5.0 Impulse Response, Step Response, and Convolution

In this chapter we confine ourselves to systems that can be modeled as linear and time-invariant, or LTI systems. For these types of systems, we can determine the output of the system to any input in a very systematic way. We can also determine a great deal about the system just by looking at how it responds to various types of inputs. The most fundamental of these inputs is the impulse response, or the response of a system at rest to an impulse. However, the response of a system to a step is much easier to determine and can be used to determine the impulse response of any LTI system.

5.1 Impulse or Delta Functions

An impulse, or delta function, , is defined as a function that is zero everywhere except at one point, and has an area of one. Mathematically, we can write this as
	

	

Note that we do not know the value of , it is undefined! We can think of, or model, delta functions as functions that exist in some type of limit. For example, the functions displayed in Figures 5.1, 5.2, and 5.3 can be thought of as different models for delta functions, since the meet our two (simplistic) requirements above.

[image:]
Figure 5.1. Rectangular model of an impulse (delta) function.
[image:]
Figure 5.2. Triangular model of an impulse (delta) function.

[image:]

Figure 5.3. Gaussian model of an impulse (delta) function.

Although delta functions are really idealized functions, they form the basis for much or the study of systems. Knowing how a system will respond to an impulse (an impulse response) tells us a great deal about a system, and lets us determine how the system will response to any arbitrary input.

There following two very important properties of delta functions will be used extensively:

Property 1:

Property 2 (Sifting Property):

The first property is pretty easy to understand if we think about the definition of a delta function. A delta function is zero everywhere except when its argument is zero, so both sides of the equation are zero everywhere except at , and then at both sides have the same value.

The second property follows directly from the first property as follows:

It is very important that the limits of the integral are such that the delta function is within the limits of the integral, or else the integral is zero.

Example 5.1.1. You should understand each of the following identities, and how to use the two properties to arrive at the correct solution.

5.2 Unit Step (Heaviside) Functions

We will define the unit step function as

We will not define , though some textbooks define . The argument of the unit step was deliberately not written as , since this sometimes leads to some confusion when solving problems. It is generally better to remember that the unit step is one whenever the argument () is positive, and then try and figure out what this might mean in terms of .

Example. 5.2.1. The following are some simple examples with unit step functions:

a) for or

b) for or

c) for or

Unit step functions also show up in integrals, and it is useful to be able to deal with them in that context. The usual procedure is to determine when the unit step function (or functions) are one, and then do the integrals. If the unit step functions are not one, then the integral will be zero. When you are done with the integral, you may need to preserve the information indicating that the integral is zero unless the unit step functions are “on”, and this is usually done by including unit step functions. A few examples will hopefully clear this up.

Example 5.2.1. Simplify as much as possible. We need both unit step functions to be one, or the integral is zero. We need then

 for or

 for or

The integral then becomes . However, we are not done yet. We need to be sure both of the unit step functions are 1, which means we need , or . So the answer is zero for and for . The way we can write this compactly is , which is the final answer.

Example 5.2.2. Simplifyas much as possible. We need the step function to be one, or the integral is zero. We need then

 for or

The integral becomes

However, the integral will be zero unless or . The final answer is then	.

Example 5.2.3. Simplify as much as possible. This integral has both an impulse and a unit step function. While we might be tempted to use the unit step function to set the limits of the integral, the best (and easiest) thing to do is to just use the sifting property of impulse functions. This gives the result

Example 5.2.4. Simplify as much as possible. We can again use the sifting property with this integral, but we must be careful. If we do not integrate past the impulse function, the integral will be zero. Hence we have

	

which we can write in a more compressed form as .

Example 5.2.5. Simplify as much as possible. Using the sifting property we have

which we can write more compactly as .

Finally, if we consider integrating an impulse, , we will either get a one (if we integrate past the impulse) or a zero (if we do not). Thus we have

or

If we differentiate both sides of this we get

This relationship is important to remember, but when doing integrals it is generally a better idea to remember what conditions you may need to impose in order to determine if and what unit step functions will be required.

5.3 Impulse Response

The impulse response of an LTI system is the response of the system initially at rest (no initial energy, all initial conditions are zero) to an impulse at time . The most common way to denote the impulse response is by lower case letters h and g, though others are used.

Example 5.3.1. Consider the circuit shown in Figure 5.4. Determine the impulse response of the system. The circuit is a simple voltage divider, so we have

and the impulse response is

Example 5.3.2. Consider the circuit shown in Figure 5.5. Determine the impulse response of the system. We have

or

Then

Integrating from up to , and assuming the system is initially at rest, we have

The impulse response is then given by

[image:]

Figure 5.4. Circuit used for Example 5.3.1.

[image:]

Figure 5.5. Circuit used for Example 5.3.2.

Example 5.3.3. Consider the system described by the mathematical model

The impulse response will be given by

5.4 Step Response

The step response of an LTI system is the response of the system initially at rest (no initial energy, all initial conditions are zero) to a step at time . There is no common method for denoting the step response, but we will sometimes denote the step response as . If we know the step response of an LTI system, we can determine the impulse response of the system using the relationship

Example 5.4.1. Determine the step response and then use it to determine the impulse response for the system in Example 5.3.2. From the example we have

The step response is then given by

or

The impulse response is then given by

which is the same answer we obtained before.

5.5. Convolution

Derivation of the Convolution Integral

We will derive the convolution integral using two different, though equivalent methods. Consider an LTI system with input . We can approximate as a piecewise constant function over intervals of length , as shown in Figure 5.6. Thus we have the approximation

	

Next, we can write the step response of the system as . Because the system is time-invariant, the response of the system to the input is , and the response of the system to is. Because the system is both linear and time-invariant, the response of the system to input can then be approximated as

Now we can approximate the derivative of the step response as

or

Thus the output can be approximated as

If we define, then as the sum becomes an integral and we have

This is one form of the convolution integral, which tells us how to determine the output of an LTI system if we know the impulse response of the system and the system input. We would write this as , where represents the convolution operator.

An alternative derivation for convolution would be to start with the same approximation

	

We can then approximate the impulse response as

or

[image:]

Figure 5.6. Approximating the continuous function as a piecewise constant function for the derivation of the convolution integral.

We then have

If the input to the LTI system is the output will be , so we can write the output as

If we define, then as the sum again becomes an integral and we have

There are a number of useful and important properties of convolution. Among the most useful are the following:

Commutative Property:

Associative Property:

Distributive Property:

The commutative property means that

so that we have two equivalent ways of determining the system output, . A convenient method of presenting the relationship between the input, output, and impulse response of a system is depicted in Figure 5.7.

[image:]

Figure 5.7. Input, impulse response, and output for an LTI system.

Now that we know how to determine the output of a system given the impulse response and the input, we need to determine the best way to compute this. There are two general ways for computing the convolution, analytical and graphical. Both methods give the same results, but usually the answers initially look different. Analytical convolution is generally used for very simple problems, and becomes unwieldy for very complicated problems. Graphical convolution is usually used for more complicated problems and is also useful for visualizing what is happening to the signals during convolution.

Analytical Convolution

In analytical convolution, we basically just evaluate the integral. It is necessary to utilize any step function in the impulse response or system input to change the limits of the integral. In addition, it is important to remember to include any necessary unit step functions on the output, since the output of one system may be the input to another system.

Example 5.5.1. Determine the output of an LTI system with impulse response to input. To solve this problem we must first choose the way we are going to perform the convolution. We will use the form

Substituting in our functions we have

or

Using the step functions to change the limits on the integrals we have

Finally we have

Graphical Convolution

As with analytical convolution, the first thing to do is decide which of the two forms of the convolution integral to use. Let’s assume that we are going to use the form

We need to keep in mind that we want the area under the product of two functions, and . In addition, we need to remember that we are integrating with respect to the dummy variable , not . This is important to understand, since the function will be at different places along the axis as the variable varies. In fact, the whole point of doing graphical convolution is to sketch the function as a function of and , determine the overlap, and then perform the integration.

One simple method for being able to locate as a function of and is to look at and find suitable “marker” points. Let’s call two such points and . The we can find where these marker points are on the axis as follows

This will all make more sense with a few examples.

Example 5.5.2. Determine the output of an LTI system with impulse response to input. (This is the same problem as Example 5.5.1.) Let’s use the integral form	

The top panel of Figure 5.8 displays the input signal. For this signal the most convenient markers are and. If we can figure out how these points move we can determine the location of on the axis as . For these points we have

The bottom panel of Figure 5.8 displays as a function of . From this figure we can determine where this function is as varies.
[image:]

Figure 5.8. Input signal for Example 5.5.2. The original signalis shown in the top panel, with the two convenient “marker” points. The lower panel shows as a function of, and shows how these marker points move as the parameter is varied. Note that the function has been flipped (reversed) from its original orientation.

	We next need to graph pictures of and and look for times when the product of the functions is not zero. For these functions there are three different pictures, corresponding to , , and , as shown in Figure 5.9.

[image:]

Figure 5.9. Plots of and (dashed line) for Example 5.5.2 for representative values of . For these graphs A=2, B=3, and .

	

For there is no place the product of the functions is not zero, so the output .

For we have

which agrees with our previous answer.

For we have

Our solution is then

Our solution should be continuous, so we need to check the values at the boundaries. We have

While this looks different than our previous answer, it is really the same thing for this range of . To see this note that from before we had

If both unit step functions are one and we have

The solution is plotted in Figure 5.10.

[image:]

Figure 5.10. Result (output) for Example 5.5.2 assuming A=2, B=3, and .

Example 5.5.3. Determine the output of an LTI system with impulse response to input. Let’s use the integral form

There is really only one marker point of note, that of , which gives .

There are four different graphs we need for this example, , , , and . For the product of the functions and is zero, so .

For we have the situation shown in Figure 5.11. Evaluating the integrals we have

[image:]

Figure 5.11. First overlapping region for Example 5.5.3 assuming. This figure is valid for.

For we have the situation shown in Figure 5.12. Evaluating the integral we have

[image:]

Figure 5.12. Second overlapping region for Example 5.5.3 assuming. This figure is valid for.

For we have the situation shown in Figure 5.13. For this situation we will need two integrals,

In summary we have

[image:]

Figure 5.13. Third overlapping region for Example 5.5.3 assuming. This figure is valid for.

Checking the values of at each boundaries we have

The final solution is plotted in Figure 5.14.

Example. 5.5.4. Determine the output of an LTI system with impulse response to input. Let’s use the integral form

There are two marker points of note, that of, which gives

[image:]

Figure 5.14. Result (output) for Example 5.5.3 assuming.

There are six different graphs we need for this example, ,, , , and.

For the product of the functions and is zero, so .

For we have the situation depicted in Figure 5.15, and

[image:]

Figure 5.15. Initial overlapping region for Example 5.5.4. This figure is valid for .

For we have the situation depicted in Figure 5.16, and

[image:]

Figure 5.16. Second overlapping region for Example 5.5.4. This figure is valid for .

For we have the situation depicted in Figure 5.17, and

[image:]

Figure 5.17. Third overlapping region for Example 5.5.4. This figure is valid for .

For we have the situation depicted in Figure 5.18, and

For we have the situation depicted in Figure 5.19, and

[image:]

Figure 5.18. Fourth overlapping region for Example 5.5.4. This figure is valid for.

[image:]

Figure 5.18. Final overlapping region for Example 5.5.4. This figure is valid for .

In summary we have

Note that although the input to the system starts at time , the output starts at time . Thus the system is noncausal. The system output is graphed in Figure 5.19.

[image:]

Figure 5.19 Result (output) for Example 5.5.4. Note that the system is not causal since the input starts at but the output starts at

	

5.6 Causality and BIBO Stability

Now that we can write the output of an LTI system in terms of the convolution of the input with the impulse response, we can also determine some fairly simple tests to determine if an LTI system is BIBO stable or causal. We have

If we know the input is bounded, , then we know

Thus an LTI system will be BIBO stable if

	

Next, let’s assume we want to find the output of an LTI system at the time, so we have

We can then break the integral into two parts,

If the system is causal, then the second integral must be zero, since it depends on future values of the input. In order of the second integral to be zero we need

 for

Let’s assume . Substituting this into our expression for the impulse response we have

or

This means the impulse response must be zero for any time less than zero in order for the LTI system to be causal.

In summary, an LTI system is BIBO stable if

and is causal if

Note that these are independent properties, a system can be stable and not causal, or causal and not stable.

1

image2.wmf

image47.wmf
0

t

>

oleObject47.bin

image48.wmf
2

(1)()

t

eeut

--

-

oleObject48.bin

image49.wmf
()(2)

utd

ldll

¥

-¥

-+

ò

oleObject49.bin

image50.wmf
()(2)(2)

utdut

ldll

¥

-¥

-+=+

ò

oleObject50.bin

image51.wmf
()

(2)

t

t

d

e

l

dll

--

-

¥

-

ò

oleObject51.bin

oleObject2.bin

oleObject52.bin

image52.wmf
(2)

()

2

0

(2)

2

t

t

t

d

et

e

t

l

dll

--

--

¥

-

ì

>

ï

=

í

<

ï

-

î

ò

oleObject53.bin

image53.wmf
(2)

(2)

t

u

e

t

--

-

oleObject54.bin

image54.wmf
1

(2)

t

t

ed

l

dll

¥

+

-

+

ò

oleObject55.bin

image55.wmf
2

1

12

(2)

012

t

t

t

et

ed

t

l

dll

¥

-

+

-

ì

-<-

ï

+=

í

->-

ï

î

ò

oleObject56.bin

image56.wmf
2

(1)

t

eut

-

-

image3.wmf
()0,0

()1,0

d

m

m

dll

dllm

-

=¹

=>

ò

oleObject57.bin

image57.wmf
()

t

d

dll

-¥

ò

oleObject58.bin

image58.wmf
10

()

00

t

t

d

t

dll

-¥

>

ì

=

í

<

î

ò

oleObject59.bin

image59.wmf
()()

t

dut

dll

-¥

=

ò

oleObject60.bin

image60.wmf
()

()

dut

t

dt

d

=

oleObject61.bin

image61.wmf
0

t

=

oleObject3.bin

oleObject62.bin

image62.wmf
()()

ab

b

R

ytx

R

R

t

æö

=

ç÷

+

èø

oleObject63.bin

image63.wmf
()()

ab

b

R

htt

RR

d

æö

=

ç÷

+

èø

oleObject64.bin

image64.wmf
()()()()

xtytdytyt

C

RdtR

-

=+

oleObject65.bin

image65.wmf
()21

()()

dyt

ytxt

dtRCRC

+=

oleObject66.bin

image66.wmf
2/2/

1

()()

tRCtRC

d

ytex

e

t

dtRC

éù

=

ëû

oleObject4.bin

oleObject67.bin

image67.wmf
-¥

oleObject68.bin

image68.wmf
t

oleObject69.bin

image69.wmf
2()/

1

()()

t

tRC

ytxd

e

RC

l

ll

--

-¥

=

ò

oleObject70.bin

image70.wmf
2()/2/

11

()()()

t

tRCtRC

htdeut

e

RCRC

l

dll

-¥

=

=

ò

oleObject71.bin

image71.png

image4.wmf
(0)

d

image72.png
=" (1)

image73.wmf
()

()(1)(2)

t

t

ytxtexd

l

ll

--

-¥

=-++

ò

oleObject72.bin

image74.wmf
()(2)

()(1)(2)(1)(2)

t

tt

httedteut

l

ddlld

---+

-¥

=-++=-++

ò

oleObject73.bin

image75.wmf
0

t

=

oleObject74.bin

image76.wmf
()

st

oleObject75.bin

image77.wmf
[

]

()()

d

htst

dt

=

oleObject5.bin

oleObject76.bin

oleObject77.bin

image78.wmf
2()/

1

()()

t

tRC

stud

e

RC

l

ll

--

-¥

=

ò

oleObject78.bin

image79.wmf
2/2/2/2/2/

0

111

()[]()[1](

1

)

22

t

tRCRCtRCtRCtRC

steedeeuteut

RC

l

l

-

===-

ò

oleObject79.bin

image80.wmf
2/2/2/2/

11

()[1

11

()

]()()[1]()()

22

tRCtRCtRCtRC

dd

steuteuteteut

dtdt

ht

RCRC

d

ìü

=-=+-=

íý

=

îþ

oleObject80.bin

image81.wmf
()

xt

oleObject81.bin

image5.png
F
T >

oleObject82.bin

image82.wmf
T

D

oleObject83.bin

image83.wmf

oleObject84.bin

image84.wmf
11

(

)

)

2

(

2

k

k

TutkTut

xtx

k

k

T

=

=-

¥

¥

ìü

éùéù

æöæö

»D--D--+D

íý

ç÷ç÷

êúêú

èøèø

ëûëû

îþ

å

oleObject85.bin

oleObject86.bin

image85.wmf
()

st

oleObject87.bin

image6.png

image86.wmf
1

(())

2

utkT

--D

oleObject88.bin

image87.wmf
1

(())

2

stkT

--D

oleObject89.bin

image88.wmf
1

(())

2

utkT

-+D

oleObject90.bin

image89.wmf
1

(())

2

stkT

-+D

oleObject91.bin

oleObject92.bin

image90.wmf
11

(

)

)

2

(

2

k

k

TstkTst

ytx

k

k

T

=

=-

¥

¥

ìü

éùéù

æöæö

»D--D--+D

íý

ç÷ç÷

êúêú

èøèø

ëûëû

îþ

å

image7.png

oleObject93.bin

image91.wmf
)

(

11

22

stkTstkT

t

T

htk

éùéù

æöæö

--D--+D

ç÷ç÷

êúêú

èøèø

ëûëû

D»

D

-

oleObject94.bin

image92.wmf
1

)

(

1

22

tTstkTstkT

htk

éùéù

æöæö

DD»--D--+D

ç÷ç÷

êúêú

èøèø

ëûëû

-

oleObject95.bin

image93.wmf
)(

()(

)

k

k

Tht

ytxk

kTT

=

¥

¥

=-

»D-DD

å

oleObject96.bin

image94.wmf
kT

l

=D

oleObject97.bin

image95.wmf
0

T

D®

image8.wmf
000

()()()()

tttttt

fdfd

-=-

oleObject98.bin

image96.wmf
()()()

ytxhtd

lll

¥

-¥

=-

ò

oleObject99.bin

image97.wmf
()()()

ytxtht

=

å

oleObject100.bin

image98.wmf
å

oleObject101.bin

image99.wmf
11

(

)

)

2

(

2

k

k

TutkTut

xtx

k

k

T

=

=-

¥

¥

ìü

éùéù

æöæö

»D--D--+D

íý

ç÷ç÷

êúêú

èøèø

ëûëû

îþ

å

oleObject102.bin

oleObject103.bin

oleObject6.bin

image100.wmf
)

(

11

22

utkTutkT

T

T

tk

d

éùéù

æöæö

--D--+D

ç÷ç÷

êúêú

èøèø

ëûëû

D»

D

-

oleObject104.bin

image101.wmf
1

)

(

1

22

TTutkTutkT

tk

d

éùéù

æöæö

DD»--D--+D

ç÷ç÷

êúêú

èøèø

ëûëû

-

oleObject105.bin

image102.png
“0.5AT O05AT LSAT 25AT 35AT 45AT

image103.wmf
()

xt

oleObject106.bin

image104.wmf
)(

()(

)

k

k

TtkT

xtx

T

k

d

¥

=

¥

=-

»D-DD

å

oleObject107.bin

image105.wmf
()

tkT

d

-D

image9.wmf
000

()()()

b

a

tttdttatb

fdf

-=<<

ò

oleObject108.bin

image106.wmf
()

htkT

-D

oleObject109.bin

image107.wmf
)(

()(

)

k

k

Tht

ytxk

kTT

=

¥

¥

=-

»D-DD

å

oleObject110.bin

oleObject111.bin

oleObject112.bin

oleObject113.bin

image108.wmf
()()()()()

ythtxtxtht

==

åå

oleObject114.bin

oleObject7.bin

image109.wmf
2121

()[()()][()()]()

hthtxththtxt

=

åååå

oleObject115.bin

image110.wmf
1212

()[()()]()()()()

htxtxthtxthtxt

+=+

ååå

oleObject116.bin

image111.wmf
)()(

(

)

(

(

)

)

ytx

htdxthd

llllll

-

¥¥

¥-¥

-=-

=

ò

ò

oleObject117.bin

image112.wmf
()

yt

oleObject118.bin

image113.png
X(t) —>

h(t)

—> (1)

image114.wmf
/

()()

t

htAeut

t

-

=

image10.wmf
0

t

oleObject119.bin

image115.wmf
()(1)(2)

xtButBut

=---

oleObject120.bin

image116.wmf
()()()

ythtxd

lll

¥

-¥

=-

ò

oleObject121.bin

image117.wmf
()/

()()[(1)(2)]

t

ytAeutBuBud

lt

llll

¥

--

-¥

=----

ò

oleObject122.bin

image118.wmf
()/()/

())(1))(2

(

)

(

tt

ytABeudABe

utut

ud

ltlt

llllll

¥¥

-¥-¥

=---

--

òò

oleObject123.bin

image119.wmf
()/()/////

1212

()

tttt

tttt

ytABedABedABeedABeed

ltlttlttlt

llll

=-=-

òòòò

oleObject8.bin

oleObject124.bin

image120.wmf
//1///2/

(1)/(2)/

()[](1)[](2)

1[1](2)

tttt

tt

ytABeeeutABeeeut

ABeutABeut

tttttt

tt

tt

tt

--

=-----

=-----

oleObject125.bin

image121.wmf
()()()

ythtxd

lll

¥

-¥

=-

ò

oleObject126.bin

image122.wmf

oleObject127.bin

image123.wmf
()

ht

l

-

oleObject128.bin

image124.wmf
()

x

l

oleObject9.bin

oleObject129.bin

image125.wmf
l

oleObject130.bin

image126.wmf
t

oleObject131.bin

image127.wmf
()

ht

l

-

oleObject132.bin

oleObject133.bin

oleObject134.bin

oleObject135.bin

image11.wmf
0000000

()()()()()()()

bbb

aaa

tttdttttdttttdttatb

fdfdfdf

-=-=-=<<

òòò

oleObject136.bin

oleObject137.bin

oleObject138.bin

oleObject139.bin

oleObject140.bin

image128.wmf
()

ht

oleObject141.bin

image129.wmf
1

t

oleObject142.bin

image130.wmf
2

t

oleObject10.bin

oleObject143.bin

oleObject144.bin

image131.wmf
11

22

)()

()()

(

httt

hthtt

ht

t

ll

ll

=-®=-

=-®=-

oleObject145.bin

oleObject146.bin

oleObject147.bin

oleObject148.bin

image132.wmf
)(

()

)

(

xtd

yth

lll

¥

¥

-

=

-

ò

oleObject149.bin

image133.wmf
(1)

x

image12.wmf
1

2

2

0

10

1

0

10

10

(1)(1)

(2)4(2)

(2)dt = 4

(1)

(20)0

(1)(2)0

t

t

t

etet

ttt

tt

etdte

etdt

ttdt

dd

dd

d

d

d

dd

¥

-

¥

-¥

-=-

-=-

-

-=

-=

--=

ò

ò

ò

ò

oleObject150.bin

image134.wmf
(2)

x

oleObject151.bin

image135.wmf
)

(

xt

l

-

oleObject152.bin

image136.wmf
l

oleObject153.bin

image137.wmf
t

oleObject154.bin

image138.wmf
(1)()1

(2)()2

xxtt

xxtt

ll

ll

=-®=-

=-®=-

oleObject11.bin

oleObject155.bin

image139.wmf
()

xt

l

-

oleObject156.bin

image140.wmf
l

oleObject157.bin

oleObject158.bin

image141.png
x(1) z(2)
a rs
1 2
r(t—\)
z(2) z(1)
T rs
t

image142.wmf
()

xt

oleObject159.bin

image143.wmf
)

(

xt

l

-

image13.wmf
0

(

0

1

)

0

u

t

t

t

>

ì

í

<

=

î

oleObject160.bin

image144.wmf
l

oleObject161.bin

image145.wmf
t

oleObject162.bin

oleObject163.bin

image146.wmf
()

h

l

oleObject164.bin

image147.wmf
()

xt

l

-

oleObject165.bin

oleObject12.bin

image148.wmf
1

t

<

oleObject166.bin

image149.wmf
12

t

££

oleObject167.bin

image150.wmf
2

t

³

oleObject168.bin

image151.png

oleObject169.bin

oleObject170.bin

image152.wmf
t

image14.wmf
(0)

u

oleObject171.bin

image153.wmf
0.8

t

=

oleObject172.bin

oleObject173.bin

oleObject174.bin

image154.wmf
()0

yt

=

oleObject175.bin

oleObject176.bin

image155.wmf
1

/(1)/

0

()1

t

t

ytAeBdABe

ltt

lt

-

==-

éù

ëû

ò

oleObject177.bin

oleObject13.bin

oleObject178.bin

image156.wmf
1

/(2)/(1)/

2

()

t

tt

t

ytAeBdABee

lttt

lt

-

-

û

==-

éù

ë

ò

oleObject179.bin

image157.wmf
(1)/

(2)/(1)/

01

()112

2

t

tt

t

ytABet

ABeet

t

tt

t

t

--

éù

ëû

é

ì

£

ï

ï

=-££

í

ï

-³

ù

û

î

ë

ï

oleObject180.bin

image158.wmf
1/

(1)0

(2)[1]

y

yABe

t

t

-

=

=-

oleObject181.bin

oleObject182.bin

image159.wmf
(1)/(2)/

()1[1](2)

tt

ytABeutABeut

tt

tt

=-----

oleObject183.bin

image15.wmf
1

(0)

2

u

=

oleObject184.bin

image160.wmf
(1)/(2)/(2)/(1)/

()[1][1][]

tttt

ytABeABeABee

tttt

ttt

=---=-

oleObject185.bin

image161.png
35 T T T T

Time (sec)

image162.wmf
()

yt

oleObject186.bin

oleObject187.bin

image163.wmf
(1)/

()(1)

t

htAeut

t

--

=-

oleObject188.bin

image164.wmf
()2()2(2)3(3)

xtututut

=----

oleObject14.bin

oleObject189.bin

image165.wmf
()()()

ythtxd

lll

¥

-¥

=-

ò

oleObject190.bin

image166.wmf
(1)

h

oleObject191.bin

image167.wmf
(1)()1

hhtt

ll

=-®=-

oleObject192.bin

image168.wmf
1

t

£

oleObject193.bin

image169.wmf
13

t

££

image16.wmf
t

oleObject194.bin

image170.wmf
34

t

££

oleObject195.bin

image171.wmf
4

t

³

oleObject196.bin

oleObject197.bin

image172.wmf
()

ht

l

-

oleObject198.bin

image173.wmf
()

x

l

oleObject199.bin

oleObject15.bin

image174.wmf
()0

yt

=

oleObject200.bin

oleObject201.bin

image175.wmf
1

(1)/(1)//(1)/(1)/(1)/

0

1

0

(2)2

()2211

t

ttt

t

tt

y

d

teede

e

ee

lttltttt

lltt

-

-

éùéù

=

===--

ëûëû

ò

ò

oleObject202.bin

image176.png

image177.wmf
1.5

t

=

oleObject203.bin

oleObject204.bin

oleObject205.bin

image17.wmf
t

image178.wmf
2

(1)/(1)//(1)/2/(3)/(1)/

2

0

0

(

(2

1

)2

)22

ttttt

yteedeeee

de

lttlttttt

lltt

===--

éùéù

=

ëûëû

ò

ò

oleObject206.bin

image179.png

oleObject207.bin

oleObject208.bin

oleObject209.bin

image180.wmf
21

(1)/(1)/

03

1

(1)//(1)//

3

(1)/2/(1)/(1)/3/

(3)/(1)/(4

2

0

)/

()(3

(2)

3

3

2

2

2

1

3

)

1

t

tt

t

tt

ttt

ttt

yteed

eded

eeeee

eee

d

ee

ltlt

tlttlt

ttttt

ttt

ll

ll

tt

tt

-

-

-

éùéù

-

ëûëû

éùéù

=-

ëû

=+-=

=

=--

-

ëû

-

òò

ò

ò

oleObject210.bin

image181.wmf
(1)/

(3)/(1)/

(3)/(1)/(4)/

0

21

1

13

4

14

()

23

23

t

tt

ttt

et

eet

eee

t

yt

t

t

tt

ttt

t

t

tt

--

£

-££

-£

ì

ï

éù

ëû

ï

=

í

éù

ëû

ï

éùéù

ï

-

ëûëû

£

-

î

-³

oleObject211.bin

oleObject16.bin

image182.png

oleObject212.bin

oleObject213.bin

image183.wmf
()

yt

oleObject214.bin

image184.wmf
2/

1/3/

[1

(1)

]

(4)2[]

0

(3)2

y

e

y

y

e

e

t

tt

t

t

-

-

-

=

-

=

=

oleObject215.bin

image185.wmf
()[(1)(1)]

httutut

=+--

oleObject216.bin

image186.wmf
()()(1)2(2)

xtututut

=--+-

oleObject17.bin

oleObject217.bin

oleObject218.bin

image187.wmf
(1)

h

-

oleObject219.bin

image188.wmf
(1)()1

hhtt

ll

-=-®=+

oleObject220.bin

image189.wmf
(1)()1

hhtt

ll

=-®=-

oleObject221.bin

image190.png
i
0 05 1 15 2 25 3 35 4 45 &
Time (sec)

oleObject222.bin

image18.wmf
(1)1

ut

-=

oleObject223.bin

image191.wmf
1

t

£-

oleObject224.bin

image192.wmf
10

t

-££

oleObject225.bin

image193.wmf
01

t

££

oleObject226.bin

image194.wmf
12

t

££

oleObject227.bin

image195.wmf
23

t

££

oleObject18.bin

oleObject228.bin

image196.wmf
3

t

³

oleObject229.bin

image197.wmf
1

t

£-

oleObject230.bin

oleObject231.bin

oleObject232.bin

oleObject233.bin

oleObject234.bin

image198.wmf
1

2

0

1

()()(1)(1)

2

t

yttdt

ll

+

=-=-

ò

image19.wmf
10

t

->

oleObject235.bin

image199.png
t41

oleObject236.bin

oleObject237.bin

image200.wmf
1

0

1

()()(1)

2

yttdt

ll

=-=-

ò

oleObject238.bin

image201.png
t+1

10

t

oleObject239.bin

oleObject240.bin

image202.wmf
11

2

12

1

()()(1)()(2)(66)

2

t

t

yttdtdtt

llll

+

-

=-+-=-+

òò

oleObject19.bin

oleObject241.bin

image203.png

oleObject242.bin

oleObject243.bin

image204.wmf
1

2

2

()()(2)43

t

yttdtt

ll

+

=-=-+

ò

oleObject244.bin

image205.wmf
3

t

³

oleObject245.bin

image206.wmf
1

1

()()(2)0

t

t

yttd

ll

+

-

=-=

ò

oleObject246.bin

image20.wmf
1

t

>

image207.png

oleObject247.bin

image208.png
t41

oleObject248.bin

image209.wmf
2

2

2

01

1

(1)10

2

1

01

()

2

1

(66)12

2

4323

03

t

tt

tt

yt

ttt

ttt

t

£-

ì

ï

--££

ï

ï

ï

-££

=

í

ï

-+££

ï

ï

-+££

ï

³

î

oleObject249.bin

image210.wmf
0

t

=

oleObject250.bin

image211.wmf
1

t

=-

oleObject251.bin

oleObject20.bin

image212.emf
-2 -1 0 1 2 3 4

-1

-0.5

0

0.5

Time (sec)

y(t)

oleObject252.bin

image213.wmf
0

t

=

oleObject253.bin

image214.wmf
1

t

=-

oleObject254.bin

oleObject255.bin

image215.wmf
)(

()

)

(

xtd

yth

lll

¥

¥

-

=

-

ò

oleObject256.bin

image216.wmf
|()|

xt

N

£

image21.wmf
(2)1

ut

-=

oleObject257.bin

image217.wmf
)())||()

|()|(|(|

|

(

)||()|

yt

xtdxtdNdNhd

hhh

llllllllll

¥¥¥¥

¥¥¥-¥

£-£-£=

ò

ò

òò

oleObject258.bin

oleObject259.bin

image218.wmf
|

)

(

|

h

d

ll

¥

¥

-

<¥

ò

oleObject260.bin

image219.wmf
0

t

oleObject261.bin

image220.wmf
00

()()()

ythtxd

lll

¥

-¥

=-

ò

oleObject262.bin

oleObject21.bin

image221.wmf
0

0

000

()()()()()

t

t

ythtxdhtxd

llllll

¥

-¥

=-+-

òò

oleObject263.bin

image222.wmf
0

()0

ht

l

-=

oleObject264.bin

image223.wmf
0

(,)

t

l

Î¥

oleObject265.bin

image224.wmf
0

,0

t

l

=+>

òò

oleObject266.bin

image225.wmf
000

()([])()0,0

hthtth

l

-=-+=-=>

òòò

oleObject267.bin

image22.wmf
20

t

->

image226.wmf
()0,0

htt

=<

oleObject268.bin

oleObject269.bin

oleObject270.bin

oleObject22.bin

image23.wmf
2

t

>

oleObject23.bin

image24.wmf
41

3

t

u

æö

-=

ç÷

èø

oleObject24.bin

image25.wmf
40

3

t

->

oleObject25.bin

image26.wmf
12

t

>

oleObject26.bin

image27.wmf
)(1)

(

ud

u

t

lll

¥

¥

-

-

-

ò

oleObject27.bin

image28.wmf
()1

ut

l

-=

oleObject28.bin

image29.wmf
0

t

l

->

oleObject29.bin

image30.wmf
t

l

>

oleObject30.bin

image31.wmf
(1)1

u

l

-=

oleObject31.bin

image32.wmf
10

l

->

oleObject32.bin

image33.wmf
1

l

>

oleObject33.bin

image34.wmf
1

(1)(1)1

t

dt

l

=-

ò

oleObject34.bin

image35.wmf
1

t

l

>>

oleObject35.bin

image36.wmf
1

t

>

oleObject36.bin

image1.wmf
()

t

d

image37.wmf
1

t

<

oleObject37.bin

image38.wmf
1

t

-

oleObject38.bin

image39.wmf
1

t

>

oleObject39.bin

image40.wmf
(1)(1)

tut

--

oleObject40.bin

image41.wmf
2

(2)

t

t

eud

ll

+

-

-¥

-

ò

oleObject41.bin

oleObject1.bin

image42.wmf
(2)1

u

l

-=

oleObject42.bin

image43.wmf
20

l

->

oleObject43.bin

image44.wmf
2

l

>

oleObject44.bin

image45.wmf
2

2(2)2

2

1

(1)

()

t

tt

d

eee

e

e

l

l

+

---+--

==-

-

ò

oleObject45.bin

image46.wmf
22

t

l

+>>

oleObject46.bin

