system at rest to an impulse. However, the response of a system to a step is much easier to determine and can be used to determine the impulse response of any LTI system.

5.1 Impulse or Delta Functions



An impulse, or delta function, , is defined as a function that is zero everywhere except at one point, and has an area of one. Mathematically, we can write this as
	


	

Note that we do not know the value of , it is undefined! We can think of, or model, delta functions as functions that exist in some type of limit. For example, the functions displayed in Figures 5.1, 5.2, and 5.3 can be thought of as different models for delta functions, since the meet our two (simplistic) requirements above.

[image: ]
Figure 5.1. Rectangular model of an impulse (delta) function.
[image: ]
Figure 5.2. Triangular model of an impulse (delta) function.

[image: ]

Figure 5.3. Gaussian model of an impulse (delta) function.





Although delta functions are really idealized functions, they form the basis for much or the study of systems. Knowing how a system will respond to an impulse (an impulse response) tells us a great deal about a system, and lets us determine how the system will response to any arbitrary input.

There following two very important properties of delta functions  will be used extensively:


Property 1: 

Property 2 (Sifting Property):  


The first property is pretty easy to understand if we think about the definition of a delta function. A delta function is zero everywhere except when its argument is zero, so both sides of the equation are zero everywhere except at , and then at both sides have the same value. 

The second property follows directly from the first property as follows:



It is very important that the limits of the integral are such that the delta function is within the limits of the integral, or else the integral is zero.

Example 5.1.1. You should understand each of the following identities, and how to use the two properties to arrive at the correct solution.






5.2 Unit Step (Heaviside) Functions

We will define the unit step function as








We will not define , though some textbooks define . The argument of the unit step was deliberately not written as , since this sometimes leads to some confusion when solving problems. It is generally better to remember that the unit step is one whenever the argument () is positive, and then try and figure out what this might mean in terms of .

Example. 5.2.1. The following are some simple examples with unit step functions:




a)   for  or 



b)    for  or 



c)    for  or 

Unit step functions also show up in integrals, and it is useful to be able to deal with them in that context. The usual procedure is to determine when the unit step function (or functions) are one, and then do the integrals. If the unit step functions are not one, then the integral will be zero. When you are done with the integral, you may need to preserve the information indicating that the integral is zero unless the unit step functions are “on”, and this is usually done by including unit step functions. A few examples will hopefully clear this up.


Example 5.2.1. Simplify  as much as possible. We need both unit step functions to be one, or the integral is zero. We need then




 for  or 



 for  or 








The integral then becomes . However, we are not done yet. We need to be sure both of the unit step functions are 1, which means we need , or . So the answer is zero for  and  for . The way we can write this compactly is , which is the final answer.


Example 5.2.2. Simplifyas much as possible. We need the step function to be one, or the integral is zero. We need then




            for  or 

The integral becomes 






However, the integral will be zero unless  or . The final answer is then	.


Example 5.2.3. Simplify  as much as possible. This integral has both an impulse and a unit step function. While we might be tempted to use the unit step function to set the limits of the integral, the best (and easiest) thing to do is to just use the sifting property of impulse functions. This gives the result 





Example 5.2.4. Simplify as much as possible. We can again use the sifting property with this integral, but we must be careful. If we do not integrate past the impulse function, the integral will be zero. Hence we have


	




which we can write in a more compressed form as .


Example 5.2.5. Simplify  as much as possible. Using the sifting property we have 



which we can write more compactly as .



Finally, if we consider integrating an impulse, , we will either get a one (if we integrate past the impulse) or a zero (if we do not). Thus we have



or 


If we differentiate both sides of this we get 


This relationship is important to remember, but when doing integrals it is generally a better idea to remember what conditions you may need to impose in order to determine if and what unit step functions will be required.

5.3 Impulse Response


The impulse response of an LTI system is the response of the system initially at rest (no initial energy, all initial conditions are zero) to an impulse at time . The most common way to denote the impulse response is by lower case letters h and g, though others are used.

Example 5.3.1. Consider the circuit shown in Figure 5.4. Determine the impulse response of the system. The circuit is a simple voltage divider, so we have


and the impulse response is 




Example 5.3.2. Consider the circuit shown in Figure 5.5. Determine the impulse response of the system. We have



or


Then





Integrating from  up to , and assuming the system is initially at rest, we have


The impulse response is then given by



[image: ]


Figure 5.4. Circuit used for Example 5.3.1.

[image: ]

Figure 5.5. Circuit used for Example 5.3.2.

Example 5.3.3. Consider the system described by the mathematical model


The impulse response will be given by


5.4 Step Response



The step response of an LTI system is the response of the system initially at rest (no initial energy, all initial conditions are zero) to a step at time .  There is no common method for denoting the step response, but we will sometimes denote the step response as . If we know the step response of an LTI system, we can determine the impulse response of the system using the relationship



Example 5.4.1. Determine the step response and then use it to determine the impulse response for the system in Example 5.3.2. From the example we have


The step response is then given by


or



The impulse response is then given by



which is the same answer we obtained before.

5.5. Convolution

Derivation of the Convolution Integral





We will derive the convolution integral using two different, though equivalent methods. Consider an LTI system with input . We can approximate  as a piecewise constant function over intervals of length  , as shown in Figure 5.6. Thus we have the approximation


	






Next, we can write the step response of the system as . Because the system is time-invariant, the response of the system to the input  is , and the response of the system to  is.  Because the system is both linear and time-invariant, the response of the system to input  can then be approximated as 



Now we can approximate the derivative of the step response as


or


Thus the output can be approximated as 




If we define, then as  the sum becomes an integral and we have





This is one form of the convolution integral, which tells us how to determine the output of an LTI system if we know the impulse response of the system and the system input. We would write this as , where  represents the convolution operator.

An alternative derivation for convolution would be to start with the same approximation 



	

We can then approximate the impulse response as 



or


[image: ]


Figure 5.6. Approximating the continuous function as a piecewise constant function for the derivation of the convolution integral.


We then have





If the input to the LTI system is  the output will be , so we can write the output as






If we define, then as  the sum again becomes an integral and we have




There are a number of useful and important properties of convolution. Among the most useful are the following: 


Commutative Property: 


Associative Property: 


Distributive Property: 

The commutative property means that



so that we have two equivalent ways of determining the system output, . A convenient method of presenting the relationship between the input, output, and impulse response of a system is depicted in Figure 5.7.


[image: ]


Figure 5.7. Input, impulse response, and output for an LTI system.

Now that we know how to determine the output of a system given the impulse response and the input, we need to determine the best way to compute this. There are two general ways for computing the convolution, analytical and graphical. Both methods give the same results, but usually the answers initially look different.  Analytical convolution is generally used for very simple problems, and becomes unwieldy for very complicated problems. Graphical convolution is usually used for more complicated problems and is also useful for visualizing what is happening to the signals during convolution.

Analytical Convolution

In analytical convolution, we basically just evaluate the integral. It is necessary to utilize any step function in the impulse response or system input to change the limits of the integral. In addition, it is important to remember to include any necessary unit step functions on the output, since the output of one system may be the input to another system.



Example 5.5.1.  Determine the output of an LTI system with impulse response to input. To solve this problem we must first choose the way we are going to perform the convolution. We will use the form 


Substituting in our functions we have


or


Using the step functions to change the limits on the integrals we have


Finally we have



Graphical Convolution

As with analytical convolution, the first thing to do is decide which of the two forms of the convolution integral to use. Let’s assume that we are going to use the form 













We need to keep in mind that we want the area under the product of two functions,  and . In addition, we need to remember that we are integrating with respect to the dummy variable , not . This is important to understand, since the function will be at different places along the axis as the variable varies. In fact, the whole point of doing graphical convolution is to sketch the function  as a function of and , determine the overlap, and then perform the integration. 








One simple method for being able to locate as a function of  and is to look at and find suitable “marker” points. Let’s call two such points and . The we can find where these marker points are on the axis as follows




This will all make more sense with a few examples.




Example 5.5.2. Determine the output of an LTI system with impulse response to input. (This is the same problem as Example 5.5.1.) Let’s use the integral form	







The top panel of Figure 5.8 displays the input signal. For this signal the most convenient markers are  and. If we can figure out how these points move we can determine the location of  on the axis as . For these points we have 






The bottom panel of Figure 5.8 displays as a function of . From this figure we can determine where this function is as varies. 
[image: ]






Figure 5.8. Input signal for Example 5.5.2. The original signalis shown in the top panel, with the two convenient “marker” points. The lower panel shows as a function of, and shows how these marker points move as the parameter  is varied. Note that the function has been flipped (reversed) from its original orientation.






	We next need to graph pictures of  and  and look for times when the product of the functions is not zero. For these functions there are three different pictures, corresponding to , , and , as shown in Figure 5.9. 

[image: ]





Figure 5.9. Plots of  and  (dashed line) for Example 5.5.2 for representative values of . For these graphs A=2, B=3, and .

	



For  there is no place the product of the functions is not zero, so the output .


For  we have 


which agrees with our previous answer.


For  we have




Our solution is then 

Our solution should be continuous, so we need to check the values at the boundaries. We have



While this looks different than our previous answer, it is really the same thing for this range of . To see this note that from before we had





If both unit step functions are one and we have 




The solution is plotted in Figure 5.10.


[image: ]


Figure 5.10. Result (output) for Example 5.5.2 assuming A=2, B=3, and .




Example 5.5.3. Determine the output of an LTI system with impulse response to input. Let’s use the integral form 




There is really only one marker point of note, that of , which gives . 









There are four different graphs we need for this example, , , , and . For the product of the functions  and is zero, so .


For  we have the situation shown in Figure 5.11. Evaluating the integrals we have



[image: ]




Figure 5.11. First overlapping region for Example 5.5.3 assuming. This figure is valid for.


For we have the situation shown in Figure 5.12. Evaluating the integral we have



[image: ]


Figure 5.12. Second overlapping region for Example 5.5.3 assuming. This figure is valid for.


For  we have the situation shown in Figure 5.13. For this situation we will need two integrals, 



In summary we have



[image: ]



Figure 5.13. Third overlapping region for Example 5.5.3 assuming. This figure is valid for.



Checking the values of at each boundaries we have




The final solution is plotted in Figure 5.14.




Example. 5.5.4.  Determine the output of an LTI system with impulse response to input. Let’s use the integral form 



There are two marker points of note, that of, which gives 





[image: ]


Figure 5.14. Result (output) for Example 5.5.3 assuming.









There are six different graphs we need for this example, ,, , ,  and. 





For the product of the functions  and is zero, so .


For we have the situation depicted in Figure 5.15, and


[image: ]

Figure 5.15. Initial overlapping region for Example 5.5.4. This figure is valid for .



For we have the situation depicted in Figure 5.16, and 


[image: ]

Figure 5.16. Second overlapping region for Example 5.5.4. This figure is valid for .

For we have the situation depicted in Figure 5.17, and 



[image: ]

Figure 5.17. Third overlapping region for Example 5.5.4. This figure is valid for .


For we have the situation depicted in Figure 5.18, and 






For we have the situation depicted in Figure 5.19, and



[image: ]

Figure 5.18. Fourth overlapping region for Example 5.5.4. This figure is valid for.

[image: ]


Figure 5.18. Final overlapping region for Example 5.5.4. This figure is valid for .



In summary we have





Note that although the input to the system starts at time , the output starts at time . Thus the system is noncausal. The system output is graphed in Figure 5.19.


[image: ]



Figure 5.19 Result (output) for Example 5.5.4. Note that the system is not causal since the input starts at  but the output starts at 

	





5.6 Causality and BIBO Stability

Now that we can write the output of an LTI system in terms of the convolution of the input with the impulse response, we can also determine some fairly simple tests to determine if an LTI system is BIBO stable or causal. We have



If we know the input is bounded, , then we know


Thus an LTI system will be BIBO stable if 

	



Next, let’s assume we want to find the output of an LTI system at the time, so we have


We can then break the integral into two parts,


If the system is causal, then the second integral must be zero, since it depends on future values of the input. In order of the second integral to be zero we need



  for 

Let’s assume . Substituting this into our expression for the impulse response we have 


or


This means the impulse response must be zero for any time less than zero in order for the LTI system to be causal.


In summary, an LTI system is BIBO stable if 


and is causal if 


Note that these are independent properties, a system can be stable and not causal, or causal and not stable.
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