ECE-320 Quiz #1 Problems 1 and 2 refer to the impulse responses of six different systems given below: $$h_1(t) = [t + e^{-t}] u(t)$$ $$h_2(t) = e^{-2t} u(t)$$ $$h_3(t) = [2 + \sin(t)] u(t)$$ $$h_4(t) = [1 - t^3 e^{-0.1t}] u(t)$$ $$h_5(t) = [1 + t + e^{-t}] u(t)$$ $$h_{\epsilon}(t) = [te^{-t} \cos(5t) + e^{-2t} \sin(3t)] u(t)$$ - 1) The number of stable systems is - a) 0 b) 1 c) 2 d) 3 - 2) The number of unstable systems is - a) 0 b) 1 c) 2 d) 3 - 3) Which of the following transfer functions represents a **stable** system? $$G_a(s) = \frac{s-1}{s+1} \qquad G_b(s) = \frac{1}{s(s+1)} \qquad G_c(s) = \frac{s}{s^2 - 1}$$ $$G_d(s) = \frac{s+1}{(s+1+j)(s+1-j)} \qquad G_e(s) = \frac{(s-1-j)(s-1+j)}{s} \qquad G_f(s) = \frac{(s-1-j)(s-1+j)}{(s+1-j)(s+1+j)}$$ - a) all but $\,G_{\!c}\,\,$ b) only $\,G_{\!a}\,,\,\,G_{\!b}\,,$ and $\,G_{\!d}\,\,$ c) only $\,G_{\!a}\,,\,\,G_{\!d}\,,$ and $\,G_{\!f}\,$ - d) only G_d and G_f e) only G_a and G_d Problems 4 and 5 refer to the following transfer function $$H(s) = \frac{2s+1}{(s+2)^2+1}$$ - 4) For this transfer function, the corresponding impulse response h(t) is composed of which terms? - a) $e^{-t}\cos(2t)$, $e^{-t}\sin(2t)$ b) $e^{-2t}\cos(t)$, $e^{-2t}\sin(t)$ - c) $e^{-t}\cos(4t)$, $e^{-t}\sin(4t)$ d) $e^{-4t}\cos(t)$, $e^{-4t}\sin(t)$ - 5) The **poles** of the transfer function are - a) $2 \pm j$ - b) $-2 \pm i$ - c) $-1 \pm 2j$ d) $-1 \pm 4i$ Problems 6-8 refer to the figure below, which shows the unit step response of a real 2nd order system and the unit step response of a second order model we are trying to match to the real system. - 6) In order to make the model better match the real system, the *damping ratio* of the *model* should be - a) increased - b) decreased - c) left alone - d) impossible to determine - 7) In order to make the model better match the real system, the *natural frequency* of the *model* should be - a) increased - b) decreased - c) left alone d) impossible to determine - 8) In order to make the model better match the real system, the *static gain* of the *model* should be - a) increased - b) decreased - c) left alone d) impossible to determine Name Mailbox Problems 9 - 11 refer to the signal flow graph representation of the following block diagram. - **9)** How many **paths** are there? a) 0 b) 1 c) 2 d) 3 e) 4 - **10**) How man **loops** are there? a) 0 b) 1 c) 2 d) 3 e) 4 - 11) Are any of the **cofactors** equal to 1? a) yes b) no For problems 12-15 consider the signal flow graph representation of the following block diagram. - **12)** How many **paths** are there? a) 0 b) 1 c) 2 d) 3 e) 4 - **13**) How many **loops** are there? a) 0 b) 1 c) 2 d) 3 e) 4 - **14)** The **determinant** (Δ) is a) 1 b) $1 H_2H_3 H_3H_4$ c) $1 + H_2H_3 + H_3H_4$ d) none of these - **15)** The **transfer function** is a) 1 b) $\frac{H_1H_2H_3}{1-H_2H_3-H_3H_4}$ c) $\frac{H_1H_2H_3}{1+H_2H_3+H_3H_4}$