
Notes for ECE-320

Winter 2014-2015

by
R. Throne

1

Contents

1 Table of Laplace Transforms 5

2 Laplace Transform Review 6
2.1 Poles and Zeros . 6
2.2 Proper and Strictly Proper Transfer Functions 6
2.3 Impulse Response and Transfer Functions . 6
2.4 Partial Fractions with Distinct Poles . 7
2.5 Partial Fractions with Distinct and Repeated Poles 10
2.6 Complex Conjugate Poles: Completing the Square 15
2.7 Common Denominator/Cross Multiplying . 19
2.8 Complex Conjugate Poles-Again . 21

3 Final Value Theorem and the Static Gain of a System 22

4 Step Response, Ramp Response, and Steady State Errors 24
4.1 Step Response and Steady State Error . 24
4.2 Ramp Response and Steady State Error . 28
4.3 Summary . 31

5 Response of a Ideal Second Order System 33
5.1 Step Response of an Ideal Second Order System 33
5.2 Time to Peak, Tp . 34
5.3 Percent Overshoot, PO . 35
5.4 Settling Time, Ts . 36
5.5 Constraint Regions in the s-Plane . 38
5.6 Summary . 45

6 Characteristic Polynomial, Modes, and Stability 47
6.1 Characteristic Polynomial, Equation, and Modes 47
6.2 Characteristic Mode Reminders . 48
6.3 Stability . 49
6.4 Settling Time and Dominant Poles . 49

7 Time Domain Response and System Bandwidth 51

8 Block Diagrams 59
8.1 Basic Feedback Configuration . 59
8.2 Mason’s Gain Formula . 60

9 Model Matching 67
9.1 ITAE Optimal Systems . 69
9.2 Deadbeat Systems . 70
9.3 Summary and Caveates . 71

2

10 System Type and Steady State Errors 73
10.1 Review . 73
10.2 System Type For a Unity Feedback Configuration 73
10.3 Steady State Errors for Step and Ramp Inputs 74
10.4 Examples . 75

11 Controller Design Using the Root Locus 79
11.1 Standard Root Locus Form . 79
11.2 Examples . 81
11.3 Loci Branches . 82
11.4 Real Axis Segments . 83
11.5 Asymptotic Angles and Centroid of the Asymptotes 88
11.6 Common Industrial Controller Types . 98
11.7 Controller and Design Constraint Examples . 100
11.8 Seemingly Odd Root Locus Behavior . 124

12 z-Transforms 127
12.1 Special Functions . 127
12.2 Impulse Response and Convolution . 127
12.3 A Useful Summation . 129
12.4 z-Transforms . 132
12.5 z-Transform Properties . 134
12.6 Inverse z-Transforms . 137
12.7 Second Order Transfer Functions with Complex Conjugate Poles 142
12.8 Solving Difference Equations . 146
12.9 Asymptotic Stability . 149
12.10Mapping Poles and Settling Time . 149
12.11Sampling Plants with Zero Order Holds . 151
12.12Final Notes . 155

13 Transfer Function Based Discrete-Time Control 156
13.1 Implementing Discrete-Time Transfer Functions 156
13.2 Not Quite Right . 156
13.3 PID and Constant Prefilters . 157

14 System Sensitivity 161
14.1 Sensitivity to Parameter Variations . 161
14.2 Sensitivity to External Disturbances . 166
14.3 Summary . 167

15 State Variables and State Variable Feedback 168
15.1 State Variable to Transfer Function Model . 170
15.2 State Variable Feedback . 173
15.3 Controllability for State Variable Systems . 178
15.4 Summary . 179

3

16 Discrete-Time State Equations 180
16.1 The Continuous-Time State Transition Matrix 180
16.2 Solution of the Continuous-Time State Equations 182
16.3 Computing the State Transition Matrix, eAt . 183

16.3.1 Truncating the Infinite Sum . 183
16.3.2 Laplace Transform Method . 184

16.4 Discretization with Delays in the Input . 186
16.5 State Variable to Transfer Function . 189
16.6 Poles and Eignevalues . 190

17 State Variable Feedback 191
17.1 Pole Placement by Transfer Functions . 192
17.2 State Feedback Examples . 194
17.3 General Guidelines for State Feedback Pole Locations 196

18 Frequency Domain Analysis 202
18.1 Phase and Gain Margins . 202

19 Lead Controllers for Increasing Phase Margin 209
19.1 Algorithm for Controller Design Using Bode Plots 211
19.2 Examples . 212

A Matlab Commands i
A.1 Figures . i
A.2 Transfer Functions . i
A.3 Feedback Systems . ii
A.4 System Response to Arbitrary Inputs . ii
A.5 Changing the Line Thickness . iii
A.6 Poles and Zeros . iv
A.7 Roots and Polynomials . iv
A.8 Root Locus Plots . v
A.9 Bode Plots, Gain and Phase Margins . v

4

1 Table of Laplace Transforms

f (t) F (s)
δ(t) 1

u(t) 1
s

tu(t) 1
s2

tn−1

(n−1)!u(t) (n = 1, 2, 3...) 1
sn

tnu(t) (n = 1, 2, 3, ...) n!
sn+1

e−atu(t) 1
s+a

te−atu(t) 1
(s+a)2

1
(n−1)!t

n−1e−atu(t) (n = 1, 2, 3, ...) 1
(s+a)n

tne−atu(t) (n = 1, 2, 3, ...) n!
(s+a)n+1

sin(bt)u(t) b
s2+b2

cos(bt)u(t) s
s2+b2

e−at sin(bt)u(t) b
(s+a)2+b2

e−at cos(bt)u(t) (s+a)
(s+a)2+b2

5

2 Laplace Transform Review

In this course we will be using Laplace transforms extensively. Although we do not often go
from the s-plane to the time domain, it is important to be able to do this and to understand
what is going on. In what follows is a brief review of some results with Laplace transforms.

2.1 Poles and Zeros

Assume we have the transfer function

H(s) =
N(s)

D(s)

where N(s) and D(s) are polynomials in s with no common factors. The roots of N(s) are the
zeros of the system, while the roots of D(s) are the poles of the system.

2.2 Proper and Strictly Proper Transfer Functions

The transfer function

H(s) =
N(s)

D(s)

is proper if the degree of the polynomial N(s) is less than or equal to the degree of the poly-
nomial D(s). The transfer function H(s) is strictly proper if the degree of N(s) is less than
the degree of D(s).

2.3 Impulse Response and Transfer Functions

IfH(s) is a transfer function, the inverse Laplace transform ofH(s) is call the impulse response,
h(t).

L{h(t)} = H(s)

h(t) = L−1{H(s)}

6

2.4 Partial Fractions with Distinct Poles

Let’s assume we have a transfer function

H(s) =
N(s)

D(S)
=

N(s)

D(s)
=

K(s+ z1)(s+ z2)...(s+ zm)

(s+ p1)(s+ p2)...(s+ pn)

where we assume m < n (this makes H(s) a strictly proper transfer function). The poles of
the system are at −p1, −p2, ... − pn and the zeros of the system are at −z1, −z2, ... − zm.
Since we have distinct poles, pi �= pj for all i and j. Also, since we assumed N(s) and D(s) have
no common factors, we know that zi �= pj for all i and j.
We would like to find the corresponding impulse response, h(t). To do this, we assume

H(s) =
N(s)

D(s)
= a1

1

s+ p1
+ a2

1

s+ p2
+ ... + an

1

s+ pn

If we can find the ai, it will be easy to determine h(t) since the only inverse Laplace transform
we need is that of 1

s+p
, and we know (or can look up) 1

s+p
↔ e−ptu(t). To find a1, we first

multiply by (s+ p1),

(s+ p1)H(s) = a1 + a2
s + p1
s + p2

+ ...+ an
s+ p1
s+ pn

and then let s → −p1. Since the poles are all distinct, we will get

lim
s→−p1

(s+ p1)H(s) = a1

Similarly, we will get

lim
s→−p2

(s+ p2)H(s) = a2

and in general

lim
s→−pi

(s+ pi)H(s) = ai

Example 1. Let’s assume we have

H(s) =
s+ 1

(s+ 2)(s+ 3)

and we want to determine h(t). Since the poles are distinct, we have

H(s) =
(s+ 1)

(s+ 2)(s+ 3)
= a1

1

s+ 2
+ a2

1

s+ 3

Then

a1 = lim
s→−2

(s+ 2)
(s+ 1)

(s+ 2)(s+ 3)
= lim

s→−2

(s+ 1)

(s+ 3)
=

−1

1
= −1

7

and

a2 = lim
s→−3

(s+ 3)
(s+ 1)

(s+ 2)(s+ 3)
= lim

s→−3

(s+ 1)

(s+ 2)
=

−2

−1
= 2

Then

H(s) = −1
1

s + 2
+ 2

1

s+ 3

and hence

h(t) = −e−2tu(t) + 2e−3tu(t)

It is often unnecessary to write out all of the steps in the above example. In particular, when
we want to find ai we will always have a cancellation between (s + pi) in the numerator with
the (s+ pi) in the denominator. Using this fact, when we want to find ai we can just ignore (or
cover up) the factor (s + pi) in the denominator. For our example above, we then have

a1 = lim
s→−2

(s+ 1)

(s+ 3)
=

−1

1
= −1

a2 = lim
s→−3

(s+ 1)

(s+ 2)
=

−2

−1
= 2

where we have covered up the poles associated with a1 and a2, respectively.

Example 2. Let’s assume we have

H(s) =
s2 − s+ 2

(s+ 2)(s+ 3)(s+ 4)

and we want to determine h(t). Since the poles are distinct, we have

H(s) =
(s2 − s+ 2)

(s+ 2)(s+ 3)(s+ 4)
= a1

1

s+ 2
+ a2

1

s+ 3
+ a3

1

s+ 4

Using the cover up method, we then determine

a1 = lim
s→−2

(s2 − s+ 2)

(s+ 3)(s+ 4)
=

8

(1)(2)
= 4

a2 = lim
s→−3

(s2 − s+ 2)

(s+ 2) (s+ 4)
=

14

(−1)(1)
= −14

a3 = lim
s→−4

(s2 − s+ 2)

(s+ 2)(s+ 3)
=

22

(−2)(−1)
= 11

and hence

h(t) = 4e−2tu(t)− 14e−3tu(t) + 11e−4tu(t)

8

Example 3. Let’s assume we have

H(s) =
1

(s+ 1)(s+ 5)

and we want to determine h(t). Since the poles are distinct, we have

H(s) =
1

(s+ 1)(s+ 5)
= a1

1

s+ 1
+ a2

1

s+ 5

Using the coverup method, we then determine

a1 = lim
s→−1

1

(s+ 5)
=

1

4

a2 = lim
s→−5

1

(s+ 1)
=

1

−4

and hence

h(t) =
1

4
e−tu(t)− 1

4
e−5tu(t)

Although we have only examined real poles, this method is also valid for complex poles, although
there are usually easier ways to deal with complex poles, as we’ll see.

9

2.5 Partial Fractions with Distinct and Repeated Poles

Whenever there are repeated poles, we need to use a different form for the partial fractions for
those poles. This is probably most easily explained by means of examples.

Example 4. Assume we have the transfer function

H(s) =
1

(s+ 1)(s+ 2)2

and we want to find the corresponding impulse response, h(t). To do this we look for a partial
fraction expansion of the form

H(s) =
1

(s+ 1)(s+ 2)2
= a1

1

s+ 1
+ a2

1

s + 2
+ a3

1

(s+ 2)2

Example 5. Assume we have the transfer function

H(s) =
s+ 1

s2(s+ 2)(s+ 3)

and we want to find the corresponding impulse response, h(t). To do this we look for a partial
fraction expansion of the form

H(s) =
s+ 1

s2(s+ 2)(s+ 3)
= a1

1

s
+ a2

1

s2
+ a3

1

s+ 2
+ a4

1

s+ 3

Note that there are always as many unknowns (the ai) as the degree of the denominator polynomial.

Now we need to be able to determine the expansion coefficients. We already know how to do
this for distinct poles, so we do those first.
For Example 4,

a1 = lim
s→−1

1

(s+ 2)2
=

1

1
= 1

For Example 5,

a3 = lim
s→−2

s+ 1

s2 (s+ 3)
=

−1

(−2)2(1)
= −1

4

a4 = lim
s→−3

s+ 1

s2(s+ 2)
=

−2

(−3)2(−1)
=

2

9

The next set of expansion coefficients to determine are those with the highest power of the
repeated poles.

For Example 4, multiply though by (s+ 2)2 and let s → −2,

a3 = lim
s→−2

(s+ 2)2
1

(s+ 1)(s+ 2)2
= lim

s→−2

1

s + 1
= −1

10

or with the coverup method

a3 = lim
s→−2

1

(s+ 1)
=

1

−1
= −1

For Example 5, multiply though by s2 and let s → 0

a2 = lim
s→0

s2
s+ 1

s2(s+ 2)(s+ 3)
= lim

s→0

s+ 1

(s+ 2)(s+ 3)
=

1

6

or with the coverup method

a2 = lim
s→0

s+ 1

(s+ 2)(s+ 3)
=

1

6
=

1

6

So far we have:

for Example 4

1

(s+ 1)(s+ 2)2
=

1

s+ 1
+ a2

1

s+ 2
− 1

(s+ 2)2

and for Example 5

s+ 1

s2(s+ 2)(s+ 3)
= a1

1

s
+

1

6

1

s2
− 1

4

1

s+ 2
+

2

9

1

s+ 3

We now need to determine any remaining coefficients. There are two common ways of doing
this, both of which are based on the fact that both sides of the equation must be equal for any
value of s. The two methods are

1. Multiply both sides of the equation by s and let s → ∞. If this works it is usually very
quick.

2. Select convenient values of s and evaluate both sides of the equation for these values of s

For Example 4, using Method 1,

lim
s→∞

[
s

1

(s+ 1)(s+ 2)2

]
= lim

s→∞

[
s

s+ 1
+ a2

s

s+ 2
− s

(s+ 2)2

]

or

0 = 1 + a2 + 0

so a2 = -1.

For Example 5, using Method 1,

lim
s→∞

[
s

s + 1

s2(s+ 2)(s+ 3)

]
= lim

s→∞

[
a1

s

s
+

1

6

s

s2
− 1

4

s

s+ 2
+

2

9

s

s+ 3

]

11

or

0 = a1 + 0− 1

4
+

2

9

so a1 =
1
4
− 2

9
= 1

36

For Example 4, using Method 2, let’s choose s = 0 (note both sides of the equation must be
finite!)

lim
s→0

[
1

(s+ 1)(s+ 2)2

]
= lim

s→0

[
1

s+ 1
+ a2

1

s+ 2
− 1

(s+ 2)2

]

or

1

4
= 1 +

a2
2

− 1

4

so a2 = 2(1
4
+ 1

4
− 1) = −1

For Example 5, using Method 2, let’s choose s = −1 (note that s = 0, s = −2, or s = −3 will
not work)

lim
s→−1

[
s+ 1

s2(s+ 2)(s+ 3)

]
= lim

s→−1

[
a1

1

s
+

1

6

1

s2
− 1

4

1

s+ 2
+

2

9

1

s+ 3

]

or

0 = −a1 +
1

6
− 1

4

1

9

so a1 =
1
6
− 1

4
+ 1

9
= 1

36

Then for Example 4,

h(t) = e−tu(t)− e−2tu(t)− te−2tu(t)

and for Example 5

h(t) =
1

36
u(t) +

1

6
tu(t)− 1

4
e−2tu(t) +

2

9
e−3tu(t)

In summary, for repeated and distinct poles, go through the following steps:

1. Determine the form of the partial fraction expansion. There must be as many unknowns
as the highest power of s in the denominator.

2. Determine the coefficients associated with the distinct poles using the coverup method.

3. Determine the coefficient associated with the highest power of a repeated pole using the
coverup method.

12

4. Determine the remaining coefficients by

• Multiplying both sides by s and letting s → ∞
• Setting s to a convenient value in both sides of the equations. Both sides must remain
finite

Example 6. Assuming

H(s) =
s2

(s+ 1)2(s+ 3)

determine the corresponding impulse response h(t).

First, we determine the correct form

H(s) =
s2

(s+ 1)2(s+ 3)
= a1

1

s+ 1
+ a2

1

(s+ 1)2
+ a3

1

s+ 3

Second, we determine the coefficient(s) of the distinct pole(s)

a3 = lim
s→−3

(s2)

(s+ 1)2
=

9

4

Third, we determine the coefficient(s) of the highest power of the repeated pole(s)

a2 = lim
s→−1

(s2)

(s+ 3)
=

1

2

Fourth, we determine any remaining coefficients

lim
s→∞

[
s

s2

(s+ 1)2(s+ 3)

]
= lim

s→∞

[
a1

s

s+ 1
+

1

2

s

(s+ 1)2
+

9

4

s

(s+ 3)

]

or

1 = a1 + 0 +
9

4

or a1 = 1− 9
4
= −5

4
.

Putting it all together, we have

h(t) = −5

4
e−tu(t) +

1

2
te−tu(t) +

9

4
e−3tu(t)

Example 7. Assume we have the transfer function

H(s) =
s+ 3

s(s+ 1)2(s+ 2)2

find the corresponding impulse response, h(t).

13

First we determine the correct form

H(s) =
s+ 3

s(s+ 1)2(s+ 2)2
= a1

1

s
+ a2

1

s+ 1
+ a3

1

(s+ 1)2
+ a4

1

s+ 2
+ a5

1

(s+ 2)2

Second, we determine the coefficient(s) of the distinct pole(s)

a1 = lim
s→0

s+ 3

(s+ 1)2(s + 2)2
=

3

(1)(4)
=

3

4

Third, we determine the coefficient(s) of the highest power of the repeated pole(s)

a3 = lim
s→−1

s+ 3

s (s+ 2)2
=

2

(−1)(1)
= −2

a5 = lim
s→−2

s+ 3

s(s+ 1)2
=

1

(−2)(1)
= −1

2

Fourth, we determine any remaining coefficients

lim
s→∞

[
s

s+ 3

s(s+ 1)2(s+ 2)2

]
= lim

s→∞

[
3

4

s

s
+ a2

s

s+ 1
− 2

s

(s+ 1)2
+ a4

s

s+ 2
− 1

2

s

(s+ 2)2

]

or

0 =
3

4
+ a2 + a4

We need one more equation, so let’s set s = −3

lim
s→−3

[
s + 3

s(s+ 1)2(s+ 2)2

]
= lim

s→−3

[
3

8

1

s
+ a2

1

s+ 1
− 2

1

(s+ 1)2
+ a4

1

s+ 2
− 1

2

1

(s+ 2)2

]

or

0 = −1

4
− a2

1

2
− 1

2
− a4 − 1

2

This gives us the set of equations[
1 1
1
2

−1

] [
a2
a4

]
=

[−3
4
5
4

]

with solution a2 = 1 and a4 = −7
4
. Putting it all together we have

h(t) =
3

4
u(t) + e−tu(t)− 2te−tu(t) +

−7

4
e−2tu(t)− 1

2
te−2tu(t)

14

2.6 Complex Conjugate Poles: Completing the Square

Before using partial fractions on systems with complex conjugate poles, we need to review one
property of Laplace transforms:

if x(t) ⇔ X(s), then e−atx(t) ⇔ X(s+ a)

To show this, we start with what we are given:

L{x(t)} =
∫ ∞

0
x(t)e−stdt = X(s)

Then

L{e−atx(t)} =
∫ ∞

0
e−atx(t)e−stdt =

∫ ∞

0
x(t)e−(s+a)tdt = X(s+ a)

The other relationships we need are the Laplace transform pairs for sines and cosines

cos(bt)u(t) ⇔ s

s2 + b2

sin(bt)u(t) ⇔ b

s2 + b2

Finally, we need to put these together, to get the Laplace transform pair:

e−at cos(bt)u(t) ⇔ s+ a

(s+ a)2 + b2

e−at sin(bt)u(t) ⇔ b

(s+ a)2 + b2

Complex poles always result in sines and cosines. We will be trying to make terms with complex
poles look like these terms by completing the square in the denominator.

In order to get the denominators in the correct form when we have complex poles, we need to
complete the square in the denominator. That is, we need to be able to write the denominator
as

D(s) = (s+ a)2 + b2

To do this, we always first find a using the fact that the coefficient of s will be 2a. Then we use
whatever is needed to construct b. A few example will hopefully make this clear.

Example 8. Let’s assume

D(s) = s2 + s+ 2

and we want to write this in the correct form. First we recognize that the coefficient of s is 1,
so we know 2a = 1 or a = 1

2
. We then have

D(s) = s2 + s+ 2 = (s+
1

2
)2 + b2

15

To find b we expand the right hand side of the above equations and then equate powers of s:

D(s) = s2 + s+ 2 = (s+
1

2
)2 + b2 = s2 + s+

1

4
+ b2

clearly 2 = b2 + 1
4
, or b2 = 7

4
, or b =

√
7
2
. Hence we have

D(s) = s2 + s+ 2 = (s+
1

2
)2 +

(√
7

2

)2

and this is the form we need.

Example 9. Let’s assume

D(s) = s2 + 3s+ 5

and we want to write this in the correct form. First we recognize that the coefficient of s is 3,
so we know 2a = 3 or a = 3

2
. We then have

D(s) = s2 + 3s+ 5 = (s+
3

2
)2 + b2

To find b we expand the right hand side of the above equations and then equate powers of s:

D(s) = s2 + 3s+ 5 = (s+
3

2
)2 + b2 = s2 + 3s+

9

4
+ b2

clearly 5 = b2 + 9
4
, or b2 = 11

4
, or b =

√
11
2
. Hence we have

D(s) = s2 + 3s+ 5 = (s+
3

2
)2 +

(√
11

2

)2

and this is the form we need.

Now that we know how to complete the square in the denominator, we are ready to look at
complex poles. We will start with two simple examples, and then explain how to deal with more
complicated examples.

Example 10. Assuming

H(s) =
1

s2 + s+ 2

and we want to find the corresponding impulse response h(t). In this simple case, we first
complete the square, as we have done above, to write

H(s) =
1

(s+ 1
2
)2 +

(√
7
2

)2

16

This almost has the form we want, which is

e−at sin(bt)u(t) ⇔ b

(s+ a)2 + b2

However, to use this form we need b in the numerator. To achieve this we will multiply and
divide by b =

√
7
2

H(s) =
1

(s+ 1
2
)2 +

(√
7
2

)2
=

1
√
7
2

√
7
2

(s+ 1
2
)2 +

(√
7
2

)2

or

h(t) =
2√
7
e−

1
2
t sin(

√
7

2
t)u(t)

The examples we have done so far have been fairly straightforward. In general, when we have
complex conjugate poles we will look for a combination of sines and cosines. Specifically, when-
ever we have complex conjugate poles, we will assume the correct form for a sine or a cosine

whatever

(s+ a)2 + b2
=

Ab

(s+ a)2 + b2
+

B(s+ b)

(s+ a)2 + b2

Here A and B are the two unknown coefficients.

Example 11. Assuming

H(s) =
s

s2 + 3s+ 5

and we want to find the corresponding impulse response h(t). In this simple case, we first
complete the square, as we have done above, to write

H(s) =
s

(s+ 3
2
)2 +

(√
11
2

)2
Now we expand using the assumed form for the complex conjugate poles,

H(s) =
s

(s+ 3
2
)2 + (

√
11
2
)2

=
A

√
11
2

(s + 3
2
)2 + (

√
11
2
)2

+
B(s + 3

2
)

(s+ 3
2
)2 + (

√
11
2
)2

Now if we multiply both sides by s and let s → ∞ we get B = 1. Next, if we substitute s = −3
2

we get

−3
2

11
4

=
A

√
11
2

11
4

17

which gives A = −3/
√
11. Now we have all of the parameters we need, and we have

h(t) = e−
3
2
t cos(

√
11

2
t)u(t)− 3√

11
e−

3
2
t sin(

√
11

2
t)u(t)

Note that it is possible to combine the sine and cosine terms into a single cosine with a phase
angle, but we will not pursue that here. The examples we have done so far only contain complex
roots. In general, we need to be able to deal with systems that have both complex and real
roots. Since we are dealing with real systems in this course, all complex poles will occur in
complex conjugate pairs.

Example 12. Assuming

H(s) =
1

(s+ 2)(s2 + s+ 1)

and we want to determine the corresponding impulse response h(t). First we need to find
the correct form for the partial fractions, which means we need to complete the square in the
denominator

H(s) =
1

(s+ 2)(s2 + s+ 1)
=

1

(s+ 2)((s+ 1
2
)2 + (

√
3
2
)2)

=
A

s+ 2
+

B
√
3
2

(s+ 1
2
)2 + (

√
3
2
)2

+
C(s+ 3

2
)

(s+ 1
2
)2 + (

√
3
2
)2

Note that we have three unknowns since the highest power of s in the denominator is 3. Since
there is an isolated pole at -2, we find coefficient A first using the coverup method

A = lim
s→−2

1

(s2 + s+ 1)
=

1

(−2)2 + (−2) + 1
=

1

3

To find C, multiply both sides by s and let s → ∞, which gives us

0 = A + 0 + C

which give us C = −A = −1/3. Finally, we substitute s = −1/2 into the equation to get

1
3
2
3
4

=
A
3
2

+
B
√
3
2

3

4

This is simplified as

8

9
=

2

9
+B

3√
3

which yields B = 1√
3
. Finally we have

h(t) =
1

3
e−2tu(t)− 1

3
e−

1
2
t cos(

√
3

2
t)u(t) +

1√
3
e−

1
2
t sin(

√
3

2
t)u(t)

18

2.7 Common Denominator/Cross Multiplying

As a last method, we’ll look at a method of doing partial fractions based on using a common de-
nominator. This method is particularly useful for simple problems like finding the step response
of a second order system. However, for many other types of problems it is not very useful, since
it generates a system of equations that must be solved, much like substituting values of s will
do.
Example 13 Let’s assume we have the second order system

H(s) =
b

s2 + cs+ d

and we want to find the step response of this system,

Y (s) = H(s)
1

s

=
b

s(s2 + bs + c)
= a1

1

s
+

a2s+ a3
s2 + bs + c

=
b

s(s2 + bs + c)
=

a1(s
2 + bs + c) + s(a2s+ a3)

s(s2 + bs + c)

=
b

s(s2 + bs + c)
=

(a1c)s
0 + (a1b+ a3)s

1 + (a1 + a2)s
2

s(s2 + bs+ c)

Since we have made the denominator common for both sides, we just need to equate powers of
s in the numerator:

a1c = b

a1b+ a3 = 0

a1 + a2 = 0

Since c and b are known, we can easily solve for a1 in the first equation, then a2 and a3 in the
remaining equations.

Example 14. Find the step response of

H(s) =
1

s2 + 2s+ 2

using the common denominator method. Y (s) is given by

Y (s) =
1

s

1

s2 + 2s+ 2
= a1

1

s
+

a2s+ a3
s2 + 2s+ 2

If we put everything over a common denominator we will have the equation

1 = a1(s
2 + 2s+ 2) + s(a2s+ a3)

= (2a1)s
0 + (2a1 + a3)s

1 + (a1 + a2)s
2

19

Equating powers of s we get a1 =
1
2
, then a3 = −1 and a2 = −1

2
. The we have

Y (s) =
1

2

1

s
+

−1
2
s− 1

s2 + 2s+ 2

=
1

2

1

s
− 1

2

s+ 2

s2 + 2s+ 2

=
1

2

1

s
− 1

2

(s+ 1)

(s+ 1)2 + 1
− 1

2

1

(s+ 1)2 + 1

In the time-domain we have then

y(t) =
1

2
u(t)− 1

2
e−t cos(t)u(t)− 1

2
e−t sin(t)u(t)

Example 15. Find the step response of

H(s) =
3

2s2 + 3s+ 3

using the common denominator method. Partial fractions will only work if the denominator is
monic, which means the leading coefficient must be a 1. Hence we rewrite H(s) as

H(s) =
3
2

s2 + 3
2
s+ 3

2

Y (s) is then given by

Y (s) =
1

s

3
2

s2 + 3
2
s+ 3

2

= a1
1

s
+

a2s+ a3
s2 + 3

2
s+ 3

2

If we put everything over a common denominator we will have the equation

3

2
= a1(s

2 +
3

2
s+

3

2
) + s(a2s+ a3)

= (
3

2
a1)s

0 + (
3

2
a1 + a3)s

1 + (a1 + a2)s
2

Equating powers of s we get a1 = 1, then a2 = −1 and a3 = −3
2
. The we have

Y (s) =
1

s
+

−s− 3
2

s2 + 3
2
s+ 3

2

=
1

s
− s+ 3

4
+ 3

4

s2 + 3
2
s+ 3

2

=
1

s
− (s+ 3

4
)

(s+ 3
4
)2 +

(√
15
16

)2 − 3

4

√
16

15

√
15
16

(s+ 3
4
)2 +

(√
15
16

)

In the time-domain we have then

y(t) = u(t)− e−3t/4 cos(

√
15

16
t)u(t)− 3√

15
e−3t/4 sin(

√
15

16
t)u(t)

20

2.8 Complex Conjugate Poles-Again

It is very important to understand the basic structure of complex conjugate poles. For a system
with complex poles at −a±bj, the characteristic equation (denominator of the transfer function)
will be

D(s) = [s− (−a + jb)][s− (−a− jb)]

= [s+ (a− jb)][s + (a+ jb)]

= s2 + [(a− jb) + (a + jb)]s+ (a− jb)(a + jb)

= s2 + 2as+ a2 + b2

= (s+ a)2 + b2

We know that this form leads to terms of the form e−at cos(bt)u(t) and e−at sin(bt)u(t). Hence
we have the general relationship that complex poles at −a ± jb lead to time domain functions
that

• decay like e−at (the real part determines the decay rate)

• oscillate like cos(bt) or sin(bt) (the imaginary part determines the oscillation frequency)

These relationships, relating the imaginary and real parts of the poles with corresponding time
domain functions, are very important to remember.

21

3 Final Value Theorem and the Static Gain of a System

The final value theorem for Laplace transforms can generally be stated as follows:
If Y (s) has all of its poles in the open left half plane, with the possible exception of a single pole
at the origin, then

lim
t→∞ y(t) = lim

s→0
sY (s)

provided the limits exists.

Example 1. For y(t) = e−atu(t) with a > 0 we have

lim
t→∞ y(t) = lim

t→∞ e−at = 0

lim
s→0

sY (s) = lim
s→0

s
1

s+ a
= lim

s→0

s

s+ a
= 0

Example 2. For y(t) = sin(bt)u(t) we have

lim
t→∞ y(t) = lim

t→∞ sin(bt)

lim
s→0

sY (s) = lim
s→0

s
b

s2 + b2
= lim

s→0

sb

s2 + b2
= 0

Clearly limt→∞ y(t) �= lims sY (s). Why? Because the final value theorem is not valid since Y (s)
has two poles on the jω axis.

Example 3. For y(t) = u(t) we have

lim
t→∞ y(t) = lim

t→∞u(t) = 1

lim
s→0

sY (s) = lim
s→0

s
1

s
= lim

s→0

s

s
= 1

Example 4. For y(t) = e−at cos(bt)u(t) with a > 0 we have

lim
t→∞ y(t) = lim

t→∞ e−at cos(bt)u(t) = 0

lim
s→0

sY (s) = lim
s→0

s
(s+ a)

(s+ a)2 + b2
= lim

s→0

s(s+ a)

(s+ a)2 + b2
= 0

One of the common ways in which we use the Final Value Theorem is to compute the static
gain of a system. The response of a transfer function G(s) to a step input of amplitude A,

Y (s) = G(s)
A

s

If we want the final value of y(t) then we can use the Final Value Theorem

lim
t→∞ y(t) = lim

s→0
sY (s)

22

= lim
s→0

sG(s)
A

s
= AG(0)

= AKstatic

provided G(0) exists. G(0) is referred to as the gain or static gain of the system. This is a very
convenient way of determining the static gain of a system. It is important to remember that
the steady state value of a system is the static gain of a system multiplied by the amplitude of
the step input.

Example 5. For the transfer function

G(s) =
s + 2

s2 + 3s+ 1

the static gain is 2, and if the step input has an amplitude of 0.1, the final value will be 0.2.

Example 6. For the transfer function

G(s) =
s2 + 1

s3 + 2s2 + 3s+ 4

the static gain is 1
4
, and if the step input has an amplitude of 3, the final value will be 0.75.

23

4 Step Response, Ramp Response, and Steady State Er-

rors

In control systems, we are often most interested in the response of a system to the following
types of inputs:

• a step

• a ramp

• a sinusoid

Although in reality control systems have to respond to a large number of different inputs, these
are usually good models for the range of input signals a control system is likely to encounter.

4.1 Step Response and Steady State Error

The step response of a system is the response of the system to a step input. In the time domain,
we compute the step response as

y(t) = h(t) � Au(t)

where A is the amplitude of the step and u(t) is the unit step function and � is the convolution
operator. In the s domain, we compute the step response as

Y (s) = H(s)
A

s
y(t) = L−1{Y (s)}

The steady state error, ess, is the difference between the input and the resulting response as
t → ∞. For a step input of amplitude A we have

ess = lim
t→∞ [Au(t)− y(t)]

= A− lim
t→∞ y(t)

Note that the steady state error can be both positive (the final value of the output is not as large
as the input) or negative (the final value of the output is larger than the input).
Example 1. Consider the system with transfer function H(s) = 4

s2+2s+5
. Determine step re-

sponse and the steady state error for this system.

First we find the step response,

Y (s) =
4

s2 + 2s+ 5

A

s
= a1

1

s
+

a2s+ a3
(s+ 1)2 + 22

= A

[
4

5

1

s
−

4
5
s + 8

5

(s+ 1)2 + 22

]

= A

[
4

5

1

s
−

4
5
(s+ 1)

(s+ 1)2 + 22
− 2

5

2

(s+ 1)2 + 22

]

24

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Time (sec)

D
is

pl
ac

em
en

t

Input
Output

steady state error = 0.2

Figure 1: The unit step response and position error for the system in Example 1. This system
has a positive position error.

or

y(t) = A
[
4

5
u(t)− 4

5
e−t cos(2t)u(t)− 2

5
e−t sin(2t)u(t)

]
Then the steady state error is

ess = A− lim
t→∞A

[
4

5
u(t)− 4

5
e−t cos(2t)u(t)− 2

5
e−t sin(2t)u(t)

]

= A− 4A

5

=
A

5

The step response and steady state error of this system are shown in Figure 1 for a a unit step
(A = 1)input. Note that the positive steady state error indicates the final value of the output
is smaller than the final value of the input.

Example 2. Consider the system with transfer function H(s) = 1
(s+1)(s+3)

. Determine the step
response and steady state error for this system.
First we find the step response,

Y (s) =
5

(s+ 1)(s+ 3)

A

s
= a1

1

s
+ a2

1

s+ 1
+ a3

1

s+ 3

=
5A

3

1

s
− 5A

2

1

s+ 1
+

5A

6

1

s+ 3

25

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time (sec)

D
is

pl
ac

em
en

t

Input
Output

steady state error = −0.667

Figure 2: The unit step response and position error for the system in Example 2. This system
has a negative position error.

or

y(t) = A
[
5

3
u(t)− 5

2
e−tu(t) +

5

6
e−3tu(t)

]

Then the steady state error is

ep = A− lim
t→∞A

[
5

3
u(t)− 5

2
e−tu(t) +

5

6
e−3tu(t)

]

= A− 5A

3

=
−2A

3

The step response and steady state error of this system are shown in Figure 2 for a a unit step
(A = 1)input. Note that the negative steady state error indicates the final value of the output
is larger than the final value of the input.

Now, as much as I’m sure you like completing the square and doing partial fractions, there is
an easier way to do this. We already have learned that if Y (s) has all of its poles in the open
left half plane (with the possible exception of a single pole at the origin), we can use the final
value theorem to find the steady state value of the step response. Specifically,

lim
t→∞ y(t) = lim

s→0
sY (s)

26

= lim
s→0

s
[
H(s)

A

s

]
= lim

s→0
AH(s)

= AH(0)

and then, for stable H(s) we can compute the steady state error as

ess = A− AH(0)

where A is the amplitude of the step input. For a unit step response A = 1.

Example 3. From Example 1, we compute

ess = A− AH(0)

= A− A
4

5

=
A

5

Example 4. From Example 2, we compute

ess = A− AH(0)

= A− A
5

3

=
−2A

3

There is yet another way to compute the steady state error, which is useful to know. Let’s
assume we write the transfer function as

H(s) =
nms

m + nm−1s
m−1 + ... + n2s

2 + n1s+ n0

sn + dn−1sn−1 + ...+ d2s2 + d1s+ d0

To compute the steady state error for a step input we need to compute

ess = lim
s→0

A[1−H(s)]

Let’s write 1−H(s) and put it all over a common denominator. Then we have

1−H(s) =
(sn + dn−1s

n−1 + ... + d2s
2 + d1s+ d0)− (nms

m + nm−1s
m−1 + ...+ n2s

2 + n1s+ n0)

sn + dn−1sn−1 + ...+ d2s2 + d1s+ d0

=
... + (d2 − n2)s

2 + (d1 − n1)s+ (d0 − n0)

sn + dn−1sn−1 + ... + d2s2 + d1s+ d0

Then

ess = lim
s→0

A[1−H(s)]

= A
d0 − n0

d0

27

Example 5. From Example 1, we have n0 = 4 and d0 = 5, so the steady state error for a step

input is ess = A5−4
5

= A
5
.

Example 6. From Example 2, we have n0 = 5, d0 = 3, so the steady state error for a step

input is ess = A3−5
3

= −2A
3
.

4.2 Ramp Response and Steady State Error

The ramp response of a system is the response of the system to a ramp input. In the time
domain, we compute the ramp response as

y(t) = h(t) � Atu(t)

where A is the amplitude of the step and u(t) is the unit step function. In the s domain, we
compute the step response as

Y (s) = H(s)
A

s2

y(t) = L−1{Y (s)}
The steady state error, ess, is the difference between the input ramp and the resulting response
as t → ∞,

ess = lim
t→∞ [Atu(t)− y(t)]

It should be clear that unless y(t) has a term like Atu(t), the steady state error will be infinite.
Note that the steady state error can be both positive (the final value of the output is not as large
as the input) or negative (the final value of the output is larger than the input).

Example 7. Consider the system with transfer function H(s) = 1
s+1

. Determine the ramp
response and steady state error for this system.

First we find the ramp response

Y (s) =
1

s+ 1

A

s2
= a1

1

s
+ a2

1

s2
+ a3

1

s+ 1

= A
[
−1

s
+

1

s2
+

1

s+ 1

]
or

y(t) = A
[
−u(t) + tu(t) + e−tu(t)

]
Then the steady state error is

ess = Atu(t)− lim
t→∞A

[
−u(t) + tu(t) + e−tu(t)

]
= At−At + A

= A

28

Example 8. Consider the system with transfer function H(s) = s+2
s2+2s+2

. Determine the ramp
response and steady state error for this system.

First we find the ramp response

Y (s) =
s + 2

s2 + 2s+ 2

A

s2
= a1

1

s
+ a2

1

s2
+

a3s+ a4
s2 + 2s+ 2

= A

[
−1

2

1

s
+

1

s2
+

1

2

s

(s+ 1)2 + 1

]

= A

[
−1

2

1

s
+

1

s2
+

1

2

s+ 1

(s+ 1)2 + 1
− 1

2

1

(s+ 1)2 + 1

]

or

y(t) = A
[
−1

2
u(t) + tu(t) +

1

2
e−t cos(t)u(t)− 1

2
e−t sin(t)u(t)

]

Then the steady state error is

ess = Atu(t)− lim
t→∞A

[
−1

2
u(t) + tu(t) +

1

2
e−t cos(t)u(t)− 1

2
e−t sin(t)u(t)

]

= At− At+
1

2
A

=
A

2

The ramp response and steady state error for this system are shown in Figure 3 for a a unit
ramp input. Note that the steady state error is positive, indicating the output of the system is
smaller than the input in steady state.
We can try and use the Final Value Theorem again, but it becomes a bit more complicated. We
want to find

ess = lim
t→∞ [Atu(t)− y(t)]

= lim
s→0

s
[
A

s2
− A

s2
H(s)

]

= lim
s→0

A

s
[1−H(s)]

Let’s assume again we can write the transfer function as

H(s) =
nms

m + nm−1s
m−1 + ... + n2s

2 + n1s+ n0

sn + dn−1sn−1 + ...+ d2s2 + d1s+ d0

If we compute 1−H(s) and put things over a common denominator, we have

1−H(s) =
(sn + dn−1s

n−1 + ... + d2s
2 + d1s+ d0)− (nms

m + nm−1s
m−1 + ...+ n2s

2 + n1s+ n0)

sn + dn−1sn−1 + ...+ d2s2 + d1s+ d0

=
... + (d2 − n2)s

2 + (d1 − n1)s+ (d0 − n0)

sn + dn−1sn−1 + ... + d2s2 + d1s+ d0

29

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Time (sec)

D
is

pl
ac

em
en

t

Input
Output

steady state error = 0.5

Figure 3: The unit ramp response and steady state error for the system in Example 8. Note
that the steady state error is positive in this case, since the steady state value of the output is
smaller than the steady state value of the input.

30

and

1

s
[1−H(s)] =

... + (d2 − n2)s
+(d1 − n1) + (d0 − n0)

1
s

sn + dn−1sn−1 + ...+ d2s2 + d1s+ d0

Now, in order to have ess be finite, we must get a finite value as s → 0 in this expression. The
value of the denominator will be d0 as s → 0, so the denominator will be OK. All of the terms
in the numerator will be zero except the last two: (d1 − n1) + (d0 − n0)

1
s
In order to get a finite

value from these terms, we must have n0 = d0, that is, constant terms in the numerator and
denominator must be the same. This also means that the system must have a zero steady state
error for a step input. Important!! If the system does not have a zero steady state error for a
step input, the steady state error for a ramp input will be infinite! Conversely, if a system has
finite steady state error for a ramp input, the steady state error for a step input must be zero!
If n0 = d0, then we have

ess = lim
s→0

A

s
[1−H(s)] = A

d1 − n1

d0

Example 9. For the system in Example 7, H(s) = 1
s+1

. Here n0 = d0 = 1, so the system
has zero steady state error for a step input, and n1 = 0, d1 = 1. Hence for a ramp input
ess = Ad1−n1

d0
= A.

Example 10. For the system in Example 8, H(s) = s+2
s2+2s+2

. Here n0 = d0 = 2, so the system
has zero steady state error for a step input, and n1 = 1, d1 = 2. Hence for a ramp input
ess = Ad1−n1

d0
= A

2
.

4.3 Summary

Assume we write the transfer function of a system as

H(s) =
nms

m + nm−1s
m−1 + ... + n2s

2 + n1s+ n0

sn + dn−1sn−1 + ...+ d2s2 + d1s+ d0

The step response of a system is the response of the system to a step input. The steady state
error, ess, for a step input is the difference between the input and the output of the system in
steady state. We can compute the steady state error for a step input in a variety of ways:

ess = lim
t→∞ [Au(t)− y(t)]

= A− lim
t→∞ y(t)

= A(1−H(0))

= A
d0 − n0

d0

The ramp response of a system is the response of the system to a ramp input. The steady state
error, ess, for a ramp input is the difference between the input and output of the system in
steady state. A system has infinite steady state error for a ramp input unless the steady state

31

error for a step input is zero. We can compute the steady state error for a ramp input in a
variety of ways:

ess = lim
t→∞ [At− y(t)]

= A
d1 − n1

d0

32

5 Response of a Ideal Second Order System

This is an important example, which you have probably seen before. Let’s assume we have an
ideal second order system with transfer function

H(s) =
Kstatic

1
ωn

2
s2 + 2ζ

ωn
s+ 1

=
Kstatic ωn

2

s2 + 2ζωns+ ω2
n

where ζ is the damping ratio, ωn is the natural frequency, and Kstatic is the static gain. The
poles of the transfer function are the roots of the denominator, which are given by the quadratic
formula

roots =
−2ζωn ±

√
(2ζωn)2 − 4ω2

n

2

= −ζωn ± ωn

√
ζ2 − 1

= −ζωn ± jωn

√
1− ζ2

= −ζωn ± jωd

= −σ ± jωd

= −1/τ ± jωd

where we have used the damped frequency ωd = ωn

√
1− ζ2 and σ = 1

τ
= ζωn. As we start to

talk about systems with more than two poles, it is easier to remember to use the form of the
poles −σ ± ωd or −1/τ ± ωd.

5.1 Step Response of an Ideal Second Order System

To find the step response,

Y (s) = H(s)U(s) =
Kstatic ω

2
n

s2 + 2ζωns+ ω2
n

1

s

We then look for a partial fraction expansion in the form

Y (s) =
Kstatic ω

2
n

s2 + 2ζωns+ ω2
n

1

s
= a1

1

s
+

a2s+ a3
s2 + 2ζωns+ ω2

n

From this, we can determine that a1 = Kstatic, a2 = −Kstatic, and a3 = −2ζωnKstatic. Hence we
have

Y (s) = Kstatic
1

s
−Kstatic

s+ 2ζωn

s2 + 2ζωns+ ω2
n

Completing the square in the denominator we have

Y (s) = Kstatic
1

s
−Kstatic

s+ 2ζωn

(s+ ζωn)2 + ω2
d

33

or

Y (s) = Kstatic
1

s
−Kstatic

s+ ζωn

(s+ ζωn)2 + ω2
d

−Kstatic
ζωn

(s+ ζωn)2 + ω2
d

= Kstatic
1

s
−Kstatic

s+ ζωn

(s+ ζωn)2 + ω2
d

−Kstatic
ζωn

ωd

ωd

(s+ ζωn)2 + ω2
d

or in the time domain

y(t) = Kstatic

[
1− e−ζωnt cos(ωdt)− ζωn

ωd

e−ζωnt sin(ωdt)

]
u(t)

We would now like to write the sine and cosine in terms of a sine and a phase angle. To do this,
we use the identity

r sin(ωd + θ) = r cos(ωd) sin(θ) + r sin(ωd) cos(θ)

Hence we have

r sin(θ) = 1

r cos(θ) =
ζωn

ωd
=

ζ√
1− ζ2

Hence

θ = tan−1

(√
1− ζ2

ζ

)

r =
1√

1− ζ2

Note that

cos(θ) =
ζ√

1− ζ2
1

r
=

ζ√
1− ζ2

√
1− ζ2

or θ = cos−1(ζ). Finally we have

y(t) = Kstatic

[
1− 1√

1− ζ2
e−ζωnt sin(ωdt + θ)

]
u(t)

5.2 Time to Peak, Tp

From our solution of the response of the ideal second order system to a unit step, we can compute
the time to peak by taking the derivative of y(t) and setting it equal to zero. This will give us
the maximum value of y(t) and the time that this occurs at is called the time to peak, Tp.

dy(t)

dt
= − Kstatic√

1− ζ2

[
−ζωne

−ζωnt sin(ωdt+ θ) + ωde
−ζωnt cos(ωdt+ θ)

]
= 0

34

or

ζωn sin(ωdt + θ) = ωd cos(ωdt + θ)

tan(ωdt + θ) =

√
1− ζ2

ζ

θ + ωdt = tan−1

(√
1− ζ2

ζ

)

but we already have θ = tan−1

(√
1−ζ2

ζ

)
, hence ωdt must be equal to one period of the tangent,

which is π. Hence

Tp =
π

ωd

Remember that ωd is equal to the imaginary part of the complex poles.

5.3 Percent Overshoot, PO

Evaluating y(t) at the peak time Tp we get the maximum value of y(t),

y(Tp) = Kstatic

[
1− 1√

1− ζ2
e−ζωnTp sin(ωdTp + θ)

]

= Kstatic

[
1− 1√

1− ζ2
e−ζωnπ/ωd sin(ωd

π

ωd
+ θ)

]

= Kstatic

[
1 +

1√
1− ζ2

e−ζπ/
√

1−ζ2 sin(θ)

]

since sin(θ + π) = − sin(θ). Then sin(θ) =
√
1− ζ2, hence

y(t) = Kstatic

[
1 + e

− ζπ√
1−ζ2

]

The percent overshoot is defined as

Percent Overshoot = P.O. =
y(Tp)− y(∞)

y(∞)
× 100%

For our second order system we have y(∞) = Kstatic, so

P.O. =
Kstatic

[
1 + e

− ζπ√
1−ζ2

]
−Kstatic

Kstatic

× 100%

or

P.O. = e
− ζπ√

1−ζ2 × 100%

35

5.4 Settling Time, Ts

The settling time is defined as the time it takes for the output of a system with a step input
to stay within a given percentage of its final value. In this course, we use the 2% settling time
criteria, which is generally four time constants. For any exponential decay, the general form is
written as e−t/τ , where τ is the time constant. For the ideal second order system response, we
have τ = 1/ζωn or σ = ζωn. Hence, for and ideal second order system, we estimate the settling
time as

Ts = 4τ =
4

σ
=

4

ζωn

For systems other than second order systems we will want to talk about the settling time, hence
the use of the forms

Ts = 4τ =
4

σ

are often more appropriate to remember.

Example 1. Consider the system with transfer function given by

H(s) =
9

s2 + βs+ 9

determine the range of β so that Ts ≤ 5 seconds and Tp ≤ 1.2 seconds.

For the transfer function, we see that ωn = 3 and 2ζωn = β, so ζ = β/(2ωn) = β/6. For the
settling time constraint we have

Ts =
4

ζωn
≤ 5

4
β
6
3

≤ 5

8

5
≤ β

so β ≥ 1.60. For the time to peak constraint, we have

Tp =
π

ωd
≤ 1.2

π

ωn

√
1− ζ2

≤ 1.2

π

1.2ωn

≤
√
1− ζ2

(
π

1.2ωn

)2

≤ 1− ζ2

ζ2 ≤ 1−
(

π

1.2ωn

)2

ζ ≤
√
1−

(
π

1.2ωn

)2

β ≤ 6

√
1−

(
π

1.2ωn

)2

36

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (sec)

A
m

pl
itu

de

Figure 4: Step response for the system H(s) = 9
s2+2.265s+9

. The settling time should be less than
5 seconds, the time to peak should be less than 1.2 seconds, and the percent overshoot should
be 27.8%.

or β ≤ 2.93. To meet both constraints we need 1.60 ≤ β ≤ 2.93. Let’s choose the average,
so β = 2.265. Then ζ = 0.3775 and the percent overshoot is 27.8%. The step response of this
system is shown in Figure 4.

Example 2. Consider the system with transfer function given by

H(s) =
K

s2 + 2s+K

determine the range of K so that PO ≤ 20%. Is there any value of K so that Ts ≤ 2 seconds?

For the transfer function, we see that ωn =
√
K and 2ζωn = 2, so ζωn = 1 and ζ = 1√

K
. For the

percent overshoot we have b = 20/100 = 0.2 and

e
− ζπ√

1−ζ2 ≤ b

− ζπ√
1− ζ2

≤ ln(b)

− π√
K

1√
1− 1

K

≤ ln(b)

− π√
K − 1

≤ ln(b)

37

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (sec)

A
m

pl
itu

de

Figure 5: Step response for the system H(s) = K
s2+2s+K

. The percent overshoot should be less
than or equal to 20% and the settling time should be 4 seconds.

− π

ln(b)
≤ √

K − 1

(
π

ln(b)

)2

≤ K − 1

1 +

(
π

ln(b)

)2

≤ K

Hence we need K ≥ 4.8 to meet the percent overshoot requirement. Now we try to meet the
settling time requirment

Ts =
4

ζωn
≤ 2

but 4
ζωn

= 4
1
= 4. Thus, we cannot meet the settling time constraint for any value of K. The

step response of this system for K = 2.8 is shown in Figure 5.

5.5 Constraint Regions in the s-Plane

Sometimes, instead of looking at a transfer function and trying to determine the percent over-
shoot, settling time, or time to peak, we can take the opposite approach and try to determine

38

the region in the s-plane the poles of the system should be located in to achieve a given criteria.
Each one of the three criteria will determine a region of space in the s-plane.

Time to Peak (Tp) Let’s assume we have a maximum time to peak given, Tmax
p , and we want

to know where to find all of the poles that will meet this constraint. We have

Tp =
π

ωd
≤ Tmax

p

we can rearrange this as

π

Tmax
p

≤ ωd

Since we can write the complex poles as −σ ± jωd, this means that the imaginary part of the
poles must be greater than π

Tmax
p

.

Example 3. Determine all acceptable pole location so that the time to peak will be less than
2 seconds. We have Tmax

p = 2, so ωd ≥ π
2
= 1.57. The acceptable pole locations are shown in

the shaded region of Figure 6.

Figure 6: Acceptable pole locations for Tp ≤ 2 seconds are shown in the shaded region.

39

Percent Overshoot (P.O.) Let’s assume we have a maximum percent overshoot given, POmax,
and we want to know where to find all of the poles that will meet this constraint. We have

P.O. = e
− ζπ√

1−ζ2 × 100% ≤ POmax

or

e
− ζπ√

1−ζ2 ≤ POmax

100
= b

where we have defined the parameter b = POmax/100 for notational convenience. We need to
first solve the above expression for ζ .

− ζπ√
1− ζ2

≤ ln(b)

ζ√
1− ζ2

≥ − ln(b)

π

ζ2

1− ζ2
≥

(− ln(b)

π

)2

ζ2 ≥
(− ln(b)

π

)2

− ζ2
(− ln(b)

π

)2

ζ2

⎡
⎣1 +

(− ln(b)

π

)2
⎤
⎦ ≥

(− ln(b)

π

)2

ζ ≥
− ln(b)

π√
1 +

(− ln(b)
π

)2
Now we use the relationship

θ = cos−1 (ζ)

In summary, we have

θ ≤ cos−1 (ζ) , ζ ≥
− ln(b)

π√
1 +

(− ln(b)
π

)2 , b =
POmax

100

This angle θ is measured from the negative real axis. Hence an angle of 90 degrees indicates
ζ = 0 and there is no damping (the poles are on the jω axis), while an angle of 0 degrees means
the system has a damping ratio of 1, and the poles are purely real.

40

Example 4. Determine all acceptable pole locations so that the percent overshoot will be less
than 10%. We have b = 0.1, so ζ ≥ 0.59 and θ ≤ 53.8o The acceptable pole locations are shown
in the shaded region of Figure 7.

Figure 7: Acceptable pole locations for Percent Overshoot less than or equal to 10%. The
acceptable pole locations are shown in the shaded region.

41

Example 5. Determine all acceptable pole locations so that the percent overshoot will be less
than 20% and the time to peak will be less than 3 seconds. We have b = 0.2, so ζ ≥ 0.46 and
θ ≤ 62.9o. We also have Tmax

p = 3, so ωd ≥ π
3
= 1.04 The acceptable pole locations for each

constraint are shown in Figure 8. The overlapping regions are the acceptable pole locations to
meet both the percent overshoot and time to peak constraints.

Figure 8: Acceptable pole locations for Percent Overshoot less than or equal to 20% and time
to peak less than or equal to 3 seconds. The acceptable pole locations for each constraint are
shown in the shaded regions. The overlapping regions are those pole locations that will meet
both constraints.

42

Settling Time (Ts) Let’s assume we have a maximum settling time Tmax
s , and we want to

know where to find all of the poles that will meet this constraint. We have

Ts =
4

σ
≤ Tmax

s

or

4

Tmax
s

≤ σ

Since we can write the complex poles as −σ ± jωd, this means that the real part of the poles
must be greater (in magnitude) than 4

Tmax
s

. In other words, the poles must have real parts less

than − 4
Tmax
s

Example 6. Determine all acceptable pole locations so that the settling time will be less than
3 seconds. We have Tmax

s = 3, so σ ≥ 4
Tmax
s

= 4
3
= 1.333. The acceptable pole locations are

shown in Figure 9.

Figure 9: Acceptable pole locations for settling time less than or equal to 3 seconds. The
acceptable pole locations are shown in the shaded region.

43

Example 7. Determine all acceptable pole locations so that the settling time will be less than
1 second and the time to peak will be less than or equal to 0.5 seconds. We have Tmax

s = 1,
so σ ≥ 4

Tmax
s

= 4
1
= 4. We also have Tmax

p = 0.5, so ωd ≥ π
Tmax
p

= π
0.5

= 6.28. The acceptable

pole locations for each constraint are shown in Figure 10. The overlapping regions (upper left
corner, lower left corner) are the acceptable pole locations to meet both the settling time and
time to peak constraints.

Figure 10: Acceptable pole locations for settling time less than or equal to 1 second and time to
peak less than 0.5 seconds. The acceptable pole locations for each constraint are shown in the
shaded regions. The overlapping regions are those pole locations that will meet both constraints.

44

Example 8. Determine all acceptable pole locations so that the settling time will be less than
5 seconds, the time to peak will be less than or equal to 2 seconds, and the percent overshoot
will be less than 5%. We have Tmax

s = 5, so σ ≥ 4
Tmax
s

= 4
5
= 0.8. We also have Tmax

p = 2, so
ωd ≥ π

Tmax
p

= π
2
= 1.57. Finally, b = 0.05, ζ ≥ 0.69 or θ < 46.4o. The acceptable pole locations

for each constraint are shown in Figure 11. The overlapping regions (two triangular wedges) are
the acceptable pole locations to meet all three constraints.

Figure 11: Acceptable pole locations for settling time less than 5 seconds, time to peak less than
or equal to 2 seconds, and the percent overshoot less than 5%. The acceptable pole locations
for each constraint are shown in the shaded regions. The overlapping regions (two triangular
wedges) are those pole locations that will meet all three constraints.

5.6 Summary

For an ideal second order system with transfer function

H(s) =
Kstatic

1
ωn

2
s2 + 2ζ

ωn
s+ 1

=
Kstatic ωn

2

s2 + 2ζωns+ ω2
n

the poles are located at −ζωn± jωd, which is commonly written as either −σ± jωd or − 1
τ
± jωd.

We can compute the percent overshoot (PO), the settling time (Ts), and the time to peak (Tp)

PO = e
− ζπ√

1−ζ2 × 100%

45

Ts =
4

ζωn
= 4τ =

4

σ

Tp =
π

ωd

It is important to remember that these relationships are only valid for ideal second order sys-
tems!

What is generally more useful to us is to use these relationships to determine acceptable pole
locations to meet the various design criteria. If the maximum desired settling time is Tmax

s , then
all poles must have real parts less than −4/Tmax

s . If the maximum desired time to peak is Tmax
p ,

then the imaginary parts of the dominant poles must have imaginary parts larger than π/Tmax
p ,

or less than −π/Tmax
p (since poles come in complex conjugate pairs). If the maximum percent

overshoot is POmax, then the poles must lie in a wedge determined by θ = cos−1 (ζ) where θ is
measured from the negative real axis and

ζ ≥
− ln(b)

π√
1 +

(− ln(b)
π

)2 , b =
POmax

100

Each of these constraints can be used to define a region of acceptable pole locations for an ideal
second order system. However, they are often used as a guide (or starting point) for higher
order systems, and systems with zeros.

46

6 Characteristic Polynomial, Modes, and Stability

In this section, we first introduce the concepts of the characteristic polynomial, characteristic
equation, and characteristic modes. You’ll obviously note the word characteristic is used quite
a lot here. Then, we utilize these concepts to define stability of our systems.

6.1 Characteristic Polynomial, Equation, and Modes

Consider a transfer function

H(s) =
N(s)

D(s)

where N(s) and D(s) are polynomials in s with no common factors. D(s) is called the character-
istic polynomial of the system, and the equation D(s) = 0 is called the characteristic equation.
The time functions associated with the roots of the characteristic equation (the poles of the
system) are called the characteristic modes. To determine the characteristic modes, it is often
easiest to think of doing partial fraction expansion and looking at the resulting time functions.
Some examples will probably help.

Example 1. Consider the transfer function

H(s) =
s+ 2

s2(s+ 1)(s+ 3)
= a1

1

s
+ a2

1

s2
+ a3

1

s+ 1
+ a4

1

s+ 3

Then we have:

Characteristic Polynomial: s2(s+ 1)(s+ 3)
Characteristic Equation: s2(s+ 1)(s+ 3) = 0
Characteristic Modes: u(t), tu(t), e−tu(t), e−3tu(t)

The impulse response is a linear combination of characteristic modes:

h(t) = a1u(t) + a2tu(t) + a3e
−tu(t) + a4e

−3tu(t)

Example 2. Consider the transfer function

H(s) =
s− 3

s(s+ 1)2(s + 3)
= a1

1

s
+ a2

1

s+ 1
+ a3

1

(s+ 1)2
+ a4

1

s+ 3

Then we have:

Characteristic Polynomial: s(s+ 1)2(s+ 3)
Characteristic Equation: s(s+ 1)2(s+ 3) = 0
Characteristic Modes: u(t), e−tu(t), te−tu(t), e−3tu(t)

The impulse response is a linear combination of characteristic modes:

h(t) = a1u(t) + a2e
−tu(t) + a3te

−tu(t) + a4e
−3tu(t)

47

Example 3. Consider the transfer function

H(s) =
1

s2 + s+ 1
=

1

(s+ 1
2
)2 +

(√
3
2

)2
= a1

s+ 1
2

(s+ 1
2
)2 +

(√
3
2

)2 + a2

√
3
2

(s+ 1
2
)2 +

(√
3
2

)2

Then we have:

Characteristic Polynomial: s2 + s+ 1
Characteristic Equation: s2 + s+ 1 = 0

Characteristic Modes: e−t/2 cos(
√
3
2
t)u(t), e−t/2 sin(

√
3
2
t)u(t)

The impulse response is going to be a linear combination of characteristic modes:

h(t) = a1e
−t/2 cos(

√
3

2
t)u(t) + a2e

−t/2 sin(

√
3

2
t)u(t)

6.2 Characteristic Mode Reminders

There are are few things to keep in mind when finding characteristic modes

• There are as many characteristic modes as there are poles of the transfer function. Each
characteristic mode must be different from the others.

• For any complex poles−σ±jωd, the characteristic mode will be of the form e−σt cos(ωdt)u(t),
and e−σt sin(ωdt)u(t).

• Assume pole pi corresponds to characteristic mode φi(t). If there are two poles at pi, the
characteristic modes associated with pole pi will be φi(t) and tφi(t). If there are three
poles at pi, the characteristic modes associated with pi will be φi(t), tφi(t), and t2φi(t).
If pole pi is repeated n times, the characteristic modes associated with pole pi will be
φi(t), tφi(t), t2φi(t), ... tn−1φi(t)

• The impulse response is a linear combination of the characteristic modes of a system.

Example 4. If a transfer function has poles at −1,−1,−2 ± 3j,−5 ± 2j, the characteris-
tic modes are given by e−tu(t), te−tu(t), e−2t cos(3t)u(t), e−2t sin(3t)u(t), e−5t cos(2t)u(t), and
e−5t sin(2t)u(t).

Example 5. If a transfer function has poles at −2,−2,−2,−3± 2j, −3± 2j, the characteristic
modes are at e−2tu(t), te−2tu(t), t2e−2tu(t), e−3t cos(2t)u(t), e−3t sin(2t)u(t), te−3t cos(2t)u(t),
and te−3t sin(2t)u(t).

48

6.3 Stability

A system is defined to be stable if all of its characteristic modes go to zero as t → ∞. A system
is defined to be marginally stable if all of its characteristic modes are bounded as t → ∞. A
system is unstable if any of its characteristic modes is unbounded as t → ∞. There are other
definitions of stability, each with their own purpose. For the systems we will be studying in this
course, generally linear time invariant systems, these are the most appropriate. Note that the
stability of a system is independent of the input.

In determining stability, the following mathematical truths should be remembered

lim
t→∞ tne−at = 0 for all positive a and n

lim
t→∞ e−at cos(ωdt + φ) = 0 for all positive a

lim
t→∞ e−at sin(ωdt + φ) = 0 for all positive a

u(t) is bounded

cos(ωdt + φ) is bounded

sin(ωdt + φ) is bounded

Example 6. Assume a system has poles at −1, 0,−2. Is the system stable?

The characteristic modes of the system are e−tu(t), u(t), and e−2tu(t). Both e−tu(t) and e−2tu(t)
go to zero as t → ∞. u(t) does not go to zero, but it is bounded. Hence the system is marginally
stable.

Example 7. Assume a system has poles at −1, 1,−2± 3j. Is the system stable?

The characteristic modes of the system are e−tu(t), etu(t), e−2t cos(3t)u(t), and e−2t sin(3t). All
of these modes go to zero as t goes to infinity, except the mode etu(t). This mode is unbounded
as t → ∞. Hence the system is unstable.

Example 8. Assume a system has poles at −1,−1,−2± j,−2 ± j. Is the system stable?

The characteristic modes of the system are e−tu(t), te−tu(t), e−2t cos(t)u(t), e−2t sin(t)u(t),
te−2t cos(t)u(t), and te−2t sin(t)u(t). All of the characteristic modes go to zero as t goes to
infinity, so the system is stable.

6.4 Settling Time and Dominant Poles

For an ideal second order system, we have already shown that the (2%) settling time is given by

Ts =
4

ζωn

We need to be able to deal with systems with more than two poles. To do this, we first make
the following observations:

49

• We normally write decaying exponentials in the form e−t/τ , where τ is the time constant.
Using the 2 % settling time, we set the settling time equal to four time constants, Ts = 4τ .

• If a system has a real pole at −σ, the corresponding mode is e−σtu(t). Hence the time
constant τ is equal to 1

σ
. The settling time for this pole is then Ts = 4τ = 4 1

σ
.

• If a system has complex conjugate poles at −σ ± jωd, the corresponding modes are
e−σt cos(ωdt)u(t) and e−σt sin(ωdt)u(t). Although these modes oscillate, the settling time
depends on the time constants, which again leads to τ = 1

σ
, and the settling time for this

type of mode is given by Ts = 4 1
σ

Hence, to determine the settling time associated with the ith pole of the system, pi, we compute

T i
s = 4

1

Re{−pi} =
4

σ

where we have written the real part of the pole, Re{−pi}, is equal to σ.

To determine the settling time of a system with multiple poles, determine the characteristic mode
associated with each pole, and then compute the settling time corresponding to that mode. The
largest such settling time is the setting time of the system. The poles associated with the largest
settling time are the dominant poles of the system.

Example 9. Assume we have a system with poles at −5,−4,−3 ± 2j. Determine the settling
time and the dominant poles of the system.

We have the settling times T 1
s = 4

5
, T 2

s = 4
4
, and T 3

s = 4
3
. The largest of these is Ts =

4
3
, so this

is the estimated settling time of the system. This settling time is associated with the poles at
−3± 2j, so these are the dominant poles.

Example 10. Assume we have a system with poles at −2 ± 3j,−1,−5 ± 2j. Determine the
settling time and the dominant poles of the system.

We have the settling times T 1
s = 4

2
, T 2

s = 4
1
, and T 3

s = 4
5
. The largest of these is Ts =

4
1
, so this

is the estimated settling time of the system. This settling time is associated with the pole at
−1, so this is the dominant pole.

While the poles of the system determine the characteristic modes of the system, the amplitudes
that multiply these modes (the ai in the partial fraction expansion) are determined by both the
poles and zeros of the system. In addition, when a pole is repeated, the form of the characteristic
mode is tne−σt (multiplied by sine or cosine for complex poles). Neither of these affects, the
zeros of a system and the effects of repeated poles, was considered in estimating the settling
time for a system. However, the approximation we have made is usually fairly reasonable.

Dominant poles are the slowest responding poles in a system. If we want faster response, these
are the poles we must move away from the jω axis.

50

7 Time Domain Response and System Bandwidth

The relationship between the time domain and frequency domain is something we must be aware
of when designing control systems. While we want our system to respond quickly , i.e., have a
small settling time, we have to realize what effects this has in the frequency domain. We will be
dealing predominantly with lowpass systems in this course. For these systems we will define the
bandwidth of a system to be that frequency ωb where the magnitude has fallen 3 dB from the
magnitude at dc, or zero frequency. Hence the bandwidth defines the the half power frequency
of the system, or that frequency when

1

2
|H(0)|2 = |H(jωb)|2

Consider a first order system described by the transfer function

G(s) =
K

τs+ 1
=

(
K
τ

)
s+ 1

τ

where K is the static gain and τ is the time constant. The pole of the system is a − 1
τ
. Assuming

the system is initially at rest, the unit step response of the system will be given by

y(t) = K(1− e−
t
τ)u(t)

If we want faster response, we want the time constant τ to become smaller, which means the
magnitude of poles of the system become larger (the poles move farther away from the jω axis.
Figure 12 displays the step response and corresponding frequency response (more precisely, the
magnitude portion of the frequency response) for K/τ = 1 (this ratio is fixed) and τ = 1,
τ = 1/10 and τ = 1/100, which corresponds to poles at -1, -10, and -100. As this figure
indicates, as the response of the system becomes faster (in the time domain), the bandwidth of
the system increases. For this system the bandwidth will be determined by the pole location,
or ωb = 1/τ . Thus the speed of response is directly related to the bandwidth of the system.

Now let’s consider a transfer function with two distinct poles, say at −p1 and −p2, so the
transfer function is

G(s) =
K

(s + p1)(s+ p2)

and the unit step response for p1 �= p2 is given by

y(t) =

[
K

p1p2
+

K

(p1 − p2)p1
e−p1t +

K

(p2 − p1)p2
e−p2t

]
u(t)

Figure 13 displays the step response and corresponding frequency response when K/p1p2 = 1
and p1 = 1, p2 = 2, p1 = 1, p2 = 10, and p1 = 1, p2 = 100 and Figure 14 for K/p1p2 = 1 and
p1 = 6, p2 = 7, p1 = 6, p2 = 20, and p1 = 6, p2 = 40.

As these figures demonstrate, the speed of response is determined by the pole closest to the
jω axis, the dominant pole. The bandwidth of the system is also determined by the dominant
pole. While the second pole affects the shape of both the time and frequency response, it is
the dominant pole that really determines the speed of response and the bandwidth. Here the

51

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1
 τ = 1, p = 1/τ = 1

D
is

pl
ac

em
en

t

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1
 τ = 0.333, p = 1/τ = 3

D
is

pl
ac

em
en

t

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1
τ = 0.1, p = 1/τ = 10

D
is

pl
ac

em
en

t

Time (sec)

10
−1

10
0

10
1

10
2

−40

−35

−30

−25

−20

−15

−10

−5

0

5

dB

 ω
b
 = 1

10
−1

10
0

10
1

10
2

−40

−35

−30

−25

−20

−15

−10

−5

0

5

dB

 ω
b
 = 3

10
−1

10
0

10
1

10
2

−40

−35

−30

−25

−20

−15

−10

−5

0

5

dB

ω
b
 = 10

Frequency (rad/sec)

Figure 12: The unit step response and bandwidth for three first order systems. The magnitude
of the system pole p is equal to the bandwidth ωb.

52

0 2 4 6
0

0.2

0.4

0.6

0.8

1

 p
1
 = 1, p

2
 = 2

D
is

pl
ac

em
en

t

0 2 4 6
0

0.2

0.4

0.6

0.8

1

 p
1
 = 1, p

2
 = 10

D
is

pl
ac

em
en

t

0 2 4 6
0

0.2

0.4

0.6

0.8

1

p
1
 = 1, p

2
 = 100

D
is

pl
ac

em
en

t

Time (sec)

10
−1

10
0

10
1

−40

−35

−30

−25

−20

−15

−10

−5

0

5

dB

 ω
b
 = 1

10
−1

10
0

10
1

−40

−35

−30

−25

−20

−15

−10

−5

0

5

dB

 ω
b
 = 1

10
−1

10
0

10
1

−40

−35

−30

−25

−20

−15

−10

−5

0

5

dB

ω
b
 = 1

Frequency (rad/sec)

Figure 13: The unit step response and bandwidth for three second order systems with distinct
poles. The rate of response is dominated by the dominant pole at -1, and the bandwidth (-3 dB
point) is determined by this dominant pole.

53

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

 p
1
 = 6, p

2
 = 7

D
is

pl
ac

em
en

t

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

 p
1
 = 6, p

2
 = 20

D
is

pl
ac

em
en

t

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

p
1
 = 6, p

2
 = 40

D
is

pl
ac

em
en

t

Time (sec)

10
0

10
1

10
2

−40

−35

−30

−25

−20

−15

−10

−5

0

5

dB

 ω
b
 = 6

10
0

10
1

10
2

−40

−35

−30

−25

−20

−15

−10

−5

0

5

dB

 ω
b
 = 6

10
0

10
1

10
2

−40

−35

−30

−25

−20

−15

−10

−5

0

5

dB

ω
b
 = 6

Frequency (rad/sec)

Figure 14: The unit step response and bandwidth for three second order systems with distinct
poles. The rate of response is dominated by the dominant pole at -6, and the bandwidth (-3 dB
point) is determined by this dominant pole.

54

bandwidth is determined by ωb = min(p1, p2). Clearly, if we were to add additional distinct
poles to this system, the response would be determined by the dominant poles.

Now let’s look at a system with complex conjugate poles, such as our ideal second order
system. For an ideal second order system with transfer function

G(s) =
K

1
ωn

2
s2 + 2ζ

ωn
s + 1

=
Kω2

n

s2 + 2ζωns+ ω2
n

the poles are located at −ζωn±jωd, which is commonly written as −σ±jωd. The characteristic
modes that go with these poles are of the form

e−σt cos(ωdt)

e−σt sin(ωdt)

Hence the speed of response will be governed by σ, which is the real part of the pole. The
bandwidth of the system is more complicated to determine. As a simple rule, for a fixed ωd

(the imaginary part of the pole), as σ gets larger the bandwidth gets larger. Figures 15 and 16
display the both the step and frequency responses (magnitude only) of an ideal second order
systems with complex poles at [−5 ± 4j, −10 ± 4j, −50 ± 4j] and [−5 ± 15j, −10 ± 15j,
−50± 15j], respectively. Note again, comparing these figures, that it is the real part of the pole
that determines the settling time, not the imaginary part.

Why, you might ask, do we care about the bandwidth? There are two reasons. The first is
that the bandwidth tells us the types of signals our system will be able to follow. We all know
that if the input to a system G(s) is x(t) = Acos(ω0t), that in steady state the output of the
system will be given by

y(t) = A|G(jω0)| cos(ω0t + � G(jω0))

Hence if the input to our system oscillates “faster” than cos(ωbt), or has higher frequency content
than ωb, where ωb is the bandwidth, our system will not be able to follow this input very well.
More accurately, the output of the system will oscillate at the same frequency as the input, but
with a substantially reduced amplitude.

The second reason we care about bandwidth is that all real systems have noise in them.
This noise is often introduced to the system by the sensors we need to make measurements,
such as measuring the system position or velocity. A fairly reasonable model for noise is
white noise. White noise is basically modelled as having constant power spectral density (the
power/frequency) of N0/2, or

Sxx(ω) =
N0

2

If the noise is the input to a system with transfer function G(ω), then the output power spectral
density Syy(ω)is given by

Syy(ω) = |G(ω)|2Sxx(ω)

= |G(ω)|2N0

2

55

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

 σ = 5, ω
d
 = 4

D
is

pl
ac

em
en

t

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

 σ = 10, ω
d
 = 4

D
is

pl
ac

em
en

t

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

 σ = 50, ω
d
 = 4

D
is

pl
ac

em
en

t

Time (sec)

10
0

10
1

10
2

−40

−35

−30

−25

−20

−15

−10

−5

0

5

dB

 σ = 5

10
0

10
1

10
2

−40

−35

−30

−25

−20

−15

−10

−5

0

5

dB

 σ = 10

10
0

10
1

10
2

−40

−35

−30

−25

−20

−15

−10

−5

0

5

dB

σ = 50

Frequency (rad/sec)

Figure 15: The unit step response and bandwidth for three second order systems with distinct
complex conjugate poles. The imaginary parts of the poles are fixed at ±4. Note that the faster
the time domain response the larger the system bandwidth.

56

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

 σ = 5, ω
d
 = 15

D
is

pl
ac

em
en

t

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

 σ = 10, ω
d
 = 15

D
is

pl
ac

em
en

t

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

 σ = 50, ω
d
 = 15

D
is

pl
ac

em
en

t

Time (sec)

10
0

10
1

10
2

−40

−35

−30

−25

−20

−15

−10

−5

0

5

dB

 σ = 5

10
0

10
1

10
2

−40

−35

−30

−25

−20

−15

−10

−5

0

5

dB

 σ = 10

10
0

10
1

10
2

−40

−35

−30

−25

−20

−15

−10

−5

0

5

dB

σ = 50

Frequency (rad/sec)

Figure 16: The unit step response and bandwidth for three second order systems with distinct
complex conjugate poles. The imaginary parts of the poles are fixed at ±15. Note that the
faster the time domain response the larger the system bandwidth.

57

If we want the average noise power, PN , we need to integrate the power spectral density over
the frequency range on interest. Since we are mostly considering low pass systems, the range we
are interested in is from −ωb to ωb, or

PN =
∫ ωb

−ωb

Syy(ω)dω

=
∫ ωb

−ωb

|G(ω)|2N0

2
dω

If we model the magnitude of the transfer function, |G(ω)|, as a constant B over the bandwidth,

|G(ω)| =

{
0 |ω| > |ωb|
B |ω| < |ωb|

we get the average noise power estimate

PA = N0B
2ωb

Hence to reduce the average noise power in our system, we want ωb small. However, this usually
means a slower response in the time domain. Bummer.

58

8 Block Diagrams

In this chapter we will first review the input-output relationship for the most basic feedback
configuration, and then review Mason’s gain formula for analyzing more complicated block
diagrams.

8.1 Basic Feedback Configuration

The most basic feedback configuration we will deal with is shown below

R(s)
� Gpf

���
��

� Gc(s) � Gp(s) �
Y (s)

�H(s)

�

+-

Here R(s) is the reference input. This is usually the signal we are trying to follow. Gpf(s) is a
prefilter which is usually used to condition the signal (change units) or to scale the input to fix
the final value of the output. Gp(s) is a model of the plant we are trying to control. Gc(s) is
a controller (or product of controllers) we have designed to improve performance. Y (s) is the
system output, and H(s) is a signal conditioner often used to change the units of the output
into more convenient units. Two other variables that are usually identified in the block diagram
are shown below:

R(s)
� Gpf

���
��

�
E(s)

Gc(s) �
U(s)

Gp(s) �
Y (s)

�H(s)

�

+-

Here U(s) is the input the the plant, so Y (s) = Gp(s)U(s). Finally, E(s) is the error signal, or
actuating error.

To determine the overall transfer function, we find

Y (s) = Gp(s)U(s)

= Gp(s)Gc(s)E(s)

and

E(s) = Gpf(s)R(s)−H(s)Y (s)

Combining these we get

Y (s) = Gp(s)Gc(s) [Gpf(s)R(s)−H(s)Y (s)]

59

= Gpf(s)Gc(s)Gp(s)R(s)−Gc(s)Gp(s)H(s)Y (s)

Y (s) +Gc(s)Gp(s)H(s)Y (s) = Gpf(s)Gc(s)Gp(s)R(s)

Y (s) [1 +Gc(s)Gp(s)H(s)] = Gpf(s)Gc(s)Gp(s)R(s)

or the closed-loop transfer function is

G0(s) =
Y (s)

R(s)
=

Gpf(s)Gc(s)Gp(s)

1 +Gc(s)Gp(s)H(s)

8.2 Mason’s Gain Formula

When we have more complicated block diagrams to analyze, we can continue to analyze them by
looking at error signals and using algebra to relate the input to the output signal. An alternative
approach is to write the block diagram as a signal flow graph and then use Mason’s gain rule,
which is a systematic method for analyzing signal flow graphs.

A signal flow graph is composed of directed branches and nodes. Just like block diagrams, these
graphs show the flow of signals throughout an interconnected system. However, rather than
showing transfer function blocks, the transfer functions (or transmittances) are written over the
directed branches. Finally, in a signal flow graph all of the branches into a node are summed.
Hence if you want negative feedback, you need to include the negative sign in one of the transfer
functions (transmittances). Before getting into too much detail, you should examine the exam-
ples of block diagrams and the equivalent signal flow graphs in Figures 17-19. In these following
diagrams a ‘1’ indicates the transmittance is just unity.

H1(s)

H2(s)

Σ
X(s) Y(s)

X H1

-H2

Y1 1

Figure 17: Signal flow graph of a simple feedback system.

60

H2(s)

H4(s)

Σ
X(s) Y(s)

H5(s)

H3(s)H1(s) Σ

X
H1 H2 Y1

-H4

H3 1

H5

Figure 18: Second example of a block diagram and the equivalent signal flow graph.

H2(s)

H4(s)

Σ
X(s) Y(s)

H3(s)H1(s) Σ

X H1 H2 Y

-H4

H3 1

-1

Figure 19: Third example of a block diagram and the equivalent signal flow graph.

61

X
1

H1 H3

H4

H2 H5

H6

H7

H8

H11

H10

H9

H12

H13

1
Y

Figure 20: Example signal flow graph used in the definitions example.

We would like to be able to determine the overall system transfer function from the input to
the output of a system represented by a signal flow graph. In order to do this we will need to
introduce some definitions and apply them to an example problem. It is usually helpful to label
some of the paths and loops on the signal flow graph to try and keep track of them. As you are
going through the following definitions and steps, try to label these on the graphs. Let’s assume
we have a (fairly complicated) signal flow graph like that depicted in Figure 20.

Definition: A path is any succession of branches, from input to output, in the direction of the
arrows, which does not pass through any node more than once. A path gain is the product of
the transfer functions (transmittances) of the branches comprising the path.

For the signal flow graph in Figure 20, the path gains are arbitrarily numbered):

P1 = H1H3H7H10H13 P2 = H2H5H10H13

Definition: A loop is any closed succession of branches, in the directions of the arrows, which
does not pass through any node more than once. The loop gain is the product of the transfer
functions (transmittances) of the branches comprising the loops.

For the signal flow graph in Figure 20, the loop gains are (arbitrarily numbered):

L1 = H3H4, L2 = H5H6, L3 = H10H11, L4 = H9, L5 = H10H13H12H8H7

Definition: Two loops are touching is they have any node in common. A path and a loop are
touching is they have any node in common.

62

Definition: The determinant of a signal flow graph is denoted by Δ, and is computed by the
formula

Δ = 1− (sum of all loop gains)

+ (sum of all products of gains of all combinations of 2 nontouching loops)

− (sum of all products of gains of all combinations of 3 nontouching loops)

+ . . .

For the signal flow graph in Figure 20, the determinant is

Δ = 1− (L1 + L2 + L3 + L4 + L5)

+ (L1L2 + L1L3 + L1L4 + L2L4 + L3L4)

− (L1L2L4 + L1L3L4)

Definition: The cofactor of a path is the determinant of the signal flow graph with all of the
loops touching the path set to zero.

For the signal flow graph in Figure 20, the cofactors are

path P1 : Δ1 = 1− L4

path P2 : Δ2 = 1− (L1 + L4) + (L1L4)

Definition: The transfer function of the signal flow graph is given by the formula

Hsystem =
P1Δ1 + P2Δ2 + P3Δ3 + . . .

Δ

For the signal flow graph in Figure 20, the system transfer function is

Hsystem =
P1Δ1 + P2Δ2

Δ

In most instances our systems are not as complicated as this one, but this method will work for
any system provided we are systematic. let’s do some examples now. You should try these and
then check your answers.

Example. For the signal flow diagram shown in Figure 17 we have

P1 = H1, L1 = H1(−H2) = −H1H2, Δ = 1 +H1H2, Δ1 = 1

which produces the closed loop transfer function

Hsystem =
H1

1 +H1H2

Example. For the signal flow graph shown in Figure 18 we have

P1 = H3H5, P2 = H1H2H3, L1 = −H2H3H4, Δ = 1− L1, Δ1 = 1, Δ2 = 1

63

which produces the closed loop transfer function

Hsystem =
H3H5 +H1H2H3

1 +H2H3H4

Example. for the signal flow graph shown in Figure 19 we have

P1 = H1H2H3, L1 = −H2H3, L2 = −H3H4, Δ = 1− L1 − L2, Δ1 = 1

which produces the closed loop transfer function

Hsystem =
H1H2H3

1 +H1H3 +H3H4

Example. For the signal flow graph in Figure 21, the cloesd loop transfer function is

Hsystem =
H1 +H3

1 +H1H2

H1(s)

H2(s)

Σ
X(s) Y(s)

X

Σ

H3(s)

H1

-H2

Y1 1

H3
1 1

Figure 21: First practice block diagram and corresponding signal flow graph.

64

Example. For the signal flow graph in Figure 22, the closed loop transfer function is

Hsystem =
H3(1 +H1H2) +H1

1 +H1H2

H1(s)

H2(s)

ΣX(s) Y(s)

X

Σ

H3(s)

H1

-H2

Y1 1

H3

1 1

Figure 22: Second practice block diagram and corresponding signal flow graph.

65

Example. For the signal flow graph in Figure 23, the closed loop transfer function is

Hsystem =
H1H4 +H1H2H3

1−H1H2H6 −H2H3H5 −H4H5 +H1H2H3 +H1H4

H2(s)

H5(s)

Σ
X(s) Y(s)

H3(s)H1(s) Σ Σ

H6(s)

H4(s)

H1 H2 Y1

H4

H3 1X

H6
H5

-1

Figure 23: Third practice block diagram and corresponding signal flow graph.

66

9 Model Matching

The first type of control scheme we will discuss is that of model matching. Here, we assume we
have a plant Gp(s) with a controller Gc(s) in a untiy feedback scheme, as shown below.

���
�	

� Gc(s) � Gp(s) �

�

+
-

For this closed-loop feedback system, the closed-loop transfer function G0(s) is given by

G0(s) =
Gc(s)Gp(s)

1 +Gc(s)Gp(s)

The object of this course is to determine how to choose the controller Gc(s) so the overall system
meets some design criteria. The idea behind model matching is to assume we know what we
want the closed loop transfer function G0(s) to be. Then, since G0(s) and Gp(s) are known, we
can determine the controller Gc(s) as

[1 +Gc(s)Gp(s)]G0(s) = Gc(s)Gp(s)

G0(s) +Gc(s)Gp(s)G0(s) = Gc(s)Gp(s)

G0(s) = Gc(s)Gp(s)−Gc(s)Gp(s)G0(s)

G0(s) = Gc(s)Gp(s) [1−G0(s)]

or

Gc(s) =
G0(s)

Gp(s) [1−G0(s)]

If we write Gp(s) = N(s)
D(s)

and G0(s) =
N0(s)
D0(s)

, we can rewrite this as

Gc(s) =
N0(s)D(s)

D0(s)N(s)−N(s)N0(s)

This form is often easier to work with. However, we still have to be careful to eliminate common
factors from the numerator and denominator.

67

While this type of model matching looks simple, there are certain restrictions on when this
will work. The closed loop transfer function G0(s) is said to be implementable if1

1. The controller Gc(s) is a proper rational transfer function

2. The controller Gc(s) is stable

Consider a plant with proper transfer function Gp(s) = N(s)
D(s)

where we want the closed loop

transfer function to be G0(s) =
N0(s)
D0(s)

. We can find a Gc(s) so that G0(s) is implementable only
under the following conditions:

1. The degree of D0(s) - the degree of N0(s) ≥ the degree D(s) - the degree of N(s)

2. All right half plane zeros of N(s) are retained in N0(s) (the RHP zeros of the plant must
also be in the closed-loop transfer function)

3. G0(s) is stable, i.e., all poles of G0(s) are in the left half plane (none on the axes)

Example 1. Consider the system with plant

Gp(s) =
(s+ 2)(s− 1)

s(s2 − 2s+ 2)

Are the following closed loop transfer functions implementable?

1. G0(s) = 1. (No, it violates (1) and (2))

2. G0(s) =
(s+2)

(s+3)(s+1)
. (No, violates (2))

3. G0(s) =
(s−1)

(s+3)(s+1)
. (Yes)

4. G0(s) =
(s−1)
s(s+2)

. (No, violates (3))

5. G0(s) =
(s−1)

(s+3)(s+1)2
. (Yes)

6. G0(s) =
(s−1)(2s−3)

(s+2)3
. (Yes)

Now that we know when we can use model matching, we need to find some good models. That is,
how do we find a desirable G0(s)? We will look at four possible choices, ITAE optimal systems,
deadbeat systems, quadratic optimal systems, and steady state frequency response matching.

1There are other restrictions, but they are not important in this course.

68

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

Time (sec)

P
os

iti
on

ω
0
 = 2

ω
0
 = 3

ω
0
 = 6

Figure 24: The unit step response for a third order ITAE system with ω0 = 2, 3 and 6 radi-
ans/second. This system will have a steady state error of zero for a step input.

9.1 ITAE Optimal Systems

ITAE optimal systems minimize the Integral of Time multiplied by the Absolute Error. These
have been determined numerically. The second, third, and fourth order ITAE systems with a
steady state error of zero for a step input have the following closed loop transfer functions

G0(s) =
ω2
0

s2 + 1.4ω0s+ ω2
0

G0(s) =
ω3
0

s3 + 1.75ω0s2 + 2.15ω2
0s+ ω3

0

G0(s) =
ω4
0

s4 + 2.1ω0s3 + 3.4ω2
0s

2 + 2.7ω3
0s+ ω4

0

Since G0(0) = 1 for each of these closed loop transfer functions the steady state error will clearly
be 0 for a step input. Figure 24 shows the step response for a third order ITAE system with
ω0 = 2, 3 and 6 radians/second. As this figure shows, the larger the value of ω0, the faster the
response of the system.

The second, third, and fourth order ITAE systems that have zero steady state errors for both
step and ramp inputs have the following closed loop transfer functions

G0(s) =
3.2ω0s+ ω2

0

s2 + 3.2ω0s+ ω2
0

G0(s) =
3.25ω2

0s+ ω3
0

s3 + 1.75ω0s2 + 3.25ω2
0s+ ω3

0

69

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (sec)

P
os

iti
on

ω
0
 = 2

ω
0
 = 3

ω
0
 = 6

Figure 25: The unit step response for a third order ITAE system that has zero steady state
error for both a step and ramp input with ω0 = 2, 3 and 6 radians/second.

G0(s) =
5.14ω3

0s+ ω4
0

s4 + 2.41ω0s3 + 4.93ω2
0s

2 + 5.14ω3
0s+ ω4

0

Since the coefficients of s1 and s0 are identical for both the numerator and denominator of
these closed loop transfer functions, the steady state errors will be zero for both step and ramp
inputs. Figure 25 shows the step response for a third order ITAE system with ω0 = 2, 3 and 6
radians/second. As this figure shows, we are paying for the steady state errors for both a step
and ramp input with a substantial overshoot. As with the ITAE systems with zero steady state
error for only a step input, the larger the value of ω0, the faster the response of the system.

You, the designer, need to choose the value of ω0. The larger the ω0, the faster the system
responds (good) and the larger the control effort (bad).

9.2 Deadbeat Systems

A deadbeat response is a response that that proceeds rapidly to the desired level and holds that
level with minimal overshoot. These have also been determined numerically. The second, third,
and fourth order closed loop transfer functions for deadbeat control are

G0(s) =
ω2
0

s2 + 1.82ω0s+ ω2
0

G0(s) =
ω3
0

s3 + 1.90ω0s2 + 2.20ω2
0s+ ω3

0

70

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

Time (sec)

P
os

iti
on

ω
0
 = 2

ω
0
 = 3

ω
0
 = 6

Figure 26: The unit step response for a third order deadbeat system with ω0 = 2, 3 and 6
radians/second.

G0(s) =
ω4
0

s4 + 2.20ω0s3 + 3.50ω2
0s

2 + 2.80ω3
0s+ ω4

0

Since G0(0) = 1 for each of these closed loop transfer functions, it should be clear that we
will have ess = 0 for a step input. However the steady state error will not be zero for a ramp
input. Figure 26 shows the step response for a third order deadbeat response for ω0 = 2, 3 and
6 radians/second. Comparing Figure 26 with Figure 24, it is clear that the ITAE and deadbeat
responses are quite similar. This is also clear by examining the transfer functions. As with the
ITAE systems, the larger the value of ω0 the faster the response of the system (good) and the
more control effort (bad) required.

9.3 Summary and Caveates

In the first part of this section, the conditions under which it is possible to to obtain an im-
plementable closed loop transfer function G0(s) have been given, it may not be possible to find
such a G0(s) using the ITAE, deadbeat, or quadratic optimal criteria. In particular, the ITAE
and deadbeat methods will not work for a system with RHP zeros in the plant.

The model matching methods we have discussed often utilize pole-zero cancellations between
the controller Gc(s) and the plant Gp(s) to achieve the desired closed-loop transfer function.
This requires that we have a fairly good model of the plant being cancelled. If we have a good
model of the plant and a stable pole is being cancelled, this is usually OK. However cancelling
an unstable pole is not acceptable. In addition, the plant may change over time, and we are

71

dealing with models of the plant in the first place. Hence the pole-zero cancellations may not
be very effective for some systems.

72

10 System Type and Steady State Errors

10.1 Review

Let’s assume we have a control system in a unity feedback configuration as shown below:

���
�	

� Gc(s) � Gp(s) �

�

+
-

where Gp(s) is the plant transfer function and Gc(s) is a controller. Note that there is no
prefilter! The closed-loop transfer function is given by

G0(s) =
Gc(s)Gp(s)

1 +Gc(s)Gp(s)

We already know that if we write

G0(s) =
nms

m + nm−1s
m−1 + ...+ n2s

2 + b1s + b0
sn + dn−1sn−1 + ...+ d2s2 + d1s+ d0

that the steady state error for an input step of amplitude A is given by

ess = A
d0 − n0

d0

If G0(0) = 1 (the constant terms in the numerator and denominator are the same), then ess = 0.
The steady state error for an input of tA is given by

ess = A
d1 − n1

d0

If the coefficients of s1 and s0 are the same, then the steady state error for a ramp input is zero.

10.2 System Type For a Unity Feedback Configuration

Unity feedback configurations are very common, and we would like to be able to analyze this
type of system very quickly without computing the closed-loop transfer function.

Let’s assume we group the all of the transfer functions together into one transfer function, which
we will call G(s), so G(s) = Gc(s)Gp(s). Assume we write G(s) as2

G(s) =
K(Tas+ 1)(Tbs+ 1)...(Tms+ 1)

sN(T1s+ 1)(T2s+ 1)...(Tns+ 1)

2We do not actually want to rewrite G(s), this is just used for illustrative purposes.

73

This is said to be a type N system, where N is the number of poles at the origin of G(s). (These
poles at the origin are also called “free integrators” or just ”integrators”.) If the system output
is Y (s) and the system input is R(s), then the system transfer function is

Y (s)

R(s)
=

G(s)

1 +G(s)

Let’s define the error E(s) to be the difference between the input R(s) and the output Y (s),

E(s) = R(s)− Y (s)

= R(s)− G(s)

1 +G(s)
R(s)

=
R(s) {[1 +G(s)]−G(s)}

1 +G(s)

=
R(s)

1 +G(s)

The steady state error is then

ess = lim
s→0

sE(s) = lim
s→0

sR(s)

1 +G(s)

We will use this expression to determine expressions for the steady state error for both step and
ramp inputs for unity feedback systems.

10.3 Steady State Errors for Step and Ramp Inputs

As we have previously defined, the steady state error for a step input is the difference between a
step input r(t) and the corresponding output y(t) as we let t → ∞. Hence, ess = lims→0 sE(s)
for R(s) = A

s
, or

ess = lim
s→0

sE(s)

= lim
s→0

sA
s

1 +G(s)

= lim
s→0

A

1 +G(s)

=
A

1 +G(0)

=
A

1 +Kp

The position error constant Kp is defined to be G(0). For a type 0 system, Kp = K and

ep =
A

1+K
, while for a type 1 or higher system, Kp = ∞ and ess = 0.

74

The steady state error for a ramp input is the difference between the ramp input r(t) and the
corresponding output y(t) as we let t → ∞. Hence ess = lims→0sE(s) for R(s) = A

s2
, or

ess = lim
s→0

sE(s)

= lim
s→0

s A
s2

1 +G(s)

= lim
s→0

A

s+ sG(s)

= lim
s→0

A

sG(s)

=
A

Kv

The velocity error constant Kv is defined to be lims→0 sG(s). For a type 0 system, Kv = 0 and

ess = ∞. For a type 1 system, Kv = K and ess =
A
K
. For a type 2 or higher system, Kv = ∞

and ess = 0.

We can summarize these results in Table 1 below.

System Type ess for step input Au(t) ess for ramp input Atu(t)
0 A

1+Kp
∞

1 0 A
Kv

2 0 0
3 0 0

Table 1: Summary of system type (number of poles at the origin), steady state error for a step
input Au(t), and steady state error for a ramp input Atu(t) for a unity feedback system.

10.4 Examples

Example 1. For the unity feedback system shown below, determine the system type, the steady
state error for a step input and the steady state error for a ramp input.

�
��
�	

� s+1
s+2

� 1
s+3

�

�

+
-

Here

G(s) =
(s + 1)

(s+ 2)(s+ 3)

75

there are no poles at zero so this is a type 0 system. The position error constant is then

Kp = lim
s→0

G(s)

=
1

(2)(3)

=
1

6

so for a step input

ess =
A

1 +Kp

=
A

1 + 0.1667
= 0.857A

Since ess is not zero for a step input, ess = ∞ for a ramp input. (ess = ∞ for a ramp input
since this is a type 0 system).

Example 2. For the unity feedback system shown below, determine the system type, the steady
state error for a step input and the steady state error for a ramp input.

���
�	

� s+1
s

� s+4
s2+2s+3

�

�

+
-

Here

G(s) =
(s+ 1)(s+ 4)

s(s2 + 2s+ 3)

so there is one pole at zero, hence this is a type 1 system. The steady state error for a step input
is then ess = 0. Note that we do not need to do any computation for this once we recognize this
as a type 1 system! The velocity error constant is then

Kv = lim
s→0

sG(s)

=
(1)(4)

3

=
4

3

so the steady state error for a ramp input is

ess =
A

Kv

76

=
A(
4
3

)
= 0.75A

Example 3. For the unity feedback system shown below, determine the system type, the steady
state error for a step input and the steady state error for a ramp input.

���
�	

� s+1
s+6

� 4
s2+2s

�

�

+
-

Here

G(s) =
(s+ 1)(4)

(s+ 6)s(s+ 2)

there is one pole at zero so this is a type 1 system. The steady state error for a step input is
then ess = 0. The velocity error constant is then

Kv = lim
s→0

sG(s)

=
(1)(4)

(6)(2)

=
1

3

so the steady state error for a ramp input is

ess =
A

Kv

=
A(
1
3

)
= 3A

Example 4. For the unity feedback system shown below, determine the system type, the steady

77

state error for a step input and the steady state error for a ramp input.

���
�	

� s+1
s

� 4
s2+2s

�

�

+
-

Here

G(s) =
(s+ 1)(4)

s2(s+ 2)

there are two poles at zero so this is a type 2 system. Hence the steady state error for both a
step input and a ramp input are zero.

78

11 Controller Design Using the Root Locus

The root locus is a graph in the complex plane that shows how the poles of a closed loop system
vary as a single parameter varies. Points on the root locus are the only possible closed loop pole
locations! If a point is not on the root locus, it is not possible for a closed loop pole to be located
there (with the controller under consideration).

Knowledge of the location of the closed loop poles helps estimated the step response of a
system and if a system is likely to become unstable for some values of a varying parameter.
However, the zeros of the system also affect the step response, and how they affect the step
response is not as apparent from the root locus. Matlab’s sisotool is a very powerful tool for
utilizing the root locus to produce the desired step response. In this chapter some of the more
basic rules for constructing the root locus are included. The goal is not to necessarily be able to
draw a root locus in all it’s detail, but rather to understand what is going on and determine if
a particular type of controller is likely to ever work. With the exception of the first rule, there
will be no motivation or derivation for the rule. As far as we are concerned, they just are.

After the root locus is introduced, we will introduce proportional, integral, derivative, and
lead controllers, as well as various useful combinations. We will then utilize the root locus in
conjunction with these controller to determine if it is possible to use one of these controllers to
accomplish what we want. Mostly we want to rule out controllers that we know won’t work.

Special Note: In the following examples, it cannot be stressed enough that our guidelines
for settling time and percent overshoot are based on a closed loop transfer function which is an
ideal second order system, which contains no zeros. As long as there are only poles in the closed
loop transfer function these estimates tend to work fairly well. However, once the closed loop
transfer function has zeros, these estimates may no longer be very accurate. This is when a
tool like Matlab’s sisotool is extremely valuable. In the following sections, the ability to meet the
design constraints will be based soley on the locations of the closed loop poles and the assumption
of an ideal second order system. The only way to really tell if a model of a system meets the
design specifications is to simulate the response of the model.

11.1 Standard Root Locus Form

In order to use the root locus techniques (and Matlab), we need to write the equation for the
closed loop poles in the standard form

1 + kG(s) = 0

where k is the only free parameter. It is important to remember that we are using the root locus
to determine the closed loop pole locations, not the locations of the closed loop zeros.

79

Example 1. Consider the following system:

���
�	

� 1
s+2

�

ks
s+3

�

+
-

We would like to use the root locus to determine the locations of the closed loop poles as the
parameter k varies. To do this, we must first determine the closed loop transfer function.

G0(s) =

(
1

s+2

)
1 +

(
ks
s+3

) (
1

s+2

)

Hence the equation we need is

1 + k

[
s

(s+ 2)(s+ 3)

]
= 0

and

G(s) =
s

(s+ 2)(s+ 3)

Example 2. Consider the following system:

���
�	

� s
s+1

� 1
s+β

�

�

+
-

We would like to use the root locus to determine the locations of the closed loop poles as the
parameter β varies. To do this, we must first determine the closed loop transfer function.

G0(s) =

(
s

s+1

) (
1

s+β

)
1 +

(
s

s+1

) (
1

s+β

)

80

=
s

(s+ 1)(s+ β) + s

=
s

s2 + 2s+ β(s+ 1)

=

(
s

s2+2s

)
1 + β

(
s+1

s2+2s

)
(

1
s+2

)
1 + β

(
s+1

s(s+2)

)
Hence the equation we need is

1 + β

[
s+ 1

s(s+ 2)

]
= 0

and

G(s) =
s + 1

s(s+ 2)

11.2 Examples

In the following sections we will determine the root locus plot for the following functions:

G1(s) =
1

(s+ 1)(s+ 2)

G2(s) =
1

(s+ 1)(s+ 2)(s+ 3)

G3(s) =
1

(s+ 1)(s+ 2)(s+ 3)(s+ 4)

G4(s) =
(s+ 2)

(s+ 1)(s+ 3)

G5(s) =
(s+ 2)

(s+ 1)(s+ 3)(s+ 4)

G6(s) =
(s+ 2)(s+ 3)

(s+ 1)(s+ 4)

G7(s) =
(s+ 3)(s+ 4)

(s+ 1)(s+ 2)

G8(s) =
(s+ 2)

(s+ 1)(s+ 3)(s2 + 2s+ 2)

G9(s) =
(s+ 2)(s2 + 5s+ 10.25)

(s+ 1)(s+ 3)(s+ 4)

G10(s) =
1

s2 + 2s+ 2

G11(s) =
1

s(s2 + 2s+ 2)

81

G12(s) =
s2 + 2s+ 2

s2 + 5s+ 10

As you try to sketch a root locus plot, you should go through the following steps in the order
in which they are presented. You do not need all of the steps for all root locus plots. Once all
poles have been paired with zeros you are done and there is no need to continue.In each case, we
will assume the feedback configuration shown in Figure 27.

R(s)
� Gpf ���

��
� Gc(s) � Gp(s) �

Y (s)

�

+-

Figure 27: Assumed feedback configuration for root locus analysis in this chapter.

11.3 Loci Branches

Let’s consider the expression in standard root locus form

1 + kG(s) = 0

where k is the parameter free to vary. Let’s break up the product G(s) into numerator and
denominator polynomials

G(s) =
n(s)

d(s)

We can then rewrite our first expression as

d(s) + kn(s) = 0

Now when k = 0, this expression is true only if d(s) = 0, i.e., we are at the poles of G(s). As
k → ∞, we need to have n(s) = 0, i.e. we are at the zeros of G(s). Hence our first rule can be
summarized as follows:

The root locus starts (k = 0) at the poles of G(s) and ends on the zeros of G(s).

There are a few basic points we need to make to clarify this rule and understand it’s application:

• It is important to note that each pole of G(s) must end at a zero of G(s). Thus for each
pole of G(s) that a branch of the root locus begins at, we must determine the location of
the corresponding zero where it will arrive as k → ∞. Once we have “paired” a pole with
a zero we are done with them both.

82

• Since we are dealing with real systems, all of our transfer functions will have real coeffi-
cients. Thus all of the poles and zeros of our system will either be purely real or occur
in complex conjugate pairs. This implies that the root locus plot will symmetric about the
real axis.

• There is usually some confusion here about poles and zeros. The root locus is a plot of
how the poles of the closed loop system vary as a parameter is varied. However, to
construct the root locus, we need to use the poles and zeros of G(s). However, the poles
of G(s) are not the poles of the closed loop system.

11.4 Real Axis Segments

Before we look anywhere else, we always look along the real axis for points on the root locus.
To determine if there are any parts of the real axis on the root locus we use the following rule

The root locus includes all points along the real axis to the left of an odd number of poles plus
zeros of G(s).

This is the starting point for all root locus construction. If, after identifying all segments of the
real axis on the root locus, each pole is matched to a zero by a segment of the root locus, we
are done. Note that there may be zeros at infinity. Figures 28, 29, and 30 display the real axis
segments of the root locus for twelve different transfer functions, G1(s)−G12(s).

At this point, let’s examine theses root locus plots to see if we are done. To determine if
you are done, you need to be sure that every pole is matched to a zero and the root locus is
symmetric about the real axis. It is acceptable for a zero (or a pole) to be at infinity, as long as
you know where at infinity it is, such as along the real axis.

At this point, G4(s) and G6(s) are the only two completed root locus plots. In G4(s) the
pole at -3 is paired with a zero at infinity (along the real axis). In G6(s) the pole at -1 is paired
with the zero at -2, and the pole at -4 is paired with the zero at -3.

Before we go on to the next two rules, we need to see if we can do anything to complete any
more of the root locus plots. In this case we can also complete the plots for G7(s), G9(s), and
G12(s). How do we know this? In each one of these plots there are two zeros and two poles that
are unpaired. We now need to pair them up. We cannot have any more parts of the root locus
on the real axis, so all other segments must basically be off of the real axis. The basic thing to
keep in mind here is that the root locus must be symmetric about the real axis. Figure 31 shows
the completed root locus plots for these functions. Note that the segments we have added to
pair the poles with the zeros are symmetric about the real axis. Three questions naturally arise
here: (1) How do we know where the root locus leave the real axis? (2) At what angle do the
new segments leave the real axis or poles? and (3) At what angle do they arrive at the zeros?
While there are rules for computing these, we will not pursue them in this course.

We cannot complete the remaining root locus plots because there are not enough “finite”
zeros to pair with each pole. Hence these poles must pair with zeros at “infinity”. However,
since we are dealing with a two dimensional coordinate system, we need to figure out where (in
terms of direction) this infinity is. This brings us to the next two rules, which are used as a
pair.

83

−3 −2.5 −2 −1.5 −1 −0.5 0
−3

−2

−1

0

1

2

3

xx

Real Axis
Im

ag
in

ar
y

A
xi

s

G1(s) =
1

(s+1)(s+2)

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−3

−2

−1

0

1

2

3

xxx

Real Axis

Im
ag

in
ar

y
A

xi
s

G2(s) =
1

(s+1)(s+2)(s+3)

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−3

−2

−1

0

1

2

3

xxxx

Real Axis

Im
ag

in
ar

y
A

xi
s

G3(s) =
1

(s+1)(s+2)(s+3)(s+4)

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−3

−2

−1

0

1

2

3

xox

Real Axis

Im
ag

in
ar

y
A

xi
s

G4(s) =
(s+2)

(s+1)(s+3)

Figure 28: Root locus real-axis segments for G1(s)−G4(s).

84

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−3

−2

−1

0

1

2

3

xoxx

Real Axis

Im
ag

in
ar

y
A

xi
s

G5(s) =
(s+2)

(s+1)(s+3)(s+4)

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−3

−2

−1

0

1

2

3

xoox

Real Axis

Im
ag

in
ar

y
A

xi
s

G6(s) =
(s+2)(s+3)
(s+1)(s+4)

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−3

−2

−1

0

1

2

3

xxoo

Real Axis

Im
ag

in
ar

y
A

xi
s

G7(s) =
(s+3)(s+4)
(s+1)(s+2)

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−3

−2

−1

0

1

2

3

xox

x

x

Real Axis

Im
ag

in
ar

y
A

xi
s

G8(s) =
(s+2)

(s+1)(s+3)(s2+2s+2)

Figure 29: Root locus real-axis segments for G5(s)−G8(s)

85

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−3

−2

−1

0

1

2

3

xoxx

o

o

Real Axis
Im

ag
in

ar
y

A
xi

s

G9(s) =
(s+2)(s2+5s+10.25)
(s+1)(s+3)(s+4)

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−3

−2

−1

0

1

2

3

x

x

Real Axis

Im
ag

in
ar

y
A

xi
s

G10(s) =
1

s2+2s+2

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−3

−2

−1

0

1

2

3

x

x

x

Real Axis

Im
ag

in
ar

y
A

xi
s

G11(s) =
1

s(s2+2s+2)

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−3

−2

−1

0

1

2

3

o

o

x

x

Real Axis

Im
ag

in
ar

y
A

xi
s

G12(s) =
s2+2s+2
s2+5s+10

Figure 30: Root locus real-axis segments for G9(s)−G12(s).

86

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−3

−2

−1

0

1

2

3

xxoo

Real Axis

Im
ag

in
ar

y
A

xi
s

G7(s) =
(s+3)(s+4)
(s+1)(s+2)

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−3

−2

−1

0

1

2

3

xoxx

o

o

Real Axis

Im
ag

in
ar

y
A

xi
s

G9(s) =
(s+2)(s2+5s+10.25)
(s+1)(s+3)(s+4)

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−3

−2

−1

0

1

2

3

o

o

x

x

Real Axis

Im
ag

in
ar

y
A

xi
s

G12(s) =
s2+2s+2

s2+5s+10.25)

Figure 31: Completed root locus plots for G7(s), G9(s), G12(s).

87

11.5 Asymptotic Angles and Centroid of the Asymptotes

In order to locate the zeros at infinity, we need two things: a starting point and a direction. The
starting point is called the centroid of the asymptotes and the directions are the asymptotes. We
determine them using the following rules

The starting point on the real axis from which the asymptotic lines radiate is given by

σc =

∑
i pi −

∑
j zj

n−m

where pi is the ith pole of G(s), zj is the jth zero of G(s), n is the number of poles of G(s) and
m is the number of zeros of G(s).

As k → ∞, the branches of the locus become asymptotic to straight lines with angles

θ =
180o + i360o

n−m
, i = 0,±1,±2, ...

until all (n−m) angles not differing by multiples of 360o are obtained. n is the number of poles
of G(s) and m is the number of zeros of G(s).

Note that in order to determine how many angles to look for, we first utilize the fact that the
root locus must be symmetric about the real axis, thus if +45o is one angle , we must also have
−45o. Secondly, once we have found as many directions as unpaired poles we can stop since we
then know where their pairs are. We will now go through the remaining Gi(s) using these rules
to complete the root locus plots.

G1(s) First we determine the centroid of the asymptotes, σc. There are two poles, one at -1 and
one at -2, and there are no zeros. Hence n = 2 and m = 0. To determine σc,

σc =
[(−1) + (−2)]

2− 0
= −3

2

Hence the asymptotes radiate from this point. Next we compute the asymptote angles

θ(i = 0) =
180o

2− 0
= 90o

Since the root locus is symmetric, we know we must also have −90o. We are looking for zeros for
two poles and we have two angles, so we are done. Figure 32 shows both the real axis segment
and the asymptotes for G1(s) and then the completed root locus. Again, we don’t know where
the root locus leaves the real axis without more analysis, but you should know that it leaves the
real axis and is symmetric.

G2(s) First we determine the centroid of the asymptotes, σc. There are three poles, one at -1,
one at -2, and one at -3, and there are no zeros. Hence n = 3 and m = 0. To determine σc,

σc =
[(−1) + (−2) + (−3)]

3− 0
= −2

88

−3 −2.5 −2 −1.5 −1 −0.5 0
−3

−2

−1

0

1

2

3

xx

Real Axis

Im
ag

in
ar

y
A

xi
s

Real axis segment and the asymptotes

−3 −2.5 −2 −1.5 −1 −0.5 0
−3

−2

−1

0

1

2

3

xx

Real Axis

Im
ag

in
ar

y
A

xi
s

Completed root locus plot

Figure 32: Real axis segment with asymptotes and completed root locus plots for G1(s) =
1

(s+1)(s+2)
. The centroid of the asymptotes is at σc = −3/2 and the angles of the asymptotes are

± 90 degrees.

89

Hence the asymptotes radiate from this point. Next we compute the asymptote angles

θ(i = 0) =
180o

3− 0
= 60o

θ(i = 1) =
180o + 360o

3
= 180o

Since the root locus is symmetric, we know we must also have −60o. We are looking for zeros
for three poles and we have three angles, so we are done. Figure 33 shows both the real axis
segment and the asymptotes for G2(s) and then the completed root locus. Again, we don’t know
where the root locus leaves the real axis without more analysis, but you should know that it
leaves the real axis and is symmetric.

G3(s) First we determine the centroid of the asymptotes, σc. There are four poles, one at -1, one
at -2, one at -3, and one at -4, and there are no zeros. Hence n = 4 and m = 0. To determine
σc,

σc =
[(−1) + (−2) + (−3) + (−4)]

4− 0
= −2.5

Hence the asymptotes radiate from this point. Next we compute the asymptote angles

θ(i = 0) =
180o

4− 0
= 45o

θ(i = 1) =
180o + 360o

4
= 135o

Since the root locus is symmetric, we know we must also have −45o and −135o. We are looking
for zeros for four poles and we have four angles, so we are done. Figure 34 shows both the real
axis segment and the asymptotes for G3(s) and then the completed root locus. Again, we don’t
know where the root locus leaves the real axis without more analysis, but you should know that
it leaves the real axis and is symmetric.

G5(s) First we determine the centroid of the asymptotes, σc. There are three poles, one at -1,
one at -3, and one at -4, and one zero at -2. Hence n = 3 and m = 1. To determine σc,

σc =
[(−1) + (−3) + (−4)]− [(−2)]

3− 1
= −3

Hence the asymptotes radiate from this point. Next we compute the asymptote angles

θ(i = 0) =
180o

3− 1
= 90o

Since the root locus is symmetric, we know we must also have −90o. We are looking for zeros for
two poles and we have two angles, so we are done. Figure 35 shows both the real axis segment
and the asymptotes for G5(s) and then the completed root locus. Again, we don’t know where
the root locus leaves the real axis without more analysis, but you should know that it leaves the

90

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−3

−2

−1

0

1

2

3

xxx

Real Axis

Im
ag

in
ar

y
A

xi
s

Real axis segment and the asymptotes

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−3

−2

−1

0

1

2

3

xxx

Real Axis

Im
ag

in
ar

y
A

xi
s

Completed root locus plot (with the asymptotes)

Figure 33: Real axis segment with asymptotes and completed root locus plots for G2(s) =
1

(s+1)(s+2)(s+3)
. The centroid of the asymptotes is at σc = −2 and the angles of the asymptotes

are 180 and ± 60 degrees.

91

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−3

−2

−1

0

1

2

3

xxxx

Real Axis

Im
ag

in
ar

y
A

xi
s

Real axis segment and the asymptotes

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−3

−2

−1

0

1

2

3

xxxx

Real Axis

Im
ag

in
ar

y
A

xi
s

Completed root locus plot (with the asymptotes)

Figure 34: Real axis segment with asymptotes and completed root locus plots for G3(s) =
1

(s+1)(s+2)(s+3)(s+4)
. The centroid of the asymptotes is at σc = −2.5 and the angles of the asymp-

totes are ± 45 and ± 135 degrees.

92

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−3

−2

−1

0

1

2

3

xoxx

Real Axis

Im
ag

in
ar

y
A

xi
s

Real axis segment and the asymptotes

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−3

−2

−1

0

1

2

3

xoxx

Real Axis

Im
ag

in
ar

y
A

xi
s

Completed root locus plot (with the asymptotes)

Figure 35: Real axis segment with asymptotes and completed root locus plots for G5(s) =
(s+2)

(s+1)(s+3)(s+4)
. The centroid of the asymptotes is at σc = −3 and the angles of the asymptotes

are ± 90 degrees.

93

real axis and is symmetric.

G8(s) First we determine the centroid of the asymptotes, σc. There are four poles, one at -1,
one at -3, one at -1+j, one at -1-j, and one zero at -2. Hence n = 4 and m = 1. To determine
σc,

σc =
[(−1) + (−3) + (−1 + j) + (−1 − j)]− [(−2)]

4− 1
= −1.3

Hence the asymptotes radiate from this point. Next we compute the asymptote angles

θ(i = 0) =
180o

4− 1
= 60o

θ(i = 1) =
180o + 360o

4− 1
= 180o

Since the root locus is symmetric, we know we must also have −60o. We are looking for zeros
for three poles and we have three angles, so we are done. Figure 36 shows both the real axis
segment and the asymptotes for G8(s) and then the completed root locus. Again, we don’t know
where the root locus leaves the real axis without more analysis, but you should know that it
leaves the real axis and is symmetric.

G10(s) First we determine the centroid of the asymptotes, σc. There are two poles, one at -1+j,
one at -1-j, and no zeros. Hence n = 2 and m = 0. To determine σc,

σc =
[(−1 + j) + (−1− j)]

2− 0
= −1

Hence the asymptotes radiate from this point. Next we compute the asymptotes angles

θ(i = 0) =
180o

2− 0
= 90o

Since the root locus is symmetric, we know we must also have −90o. We are looking for zeros for
two poles and we have two angles, so we are done. Figure 37 shows both the real axis segment
and the asymptotes for G10(s) and then the completed root locus.

G11(s) First we determine the centroid of the asymptotes, σc. There are three poles, one at
-1+j, one at -1-j, one at 0, and no zeros. Hence n = 3 and m = 0. To determine σc,

σc =
[(−1 + j) + (−1− j) + (0)]

3− 0
= −2

3

Hence the asymptotes radiate from this point. Next we compute the asymptote angles

θ(i = 0) =
180o

3− 0
= 60o

θ(i = 1) =
180o + 360o

3− 0
= 90o

Since the root locus is symmetric, we know we must also have −60o. We are looking for zeros
for three poles and we have three angles, so we are done. Figure 38 shows both the real axis
segment and the asymptotes for G11(s) and then the completed root locus.

94

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−3

−2

−1

0

1

2

3

xox

x

x

Real Axis

Im
ag

in
ar

y
A

xi
s

Real axis segment and the asymptotes

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−3

−2

−1

0

1

2

3

xox

x

x

Real Axis

Im
ag

in
ar

y
A

xi
s

Completed root locus plot (with the asymptotes)

Figure 36: Real axis segment with asymptotes and completed root locus plots for G8(s) =
(s+2)

(s+1)(s+3)(s2+2s+2)
. The centroid of the asymptotes is at σc = −1.3 and the angles of the asymp-

totes are 180 and ± 60 degrees.

95

−2 −1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0
−3

−2

−1

0

1

2

3

x

x

Real Axis

Im
ag

in
ar

y
A

xi
s

Real axis segment and the asymptotes

−2 −1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0
−3

−2

−1

0

1

2

3

x

x

Real Axis

Im
ag

in
ar

y
A

xi
s

Completed root locus plot (with the asymptotes)

Figure 37: Real axis segment with asymptotes and completed root locus plots for G10(s) =
1

s2+2s+2
. The centroid of the asymptotes is at σc = −1 and the angles of the asymptotes are ±

90 degrees.

96

−2 −1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

x

x

Real Axis

Im
ag

in
ar

y
A

xi
s

Real axis segment and the asymptotes

−2 −1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

x

x

Real Axis

Im
ag

in
ar

y
A

xi
s

Completed root locus plot (with the asymptotes)

Figure 38: Real axis segment with asymptotes and completed root locus plots for G11(s) =
1

s(s2+2s+2)
. The centroid of the asymptotes is at σc = −2/3 and the angles of the asymptotes are

90 and ± 60 degrees.

97

11.6 Common Industrial Controller Types

In addition to the types of controllers we have already discussed using the model matching
methods, we will now introduce types of controllers that are very commonly used in industrial
applications. For each of these types of controllers, we assume the controller is the ratio of the
signal into the plant U(s) and the error signal E(s), hence

Gc(s) =
U(s)

E(s)

or

U(s) = Gc(s)E(s)

Porportional (P) Control In a proportional controller, the output of the controller is di-
rectly proportional to the error signal, or u(t) = kpe(t). Here kp is the proportional gain, and
Gc(s) = kp. For this type of controller, the output tends to oscillate alot.

Integral (I) Control In an integral controller, the output of the controller is proportional to
the integral of the error signal, or

u(t) = ki

∫ t

e(λ)dλ

This means

Gc(s) =
ki
s

Unless the plant has a zero at the origin, this type of controller makes the system a type one
system and, if the system is stable, the steady state error for a step input will be zero. For plants
with complex conjugate poles near the jω axis, the system will likely become unstable except
for small values of gain ki. This type of controller also tends to be slow, which can be a problem.

Derivative (D) Control In a derivative controller, the output of the controller is proportional
to the derivative of the error signal, or

u(t) = kd
d

dt
e(t)

This means

Gc(s) = kds

A derivative controller anticipates the direction of the error signal since it is proportional to the
slope, and tends to be very fast. However, it is very difficult to compute derivatives for real
systems, so this type of controller is very seldom used alone. In order to filter out noise and
smooth the signal before the derivative is computed this controller is often used in combination
with a lowpass filter.

98

Proportional+Integral (PI) Controllers For this type of controller, we combine both the
proportional and integral types of controllers, so

u(t) = kpe(t) + ki

∫ t

e(λ)dλ

or

Gc(s) = kp +
ki
s

This can be written in the form

Gc(s) =
k(s+ z)

s

Hence a PI controller always has a pole at the origin, while both the location of the zero −z
and gain k can be varied to meet design requirements.

Proportional+Derivative (PD) Controllers For this type of controller, we combine both
the proportional and derivative types of controllers, so

u(t) = kpe(t) + kd
d

dt
e(t)

or

Gc(s) = kp + kds

This can be written in the form

Gc(s) = k(s+ z)

The location of the zero −z and gain k can be varied to meet design requirements.

Proportional+Integral+Derivative (PID) Controllers For this type of controller, we com-
bine both the proportional, integral, and derivative types of controllers, so

u(t) = kpe(t) + ki

∫ t

e(λ)dλ+ kd
d

dt
e(t)

or

Gc(s) = kp +
ki
s
+ kds

This can be written in the form

Gc(s) =
k(s + z1)(s+ z2)

s

Hence a PID controller always has a pole at the origin, while both the location of the zeros −z1
and −z2 and gain k can be varied to meet design requirements. Note that we can either have

99

real zeros or complex conjugate zeros with this type of controller.

Lead Controllers For this type of controller has the transfer function

Gc(s) =
k(s+ z)

(s+ p)

where p is larger than z3. Note that for this type of controller we have the freedom to choose
the gain k, the zero −z, and the pole −p to meet design requirements.

Special Note. For all of these controllers, we want both the poles and zeros in the left half plane.
This means that z is a positive number (so the zero is at −z) and p is a positive number (so the
pole is at −p.)

11.7 Controller and Design Constraint Examples

Example 3. Assume we have the plant

Gp(s) =
2

s2 + 2s+ 10

and we want to design a controller so that

• the system is stable

• the steady state error for a unit step is less than 0.2

• the settling time is less than 2 seconds

We will assume we are going to use the basic control structure shown in Figure 27 at the
beginning of the chapter. In order for the system to remain stable the poles of the closed loop
system must be in the left half plane. In order to meet the settling time requirement, we need

Ts =
4

σ
≤ 2

or σ ≥ 2. Hence the real parts of the poles must be less than -2 (or have magnitude σ greater
than 2). On our root locus plots we will denote this location by a vertical dotted line, which we
will need to be sure to be to the left of in order to meet the settling time constraints. Since we
are using a prefilter, we will be able to meet the steady state error requirements for any stable
system. However, the prefilter is outside the feedback loop, so we would like to avoid this if possi-
ble. We will next examine each of the possible controller types to see if it meets the requirements.

Proportional (P) Controller. For this controller, G(s) = 2
s2+2s+10

. First we compute the
centroid of the asymptotes and the asymptote angles:

θ =
180o

2
= 90o

σc =
[(−1− 3j) + (−1 + 3j)]

2
= −1

3If p is less than z then this is a lag controller, which tends to slow the system down. We will discuss lag
controllers in a subsequent chapter.

100

Figure 39: Root locus plot for Gp(s) =
2

s2+2s+10
with the proportional (P) controller. To match

the settling time all poles must be to the left of -2.

The root locus for the system with the proportional controller is shown in Figure 39, along with
the heavy line at -2, which divides the plane into the pole locations that will meet the settling
time requirement and those that will not. As this figure shows, the system will remain stable
for all values of k4, but will never meet the settling time requirement since the poles are always
to the right of -2. To meet the steady state error requirement, we find

Kp =
k

5

ess =
1

1 +Kp
≤ 1

5

1 +Kp = 1 +
k

5
≥ 5

k ≥ 20

Hence to meet the steady state error constraint we need k ≥ 20. As an alternative, we could us
a prefilter with gain Gpf = k+5

k
for zero steady state error. However the prefiler is outside the

feedback loop.

4Here k = kp.

101

Figure 40: Root locus plot for Gp(s) =
2

s2+2s+10
with the integral (I) controller. To match the

settling time all poles must be to the left of -2.

Integral (I) Controller. For this controller, G(s) = 2
s(s2+2s+10)

. First we compute the centroid
of the asymptotes and the asymptote angles:

θ =
180o

3
= 60o

σc =
[(−1 − 3j) + (−1 + 3j) + (0)]

3
= −2

3

The root locus for the system with the integral controller is shown in Figure 40, along with
a line at -2, which divides the plane into the pole locations that will meet the settling time
requirement and those that will not. As this figure shows, the system will not remain stable
for all values of k5, at some value of k some of the poles will be in the right half plane. If k is
chosen so the system is stable, the steady state error will be zero. The system will never meet
the settling time requirement since two of the poles are always to the right of -2. (In order to
meet the settling time requirement all of the poles must be to the left of -2.)

Proportional+Integral (PI) Controller. For this controller, G(s) = 2(s+z)
s(s2+2s+10)

.First we
compute the centroid of the asymptotes and the asymptote angles:

θ =
180o

3− 2
= 90o

5Here k = ki.

102

σc =
[(−1− 3j) + (−1 + 3j) + (0)]− [−z]

2
=

z − 2

2
, z ≥ 0.

Here the centroid of the asymptotes depends on where we locate the zero of the system. Fig-
ure 41 displays the root locus plot for z = 3 and z = 0.5, as well as the constraint region. We
always want z ≥ 0 and we need all poles to the left of -2 to meet the settling time constraint.
The best we can do for the complex conjugate poles is to set z to a very small number. If z = 0
it cancels the pole at the origin and the root locus looks like that of the proportional controller.
For the zero at -0.5 the system will remain stable for all k and will have a steady state error or
zero. For the pole at -3 the system will remain stable only for a range of k, but it will have a
steady state error of zero for a unit step so long as the system is stable.

Proportional+Derivative (PD) Controller For this controller, G(s) = 2(s+z)
(s2+2s+10)

. For this
controller, we do not need to compute the centroid, just think a bit. Once we put the zero on
the real axis, the entire real axis to the left of this point will be on the root locus. The two poles
will come down to the real axis to pair with the zeros. If we choose the zero to be in the left half
plane, the system will be stable for all values of k. To be absolutely clear that we can choose
poles that meet the settling time constraint, we should be sure z ≥ 2, so both poles must be to
the left of -2. It may be possible without this constraint, but this will guarantee it. Figure 42
shows the root locus for this system with z = 1, z = 2, and z = 3. Not that for z = 1, for small
values of k the system does not meet the settling time constraint, then for a range of k it does
meet the settling time constraint, and then once k becomes larger than some critical value one
of the closed loop poles leaves the critical region (to the left of -2) on its way to the zero and
the system no longer meets the settling time criteria. For both z = 2 and z = 4, the system
does not meet the settling time criteria until k is larger than some critical value, then for all k
larger than this critical value the system meets the settling time constraint. To meet the steady
state error constraint we need

ess =
1

1 +Kp

≤ 1

5

1 +Kp = 1 +
kz

5
≥ 5

or

kz ≥ 20

If we cannot meet this condition, we can use a prefilter with gain Gpf = kz+5
kz

for a steady state
error, but the prefilter is outside the feedback loop.

Proportional+Integral+Derivative (PID) Controller. For this controller, G(s) = 2(s+z1)(s+z2)
s(s2+2s+10)

.
For this controller, we do not need to compute the centroid, just think a bit. First of all, both
zeros are in the left half plane the system will be stable for all k, and the steady state error will
also be 0. We then have two cases to consider: (1) both zeros are real, and (2) the zeros are
complex conjugates.

Real Zeros If we put both zeros on the real axis, and make sure both of them are to the left of -2,
then we can be sure that for some value of k all poles will be to the left of -2. Figure 43 displays

103

Figure 41: Root locus plots for Gp(s) =
2

s2+2s+10
with the proportional+integral (PI) controllers

with the controller zero at -3 (top) and -0.5 (bottom). To match the settling time all poles must
be to the left of -2.

104

Figure 42: Root locus plots for Gp(s) = 2
s2+2s+10

with the proportional+derivative (PD) con-
trollers with the controller zero at -1 (top), -2 (middle), and -4 (bottom). To match the settling
time all poles must be to the left of -2.

105

three different examples of PID controllers with real zeros. For the choice of zero locations in
the top panel, the settling time condition will never be met. For the choice of zeros in the middle
and bottom panels, the settling time condition will be met if k is sufficiently large.

Complex Conjugate Zeros If the zeros are complex conjugates, we need to be sure the real part
of the zero is to the left of -4, then we can be sure there is some value for k so that all of the
poles will be to the left of -2. Figure 44 displays three different examples of PID controllers
with complex conjugate zeros. For the choice of real zeros shown in the top two panels, the
settling time condition will never be net. For the choice of zero locations in the bottom panel,
the settling time conditions will be met for k sufficiently large.

Lead Controller. For this controller, G(s) = 2(s+z)
(s+p)(s2+2s+10)

. First we compute the centroid of
the asymptotes and the asymptote angles:

θ =
180o

2
= 90o

σc =
[(−1− 3j) + (−1 + 3j) + (−p)]− [(−z)]

2
=

−2 − p + z

2

=
−2− l

2

where l = p − z, the difference between the pole and the zero of the controller. For positive
l the system will be stable for all values of k. In order to meet the settling time requirement,
we should have l > 2. Figure 45 displays the root locus for l = 2 for various combinations of z
and p. Figure 46 displays the root locus for l = 4 (top), l = 6 (middle), and l = 18 (bottom)
for z fixed at z = 3. Clearly as l increases, the asymptotes move to the left. This is what we
usually use a lead controller for, to pull the poles of the closed loop system to the left. Finally,
Figure 47 displays a common phenomena when using a lead controller. Here we have l = 6 and
the asymptotes are at -4. However, as k increases the complex conjugate poles move to the left
(good), however, the pole on the real axis moves to the right (bad). It may not be possible with
this configuration to find a value (or range of values) of k so the system meets the settling time
requirements.

In order to meet the steady state error requirements we need

ess =
1

1 +Kp

1 +Kp = 1 +
kz

5p
≤ 1

5

or

kz

p
≥ 20

If we cannot meet this condition, we can use a prefilter if we need to. A prefilter with Gpf = kz+5p
kz

will produce a steady state error of zero, but it is outside the feedback loop.

106

Figure 43: Root locus plots for Gp(s) =
2

s2+2s+10
with proportional+integral+derivative (PID)

controllers with real zeros. To match the settling time all poles must be to the left of -2.

107

Figure 44: Root locus plots for Gp(s) =
2

s2+2s+10
with proportional+integral+derivative (PID)

controllers with complex conjugate zeros. To match the settling time all poles must be to the
left of -2.

108

Figure 45: Root locus plots for Gp(s) =
2

s2+2s+10
with lead controllers for l = 2 and asymptote

σc = −2. To match the settling time all poles must be to the left of -2.

109

Figure 46: Root locus plots for Gp(s) =
2

s2+2s+10
with lead controllers for l = 4 and asymptote

σc = −3 (top), l = 6 and asymptote σc = −4 (middle), and l = 18 and asymptote σc = −10
(bottom). To match the settling time all poles must be to the left of -2.

110

Figure 47: Root locus plot for Gp(s) =
2

s2+2s+10
with the lead controller for l = 6 and asymptote

σc = −4. As the complex conjugate poles move to the left, the pole on the real axis moves to
the right. It may not be possible to find a value (or range of values) for k to meet the settling
time requirements.To match the settling time all poles must be to the left of -2.

111

Example 4. Assume we have the plant

Gp(s) =
2

s2 + 3s+ 2

and we want to design a controller so that

• the system is stable

• the steady state error is less than 0.2 (for a unit step)

• the settling time is less than 1.5 seconds

• the percent overshoot is less than 20%

We will assume we are going to use the basic control structure shown in Figure 27 at the
beginning of the chapter. In order for the system to remain stable the poles of the closed loop
system must be in the left half plane. In order to meet the settling time requirement, we need

Ts =
4

σ
≤ 1.5

or σ ≥ 2.67. Hence the real parts of the poles must be less than -2.67 (or have magnitude σ
greater than 2.67). On our root locus plots we will denote this location by a vertical dotted line,
which we will need to be sure to be to the left of in order to meet the settling time constraints. In
order to meet the percent overshoot constraint, we need the poles within a wedge of 62.8o from
the negative real axis. On our root locus plot we will again denote this wedge by a dashed line.
To meet both settling time and percent overshoot constraints we must have part of the root locus
in the region of overlap. In addition, we must remember that, in particular, the percent overshoot
region is an approximation based on an ideal second order system. Since we are using a prefilter,
we will be able to meet the steady state error requirements for any stable system. We will next
examine each of the possible controller types to see if it meets the requirements. This exam-
ple will not be done in the detail of the last example, since I am really getting sick of writing this.

Proportional (P) Controller. For this controller, G(s) = 2
s2+3s+2

. The root locus for the
system with the proportional controller is shown in Figure 48. As this figure shows, the system
will remain stable for all values of k6. It will never meet the settling time requirement since
the poles are always to the right of -2.67. It will meet the percent overshoot requirements until
k reaches a critical value, then for all values of k larger than this critical value the percent
overshoot requirement will not be met. The steady state error requirement can be met if k ≥ 4,
but for this value of k the system may not meet any other requirements.

Integral (I) Controller. For this controller, G(s) = 2
s(s2+3s+2)

. The root locus for the system
with the integral controller is shown in Figure 49. As this figure shows, the system will not
remain stable for all values of k7. For some value of k one set of poles crosses the jω axis and
the system will be unstable for all values of k larger than this. This system will never meet the

6Here k = kp.
7Here k = ki.

112

Figure 48: Root locus plot for Gp(s) =
2

s2+3s+2
with the proportional (P) controller. This system

will never meet the settling time criteria, but it will meet the percent overshoot criteria as long
as k is not too large.

113

Figure 49: Root locus plot for Gp(s) =
2

s2+3s+2
with the integral (I) controller. This system will

never meet the settling time criteria, but it will meet the percent overshoot criteria as long as
k is not too large. This system will become unstable for k sufficiently large.

settling time requirement since two of the three poles are always to the right of -2.67. It will
meet the percent overshoot requirements until k reaches a critical value, then for all values of k
larger than this critical value the percent overshoot requirement will not be met. If this system
is stable, the steady state error will be zero, since it is a type one system.

Proportional+Integral (PI) Controller. For this controller, G(s) = 2(s+z)
s(s2+3s+2)

. The root
locus for the system with the three PI controllers is shown in Figure 50. This figure shows three
different values of the zero location in this controller: z = 0.5 (top pannel), z = 1.5 (middle
pannel), and z = 4 (bottom pannel). As this figure shows, none of the configurations (choices of
z) will meet the settling time criteria. All of the configurations will meet the percent overshoot
criteria if the value of k is not too large. The third configuration will become unstable for
sufficiently large k. If the value of k is chosen so the system is stable, the steady state error
criteria will be met since this is a type one system.

Proportional+Derivative (PD) Controller. For this controller, G(s) = 2(s+z)
s2+3s+2

. The root
locus for the system with three PD controller is shown in Figure 51. This figure shows three
different values of the zero location in this controller: z = 0.5 (top panel), z = 1.5 (middle
panel), and z = 3 (bottom panel). As this figure shows, only the last configuration (choices of
z) will meet the settling time criteria for a sufficiently large value of k. All of the configurations

114

Figure 50: Root locus plot for Gp(s) =
2

s2+3s+2
with three proportional+integral (PI) controllers.

None of these systems will ever meet the settling time criteria. All three will meet the percent
overshoot criteria if k is small enough. The third system will become unstable for k sufficiently
large.

115

will meet the percent overshoot criteria for all values of k. In order to meet the steady state
error requirement, we need kz ≥ 4.

Proportional+Integral+Derivative (PID) Controller. For this controller, G(s) = 2(s+z1)(s+z2)
s(s2+3s+2)

.

For this controller, we have two cases to consider: (1) both zeros are real, and (2) the zeros are
complex conjugates.

Real Zeros Figure 52 and 53 displays different examples of PID controllers with real zeros. The
first two systems in Figure 53 show poor choices for the locations of the controller zeros.The
results in the second panel of Figure 53 shows that for some configurations, it is possible for the
system to become unstable if k is chosen incorrectly.

Complex Conjugate Zeros Figure 54 and 55 displays different examples of PID controllers with
complex conjugate zeros. The first two systems in Figure 54 show poor choices for the locations
of the controller zeros. The bottom panel shows an acceptable choice for meeting both require-
ments, since for a sufficiently large k all poles will be in the acceptable region. The results in
the second panel of Figure 55 shows that for some configurations, it is possible for the system
to become unstable if k is chosen incorrectly.

Lead Controller. For this controller, G(s) = 2(s+z)
(s+p)(s2+3s+2)

. For this case, it is worthwhile to
examine the location of the centroid of the asymptotes to determine how far apart we need the
pole and the zero to be.

θ =
180

2
= 90

σc =
[(−1) + (−2) + (−p)]− [(−z)]

2
=

−3− p+ z

2

=
−3 − l

2

where l = p− z, the difference between the pole and the zero of the controller. In order to meet
the settling time constraint, we will need

σc =
−3− l

2
≤ −2.67

or

l ≥ 2.34

The root locus plots for the system with various lead controllers are shown in Figures 56 and 57.
Figure 56 shows root locus plots for l = 3 and three different choices of pole and zero locations.
Although each one of these systems has the same value of l = 3, so one set of asymptotes meets
the settling criteria, unless care is taken the system will not meet the settling time criteria. The
first two choices in this figure are clearly stupid choices for the location of the controller pole
and the controller zero! In this figure, only the third choice will produce a system that meets
all of the criteria for k less than a critical value. If k becomes too large, the percent overshoot
criteria will not be met by any of these systems. Figure 57 shows two more root locus plots for
l = 6 and l = 9, keeping z = 3. These plots demonstrate again how the lead controller bends
the root locus to the left. In order to meet the steady state error requirement, we need kz

p
≥ 6.

116

Figure 51: Root locus plots for Gp(s) =
2

s2+3s+2
with three proportional+derivative (PD) con-

trollers. Only the third system meets the settling time criteria (for k large enough). All three
will meet the percent overshoot criteria.

117

Figure 52: Root locus plots for Gp(s) = 2
s2+3s+2

with proportional+integral+derivative (PID)
controllers with real. The systems in the top two panels demonstrate bad choices for the location
of the controller zeros.

118

Figure 53: Root locus plots for Gp(s) = 2
s2+3s+2

with proportional+integral+derivative (PID)
controllers with real zeros.

119

Figure 54: Root locus plots for Gp(s) = 2
s2+3s+2

with proportional+integral+derivative (PID)
controllers with complex conjugate zeros. The systems in the top two panels demonstrate bad
choices for the location of the controller zeros.

120

Figure 55: Root locus plots for Gp(s) = 2
s2+3s+2

with proportional+integral+derivative (PID)
controllers with complex conjugate zeros.

121

Figure 56: Root locus plots for Gp(s) =
2

s2+3s+2
with lead controllers. Here l = 3 for all three

controllers. However, only the third system is capable of meeting both the settling time and
percent overshoot criteria. If k becomes too large in these systems the percent overshoot criteria
will not be met.

122

Figure 57: Root locus plots for Gp(s) =
2

s2+3s+2
with lead controllers. Here l = 6 (top panel)

ad l = 9 (bottom panel). If k becomes too large in these systems the percent overshoot criteria
will not be met.

123

11.8 Seemingly Odd Root Locus Behavior

Up to this point, you have been seeing only “normal” root locus behavior, and these are the
types of plots you should be able to produce by hand sketches. However, there are times when
one can get some fairly odd looking shapes, and you should be aware that these are possible.
None of these root locus plots violate any of the rules you have been given, and if we had gone
over the rules for determining the locations the root locus leave the real axis and the location
where the root locus enters the real axis (“break-in/break-out” points) these root loci would not
seem so strange.

To begin with, let’s continue with the lead controller from Example 3. As we showed before,
as the distance between the pole and the zero, l = p− z, becomes larger, the asymptotes of the
complex poles move to the right. However, at some point we will begin to see some of this odd
behavior. Figure 58 displays this behavior as l is varied from 23 to 25.

Figure 59 displays strange behavior for PID controllers for Example 3 as the imaginary parts
of the zeros move closer to the real axis. Again, none of our rules are violated, but this is
unexpected behavior.

124

Figure 58: Root locus plot for Gp(s) =
2

s2+2s+10
with the lead controller for l = 23, 24, and 25.

This graph exemplifies some of the possible root locus behavior we have not seen yet. To match
the settling time all poles must be to the left of -2.

125

Figure 59: Root locus plot for Gp(s) =
2

s2+2s+10
with the pid controller as the imaginary part

of the zeros move closer to the real axis. This graph exemplifies some of the possible root locus
behavior we have not seen yet. To match the settling time all poles must be to the left of -2.

126

12 z-Transforms

In this course we will assume we are sampling the continuous time signal x(t) at a uniform
sampling rate. The time interval between samples will be denoted by T . Thus we will denote
the discrete-time (sampled) values as x(0), x(T), x(2T),. . . , x(kT). This is shown graphically in
Figure 60. Sometimes we remove the explicit dependence on the sampling interval T and just
write x(0), x(1), x(2), . . . , x(k), since the sample interval is the same for all of the different
samples.

12.1 Special Functions

Just as in continuous-time, there are certain special functions that are used very often in discrete-
time. Specifically, we will be concerned with the unit impulse function, the unit step function,
and the unit ramp function.

The unit impulse or delta function is defined as

δ(k) =

{
1 k = 0
0 k �= 0

or

δ(n− k) =

{
1 k − n = 0
0 k − n �= 0

The unit step or Heaviside function is defined as

u(k) =

{
1 k ≥ 0
0 k < 0

or

u(n− k) =

{
1 n− k ≥ 0
0 n− k < 0

The unit ramp function is defined as
r(k) = ku(k)

or
r(n− k) = (n− k)u(n− k)

While there are other special function, these are the special functions we will be utilizing the
most.

12.2 Impulse Response and Convolution

The unit impulse response of a Linear Time-Invariant (LTI) system, h(k), is the response of the
system at rest (no initial energy, the initial conditions are all zero), to a unit impulse at time
zero. Symbolically, we can write

δ(k) → h(k)

Since the system is assumed to be time-invariant we also have

δ(n− k) → h(n− k)

127

x(t)

0

x(0)

T

x(T)

2T

x(2T)

3T

x(3T)

4T

x(4T)

5T

x(5T)

6T

Figure 60: Continuous-time signal x(t) and its samples x(kT). We assume the samples are taken
at the beginning of each time interval.

Since the system is also linear, we have

αδ(k) → αh(k)

and
αδ(n− k) → αh(n− k)

Now we can write x(n) as

x(n) = . . .+ x(−2)δ(n + 2) + x(−1)δ(n+ 1) + x(0)δ(n) + x(1)δ(n− 1) + x(2)δ(n− 2) + . . .

If x(n) is the input to an LTI system, then we can compute the output as

y(n) = . . .+ x(−2)h(n + 2) + x(−1)h(n + 1) + x(0)h(n) + x(1)h(n− 1) + x(2)h(n− 2) + . . .

since we treat the x(k)’s as constants, and the system is only responding the the impulses. We
can write this expression as

y(n) =
∞∑

k=−∞
x(k)h(n− k)

or, by making a change of variable in the sum, as

y(n) =
∞∑

k=−∞
x(n− k)h(k)

128

Thus the output of an LTI system is the convolution of the input with the impulse response of
the system,

y(n) = h(n) � x(n) =
∞∑

k=−∞
h(k)x(n− k)

= x(n) � h(n) =
∞∑

k=−∞
x(k)h(n− k)

If both the system and input are causal (both are zero for n ≤ 0), then we can simplify the
convolution sums as

y(n) = h(n) � x(n) =
n∑

k=0

h(k)x(n− k)

= x(n) � h(n) =
n∑

k=0

x(k)h(n− k)

12.3 A Useful Summation

In what follows, we will make extensive use of a simple summation formula, which you probably
saw in high school. Let’s denote the sum Sn as

Sn = 1 + a+ a2 + . . .+ an−1 + an =
k=n∑
k=0

ak

If we multiply by a we have

aSn = a
(
1 + a+ a2 + . . .+ an−1 + an

)
= a+ a2 + a3 + . . .+ an + an+1

= Sn − 1 + an+1

Solving for Sn we have

aSn − Sn = an+1 − 1

Sn =
an+1 − 1

a− 1

or

k=n∑
k=0

ak =
1− an+1

1− a

Note that if n = ∞ and |a| < 1, then we have

∞∑
k=0

ak =
1

1− a

Now let’s do some convolution examples.

129

Example. Assume the input to a system is x(n) = u(n) and the impulse response of the system
is h(n) = u(n). Determine the output of the system. We have

y(n) = x(k) � h(k)

=
∞∑

k=−∞
x(k)h(n− k)

=
∑

k=−∞
u(k)u(n− k)

=
n∑

k=0

(1)(1)

= (n+ 1)u(n)

Note that we need the final u(n) since our method is only valid if n ≥ 0.

Example. Assume the input to a system is x(n) = αnu(n) and the impulse response is h(n) =
u(n). Determine the output of the system. We have

y(n) = x(k) � h(k)

=
∞∑

k=−∞
x(k)h(n− k)

=
∑

k=−∞
αku(k)u(n− k)

=
n∑

k=0

αk

=
1− αn+1

1− α
u(n)

Note that we need the final u(n) since our method is only valid if n ≥ 0.

Example. Assume the input to a system is x(n) = αn+2u(n + 2) and the impulse response is
h(n) = βn−1u(n− 1). Determine the output of the system. We have

y(n) = x(k) � h(k)

=
∞∑

k=−∞
x(k)h(n− k)

=
∑

k=−∞
αk+2u(k + 2)βn−k−1u(n− k − 1)

Now let’s look at our sums. We know u(k + 2) = 1 for k ≥ −2 and u(n − k − 1) = 1 for
n− k − 1 ≥ 0 or n− 1 ≥ k. Hence our sum is

y(n) =
n−1∑
k=−2

αk+2βn−k−1

In order to use our summation formula, let’s change variables in this sum. We want the lower
limit to be zero, so let’s define l = k + 2, or k = l − 2. In terms of l, our new sum is

y(n) =
l=n+1∑
l=0

αlβn−l+1

130

= βn+1
n+1∑
l=0

(
α

β

)l

= βn+1

⎡
⎣1− (α

β
)n+2

1− α
β

⎤
⎦ u(n+ 1)

Example. Assume the input to a system is x(n) = α−nu(−n) and the impulse response is
h(n) = βn−1u(n− 1). Determine the output of the system. We have

y(n) = x(k) � h(k)

=
∞∑

k=−∞
x(k)h(n− k)

=
∑

k=−∞
α−ku(−k)βn−k−1u(n− k − 1)

We know that u(−k) = 1 for k ≤ 0 and u(n−k−1) = 1 for n−k−1 ≥ 0 or k ≤ n−1. Now we
have to be very careful since our answers will depend on what we assume about n. For n ≥ 1,
the most restrictive condition is k ≤ 0 Our new sum becomes

y(n) =
0∑

k=−∞
α−kβn−k−1

= βn−1
0∑

k=−∞
(αβ)−k

Letting l = −k and assuming the sum is absolutely convergent so that we can rearrange the
order of the summation, we have

y(n) = βn−1
l=∞∑
l=0

(αβ)l = βn−1 1

1− αβ

Next, let’s look at what happens for n ≤ 0. Here the more restrictive condition is k ≤ n − 1,
and we have the sum

y(n) =
n−1∑

k=−∞
α−kβn−k−1

= βn−1
n−1∑

k=−∞
(αβ)−k

Letting l = k − (n− 1) = k − n + 1 we have

y(n) = βn−1(αβ)−(n−1)
0∑

l=−∞
(αβ)−l

Finally, let p = −l and assume absolute convergence, and we have

y(n) = α−n+1 1

1− αβ

Combining our two regions we have

y(n) = βn−1 1

1− αβ
u(n− 1) + α−n+1 1

1− αβ
u(−n)

Note that there is no overlap in the definition regions (values of n).

131

12.4 z-Transforms

In continuous-time we can either compute the output of a system using the convolution directly,
or we can resort to transform methods. In continuous-time control systems we generally utilize
Laplace transforms and block diagrams, since this is a much easier way to determine the output
than by using convolution in the time domain. Similarly, in discrete-time we can utilize the
z-transform to avoid using the convolution sum. Just as with Laplace transforms, we can define
one and two-sided z-transforms.

The one-sided z-transform is defined as

X(z) = Z {x(nT)} =
∞∑
k=0

x(kT)z−k

and the two-sided z-transform is defined as

X(z) = Z {x(nT)} =
∞∑

k=−∞
x(kT)z−k

Just as with Laplace transforms, the only difference between the one and two-sided z-transform
is the lower limit. Often we do not directly utilize the dependence on T and leave it out of the
summation. In this course we are generally concerned with causal systems and causal inputs,
so we generally will use the one-sided z-transform. Finally, the sum often only converges for
values of |z| within a specific region. This is called the region of convergence or ROC. Now let’s
do some examples.

Example. Determine the one-sided z-transform of x(n) = δ(n− l). We have

X(z) =
k=∞∑
k=0

δ(k − l)z−k = z−l

This sum converges for all values of |z|, so the region of convergence is the entire z-plane.

Example. Determine the one-sided z-transform of x(n) = u(n), the unit step function. We
have

X(z) =
∞∑
k=0

u(k)z−k =
∞∑
k=0

(
1

z

)k

=
1

1− z−1
=

z

z − 1

This is only true if the sum is absolutely convergent, which means |1
z
| < 1 or if |z| > 1. Hence

the ROC is defined by |z| > 1.

Example. Determine the one-sided z-transform of x(n) = nu(n), the unit ramp function. We
have

X(z) =
∞∑
k=0

ku(k)z−k =
∞∑
k=0

kz−k

132

At this point, we need to use something we all ready know, and some calculus. For the unit
step we have

z

z − 1
=

∞∑
k=0

z−k

Taking derivatives of both sides with respect to z yields

d

dz

[
z

z − 1

]
=

(z − 1)− z

(z − 1)2
=

−1

(z − 1)2

d

dz

[∞∑
k=0

z−k

]
=

∞∑
k=0

−kz−k−1 = −z−1
∞∑
k=0

kz−k

Hence we have

−1

(z − 1)2
= −z−1

∞∑
k=0

kz−k

or
∞∑
k=0

kz−k =
z

(1− z)2

which is the result we wanted. Just as with the z-transform of the unit step, the ROC for this
function is |z| > 1.

Example. Determine the one-sided z-transform for the function x(n) = anu(n). We have

X(z) =
∞∑

k=−∞
aku(k)z−k

=
∞∑
k=0

(
a

z

)k

=
1

1− a
z

=
z

z − a

The region of convergence is given by |a
z
| < 1 or |z| > |a|.

Example. Determine the z-transform of the x(t) = e−atu(t) when x(t) is sampled with sampling

interval T . The sampled version of the signal is given by x(nT) = e−anTu(nT) =
(
e−aT

)n
u(n).

Computing the z-transform we have

X(z) =
∞∑

k=−∞

(
e−aT

)k
u(k)z−k

=
∞∑
k=0

(
1

eaT z

)k

=
1

1− 1
eaT z

=
z

z − e−aT

133

The region of convergence is given by | 1
eaT z

| < 1 or e−aT < |z|.

Example. Find the one-sided z-transform of x(n) = an cos(bnT)u(n). We have

X(z) =
∞∑

k=−∞
ak cos(bkT)u(k)z−k =

∞∑
k=0

(
a

z

)k

cos(bkT)

At this point we need to use Euler’s identity,

cos(bkT) =
ejbkT + e−jbkT

2
=

1

2

(
ejbT

)k
+

1

2

(
e−jbT

)k
Inserting this identity into our sum we have

X(z) =
1

2

∞∑
k=0

(
a

z
ejbT

)k

+
1

2

∞∑
k=0

(
a

z
e−jbT

)k

=
1

2

1

1− aejbT

z

+
1

2

1

1− ae−jbT

z

After some algebra we arrive at

X(z) =
z(z − a cos(bT))

z2 − 2a cos(bT)z + a2

the region of convergence is given by

|ae
jbT

z
| < 1, |ae

−jbT

z
| < 1

or |z| > |a| since |ejbT | = |e−jbT | = 1.

12.5 z-Transform Properties

Just as with Laplace and Fourier transforms, there are a number of useful properties of z-
transforms. We will cover a few of them in this section. Most of the properties we will cover
are straightforward to prove, and you should be able to prove most of them. Unless otherwise
stated, we will assume only one-sided z transforms.

Linearity. If we have the z-transform pairs g(n) ↔ G(z) and h(n) ↔ H(z), then for all
constants a and b we have

Z {ag(n) + bh(n)} = aG(z) + bH(z)

Multiplication by an. If g(n) ↔ G(z), then ang(n) ↔ G(z
a
).

Proof:

Z {ang(n)} =
∞∑
k=0

akg(k)z−k

=
∞∑
k=0

g(k)
(
z

a

)−k

= G(
z

a
)

134

Shifting. If g(n) ↔ G(z) and g(n) is causal, then

Z {g(n− l)} = z−lG(z)

Z {g(n+ l)} = zl
[
G(z)−

l−1∑
k=0

g(k)z−k

]

Proof of first part: Taking the z-transforms we have

Z {g(n− l)} =
∞∑
k=0

g(k − l)z−k

=
∞∑
k=l

g(k − l)z−k

since g(n) is causal. Now let m = k − l, or k = m+ l. The sum then becomes

Z {g(n− l)} =
∞∑

m=0

g(m)z−(m+l)

= z−l
∞∑

m−0

g(m)z−m

= z−lG(z)

Proof of the second part: Let’s start by trying to find the z-transform of g(n+1). We have then

Z {g(n+ 1)} =
∞∑
k=0

g(k + 1)z−k

= g(1) + g(2)z−1 + g(3)z−2 + g(4)z−3 + g(5)z−4 + . . .

Now we know

G(z) =
∞∑
k=0

g(k)z−k

= g(0) + g(1)z−1 + g(2)z−2 + g(3)z−3 + g(4)z−4 + g(5)z−5 + . . .

Rearranging this expression we get

zG(z) = g(0)z + g(1) + g(2)z−1 + g(3)z−2 + g(4)z−3 + g(5)z−4 + . . .

zG(z) − g(0) = g(1) + g(2)z−1 + g(3)z−2 + g(4)z−3 + g(5)z−4 + . . .

= Z {g(n+ 1)}

Now consider taking the z-transform of g(n+ 2). We have

Z {g(n+ 2)} =
∞∑
k=0

g(k + 2)z−k

= g(2) + g(3)z−1 + g(4)z−2 + g(5)z−3 + . . .

135

Starting from the definition of G(z) from above

G(z) = g(0) + g(1)z−1 + g(2)z−2 + g(3)z−3 + g(4)z−4 + g(5)z−5 + . . .

we can find

z2G(z) = g(0)z2 + g(1)z + g(2) + g(3)z−1 + g(4)z−2 + g(5)z−3 + . . .

z2G(z)− z2g(0)− zg(1) = g(2) + g(3)z−1 + g(4)z−2 + g(5)z−3 + . . .

= Z {g(n+ 2)}

In general we have

Z {g(n+ l)} =
∞∑
k=0

g(k + l)z−k

= g(l) + g(l + 1)z−1 + g(l + 2)z−2 + g(l + 3)z−3 + . . .

and

G(z) = g(0) + g(1)z−1 + g(2)z−2 + . . .+ g(l− 1)zl−1 + g(l)z−l + g(l + 1)z−l−1 + g(l + 2)z−l−2 + . . .

zlG(z) = zlg(0) + zl−1g(1) + zl−2g(2) + . . .+ z−1g(l − 1) + g(l) + g(l + 1)z−1 + g(l + 2)z−2 + . . .

Rearranging we get

zlG(z)− zlg(0)− zl−1g(1) + zl−2g(2) + . . .+ z−1g(l− 1) = g(l) + g(l + 1)z−1 + g(l + 2)z−2 + . . .

zl
[
G(z)−

l−1∑
k=0

g(k)z−k

]
= Z {g(n+ l)}

Final Value Theorem. Just as with Laplace transforms, the Final Value Theorem is very
useful for determining steady state errors in discrete-time control systems. If we assume g(k) is
causal, and all poles of G(z) are inside the unit circle (with exception of a possible simple pole
at z = 1), then

lim
t→∞x(t) = lim

z→1

[
1− z−1

]
G(z) = lim

z→1

z − 1

z
G(z)

Example. If g(t) = (1 − e−3t)u(t), then G(z) = z(1−e−3T)
(z−1)(z−e−3T)

. By the Final Value Theorem we
have

lim
t→∞ g(t) = 1 = lim

z→1

z − 1

z
G(z) =

1− e−3T

1− e−3T
= 1

since all of the poles of the system are within the unit circle with the exception of a simple pole
at z = 0.

Example. If g(t) = e−tu(t), then G(z) = z
z−e−T . By the Final Value Theorem

lim
t→∞ g(t) = 0 = lim

z→1

z − 1

z
G(z) = 0

136

since all of the poles of the system are within the unit circle.

Example. If g(t) = u(t), then G(z) = z
z−1

. By the Final Value Theorem

lim
t→∞ g(t) = 1 = lim

z→1

z − 1

z
G(z) = 1

Note that in this example there is a simple pole at z = 1.

Initial Value Theorem. Just as with laplace transforms, the Initial Value Theorem for z-
transforms is very useful for determining the initial required control effort for different types of
controllers. The Initial Value Theorem states that if the limits exist, then

lim
t→0

g(t) = lim
z→∞G(z)

Example. If g(t) = (1− e−3t)u(t), then G(z) = z(1−e−3T)
(z−1)(z−e−3T)

. By the Initial Value Theorem we
have

lim
t→0

g(t) = 0 = lim
z→∞G(z) = 0

Example. If g(t) = e−tu(t), then G(z) = z
z−e−T . By the Initial Value Theorem

lim
t→0

g(t) = 1 = lim
z→∞G(z) = 1

Table 2 summarizes some common z-transform pairs, while Table 3 summarizes some common
z-transform properties.

12.6 Inverse z-Transforms

There are four common methods for going from the z-domain back to the (discrete) time domain.
These are

• Computational methods (Matlab/Maple, etc)

• Contour integration in the complex plane

• Partial fractions

• Long division

In this course we will emphasize the use of partial fractions, which you should be pretty familiar
with. It is generally easiest to find the partial fraction expansion for G(z)

z
when you want to find

the inverse z-transform of G(z), since simple poles have the form aku(k) ↔ z
z−a

.

Example. Determine g(n) for G(z) = z(z−4)
(z−3)(z−2)

. We have

G(z)

z
=

z − 4

(z − 3)(z − 2)
=

A

z − 3
+

B

z − 2

137

X(s) x(t) x(nT) or x(n) X(z)

— — δ(n) 1
— — δ(n− l) z−l

1
s

u(t) u(nT) z
z−1

1
s+a

e−atu(t) e−anTu(nT) z
z−e−aT

1
s2

tu(t) (nT)u(nT) Tz
(z−1)2

1
s3

1
2
t2u(t) 1

2
(nT)2u(nT) T 2z(z+1)

(z−1)3

a
s(s+a)

(1− e−at)u(t) (1− e−anT)u(nT) z(1−e−aT)
(z−1)(z−e−aT)

b−a
(s+a)(s+b)

(e−at − e−bt)u(t) (e−anT − e−bnT)u(nT) z(e−aT−e−bT)
(z−e−aT)(z−e−bT)

1
(s+a)2

te−atu(t) (nT)e−anTu(nT) zTe−aT

(z−e−aT)2

s
(s+a)2

(1− at)e−atu(t) (1− anT)e−anTu(nT) z[z−(1+aT)e−aT]
(z−e−aT)2

ω
s2+ω2 sin(ωt)u(t) sin(ωnT)u(nT) z sin(ωT)

z2−2z cos(ωT)+1
s

s2+ω2 cos(ωt)u(t) cos(ωnT)u(nT) z[z−cos(ωT)]
z2−2 cos(ωT)+1

bnu(n) z
z−b

nbnu(n) bz
(z−b)2

(1− bn)u(n) z(1−b)
(z−1)(z−b)

Table 2: Common (one sided) z-transforms. Often we set T = 1 and e−aT = b to find results
when the sampling time is not important.

x(t) x(nT) Z[x(t)] or Z[x(nT)]

αx(t) αx(nT) αX(z)
αx1(t) + βx2(t) αx1(nT) + βx2(nT) αX1(z) + βX2(z)

x(t + T) x(nT + T) zX(z)− zx(0)
x(t + 2T) x(nT + 2T) z2X(z)− z2x(0)− zx(T)
x(t + kT) x(nT + kT) zkX(z)− zkx(0)− zk−1x(T)− zk−2X(2T)− . . .− zx(kT − T)
x(t− kT) x(nT − kT) z−kX(z)

tx(t) (nT)x(nT) −Tz d
dz
X(z)

e−atx(t) e−anTx(nT) X(zeaT)
— anx(nT) X(z

a
)

x(0) x(0) limz→∞X(z) if the limit exists
x(∞) x(∞) limz→1[(1− z−1]X(z) if all poles of X(z) are inside unit

the unit circle (a simple pole at z = 1 is allowed)
—

∑n
k=0 x(k)

z
z−1

X(z)

x(t) � h(t) x(nT) � h(nT) X(z)H(z)

Table 3: Common properties of (one sided) z-transforms. Often we set T = 1 and e−aT = b to
find results when the sampling time is not important

138

Using the ”cover up” method we quickly arrive at

A =
3− 4

3− 2
= −1 B =

2− 4

2− 3
= 2

This leads to
G(z)

z
=

−1

z − 3
+

2

z − 2
or

G(z) = − z

z − 3
+ 2

z

z − 2

From this form we can quickly conclude that

g(n) = −(3)nu(n) + 2(2)nu(n)

The first few terms of this impulse response are g(0) = 1, g(1) = 1, g(2) = −1, and g(3) = −11.

Example. Determine g(n) if G(z) = z−4
(z−3)(z−2)

. For this G(z), there is no z in the numerator to

divide by to create the G(z)
z

. One solution is to multiple by z
z
and then do the partial fractions,

as follows:

G(z) =
z − 4

(z − 3)(z − 2)
=

z − 4

(z − 3)(z − 2)

z

z

so we have
G(z)

z
=

z − 4

z(z − 3)(z − 2)
=

A

z
+

B

z − 3
+

C

z − 2

Using the ”cover up” method we get

A =
−4

(−3)(−2)
=

−2

3
, B =

3− 4

(3− 2)(3)
=

−1

3
, C =

2− 4

(2− 3)(2)
= 1

so

G(z) = −2

3
− 1

3

z

z − 3
+

z

z − 2

which yields

g(n) = −2

3
δ(n)− 1

3
(3)nu(n) + (2)nu(n)

If we compute the first few terms of g(n) we get g(0) = 0, g(1) = 1, g(2) = 1, g(3) = −1,
g(4) = −11.

Example. Determine g(n) if G(z) = z−4
(z−3)(z−2)

. For this G(z), there is no z in the numerator

to divide by to create the G(z)
z

. One solution is to construct and F (z) so that G(z) = z−1F (z) ,
as follows:

F (z) =
z(z − 4)

(z − 3)(z − 2)

so we have
F (z)

z
=

z − 4

(z − 3)(z − 2)
=

A

z − 3
+

B

z − 2

139

Using the ”cover up” method we get

F (z) = − z

z − 3
+ 2

z

z − 2

and
f(n) = −(3)nu(n) + 2(2)nu(n)

Since we know G(z) = z−1F (z), we have g(n) = f(n− 1) using the delay property. Hence

g(n) = −(3)n−1u(n− 1) + 2(2)n−1u(n− 1)

Although this answer looks much different than in the previous example, the two solutions are
in fact the same.

Example. Determine g(n) for G(z) = z(−5z+22)
(z+1)(z−2)2

. We have

G(z)

z
=

−5z + 22

(z + 1)(z − 2)2
=

A

z + 1
+

B

z − 2
+

C

(z − 2)2

Using the ”cover-up” method we can quickly find A and C,

A =
−5(−1) + 22

(−1 − 2)2
=

27

9
= 3, C =

−5(2) + 22

(2 + 1)
=

12

3
= 4

To get B, we multiply both sides of the original equation by z and then let z → ∞, to get

0 = A+B, B = −3

So we have
G(z) = 3

z

z + 1
− 3

z

z − 2
+ 4

z

(z − 2)2

and
g(n) = 3(−1)nu(n)− 3(2)nu(n) + 4n(2)n−1u(n)

The first few terms of the impulse response are g(0) = 0, g(1) = −5, g(2) = 7, g(3) = 21, and
g(4) = 83.

While we can normally use partial fractions to determine the time response for all sample times,
sometimes we only want to determine the time response for the first few terms. We can use
the method of long division to determine the first few terms of the time domain response by
utilizing the fact that if we compute the z-transform of g(n) we have

G(z) = g(0) + g(1)z−1 + g(2)z−2 + g(3)z−3 + g(4)z−4 + . . .

This method of long division is particularly important as a method to check your answer. How-
ever, it is not very useful for determining a closed form solution for all time.

Example. Use long division to determine the first few terms of the impulse response for the

transfer function G(z) = z(z−4)
(z−3)(z−2)

. We first need to multiply out the numerator and the

denominator, so we have G(z) = z2−4z
z2−5z+6

. Next we do the long division,

140

1 +z−1 −z−2 − 11z−3

z2 − 5z + 6 | z2 −4z
z2 −5z +6

z −6
z −5 +6z−1

−1 −6z−1

−1 +5z−1 −6z−2

−11z−1 +6z−2

Hence we have the approximations

G(z) =
z(z − 4)

z2 − 5z + 6
= 1 + z−1 − z−2 − 11z−3 + · · ·

g(n) = δ(n) + δ(n− 1)− δ(n− 2)− 11δ(n− 3) + · · ·

which agrees with our previous result.

Example. Use long division to determine the first few terms of the impulse response for the
transfer function G(z) = z−4

(z−3)(z−2)
. We first need to multiply out the denominator, so we have

G(z) = z−4
z2−5z+6

. Next we do the long division,

z−1 +z−2 −z−3 − 11z−4

z2 − 5z + 6 | z −4
z −5 +6z−1

1 −6z−1

1 −5z−1 +6z−2

−z−1 −6z−2

−z−1 +5z−2 −6z−3

−11z−2 +6z−3

Hence we have the approximations

G(z) =
z − 4

z2 − 5z + 6
= z−1 + z−2 − z−3 − 11z−4 + · · ·

g(n) = δ(n− 1) + δ(n− 2)− δ(n− 3)− 11δ(n− 4) + · · ·

which agrees with our previous result.

Example. Use long division to determine the first few terms of the impulse response for the

transfer function G(z) = z(−5z+22)
(z+1)(z−2)2

. We first need to multiply out the numerator and denomi-

nator, so we have G(z) = −5z2+22z
z3−3z−2+4

. Next we do the long division,

141

−5z−1 +7z−2 +21z−3 + 83z−4

z3 − 3z2 + 4 | −5z2 +22z
−5z2 +15z −20z−1

7z +20z−1

7z −21 +28z−2

21 +20z−1 −28z−2

21 −63z−1 +84z−3

83z−1 −28z−3 −84z−3

Hence we have the approximations

G(z) =
z(−5z + 22)

z3 − 3z2 + 4
= −5z−1 + 7z−2 + 21z−3 + 83z−4 + · · ·

g(n) = −5δ(n− 1) + 7δ(n− 2) + 21δ(n− 3) + 83δ(n− 4) + · · ·

which agrees with our previous result.

12.7 Second Order Transfer Functions with Complex Conjugate Poles

Consider the continuous-time impulse response response that corresponds to a transfer function
with complex conjugate poles at −a± jb,

G(s) =
r

(s+ a)2 + b2
↔ g(t) = re−at cos(bt + θ)u(t)

If we look at samples of the impulse response, we get

g(nT) = re−anT cos(bnT + θ)u(nT)

= r
(
e−aT

)n
cos((bT)n + θ)u(nT)

= rγn cos(βn+ θ)u(n)

Hence, the discrete-time impulse response that corresponds to a continuous-time system with
complex conjugate poles is of the form

g(n) = rγn cos(βn+ θ)u(n)

As you might expect, this form shows up a great deal when we are modeling many types of
systems. Hence we should know the corresponding z-transform of this impulse response. As you
will see, it is much more complex than you might expect.

Using Euler’s identity we can write g(n) as

g(n) =
r

2
γnejβnejθ +

r

2
γne−jβne−jθ

142

and taking the z-transform of this we have

G(z) =
r

2

∞∑
k=0

γkejβkejθz−k +
r

2

∞∑
k=0

γke−jβke−jθz−k

=
r

2
ejθ

∞∑
k=0

(
γejβ

z

)k

+
r

2
e−jθ

∞∑
k=0

(
γe−jβ

z

)k

=
rejθ

2

[
1

1− γejβz−1

]
+

re−jθ

2

[
1

1− γe−jβz−1

]

=
rejθ

2

[
z

z − γejβ

]
+

re−jθ

2

[
z

z − γe−jβ

]

=
rejθ

2

[
z(z − γe−jβ)

(z − γejβ)(z − γe−jβ)

]
+

re−jθ

2

[
z(z − γejβ)

(z − γejβ)(z − γe−jβ)

]

=
r

2

[
z2ejθ − zγe−jβejθ + z2e−jθ − zγejβe−jθ

z2 − γzejβ − γze−jβ + γ2

]

=
r

2

⎡
⎣z2

(
ejθ + e−jθ

)
− zγ

(
ej(β−θ) + e−(β−θ)

)
z2 − γz (ejβ + e−jβ) + γ2

⎤
⎦

= r

[
z2 cos(θ)− zγ cos(β − θ)

z2 − 2γz cos(β) + γ2

]

Unfortunately, what we really need is a form that we can (easily?) use in doing partial fractions.
This is going to take a bit more work. Let’s write

G(z) = r

[
z2 cos(θ)− zγ cos(β − θ)

z2 − 2γz cos(β) + γ2

]
=

Az2 +Bz

z2 + 2Cz + γ2

This second form is much easier to use when doing partial fractions, but we need to be able
to relate the parameters A, B, and C, to the parameters r, θ, and β. Clearly we have already
identified the parameter γ.

Let’s start with the denominator. Equating powers of z in the denominator we get

−2C = 2γ cos(β)

which means

β = cos−1

(−C

γ

)

Next we identify

A = r cos(θ)

B = −rγ cos(β − θ)

Expanding the cosine expression out we get

B = −rγ cos(β − θ)

= −rγ cos(β) cos(θ)− rγ sin(β) sin(θ)

= −γ cos(β) (r cos(θ))− rγ sin(β) sin(θ)

= CA− rγ sin(β) sin(θ)

143

But

−C

γ
= cos(β)

sin(β) =
√
1− cos2(β) =

√
1− C2

γ2
=

1

γ

√
γ2 − C2

So

B = CA− γ

(
1

γ

√
γ2 − C2

)
r sin(θ)

or

r sin(θ) =
CA−B√
γ2 − C2

Recall that we also have r cos(θ) = A, so dividing these we get

tan(θ) =
sin(θ)

cos(θ)
=

CA−B

A
√
γ2 − C2

or

θ = tan−1

(
CA− B

A
√
γ2 − C2

)

Finally we have

√
(r sin(θ))2 + (r cos(θ))2 = r =

√√√√(CA− B√
γ2 − C2

)2

+ A2

=

√
A2C2 − 2ACB +B2 + A2γ2 − C2A2

γ2 − C2

or

r =

√
A2γ2 +B2 − 2ABC

γ2 − C2

In summary we have

g(n) = rγn cos(βn+ θ)u(n) ↔ G(z) =
Az2 +Bz

z2 + 2Cz + γ2

r =

√
A2γ2 +B2 − 2ABC

γ2 − C2

θ = tan−1

(
CA− B

A
√
γ2 − C2

)

β = cos−1

(−C

γ

)

144

Now we have all of the parameters we need to solve some examples.

Example. Determine the impulse and unit step responses of the system with transfer function

G(z) =
−0.535z

z2 − 1.597z + 0.671

To determine the impulse response, we first equate this transfer function with our standard
form,

G(z) =
−0.535z

z2 − 1.597z + 0.671
=

Az2 +Bz

z2 + 2Cz + γ2

From this we can immediately determine A = 0, B = −0.535, γ =
√
0.671 = 0.819, −2C = 1.597

so C = −0.7895. Now we compute the remaining parameters,

β = cos−1

(−C

γ

)
= cos−1

(
0.7985

0.819

)
= 0.224

θ = tan−1

(
CA− B

A
√
γ2 − C

)
= tan−1

(
0.535

0

)
=

π

2
= 1.570

r =

√
A2γ2 +B2 − 2ABC

γ2 − C2
=

√
0.2862

0.03340
= 2.9274

Hence the impulse response of the system is

g(n) = 2.927(0.819n) cos(0.224n+ 1.570)u(n)

The initial value of this system is g(0) = 2.450 cos(1.570) = 0, so the system is initially at rest.

To determine the unit step response, we have

Y (z) = G(z)
z

z − 1
Y (z)

z
= G(z)

1

z − 1
=

−0.535z

(z2 − 1.597z + 0.671)(z − 1)
=

Az +B

z2 − 1.597z + 0.671
+

D

z − 1

Using the cover-up method we can easily determine that D = −7.230. Multiplying both sides
of the equation by z and letting z → ∞, we get A = −D = 7.230. Finally, setting z = 0 we get
B = −4.851. Now we need to recompute our parameters

β = cos−1

(−C

γ

)
= 0.224

θ = tan−1

(
CA−B

A
√
γ2 − C

)
= −0.6110

r =

√
A2γ2 +B2 − 2ABC

γ2 − C2
= 8.827

The step response is then

y(n) = 8.827(0.819n) cos(0.224n− 0.6110)u(n)− 7.230u(n)

145

12.8 Solving Difference Equations

Just as we can use Laplace transforms to solve differential equations with initial conditions, in
discrete-time we can use z-transforms to solve difference equations with initial conditions. The
general idea is to take the z-transform of each term of the difference equation, then solve. For
the low order difference equations we will be solving it is useful to summarize the following
identities again:

Z{x(k + 2)} = z2X(z)− z2x(0)− zx(1)

Z{x(k + 1)} = zX(z)− zx(0)

Z{x(k)} = X(z)

Z{x(k − 1)} = z−1X(z)

Z{x(k − 2)} = z−2X(z)

It is important to remember that the lower case letters represent the time-domain and the capi-
tol letters represent the z-domain. After we have solved the difference equation, it is a good
idea to check our answer by using the difference equation to compute the answer and compare
this with the answer we get using the z-transform. Finally, sometimes we break the solution
into two different parts: the Zero Input Response (ZIR) is the response of the system due to
initial conditions alone (there is no, or zero input), and the Zero State Response (ZSR) is the
response of the system due to the input only, assuming all initial conditions (all initial states)
are zero. The system transfer function is determined from the ZSR.

Example. Find the ZIR, ZSR, and solve the difference equation

y(n+ 2)− 5y(n+ 1) + 6y(n) = x(n)

with initial conditions y(0) = 4 and y(1) = 3 and input x(n) = u(n), the unit step function.
Taking z-transforms of each term, we have[

z2Y (z)− z2y(0)− zy(1)
]
− 5 [zY (z)− zy(0)] + 6Y (z) = X(z)

Note that we have not simplified the difference equation yet. Rearranging this equation we get[
z2 − 5z + 6

]
Y (z) = X(z) +

[
z2y(0) + zy(1)− 5zy(0)

]
or

Y (z) =
X(z)

(z − 3)(z − 2)︸ ︷︷ ︸
ZSR

+
z2y(0) + zy(1)− 5zy(0)

(z − 3)(z − 2)︸ ︷︷ ︸
ZIR

At this point we can determine the transfer function from the ZSR and corresponding impulse
response,

H(z) =
1

(z − 3)(z − 2)
, h(n) = 3n−1u(n− 1)− 2n−1u(n− 1) =

1

6
δ(n) +

1

3
3nu(n)− 1

2
2nu(n)

The ZSR is then given by

YZSR =
X(z)

(z − 3)(z − 2)
=

z

(z − 1)(z − 2)(z − 3)
=

1

2

z

z − 1
− z

z − 2
+

1

2

z

z − 3

146

or

yZSR(n) =
1

2
u(n)− 2nu(n) +

1

2
3nu(n)

The ZIR is given by

Y (z) =
z2y(0) + zy(1)− 5zy(0)

(z − 3)(z − 2)
=

4z2 − 17z

(z − 3)(z − 2)
= −5

z

z − 3
+ 9

z

z − 2

or
yZIR(n) = −5(3n)u(n) + 9(2n)u(n)

Finally the total solution is given by the sum of the ZIR and ZSR,

y(n) = yZIR(n) + yZSR(n)

= [−5(3n)u(n) + 9(2n)u(n)] +
[
1

2
u(n)− 2nu(n) +

1

2
3nu(n)

]

=
[
(−5 +

1

2
)3n + (9− 1)2n +

1

2

]
u(n)

=
[
−4.5(3n) + 8(2n) +

1

2

]
u(n)

Now to check our answer, we know that y(0) = 4 and y(1) = 3. To generate the other values of
y(n), let’s rewrite the difference equation as

y(n+ 2) = 5y(n+ 1)− 6y(n) + x(n)

and remember that x(n) = u(n) = 1 for n ≥ 0. Now we can make a table,
DE Prediction Closed Form

y(0) = 4 y(0) = −4.5(30) + 8(20) + 0.5 = 4
y(1) = 3 y(1) = −4.5(3) + 8(2) + 0.5 = 3

y(2) = 5y(1)− 6y(0) + 1 = 5(3)− 6(4) + 1 = −8 y(2) = −4.5(32) + 8(22) + 0.5 = −8
y(3) = 5y(2)− 6y(1) + 1 = 5(−8)− 6(3) + 1 = −57 y(3) = −4.5(33) + 8(23) + 0.5 = −57

y(4) = 5y(3)− 6y(2) + 1 = 5(−57)− 6(−8) + 1 = −236 y(4) = −4.5(34) + 8(24) + 0.5 = −236

Example. Find the ZIR, ZSR, and solve the difference equation

x(n + 2)− x(n + 1) + 0.25x(n) = f(n− 1)− f(n)

with initial conditions x(0) = 0 and x(1) = 1 and input f(n) = u(n), the unit step function. Note
that we must write the difference equation so that the input does not include initial conditions!
We assume all initial conditions are associated with the states of the system, in this case the
x(n). Taking z-transforms of each term, we have

[
z2X(z)− z2x(0)− zx(1)

]
− [zX(z)− zx(0)] + 0.25X(z) = z−1F (z)− F (z)

Note that we have not simplified the difference equation yet. Rearranging this equation we get

[
z2 − z +

1

4

]
X(z) =

[
z−1 − 1

]
F (z) +

[
z2x(0) + zx(1)− zx(0)

]

147

or

X(z) = F (z)
z−1 − 1

(z − 1
2
)2︸ ︷︷ ︸

ZSR

+
z2x(0) + zx(1)− zx(0)

(z − 1
2
)2︸ ︷︷ ︸

ZIR

At this point we can determine the transfer function from the ZSR and corresponding impulse
response,

H(z) =
z−1 − 1

(z − 1
2
)2

=
1− z

z(z − 1
2
)2
, h(n) = 4δ(n− 1)− 4(

1

2
)n−1u(n− 1) + (n− 1)(

1

2
)n−2u(n− 2)

The ZSR is then given by

XZSR =
X(z)(z−1 − 1)

(z − 1
2
)2

=
z(z−1 − 1)

(z − 1
2
)2

= − 1

(z − 1
2
)2

= −(n− 1)(
1

2
)n−2u(n− 1)

The ZIR is given by

X(z) =
z2x(0) + zx(1)− zx(0)

(z − 1
2
)2

=
z

(z − 1
2
)2

= n(
1

2
)n−1u(n)

Finally the total solution is given by the sum of the ZIR and ZSR,

y(n) = yZIR(n) + yZSR(n)

=
[
n(

1

2
)n−1u(n)

]
−
[
(n− 1)(

1

2
)n−2u(n− 1)

]

= (
1

2
)n−2

[
1− n

2

]
u(n− 2) + δ(n− 1)

Now to check our answer, we know that x(0) = 0 and x(1) = 1. To generate the other values of
x(n), let’s rewrite the difference equation as

x(n + 2) = x(n+ 1)− 0.25x(n) + f(n− 1)− f(n)

and remember that f(n) = u(n) = 1 for n ≥ 0. Now we can make a table,
DE Prediction Closed Form

x(0) = 0 x(0) = 0
x(1) = 1 x(1) = 1

x(2) = x(1)− 1
4
x(0) + 0− 1 = 1− 0 + 0− 1 = 0 x(2) = (1

2
)0
[
1− 2

2

]
= 0

x(3) = x(2)− 1
4
x(1) + 1− 1 = −1

4
x(3) = (1

2
)1
[
1− 3

2

]
= −1

4

x(4) = x(3)− 1
4
x(2) + 1− 1 = −1

4
x(4) = (1

2
)2
[
1− 4

2

]
= −1

4

x(5) = x(4)− 1
4
x(3) + 1− 1 = −1

4
+ (1

4
)2 = −3(1

4
)2 x(5) = (1

2
)3
[
1− 5

2

]
= −3(1

2
)4

148

12.9 Asymptotic Stability

In continuous-time, asymptotic stability is based on the behavior of the impulse response as
t → ∞. There are three cases:

• If |h(t)| → ∞ as t → ∞, then the system is unstable. This means at least one pole of the
system is in the (open) right half plane.

• If |h(t)| → 0 as t → ∞, then the system is stable. This means all of the poles of the system
are in the (open) left half plane.

• If |h(t)| ≤ M for some constant M as t → ∞, then the system is marginally stable. This
means there are some isolated poles on the jω axis and, if there are poles not on the jω
axis these poles are in the left half plane.

We can easily modify these criteria to discrete-time, and look at the behavior of the impulse
response as k → ∞:

• If |h(k)| → ∞ as k → ∞, then the system is unstable. This means at least one pole of the
system is outside the unit circle (at least one pole has a magnitude larger than one.)

• If |h(k)| → 0 as k → ∞, then the system is stable.This means all of the poles of the system
are inside the unit circle (all poles have a magnitude less than one).

• If |h(k)| ≤ M for some constant M as k → ∞, then the system is marginally stable. This
means there are some isolated poles on the unit circle and, if there are poles not on the
unit circle these poles are inside the unit circle.

12.10 Mapping Poles and Settling Time

Let’s assume we have the continuous-time time transfer function

H(s) =
1

(s+ a)(s+ b)

with corresponding impulse response

h(t) =
1

b− a
e−atu(t) +

1

a− b
e−btu(t)

Now we will assume we sample this transfer function with sampling interval T , so we have

h(kT) =
1

b− a
e−akTu(kT) +

1

a− b
e−bkTu(kT)

Taking z-transforms of this we get

H(z) =
1

b− a

z

z − e−aT
+

1

a− b

z

z − e−bT

=
1

b− a

[
z

z − e−aT
− z

z − e−bT

]

=
1

b− a

z(z − e−bT)− z(z − e−aT)

(z − e−aT)(z − e−bT)

=
1

b− a

z(e−aT − e−bT)

(z − e−aT)(z − e−bT)

149

From this we notice two things:

• The continuous-time poles at −a and −b have been mapped to discrete-time poles at e−aT

and e−bT , where T is the sampling interval. Although we have only shown this for a system
with two poles, it is true in general.

• Although the continuous-time system has no finite zeros, the discrete-time system has a
zero at the origin. Although we know how the poles will map from continuous-time to
discrete-time, it is not as obvious how the zeros will map and/or if new zeros will be
introduced.

• If the dominant (real) pole in the continuous-time domain is at −a (|a| < |b|), the dominant
pole in the discrete-time domain will be at e−aT since e−bT < e−aT , i.e. the pole at e−bT is
closer to the origin than the pole at e−aT .

Next, let’s look at the continuous-time transfer function

H(s) =
1

s+ a

and it’s discrete-time equivalent

H(z) =
z

z − e−aT

In the continuous-time domain, the 2% settling-time is usually estimated to be four time con-
stants, so we would estimate Ts ≈ 4

a
. Hence to achieve a desired settling time we would need

a = 4
Ts
. The pole at −a is mapped to a pole at e−aT = e−4T/Ts in discrete-time. Hence to

achieve a settling time of Ts, any discrete-time pole p must have a magnitude less than or equal
to e−4T/Ts , or

|p| ≤ e−4T/Ts

We can rewrite this expression into a slightly more useful form as

Ts ≈ −4T

ln(|p|)
This form can be used to find the settling time for discrete-time poles.

Example. Assume we have the discrete-time transfer function H(z) = z
z−0.2

and we know
the sampling interval is T = 0.3 sec. What is the estimated (2%) settling time? Here

|p| = 0.2, so Ts ≈ −4(0.3)
ln(0.2)

= 0.745 seconds. To check this, we know the impulse response will be

h(k) = (0.2)ku(k). We have then h(0T) = 1, h(1T) = 0.2, h(2T) = 0.04, and h(3T) = 0.008.
Clearly the settling time is somewhere between 2T = 0.6 seconds and 3T = 0.9 seconds.

Example. Assume we have the discrete-time transfer function H(z) = z
z−0.67

and we know
the sampling interval is T = 0.1 seconds. What is the estimated (2%) settling time? Here

|p| = 0.67, so Ts ≈ −4(0.1)
ln(0.67)

= 0.998 seconds. To check this we know the impulse response will

be h(k) = (0.67)ku(k). We have then h(0T) = 1, h(1T) = 0.67, h(2T) = 0.449, h(3T) = 0.301,
h(4T) = 0.202, h(5T) = 0.135, h(6T) = 0.090, h(7T) = 0.061, h(8T) = 0.041, h(9T) = 0.027,

150

h(10T) = 0.0182. The settling time is approximately 10T = 1.0.

Example.Assume we have the discrete-time transfer functionH(z) = z
(z−0.1)(z+0.2+0.1j)(z+0.2−0.1j)

and we know the sampling interval is T = 0.25 seconds. What is the estimated (2%) settling
time? There are three poles in the system, one pole with magnitude 0.1 and two (complex
conjugate) poles with magnitude 0.2236. Just as from continuous-time, the dominant pole (or
poles) is the pole (or poles) with the slowest response time. In discrete-time, the further away
from the origin, the slower the response. Hence in this case the dominant poles are the complex
conjugate poles with magnitude |p| = 0.2236. Then Ts ≈ −4(0.25)

ln(0.2236)
= 0.667 seconds.

12.11 Sampling Plants with Zero Order Holds

Most of the system (plants) we will be trying to control in the world are inherently continuous-
time, and we would like to use discrete-time control. The biggest issue is how we are going to be
able to model the continuous-time plant as a discrete-time plant. The most common method is
to assume we have discrete-time signals, ud(kT), which we model as impulse signals which that
only exist at the sample times kT . Specifically, we can write ud(kT) as

ud(kT) = . . .+ ud(−T)δ(t+ T) + ud(0)δ(t) + ud(T)δ(t− T) + ud(2T)δ(t− 2T) + . . .

where the delta functions are continuous-time delta functions. This is shown graphically in
Figure 61.

−T

ud(−T)

0

ud(0)

T

ud(T)

2T

ud(2T)

3T

ud(3T)

4T

ud(4T)

5T

Figure 61: Impulse model of a discrete-time signal.

From these impulse signals we need to generate a continuous-time signal as an input to the
plant, Gp(s). The most common way to do this is by the use of a zero order hold (zoh), which
constructs a continuous-time signal by holding the value of u(kT) constant for time intervals
kT ≤ t < (k + 1)T . The impulse response of the zero order hold is gzoh(t) = u(t) − u(t − T).
Let’s call the continuous-time output of the zero order hold uc(t), so we have

uc(t) = gzoh(t) ∗ ud(kT)

= gzoh(t) ∗ [. . .+ ud(−T)δ(t+ T) + ud(0)δ(t) + ud(T)δ(t− T) + ud(2T)δ(t− 2T) + . . .]

= . . . gzoh(t) ∗ [ud(−T)δ(t+ T)] + gzoh(t) ∗ [ud(0)δ(t)] + gzoh(t) ∗ [ud(T)δ(t− T)] + . . .

151

−T

ud(−T)

0

ud(0)

T

ud(T)

2T

ud(2T)

3T

ud(3T)

4T

ud(4T)

5T

Figure 62: Continuous-time signal uc(t) as input to the plant. The value of the signal is held
constant over the sample interval T .

How let’s look at some of these convolutions,

gzoh(t) ∗ [ud(−T)δ(t+ T)] = ud(−T)gzoh(t) ∗ δ(t+ T) = ud(−T)gzoh(t+ T) = ud(−T)[u(t+ T)− u(t)]

gzoh(t) ∗ [ud(0)δ(t)] = ud(0)gzoh(t) ∗ δ(t) = ud(0)gzoh(t) = ud(0)[u(t)− u(t− T)]

gzoh(t) ∗ [ud(T)δ(t− T)] = ud(T)gzoh(t) ∗ δ(t− T) = ud(0)gzoh(t− T) = ud(T)[u(t− T)− u(t− 2T)]

Hence we have the input to the continuous-time plant

uc(t) = . . .+ ud(−T)[u(t+ T)−u(t)] +ud(0)[u(t)− u(t−T)]+ ud(T)[u(t−T)−u(t− 2T)]+ . . .

This is a staircase function, where we have ”filled in” the times between samples with the value
of the sample at the beginning of the interval. This is shown graphically in Figure 62. It should
be pointed out that a zero order hold is not the only method that can be used to convert a
discrete-time signal to a continuous-time signal, but it is the most commonly used method, and
is the method we will use when we convert continuous-time state equations to discrete-time
state equations.

Now that we know how to convert our discrete-time signal to a continuous-time signal for our
continuous-time plant, we need to figure out how to model the zero order hold and the plant as
an equivalent discrete-time plant. This will allow us to do all of our design in the discrete-time
domain. Figure 63 shows a simple single loop system.

152

What we want is the discrete-time transfer function that corresponds to the productGzoh(s)Gp(s),
or

Gp(z) = Z {Gzoh(s)Gp(s)}
Using properties of the Laplace transform we have

Gzoh(s) = L{gzoh(t)} = L{u(t)− u(t− T)} =
1

s
− e−sT

s

So we have

Gp(z) = Z
{[

1

s
− e−sT

s

]
Gp(s)

}

We can use this formula directly, but it there is a common trick we can use to make things a
bit easier. Let’s write

Gzoh(s)Gp(s) =

[
1

s
− e−sT

s

]
Gp(s) =

[
1− e−sT

]
Gi(s)

where we have defined

Gi(s) =
Gp(s)

s

Now we know from Laplace transforms that e−sT corresponds to a time delay of T , hence we
have

L−1
{
e−sTGi(s)

}
= gi(t− T)

and then taking z-transforms

Z {gi(t− T)} = Z {gi(kT − T)} = z−1Gi(z)

Where
Gi(z) = Z {gi(kT)}

Finally, we will use the Linearity property of the z-transform,

Gp(z) = Z
{
Gi(s)− e−sTGi(s)

}
= Gi(z)− z−1Gi(z) =

[
1− z−1

]
Gi(z)

R(z) Gp(z) Gc(z) Gzoh(s) Gp(s)
Y(z)

H(z)

++

-

Σ

}Gp(z)

Figure 63: Discrete-time closed loop control system with a zero order hold and a continuous-time
plant. We want the equivalent discrete-time plant Gp(z).

153

which is the answer we want. In summary, the discrete-time transfer function that models the
zero order hold and the continuous- time plant is given by

Gp(z) =
[
1− z−1

]
Z
{
Gp(s)

s

}

Example. Consider the continuous-time plant with transfer function Gp(s) =
1

s+1
. What is the

equivalent discrete-time transfer function for the plant in series with a zero order hold? We have

Gp(z) =
[
1− z−1

]
Z
{

1

s(s+ 1)

}

so

Gi(s) =
1

s(s+ 1)
=

1

s
− 1

s+ 1

and
gi(t) = u(t)− e−tu(t)

The sampled version is given as

gi(kT) = u(kT)− e−kTu(kT)

with z-transform

Gi(z) =
z

z − 1
− z

z − e−T
=

z(1− e−T)

(z − 1)(z − e−T)

Finally, we have

Gp(z) =
z − 1

z
Gi(z) =

1− e−T

z − e−T

Example. Consider the continuous-time plant with transfer function Gp(s) =
1
s
. What is the

equivalent discrete-time transfer function for the plant in series with a zero order hold?We have

Gp(z) =
[
1− z−1

]
Z
{
1

ss

}
so

Gi(s) =
1

s2

and
gi(t) = tu(t)

The sampled version is given as
gi(kT) = kTu(kT)

with z-transform

Gi(z) =
Tz

(z − 1)2

Finally, we have

Gp(z) =
z − 1

z
Gi(z) =

T

z − 1

154

12.12 Final Notes

We have focused on using transfer functions in terms of z, such as

H(z) =
K(z − a)(z − b)

(z − c)(z − d)
=

K(z2 − (a + b)z + ab)

z2 − (c+ d)z + cd

This form is useful for determining poles and zeros and determining the time-response of the sys-
tem. However, when implementing controllers (filters) in discrete-time, it is far more convenient
to write things in terms of z−1, which represents a delay of one time sample. For implementation
purposes, we would write this transfer function as

H(z) =
K(1− (a+ b)z−1 + abz−2)

1− (c+ d)z−1 + cdz−2
=

K(1− az−1)(1− bz−1)

(1− cz−1)(1− dz−1)

You should be prepared to see and deal with the two equivalent forms of writing the transfer
function.

155

13 Transfer Function Based Discrete-Time Control

Just as with continuous-time control, we can choose to utilize a transfer function approach or
a state variable approach to control. In this chapter we will utilize the transfer function ap-
proach, while in the remainder of these notes we will utilize the state variable approach. In
this brief chapter we first discuss implementing discrete-time transfer functions, then talk about
some common conventions used in control systems, and then discuss common control algorithms.

13.1 Implementing Discrete-Time Transfer Functions

Just as in continuous-time we will represent signals in either the time domain or the transform
domain, which in this case is the z-transform domain. A simple input-output transfer function
block is shown in Figure 64. While in the continuous time-domain it might be somewhat difficult
to solve for the output in terms of the input in the time-domain, in the discrete-time domain
we can just use the recursive relationship from the transfer function. Specifically, if we have the
transfer function G(z), then we can write it as

G(z) =
Y (z)

U(z)
=

b0 + b1z
−1 + b2z

−2 + · · ·+ bmz
−m

1 + a1z−1 + a2z−2 + · · ·+ anz−n

where n ≥ m. Converting this to the time domain, the output y(k) can be written in terms of
previous output values and the current and previous input values as

y(k) = −a1y(k − 1)− a2y(k − 2) + · · · − any(k − n) + b0u(k) + b1u(k − 1) + ... + bmu(k −m)

This is an Infinite Impulse Response (IIR) filter, since the output at any time depends on both
previous outputs and previous inputs. If the output depended only on previous inputs it would
be a Finite Impulse Response (FIR) filter.

G(z) Y(z)U(z)

Figure 64: Discrete-time transfer function, G(z) = Y (z)
U(z)

. Discrete-time transfer functions are
often implemented in terms of the difference equation they represent.

13.2 Not Quite Right

At this point we need to stop and think a little bit about what we are doing, and the common
conventions used in control systems. Let’s assume we have a simplified version of the above
expression, which we will write using the explicit dependence on the sample interval T ,

y(kT) = −a1y((k − 1)T) + b0u(kT) + b1u((k − 1)T)

156

Now we have to examine what do we mean by y(kT). Does this mean that this value of y is
known at the beginning of the sample interval? This would appear to be correct, but then there
is a problem. How can y(kT) be the value of y at the beginning of the sample interval and
yet it depends on u(kT), the input at the beginning of the sample interval? Logically, we need
to know the value of the input at the beginning of the sample interval u(kT) and then we can
compute y(kT). There are two ways around this problem. The first, and cleanest, approach is
to assume that b0 = 0. This means the output at time kT only depends on the previous outputs
and previous inputs. Alas, in case you have not noticed, people in controls really just want to
screw with your mind, so this is not the usual assumption. In controls we usually assume that
as long as y is known by the end of the interval (before the next sample time), then it is ok to
call it y(kT). Thus, for our example, we might assume u(kT), u((k− 1)T), and y((k− 1)T) are
known at time kT . We then do some calculations to compute y, and if these calculations are
finished before the next sample interval, we will call this output value y(kT). When we deal
with state variable feedback systems, we will see how we can account for this delay if we want
to. Next, we want to look at a basic control loop.

A common configuration for a discrete-time control system is shown in Figure 65. In this simple
figure there is a discrete-time prefilter, a discrete-time controller, and a discrete-time represen-
tation of a plant. In this figure, we are representing all of the signals in the z-domain, as is the
usual custom. In Figure 66 we have represented the signals in the discrete-time domain. If you
think about this figure for a while, it should begin to be a little bit disturbing. Why? Well,
e(kT) = Gpfr(kT)− y(kT), e(k) is the input to the controller which produces the control signal
u(kT), which goes into the plant to produce the output y(kT). So now we have y(kT) depends
on e(kT) which depends on y(kT). Simulink refers to this as an algebraic loop. Often in control
systems, if the sampling interval is small enough, then y(kT) is very close to y((k − 1)T) and
y((k+ 1)T), so this approximation is not too far off, and the notation is much easier. For some
parts of this course, however, we will explicitly insert a delay between the output and the error
signal, so the error will be e(k) = Gpfr(k)− y(k − 1), as is shown in Figure 67. Next we need
to discuss some common control configurations.

R(z) Gpf Gc(z) Gp(z)
Y(z)++

-

Σ
E(z) U(z)

Figure 65: A common discrete-time feedback system written in the z-domain.

13.3 PID and Constant Prefilters

We will first determine how to compute the value of the constant prefilter, though it is generally
better to include an integrator in your system than to depend on a prefilter. For the configuration

157

R(kT) Gpf Gc(z) Gp(z)
y(kT)++

-

Σ
e(kT) u(kT)

Figure 66: A common discrete-time feedback system written in the time domain.

R(z) Gpf Gc(z) Gp(z)
Y(z)

z-1

++

-

Σ
E(z) U(z)

Figure 67: A common discrete-time feedback system written with a delay between the output
signal and the error signal.

in Figure 68 we have the closed loop transfer function

G0 =
GpfGc(z)Gp(z)

1 +H(z)Gc(z)Gp(z)

Assuming the system is stable, the final value for a unit step input is determined by

lim
t→∞ y(t) = lim

z→1

z − 1

z
G0(z)R(z)

= lim
z→1

z − 1

z
G0(z)

z

z − 1
= G0(1)

If the input is a unit step, then we want limt→∞ y(t) = 1, so we want G0(1) = 1. Solving for the
prefilter we have

Gpf =
1 +Gc(1)Gp(1)H(1)

Gc(1)Gp(1)

Now will determine the discrete-time form of a PID controller. For a proportional controller,
the control signal is directly proportional to the error signal, so we have

U(z) = kpE(z)

or

Gc(z) =
U(z)

E(z)
= kp

158

R(z) Gpf Gc(z) Gp(z)
Y(z)

H(z)

++

-

Σ
E(z) U(z)

Figure 68: A general discrete-time feedback system written in the z-domain.

which is the same form as we have in continuous time. For an integral controller it is probably
easiest to start with the continuous-time form,

Gc(s) = ki
1

s

In the previous chapter we have the relationship

1

s
↔ u(t) = u(kT) ↔ z

z − 1
=

1

1− z−1

So a discrete-time integral controller has the form

Gc(z) = ki
1

1− z−1

Finally, to get a derivative controller, we start with a simple approximation of a derivative, and
then take the z-transform,

u(t) = kdė(t)

≈ kd
e(kT)− e((k − 1)T)

T

or

U(z) = ≈ kd
E(z)− z−1E(z)

T

=
kd
T
(1− z−1)E(z)

It is common to just remove the explicit dependence on the sample interval and just write the
derivative controller as

Gc(z) = kd(1− z−1)

It should be somewhat comforting that our approximation for the derivative is the inverse
(reciprocal) of our expression for the integral. Finally, we can write our discrete-time PID
controller as

Gc(z) = kp + ki
1

1− z−1
+ kd(1− z−1)

159

Often root locus methods are used for designing closed loop control systems. The construction
of the root locus plot is identical to that for continuous-time systems, but the interpretation
is different. For continuous-time systems, the system is stable if the poles of the closed loop
system are all in the open left-half plane, while for discrete-time systems the system is stable is
the poles of the closed loop system are inside the open unit circle. For a continuous-time system,
the further the poles are from the jω axis, the faster the response is, while for discrete-time
systems, the closer to the origin the poles are the faster the response is.

160

14 System Sensitivity

There are generally two kinds of sensitivity used in control systems. The first type of sensitivity
refers to the sensitivity of a system to variations in a parameter or transfer function. (This
type of sensitivity is important to study since we need to be able to determine how to design
a control system to reduce the sensitivity of the system to changes in the plant, since we often
have to estimate the plant and this estimation will contain some errors.) The other type of
sensitivity usually refers to how sensitive the system is to outside disturbances. Again, this is
important to understand so we can design a control system to reduce the effects of external
disturbances. Finally, it is important to understand that sensitivity is a function of frequency,
and you need to understand the range of frequencies you expect to be operating your system
under (i.e., the frequency content of the input signal). For example, a system may be very
sensitive to a parameter at frequencies near 100 Hz, but if your system is typically operating in
the 1-10 Hz range this sensitivity is not very important.

14.1 Sensitivity to Parameter Variations

The system’s sensitivity to changes in a parameter α is defined as the ratio of the percentage
change in the system transfer function G0(s) to the percentage change in the parameter α to its
nominal value α0. Note that α may itself be a transfer function or a block in the block diagram
representation of a system.

To mathematically define the sensitivity, let’s denote the system transfer function as

G0(s) =
N0(s)

D0(s)

Then, the sensitivity of G0 with respect to changes in α is

SG0
α (s) =

ΔG0(s)/G0(s)

Δα/α

∣∣∣∣∣
α0

=
α

G0(s)

ΔG0(s)

Δα

∣∣∣∣∣
α0

=
α

G0(s)

∂G0(s)

∂α

∣∣∣∣∣
α0

A simpler formula for this can be derived as follows:

∂G0(s)

∂α
=

∂

∂α

N0(s)

D0(s)

=
D0(s)

∂N0(s)
∂α

−N0(s)
∂D0(s)

∂α

D0(s)2

=
1

D0(s)

∂N0(s)

∂α
− N0(s)

D0(s)2
∂D0(s)

∂α

=
N0(s)

D0(s)

(
1

N0(s)

∂N0(s)

∂α
− 1

D0(s)

∂D0(s)

∂α

)

161

Hence

SG0
α (s) =

α

G0(s)

∂G0(s)

∂α

∣∣∣∣∣
α0

=
α

G0(s)
G0(s)

(
1

N0(s)

∂N0(s)

∂α
− 1

D0(s)

∂D0(s)

∂α

)∣∣∣∣∣
α0

or

SG0
α (s) =

(
α

N0(s)

∂N0(s)

∂α
− α

D0(s)

∂D0(s)

∂α

)∣∣∣∣∣
α0

It is important to note that:

• The sensitivity is really a function of frequency s = jω, and we normally look at the
magnitude as a function of frequency,

∣∣∣SG0
α0

(jω)
∣∣∣

• We are looking at variations from the nominal values of α0

Example 1. Consider the closed-loop system shown below:

���
�	

�
K

1
ω2n

s2+ 2ζ
ωn

s+1
�

�

+
-

where the nominal values of the parameters are ωn = 20, ζ = 0.1, and K = 0.1. To compute
the sensitivity of the closed-loop system to variations in ωn (from the nominal value) we first
determine the close loop transfer function

G0(s) =
K

1
ω2
n
s2 + 2ζ

ωn
s+ 1 +K

=
Kω2

n

s2 + 2ζωns+ ω2
n(K + 1)

Hence

N0(s) = Kω2
n

D0(s) = s2 + 2ζωns+ ω2
n(K + 1)

162

We then compute

∂N0(s)

∂ωn
= 2ωnK

∂D0(S)

∂ωn
= 2ζs+ 2ωn(K + 1)

SG0
ωn

(s) =

(
ωn

N0(s)

)
(2ωnK) +

(
ωn

D0(s)

)
[2ζs+ 2ωn(K + 1)]

=
2ω2

nK

ω2
nK

− 2ζωns+ 2ω2
n(K + 1)

s2 + 2ζωns+ ω2
n(K + 1)

= 2− 2ζωns+ 2ω2
n(K + 1)

s2 + 2ζωns+ ω2
n(K + 1)

=
[2s2 + 4ζωns+ 2ω2

n(K + 1)]− [2ζωns+ 2ω2
n(K + 1)]

s2 + 2ζωns+ ω2
n(K + 1)

=
2s2 + 2ζωns

s2 + 2ζωns+ ω2
n(K + 1)

In terms of frequency this is

SG0
ωn

(jω) =
−2ω2 + 2jζωnω

−ω2 + j2ζωnω + ω2
n(K + 1)

In terms of the magnitude this is

∣∣∣SG0
ωn

(jω)
∣∣∣ =

√
(2ω2)2 + (2ζωnω)2√

(ω2
n(K + 1)− ω2)2 + (2ζωnω)2

Figure 69 shows a graph of the sensitivity function |SG0
ωn
(jω)| as a function of frequency, for the

nominal values K = 0.1, ωn = 20, and ζ = 0.1. As the figure shows, the system is not very
sensitive to changes in ωn until ω is around 10 rad/sec.

Example 2. Consider the following two systems, the first is an open-loop system with a prefilter
(Gpf) and controller (Gc(s)) before the plant (Gp(s)), and the second is a closed-loop system
with a prefilter outside of the closed-loop and a controller inside the loop before the plant. Let’s

163

10
0

10
1

10
2

0

2

4

6

8

10

12

Frequency (rad/sec)

S
en

si
tiv

ity
, S

G ω
n

Figure 69: The sensitivity function of Example 1, SG0
ωn

(jω)|, as a function of frequency for the
nominal values K = 0.1, ωn = 20, and ζ = 0.1.

examine the sensitivity of each system to variations in the prefilter and controller.

R(s)
� Gpf � Gc(s) � Gp(s) �

Y (s)

R(s)
� Gpf

���
��

� Gc(s) � Gp(s) �
Y (s)

�

+-

First we need to determine expressions for the transfer function between the input R(s) and
output Y (s) for the two systems. For the open-loop system we have

Gopen
0 (s) = Gpf(s)Gc(s)Gp(s)

while for the closed-loop system we have

Gclosed
0 (s) =

Gpf(s)Gc(s)Gp(s)

1 +Gc(s)Gp(s)

164

Let’s first compute the sensitivity to variations in the prefilter, Gpf(s). For the open-loop system

S
Gopen

0
Gpf

=
Gpf(s)

N0(s)

∂N0(s)

∂Gpf(s)
− Gpf(s)

D0(s)

∂D0(s)

∂Gpf(s)

=
Gpf(s)

Gpf(s)Gc(s)Gp(s)
Gc(s)Gp(s)− 0

= 1

For the close loop system

S
Gclosed

0
Gpf

=
Gpf(s)

N0(s)

∂N0(s)

∂Gpf (s)
− Gpf(s)

D0(s)

∂D0(s)

∂Gpf (s)

=
Gpf(s)

Gpf(s)Gc(s)Gp(s)
Gc(s)Gp(s)− 0

= 1

Hence both the open and closed-loop systems are equally sensitive to variations in the prefilter
Gpf(s). This is because the prefilter is outside of the close loop. Feedback cannot help compensate
for variations outside of the closed-loop!
Now let’s compute the sensitivity to variations in the plant, Gp(s). For the open-loop system

S
Gopen

0
Gp

=
Gp(s)

N0(s)

∂N0(s)

∂Gp(s)
− Gp(s)

D0(s)

∂D0(s)

∂Gp(s)

=
Gp(s)

Gpf(s)Gc(s)Gp(s)
Gpf(s)Gc(s)− 0

= 1

For the close loop system

S
Gclosed

0
Gp

=
Gp(s)

N0(s)

∂N0(s)

∂Gp(s)
− Gp(s)

D0(s)

∂D0(s)

∂Gp(s)

=
Gp(s)

Gpf(s)Gc(s)Gp(s)
Gpf(s)Gc(s)− Gp(s)

1 +Gc(s)Gp(s)
Gc(s)

= 1− Gc(s)Gp(s)

1 + Gc(s)Gp(s)

=
[1 +Gc(s)Gp(s)]− [Gc(s)Gp(s)]

1 +Gc(s)Gp(s)

=
1

1 +Gc(s)Gp(s)

In order to reduce the sensitivity of the system to variations in the plant, we want |1 +
Gc(jω)Gp(jω)| to be large. In this case, the closed-loop system can be made much less sen-
sitive to variations in the plant than the open-loop systems. This is because the plant is inside
of the close loop. Feedback can help compensate for parameter/plant variations inside of the
closed-loop!

165

14.2 Sensitivity to External Disturbances

In addition to the sensitivity of a system to variation in a parameter, we need to also look at
the sensitivity of a system to external disturbances. The two most common models of external
disturbances are (1) a disturbance that changes the controlled variable, and (2) additive noise
in a sensor. Consider the system shown below, with additive disturbances D(s), which models
an output disturbance, and N(s), which models a noise disturbance. When analyzing each of
these disturbances we assume there is only one input to the system at a time.

R(s)
� Gpf

���
��

�
E(s)

Gc(s) � Gp(s) ���
��
++ �

Y (s)�

D(s)

�

��
��
++� N(s)

�

+-

For the output disturbance, we compute the transfer function from D(s) to Y (s) (assuming
N(s) and R(s) are zero) as

E(s) = 0− Y (s)

Y (s) = E(s)Gc(s)Gp(s) +D(s)

= −Gc(s)Gp(s)Y (s) +D(s)

or the closed-loop transfer function from D(s) to Y (s) is

GD
0 (s) =

1

1 +Gc(s)Gp(s)

Hence, to reduce the sensitivity of the system to output disturbances, we need |1+Gc(jω)Gp(jω)|
to be large. This is the same condition we had to reduce the system’s sensitivity to variations
in Gp(s).

For the noise disturbance, we compute the transfer function from N(s) to Y (s) (assuming D(s)
and R(s) are zero) as

E(s) = 0− [N(s) + Y (s)]

Y (s) = E(s)Gc(s)Gp(s)

= −Gc(s)Gp(s)Y (s)−Gc(s)Gp(s)N(s)

or the closed-loop transfer function from N(s) to Y (s) is

GN
0 (s) =

−Gc(s)Gp(s)

1 +Gc(s)Gp(s)

Hence to reduce the sensitivity of the system to noise disturbances we need |Gc(jω)Gp(jω)| to be
small. This is essentially the opposite of the condition we need to reduce the system sensitivity
to variations in Gp(s) or to output disturbances.

166

14.3 Summary

There are generally two kinds of sensitivity used in control systems. The first type of sensitivity
refers to the sensitivity of a system to variations in a parameter or transfer function. We compute
this sensitivity as

SG0
α (s) =

(
α

N0(s)

∂N0(s)

∂α
− α

D0(s)

∂D0(s)

∂α

)∣∣∣∣∣
α0

We usually compute the sensitivity as a function of frequency, ω,
∣∣∣SG0

α0
(jω)

∣∣∣. We are generally
only concerned with the sensitivity within a range of frequencies that our system will be oper-
ating in. From the examples we see that, from a system sensitivity view, a closed-loop system
has no advantages over an open-loop system for parameters or transfer functions outside the
feedback loop. For a closed-loop system with plant Gp(s), to minimize the sensitivity of the
closed-loop system to variations in the plant we want |1 +Gc(jω)Gp(jω)| to be large.

The other type of sensitivity usually refers to how sensitive the system is to output distur-
bances or noise disturbances. To reduce the effects of output disturbances, we again want |1 +
Gc(jω)Gp(jω)| to be large. To reduce the effects of noise disturbances we want |Gc(jω)Gp(jω)|
to be small. These are contradictory conditions. The relative importance of the different dis-
turbances depends on the particular system being analyzed.

167

15 State Variables and State Variable Feedback

Consider the model of the rectilinear spring-mass-damper system we have been using in lab.

c

m

k k1 2

1

1

F(t)

x (t)1

The equations of motion can be written

m1ẍ1(t) + c1ẋ1(t) + (k1 + k2)x1(t) = F (t)

or

1

ω2
n

ẍ1(t) +
2ζ

ωn
ẋ1(t) + x1(t) =

1

k1 + k2
F (t) ≡ Kstaticu(t)

where u(t) is the motor input in volts, and Kstatic is the static gain for the system. Note that
this gain also includes the open-loop motor gain. We can also write this as

ẍ(t) + 2ζωnẋ(t) + ω2
nx(t) = ω2

nKstaticu(t)

We can then take Laplace transforms to get the transfer function

Gp(s) =
X1(s)

U(s)
=

Kstatic

1
ω2
n
s2 + 2ζ

ωn
s+ 1

We can also write the model in state variable form. For linear, time-invariant models, a state
variable model has the general form

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

where x(t) is the state vector, u(t) is the input vector, y(t) is the output vector, and A,B,C,
and D are constant matrices.

For our system, let’s let q1(t) = x(t) and q2(t) = ẋ(t). Then we can write

q̇1(t) = q2(t)

q̇2(t) = −2ζωnẋ(t)− ω2
nx(t) + ω2

nKstaticu(t)

= −2ζωnq2(t)− ω2
nq1(t) + ω2

nKstaticu(t)

= −ω2
nq1(t)− 2ζωnq2(t) + ω2

nKstaticu(t)

168

u(t)
� B

� D

�
���

��
�

ẋ(t)
1
s

�
x(t)

C ���
��
++ �

y(t)

�A

�

++

Figure 70: General state variable form for an open-loop plant

�
U(s)

Gp(s) �
Y (s)

Figure 71: General transfer function form for an open-loop plant

If the output is considered to be the position of the cart, the correct state variable form is

d

dt

[
q1(t)
q2(t)

]
=

[
0 1

−ω2
n −2ζωn

] [
q1(t)
q2(t)

]
+

[
0

ω2
nKstatic

]
u(t)

y(t) = [1 0]

[
q1(t)
q2(t)

]

If the output was considered to be the velocity of the cart, the output equation would be

y(t) = [0 1]

[
q1(t)
q2(t)

]

while, if both the position of the cart and the velocity of the cart were the desired outputs, the
output equation would be

y(t) =

[
1 0
0 1

] [
q1(t)
q2(t)

]

We would like to be able to go between a state variable model of a system to a transfer function
model. Each type of model has its benefits. Figure 70 shows the general form for an open-loop
state variable model of a plant, while Figure 71 shows the equivalent transfer function form.

169

15.1 State Variable to Transfer Function Model

Assume we have the state variable description written in scalar form:

ẋ1(t) = a11x1(t) + a12x2(t) + b1u(t)

ẋ2(t) = a21x1(t) + a22x2(t) + b2u(t)

y(t) = c1x1(t) + c2x2(t) + du(t)

In matrix/vector form, this is[
ẋ1(t)
ẋ2(t)

]
=

[
a11 a12
a21 a22

] [
x1(t)
x2(t)

]
+

[
b1
b2

]
u(t)

y(t) =
[
c1 c2

] [x1(t)
x2(t)

]
+ [d]u(t)

or

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

Taking the Laplace transform of the scalar equations (assuming zero initial conditions) we get[
sX1(s)
sX2(s)

]
=

[
a11 a12
a21 a22

] [
X1(s)
X2(s)

]
+

[
b1
b2

]
U(s)

Y (s) =
[
c1 c2

] [X1(s)
X2(s)

]
+ [d]U(s)

We can write this new system of equations in matrix form as

sX(s) = AX(s) +BU(s)

Y (s) = CX(s) +DU(s)

We can rewrite the first equation as

(sI − A)X(s) = BU(s)

or

X(s) = (sI − A)−1BU(s)

We can then solve for Y (s) as

Y (s) =
[
C(sI − A)−1B +D

]
U(s)

or

Y (s) = G(s)U(s)

170

Hence, the transfer function (or transfer matrix, if there is more than one input or output), is
given by

G(s) =
[
C(sI −A)−1B +D

]
In going from a state variable model to a transfer function model, you need to be able to compute
the inverse of a matrix. You are expected to be able to compute the inverse of a 2x2 matrix
without a computer (or calculator). If matrix P is given as

P =

[
a b
c d

]

then

P−1 =
1

ad− bc

[
d −b
−c a

]

and the determinant of P is given by ad− bc.

Example 1. Assume we have the state variable model

ẋ =

[
1 0
2 3

]
x+

[
5
0

]
u

y = [1 2] x

and we want to find the transfer function model. We need to compute

G(s) =
[
C(sI −A)−1B +D

]
First we compute sI − A as

sI − A =

[
s 0
0 s

]
−
[
1 0
2 3

]
=

[
s− 1 0
−2 s− 3

]

Next we compute

(sI −A)−1 =
1

(s− 1)(s− 3)− (−2)(0)

[
s− 3 0
2 s− 1

]

then

C (sI − A)−1 = [1 2]
1

(s− 1)(s− 3)

[
s− 3 0
2 s− 1

]

=
1

(s− 1)(s− 3)
[(1)(s− 3) + (2)(2) (1)(0) + (2)(s− 1)]

=
1

(s− 1)(s− 3)
[s+ 1 2s− 2]

171

and finally

G(s) = C (sI − A)−1B

=
1

(s− 1)(s− 3)
[s+ 1 2s− 2]

[
5
0

]

=
1

(s− 1)(s− 3)
[5(s+ 1) + 0(2s− 2)]

=
5(s+ 1)

(s− 1)(s− 3)

The poles of the transfer function are at 1 and 3, and there is a zero at -1. The system is clearly
unstable.

Example 2. Assume we have the state variable model

ẋ =

[
1 0
0 0

]
x+

[
1
1

]
u

y = [1 2] x

and we want to find the transfer function model. We need to compute

G(s) =
[
C(sI −A)−1B +D

]
First we compute sI − A as

sI − A =

[
s 0
0 s

]
−
[
1 0
0 0

]
=

[
s− 1 0
0 s

]

Next we compute

(sI −A)−1 =
1

(s− 1)(s)− (0)(0)

[
s 0
0 s− 1

]

then

C (sI − A)−1 = [1 2]
1

s(s− 1)

[
s 0
0 s− 1

]

=
1

s(s− 1)
[(1)(s) (2)(s− 1)]

=
1

s(s− 1)
[s 2s− 2]

and finally

G(s) = C (sI − A)−1B

=
1

s(s− 1)
[s 2s− 2]

[
1
1

]

=
1

s(s− 1)
[s+ (2s− 2)]

=
3s− 2

s(s− 1)

172

�
r(t)

Gpf
���

��u(t)
� B

� D

�
���

��
�

ẋ(t)
1
s

�
x(t)

C ���
��
++ �

y(t)

�A

�

++

�K

�

+-

Figure 72: State variable model of a plant with state variable feedback.

The poles of the transfer function are at 0 and 1, and there is a zero at −2
3
. The system is

clearly unstable.

15.2 State Variable Feedback

Up to this point, we have shown how we can go from a state variable description of an open-
loop system to a transfer function model. In particular, we can model a plant using either a
transfer function description or a state variable description. We can then implement any of the
single-input single-output controllers we have been utilizing in this course. However, each of
these methods assumes we are feeding back only one variable, usually the output. However, a
state variable model allows us a much more powerful method of control, that of feeding back all
of the states, which is called state variable feedback.

Let’s assume the input to the plant, u(t), is the difference between the scaled reference input,
Gpfr(t), and scaled states, Kx(t), or

u(t) = Gpfr(t)−Kx(t)

Here Gpf is a prefilter, much like we used Gpf(s) for the transfer function feedback systems.
Figure 72 displays a state variable model of a plant with state variable feedback.

With the state variable feedback the state equations become

ẋ(t) = Ax(t) +Bu(t)

= Ax(t) +B [Gpfr(t)−Kx(t)]

= [A− BK] x(t) + [BGpf] r(t)

= Ãx(t) + B̃r(t)

173

where

Ã = [A− BK]

B̃ = BGpf

The output equation is then

y(t) = Cx(t) +Du(t)

= Cx(t) +D [Gpfr(t)−Kx(t)]

= [C −DK] x(t) + [DGpf] r(t)

= C̃x(t) + D̃r(t)

where

C̃ = [C −DK]

D̃ = DGpf

Under most circumstances D = 0 so C̃ = C and D̃ = 0.

The new input to our system is r(t). The transfer function between the input R(s) and the
output Y (s) for the state variable model with state variable feedback is given by

G(s) = C̃
(
sI − Ã

)−1
B̃ + D̃

Example 3. Assume we again have the state variable model

ẋ =

[
1 0
2 3

]
x+

[
5
0

]
u

y = [1 2] x

but now we have state variable feedback. We want to find the transfer function model for the
system with the state variable feedback. We need to compute

G(s) =
[
C̃(sI − Ã)−1B̃ + D̃

]
First we compute

Ã = A−BK =

[
1 0
2 3

]
−
[
5
0

]
[K1 K2]

=

[
1 0
2 3

]
−
[
5K1 5K2

0 0

]

=

[
1− 5K1 −5K2

2 3

]

and

B̃ = BGpf =

[
5Gpf

0

]

174

Since D = 0 we have C̃ = C and D̃ = 0.

Next we compute

sI − Ã =

[
s 0
0 s

]
−
[
1− 5K1 −5K2

2 3

]

=

[
s− 1 + 5K1 5K2

−2 s− 3

]

and

(
sI − Ã

)−1
=

1

(s− 1 + 5K1)(s− 3)− (−2)(5K2)

[
s− 3 −5K2

2 s− 1 + 5K1

]

At this point it is probably easiest to postmultiply by B̃ first

(
sI − Ã

)−1
B̃ =

1

(s− 1 + 5K1)(s− 3)− (−2)(5K2)

[
s− 3 −5K2

2 s− 1 + 5K1

] [
5Gpf

0

]

=
1

(s− 1 + 5K1)(s− 3) + 10K2

[
5Gpf(s− 3)

10Gpf

]

Finally, premultiplying by C we get

G(s) = [1 2]
1

(s− 1 + 5K1)(s− 3) + 10K2

[
5Gpf(s− 3)

10Gpf

]

=
5Gpf(s− 3) + (2)(10Gpf)

(s− 1 + 5K1)(s− 3) + 10K2

=
Gpf5(s+ 1)

s2 + (5K1 − 4)s+ (10K2 − 15K1 + 3)

You should note

• the state variable feedback did not change the zeros of the system

• Gpf is just a scaling factor

• For K1 = K2 = 0 (open-loop) and Gpf = 1 (no prefilter), we get

G(s) =
5(s+ 1)

(s− 1)(s− 3)

as before.

Example 4. Assume we again have the state variable model

ẋ =

[
1 0
0 0

]
x+

[
1
1

]
u

y = [1 2] x

175

but now we have state variable feedback. We want to find the transfer function model for the
system with the state variable feedback. We need to compute

G(s) =
[
C̃(sI − Ã)−1B̃ + D̃

]
First we compute

Ã = A−BK =

[
1 0
0 0

]
−
[
1
1

]
[K1 K2]

=

[
1 0
0 0

]
−
[
K1 K2

K1 K2

]

=

[
1−K1 −K2

−K1 −K2

]

and

B̃ = BGpf =

[
Gpf

Gpf

]

Since D = 0 we have C̃ = C and D̃ = 0.

Next we compute

sI − Ã =

[
s 0
0 s

]
−
[
1−K1 −K2

−K1 −K2

]

=

[
s− 1 +K1 K2

K1 s+K2

]

and (
sI − Ã

)−1
=

1

(s− 1 +K1)(s+K2)− (K1)(K2)

[
s+K2 −K2

−K1 s− 1 +K1

]

At this point it is probably easiest to postmultiply by B̃ first

(
sI − Ã

)−1
B̃ =

1

(s− 1 +K1)(s+K2)−K1K2

[
s+K2 −K2

−K1 s− 1 +K1

] [
Gpf

Gpf

]

=
Gpf

(s− 1 +K1)(s+K2)−K1K2

[
s

s− 1

]

Finally, premultiplying by C we get

G(s) = [1 2]
Gpf

(s− 1 +K1)(s+K2)−K1K2

[
s

s− 1

]

=
Gpf(3s− 2)

(s− 1 +K1)(s+K2)−K1K2

=
Gpf(3s− 2)

s2 + (K1 +K2 − 1)s−K2

You should note

176

• the state variable feedback did not change the zeros of the system

• Gpf is just a scaling factor

• For K1 = K2 = 0 (open-loop) and Gpf = 1 (no prefilter), we get

G(s) =
3s− 2

s(s− 1)

as before.

Example 5. Assume we have the state variable model

ẋ =

[
1 0
0 1

]
x+

[
1
2

]
u

y = [3 4] x

We want to find the transfer function model for the system with the state variable feedback.
We need to compute

G(s) =
[
C̃(sI − Ã)−1B̃ + D̃

]
First we compute

Ã = A−BK =

[
1 0
0 1

]
−
[
1
2

]
[K1 K2]

=

[
1 0
0 1

]
−
[

K1 K2

2K1 2K2

]

=

[
1−K1 −K2

−2K1 1− 2K2

]

and

B̃ = BGpf =

[
Gpf

2Gpf

]

Since D = 0 we have C̃ = C and D̃ = 0.

Next we compute

sI − Ã =

[
s 0
0 s

]
−
[
1−K1 −K2

−2K1 1− 2K2

]

=

[
s− 1 +K1 K2

2K1 s− 1 + 2K2

]

and

(
sI − Ã

)−1
=

1

(s− 1 +K1)(s− 1 + 2K2)− (2K1)(K2)

[
s− 1 + 2K2 −K2

−2K1 s− 1 +K1

]

177

Let’s postmultiply by B̃ first

(
sI − Ã

)−1
B̃ =

1

(s− 1 +K1)(s− 1 + 2K2)− (2K1)(K2)

[
s− 1 + 2K2 −K2

−2K1 s− 1 +K1

] [
Gpf

2Gpf

]

=
Gpf

(s− 1 +K1)(s− 1 + 2K2)− 2K1K2

[
s− 1
2s− 2

]

Finally, premultiplying by C we get

G(s) = [3 4]
Gpf

(s− 1 +K1)(s− 1 + 2K2)− 2K1K2

[
s− 1
2s− 2

]

=
Gpf [3(s− 1) + 4(2s− 2)]

(s− 1 +K1)(s− 1 + 2K2)− 2K1K2

=
11Gpf(s− 1)

(s− 1 +K1)(s− 1 + 2K2)− 2K1K2

=
11Gpf(s− 1)

[(s− 1) +K1][(s− 1) + 2K2]− 2K1K2

=
11Gpf(s− 1)

(s− 1)2 + (K1 + 2K2)(s− 1) + 2K1K2 − 2K1K2

=
11Gpf

s− 1 +K1 + 2K2

Note that this transfer function has only one pole.

15.3 Controllability for State Variable Systems

A single-input single-output state variable system is said to be controllable 8 if we can place as
many poles of the closed-loop transfer function as there are states of the state variable model.
For example, if there are two states in the state variable model we assume we want the closed-
loop characteristic equation to be s2+ a1s+ a0 and see if we can find K1 and K2 to achieve any
possible values for a1 and a0. If, when the transfer function is simplified as much as possible,
the order of the characteristic equation (the denominator of the transfer function) is less than
the number of states of the system the system is not controllable or uncontrollable.

Example 6. For the state variable system in Example 3, we set the characteristic polynomial
(after all pole/zero cancellations) equal to an arbitrary second order polynomial (since there are
two states)

s2 + (5K1 − 4)s+ (10K2 − 15K1 + 3) = s2 + a1s+ a0

from which we get

5K1 − 4 = a1

5K1 = a1 + 4

K1 =
a1 + 4

5
8This is one of many possible (and equivalent) definitions.

178

and

10K2 − 15K1 + 3 = a0

10K2 = a0 + 15K1 − 3

10K2 = a0 + 3(a1 + 4)− 3

10K2 = a0 + 3a1 − 9

K2 =
a0 + 3a1 − 9

10

Hence we can determine a K1 and K2 to achieve any possible values of a0 and a1. This system
is controllable.

Example 7. For the state variable system in Example 4, we set the characteristic polynomial
(after all pole/zero cancellations) equal to an arbitrary second order polynomial (since there are
two states)

s2 + (K1 +K2 − 1)s−K2 = s2 + a1s+ a0

from which we get

K2 = −a0

and

K1 +K2 − 1 = a1

K1 = a1 −K2 + 1

K1 = a1 + a0 + 1

Hence we can determine a K1 and K2 to achieve any possible values of a0 and a1. This system
is controllable.

Example 8. For the state variable system in Example 5, we set the characteristic polynomial
(after all pole/zero cancellations) equal to an arbitrary second order polynomial (since there are
two states)

s− 1 +K1 + 2K2 = s2 + a1s+ a0

Clearly it is not possible to find constant values of K1 and K2 so these two equations to be
equal. Hence the system is not controllable.

15.4 Summary

State variable models are an alternative method of modelling a system. However, we can derive
transfer function models from state variable models and state variable models from transfer
function models. State variable models have an advantage over transfer function models in that
we can utilize state variable feedback to place all of the poles of the system if the system is
controllable. Unlike the coefficient matching (Diophantine equation) transfer function methods,
state variable feedback does not add zeros to the closed-loop system.

179

16 Discrete-Time State Equations

In this chapter we develop discrete-time state equations assuming we have a time-invariant
continuous-time state variable description of the system. The standard form for a time-invariant
continuous time state variable model is

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

Here x(t) is the state vector, u(t) is the input vector to the plant9, y(t) is the output vector from
the plant, and the A,B,C, and D matrices are constant. If these matrices were not constant
this would not be a time-invariant system. A signal flow graph for this continuous-time system
is shown in Figure 73. If we assume we sample this system, we will have a discrete-time state
variable model of the system which we can write

x([k + 1]T) = Gx(kT) +Hu(kT)

y(kT) = Cx(kT) +Du(kT)

where we have explicitly shown the dependence on the sampling interval T . A signal flow graph
of this discrete-time state variable model is shown in Figure 74. Note that the output equation
contains the same C and D matrices as the continuous-time model. In this chapter we will show
how to go from the continuous-time to the discrete-time state variable models assuming the
sampling is done with a zero order hold (ZOH). We will also show how to derive the discrete-
time equations when there may be delays between the input and output. We need to be able
to solve the continuous-time state equations, and to do this we first need a bit of background
mathematics.

Bu(t)

A

1
s

+
Σ

+

x(t)
. x(t) C

+ y(t)Σ

+

D

Figure 73: Continuous-time state variable model for a plant.

16.1 The Continuous-Time State Transition Matrix

The function eAt, where A is a square matrix, is a very important function in continuous-time
state variable systems. If A is an n × n matrix, then as we will see, eAt will also be an n × n
matrix. This matrix is called the state transition matrix. We will need to be able to compute
this function and will need some of it’s properties in order to derive discrete-time state variable

9This is not to be confused with a unit step function. The input may be a unit step function, but it is not
necessarily a unit step function. This is common notation and you will need to look at the context to determine
if u(t) represents a unit step function or the input to the plant.

180

+
Σ

+

C
+
Σ

+

D

u(k)

G

y(k)z-1x(k+1) x(k)
H

Figure 74: Discrete-time state variable model for a plant.

equations from continuous-time state variable equations.

Consider the function eat for a scalar a. We know that this function has the Taylor series

eat =
1

0!
+

(at)

1!
+

(at)2

2!
+ . . . =

k=∞∑
k=0

(at)k

k!

Using this motivation, we will define the state transition matrix as

eAt =
I

0!
+

At

1!
+

(At)2

2!
+ . . . =

k=∞∑
k=0

(At)k

k!

where A2 = A× A, A3 = A2 × A, etc. Using this definition we can then compute

d

dt

{
eAT

}
=

d

dt

[
I +

At

1!
+

A2t2

2!
+

A3t3

3!
+ · · ·

]

=

[
0 + A+

A22t

2!
+

A33t2

3!
+ · · ·

]

= A

[
I + At+

A2t2

2!
+ · · ·

]

= AeAt = eAtA

It can also be shown that eAteAs = eA(t+s), for t and s scalars. A special case of this is when
s = −t. The we have

eAte−At = eA0 = I

Hence [
eAt
]−1

= e−At

so we know what the inverse matrix of eAt is. We can use these results to perform integration.
For example ∫ t

0
eAλdλ = A−1eAλ

∣∣∣λ=t

λ=0
= A−1

[
eAt − I

]

provided A−1 exists.

181

16.2 Solution of the Continuous-Time State Equations

Assume we have the continuous-time state variable model of a plant

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

We can rewrite this system as

ẋ(t)− Ax(t) = Bu(t)

Next we premultiply both sides of the equation by e−At, so we have

e−At (ẋ(t)−Ax(t)) = e−AtBu(t)

Now consider

d

dt

(
e−Atx(t)

)
=

(
d

dt
e−At

)
x(t) + e−At

(
d

dt
x(t)

)

= −Ae−Atx(t) + e−Atẋ(t)

= e−At (ẋ(t)− Ax(t))

since e−At and A commute. Hence we have

d

dt

(
e−Atx(t)

)
= e−AtBu(t)

Finally, we integrate both sides of this equation from an initial time t0 to the current time t,

∫ t

t0

d

dλ

(
e−Aλx(λ)

)
dλ =

∫ t

t0
e−AλBu(λ)dλ

e−Atx(t)− e−At0x(t0) =
∫ t

t0
e−AλBu(λ)dλ

x(t) = eA(t−t0)x(t0) +
∫ t

t0
eA(t−λ)Bu(λ)dλ

Now that we have solved the state equations, we can convert them to a discrete-time model.
However, the model we end up with depends on how we are going to sample the system to get
a discrete-time system. We will assume we are using a zero-order-hold (ZOH), which holds the
input at a constant value over one sampling interval of length T . Specifically, we assume

u(t) = u(kT) kT ≤ t < (k + 1)T

Next we look at an interval from t0 = kT to t = (k + 1)T . The solution to the state equations
becomes

x([k + 1]T) = eA([k+1]T−kT)x(kT) +

{∫ [k+1]T

kT
eA([k+1]T−λ)dλ

}
Bu(kT)

182

or

x([k + 1]T) = eATx(kT) +

{∫ [k+1]T

kT
eA([k+1]T−λ)dλ

}
Bu(kT)

Notice that the integral is no longer a function of u(t) so we can take both the B and u(t)
outside of the integral. Let’s change variables, so

σ = [k + 1]T − λ

With this variable change, the resulting equation is

x([k + 1]T) = eATx(kT) +

{∫ T

0
eAσdσ B

}
u(kT)

For convenience, the dependence on the sampling interval T is suppressed, and we have the
resulting discrete-time state equations

x(k + 1) = Gx(k) +Hu(k)

y(k) = Cx(k) +Du(k)

where

G = eAT

H =
∫ T

0
eAλdλ B

Note that the output (second) equation does not really change when we go from a discrete-time
to a continuous time state variable description of a system. The only thing we need to know
now is how to compute eAt, which is discussed in the next section.

16.3 Computing the State Transition Matrix, eAt

In computing the discretized state equations, we need to be able to determine eAt (or eAT for
sampling interval T). There are three common approaches to this computation: (1) truncating
the infinite sum, (2) using the Laplace transform, and (3) matching functions on the eigenvalues.
The first two methods are fairly easy to understand, while the third method will just be used
without justification.

16.3.1 Truncating the Infinite Sum

Since we know that by definition,

eAt =
k=∞∑
k=0

(At)k

k!

if the sample interval T is small enough (t = T) we will get a good approximation using only
a few terms in the infinite series. Hence if were were to use only a few terms we would get the

183

approximations

eAt ≈ I + At (two terms)

≈ I + At+
1

2
A2t2 (three terms)

≈ I + At+
1

2
A2t2 +

1

6
A3t3 (four terms)

This technique generally becomes difficult if more than a few terms are needed.

16.3.2 Laplace Transform Method

In our solution to the continuous-time state variable equations, if we assume t0 = 0 (the initial
time is zero), x(0) = 0 (the initial conditions are zero), and D = 0, then we have

y(t) = C
∫ t

0
eA(t−λ)Bu(λ)dλ

For LTI systems, if we know the input to a system, u(t), and the impulse response of the system,
f(t), then the output of the system can be determined by using convolution,

y(t) = f(t) � u(t) =
∫ ∞

−∞
f(t− λ)u(λ)dλ

If we know that both the input and the system are causal (i.e., both u(t) and f(t) are zero for
t < 0), then this simplifies to

y(t) = f(t) � u(t) =
∫ t

0
f(t− λ)u(λ)dλ

If we compare this to our solution to the state equations above, we have

f(t) = CeAtB

Now let’s look at solving the state equations using Laplace transforms. Again we assume the
initial time is zero, the initial state is zero, and the D matrix is zero. We then have initially

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)

Taking the Laplace transform we have

sX(s) = AX(s) +BU(s)

Y (s) = CX(s)

Solving for X(s) and putting this into the Y (s) equation we have

X(s) = (sI − A)−1BU(s)

Y (s) = C(sI − A)−1BU(s)

184

Comparing time-domain and s-domain solutions, we have

y(t) = f(t) � u(t)

Y (s) = F (s)U(s)

which means

F (s) = C(sI −A)−1B

f(t) = CeAtB

or, finally

eAt = L−1
{
(sI − A)−1

}
In what follows, we will be computing the inverse of a 2× 2 matrix, which you are expected to
be able to do. If

A =

[
a b
c d

]

then if A−1 exists, it can be computed as

A−1 =
1

ad− bc

[
d −b
−c a

]

A simple way to remember this is (1) divide by the determinant, (2) switch the elements on the
major diagonal, and (3) negate the off diagonal terms.

Finally, it should be noted that, as a very simple check, eA0 = e0 = I, so if we set t = 0 we
should get and identity matrix in our computation of eAt.

Example. Compute eAt for

A =

[
1 2
0 1

]

First we compute sI − A,

sI − A =

[
s 0
0 s

]
−
[
1 2
0 1

]

=

[
s− 1 −2
0 s− 1

]

and then (sI − A)−1,

(sI −A)−1 =
1

(s− 1)2

[
s− 1 2
0 s− 1

]
=

[
1

s−1
2

(s−1)2

0 1
s−1

]

185

and then find the inverse Laplace transform,

eAt =

[
et 2tet

0 et

]
= L−1

{
(sI − A)−1

}

Example. Compute eAt for

A =

[
2 −2
2 6

]

First we compute sI − A,

sI − A =

[
s 0
0 s

]
−
[
2 −2
2 6

]

=

[
s− 2 2
−2 s− 6

]

and then (sI − A)−1,

(sI − A)−1 =
1

(s− 4)2

[
s− 6 −2
2 s− 2

]
=

[s−6
(s−4)2

−2
(s−4)2

2
(s−4)2

s−2
(s−4)2

]

and then find the inverse Laplace transform,

eAt =

[
e4t − 2te4t −2te4t

2te4t e4t + 2te4t

]
= L−1

{
(sI − A)−1

}

16.4 Discretization with Delays in the Input

We would now like to extend our development to the case where there are delays in the input.
We can model such a system as

ẋ(t) = Ax(t) +Bu(t− τ)

y(t) = Cx(t) +Du(t)

where τ is the delay. Following the same procedure as before, we will have

x(t) = eA(t−t0)x(t0) +
∫ t

t0
eA(t−λBu(λ− τ)dτ

Again assume t0 = kT and t = [k + 1]T , so we have

x([k + 1]T) = eATx(kT) +
∫ [k+1]T

kT
eA([k+1]T−λ)Bu(λ− τ)dλ

Let’s assume 0 ≤ τ ≤ T and look at u(t) and the delayed signal u(t− τ), shown in Figure 75.
In order to evaluate the integral in our expression above we will need to break the integral up
into two pieces as follows:∫ [k+1]T

kT
eA([k+1]T−λ)Bu(λ− τ)dλ =

∫ kT+τ

kT
eA([k+1]T−λ)Bu([k − 1]T)dλ+

∫ [k+1]T

kT+τ
eA([k+1]T−λ)Bu(kT)dλ

= H1u([k − 1]T) +H0u(kT)

186

where

H0 =
∫ [k+1]T

kT+τ
eA([k+1]T−λ)dλ B =

∫ T−τ

0
eAσdσ B

H1 =
∫ kT+τ

kT
eA([k+1]T−λ)dλ B = eA(T−τ)

∫ τ

0
eAσdσ B

so we have

x([k + 1]T) = Gx(kT) +H0u(kT) +H1u([k − 1]T)

t

t

u(t)

u(t-τ)

(k-1)T kT (k+1)T

τ

Figure 75: Original and delayed (by an amount τ) input.

Suppressing the dependence on the sampling interval T and writing as a state variable model
we have [

x(k + 1)
u(k)

]
=

[
G H1

0 0

] [
x(k)

u(k − 1)

]
+

[
H0

I

]
u(k)

where

G = eAT

187

H0 =
∫ T−τ

0
eAσdσ B

H1 = eA(T−τ)
∫ τ

0
eAσdσ B

For the special case where τ = T (a 1 sample delay) we have

G = eAT

H0 =
∫ 0

0
eAσdσ = 0

H1 =
∫ T

0
eaσdσ B = H

The state equations are then[
x(k + 1)
u(k)

]
=

[
G H
0 0

] [
x(k)

u(k − 1)

]
+

[
0
I

]
u(k)

Example. Consider the continuous-time double integrator system

ẋ(t) =

[
0 1
0 0

]
x(t) +

[
0
1

]
u(t)

y(t) =
[
1 0

]
x(t)

A double integrator system with a delay of τ in the input can be described as

ẋ(t) =

[
0 1
0 0

]
x(t) +

[
0
1

]
u(t− τ)

y(t) =
[
1 0

]
x(t)

We need to compute eAt, so we’ll use the Laplace transform method,

sI −A =

[
s 0
0 s

]
−
[
0 1
0 0

]
=

[
s −1
0 s

]

(sI − A)−1 =
1

s2

[
s 1
0 s

]
=

[
1
s

1
s2

0 1
s

]

so

eAt =

[
1 t
0 1

]

Then

G = eAT =

[
1 T
0 1

]

H0 =
∫ T−τ

0
eAσdσB =

∫ T−τ

0

[
1 σ
0 1

]
dσ

[
0
1

]

188

=

[
(T − τ) (T−τ)2

2

0 (T − τ)

] [
0
1

]

=

[
(T−τ)2

2

T − τ

]

H1 = eA(T−τ)
∫ τ

0
eAσdσB =

[
1 T − τ
0 1

] ∫ τ

0

[
1 σ
0 1

]
dσ

[
0
1

]

=

[
1 T − τ
0 1

] [
τ τ 2

0 τ

] [
0
1

]
=

[
1 T − τ
0 1

] [
τ2

2

τ

]

=

[
τ2

2
+ Tτ − τ 2

τ

]
=

[
τ(T − τ

2
)

τ

]

so our new state model of the discretized system is

⎡
⎢⎣ x1(k + 1)
x2(k + 1)

u(k)

⎤
⎥⎦ =

⎡
⎢⎣ 1 T τ(T − τ

2
)

0 1 τ
0 0 0

⎤
⎥⎦
⎡
⎢⎣ x1(k)

x2(k)
u(k − 1)

⎤
⎥⎦+

⎡
⎢⎣

(T−τ)2

2

T − τ
1

⎤
⎥⎦ u(k)

y(k) =
[
1 0 0

] ⎡⎢⎣ x1(k)
x2(k)

u(k − 1)

⎤
⎥⎦

16.5 State Variable to Transfer Function

Just as in continuous-time it is possible to go from a state variable description to a transfer
function description of a system. Doing this sometimes helps with different concepts, such as
pole placement, steady state error, and the speed of response. Consider the usual state-variable
description of a discrete-time system

x(k + 1) = Gx(k) +Hu(k)

y(k) = Cx(k) +Du(k)

Taking the z-transform of the equation and assuming the system is initially at rest (X(0) = 0),
we get

zX(z) = GX(z) +HU(z)

Y (z) = CX(z) +DU(z)

Solving for X(z) and putting this into the equation for Y (z) we get

X(z) = (zI −G)−1HU(z)

Y (z) = C (zI −G)−1HU(z)

Hence the transfer function between the input and output (the plant) is

Gp(z) = C (zI −G)−1H

189

Example. Find the equivalent transfer function for the following state variable model

x(k + 1) =

[
0.1 0
0.2 0.3

]
x(k) +

[
1
0

]
u(k)

y(k) =
[
0 1

]
First we compute zI −G,[

z 0
0 z

]
−
[
0.1 0
0.2 0.3

]
=

[
z − 0.1 0
−0.2 z − 0.3

]

then (zI −G)−1,

(zI −G)−1 =
1

(z − 0.1)(z − 0.3)

[
z − 0.3 0
0.2 z − 0.1

]

Finally, Gp(z) = C (zI −G)−1H , so

Gp(z) =
1

(z − 0.1)(z − 0.3)

[
0 1

] [z − 0.3 0
0.2 z − 0.1

] [
1
0

]

=
0.2

(z − 0.1)(z − 0.3)

16.6 Poles and Eignevalues

For continuous-time systems we know the poles of the system are given by the determinant
of sI − A, or the roots of the characteristic equation Δ(s) = |sI − A| = 0. These poles
are the eigenvalues of the A matrix. Similarly, for a discrete-time system, the poles of the
system are given by the determinant of zI − G, or the roots of the characteristic equation
Δ(z) = |zI − G| = 0. The poles of the discrete-time system are also the eigenvalues of the
G matrix. If all of the poles of a discrete-time system is at the origin, this is referred to as
deadbeat response. The deadbeat response is the fastest possible response of a discrete-time
system. However, the control effort required for deadbeat response may be too large for actual
implementation.

190

17 State Variable Feedback

State variable feedback is a commonly used method in modern control systems. If the system is
controllable, then we will be able to use state variable feedback to place the poles of the closed
loop system anywhere we want. This is generally not the case for classical transfer function
based methods. While we can use state-variable feedback to place the poles of a controllable
system where ever we want, we cannot change the location of the system zeros. We can place
the poles to try a pole/zero cancelation, but this is usually not desirable since the zeros of the
system are just approximations based on our model.

We begin this chapter deriving the equations for state variable feedback, then utilize three dif-
ferent algorithms for determining the state variable feedback gain vector/matrix.

+
Σ

+

C
+
Σ

+

D

u(k)

G

y(k)z-1x(k+1) x(k)
H

+
Σ

K

Gpf
r(k)

Figure 76: Basic discrete-time state variable feedback system. The feedback gain matrix is K,
which is used to place the closed loop poles, and the prefilter gain Gpf , which is used to adjust
the steady state error for a step input.

Consider the open loop system

x(k + 1) = Gx(k) +Hu(k)

y(k) = Cx(k) +Du(k)

Assume we have a state variable system as shown in Figure 76, where K is the feedback gain
vector/matrix, Gpf is the prefilter gain, and r(k) is the new reference input. Hence we have
u(k) = Gpfr(k)−Kx(k). Using this in our model of the plant we have

x(k + 1) = Gx(k) +H [Gpfr(k)−Kx(k)] = [G−HK]x(k) + [HGpf]r(k)

y(k) = Cx(k) +D[Gpfr(k)−Kx(k)] = [C −DK]x(k) + [DGpf]r(k)

The transfer function between the new input r(k) and the output y(k) can then be computed
using z transforms as follows:

zX(z) = [G−HK]X(z) + [HGpf]R(z)

191

[zI −G +HK]X(z) = [HGpf]R(z)

X(z) = [zI −G+HK]−1[HGpf]R(z)

Y (z) = [C −DK]X(z) + [DGpf]R(z)

Y (z) =
{
[C −DK][zI −G+HK]−1[HGpf] + [DGpf]

}
R(z)

so the transfer function/transfer matrix (if there are vector inputs) between the input R(z) and
the output Y (z) is

F (z) = [C −DK][zI −G+HK]−1[HGpf] + [DGpf]

Normally we will assume D = 0, and the transfer function reduces to

F (z) = C[zI −G+HK]−1[HGpf]

Let’s assume we have a scalar input and D = 0. We know that Y (z) = F (z)R(z), and if the
input is a unit step r(k) = u(k), then for a zero steady state error we use the Final Value
Theorem to make the final final of y(k) = 1,

lim
k→∞

y(k) = 1 = lim
z→1

z − 1

z
Y (z) = lim

z→1

z − 1

z
F (z)R(z)

1 = lim
z→1

z − 1

z
F (z)

z

z − 1
= lim

z→1
F (z) = F (1) = C[I −G+HK]−1[HGpf]

or

Gpf =
1

C[I −G+HK]−1H

This prefilter will produce a steady state error of zero for a unit step input provided our system
is accurately enough modeled. Note that we need to determine the feedback gain vector K
before we try to determine the prefilter gain Gpf . Since the prefilter is outside of the feedback
loop this is not a very robust method of trying to produce a steady state error of zero. A better
method would be to make the system a type one system, which will be discussed in the next
chapter.

17.1 Pole Placement by Transfer Functions

To determine the state feedback gain vector using the transfer function, we need to realize that
the denominator of the transfer function will be determined by

Δ(z) = det[zI −G+HK]

We want the closed loop poles at μ1, μ2, . . . , μn, so the desired characteristic equations is

Δ(z) = (z − μ1)(z − μ2) . . . (z − μn)

= zn + α1z
n−1 + α2z

n−2 + . . .+ αn−1z + αn

We then determine K by setting these equal,

Δ(z) = det[zI −G+HK] = zn + α1z
n−1 + α2z

n−2 + . . .+ αn−1z + αn

192

This is a difficult computation for system with more than a few poles, so it is seldom used except
for low order systems.

Example. Assume we have the system

G =

[
0.1 0.2
0 0.2

]
, H =

[
0
0.1

]

We first check to be sure the system is controllable,

[
GH H

]
=

[
0.02 0
0.02 0.1

]

Clearly this matrix has rank two, so the system is controllable. Let’s find the gain vector K
to place the closed loop poles at -0.1 and -0.2. First we compute the desired characteristic
polynomial

Δ(z) = [z − (−0.1)][z − (−0.2)] = (z + 0.1)(z + 0.2) = z2 + 0.3z + 0.02

and then compute det[zI −G+HK],

zI −G+HK =

[
z 0
0 z

]
−
[
0.1 0.2
0 0.2

]
+

[
0
0.1

] [
K1 K2

]

=

[
z − 0.1 −0.2
0.1K1 z − 0.2 + 0.1K2

]

det[zI −G+HK] = (z − 0.1)(z − 0.2 + 0.1K2)− (−0.2)(0.1K1)

= z2 + (−0.1− 0.2 + 0.1K2)z + (0.02− 0.01K2 + 0.02K1)

Equating terms with our desired characteristic polynomial, we get K2 = 6 and then K1 = 3, so

K =
[
3 6

]
Example. Assume we have the system

G =

[
0.1 0
0.2 0

]
, H =

[
1
0

]

We first check to be sure the system is controllable,

[
GH H

]
=

[
0.1 1.0
0.2 0

]

Clearly this matrix has rank two, so the system is controllable. We know from our previous
examples that this system is controllable. Let’s find the gain vector K to place the closed loop
poles at 0.1 and -0.1. First we compute the desired characteristic polynomial

Δ(z) = [z − (0.1)][z − (−0.1)] = (z − 0.1)(z + 0.1) = z2 − 0.01

193

and then compute det[zI −G+HK],

zI −G+HK =

[
z 0
0 z

]
−
[
0.1 0
0.1 0

]
+

[
1
0

] [
K1 K2

]

=

[
z − 0.1 +K1 K2

−0.2 z

]

det[zI −G+HK] = (z − 0.1 +K1)(z)− (K2)(−0.2)

= z2 + (K1 − 0.1)z +K20.2

Equating terms with our desired characteristic polynomial, we get K1 = 0.1 and then K1 =
−0.05, so

K =
[
0.1 −0.05

]
Example. Assume we again have the system

G =

[
0.1 0.2
0 0.2

]
, H =

[
0
0.1

]

Let’s find the gain vector K to place both closed loop poles at 0. This clearly results in deadbeat
control. First we compute the desired characteristic polynomial

Δ(z) = (z − 0)(z − 0) = z2

and then compute det[zI −G+HK],

zI −G+HK =

[
z 0
0 z

]
−
[
0.1 0.2
0 0.2

]
+

[
0
0.1

] [
K1 K2

]

=

[
z − 0.1 −0.2
0.1K1 z − 0.2 + 0.1K2

]

det[zI −G+HK] = (z − 0.1)(z − 0.2 + 0.1K2)− (−0.2)(0.1K1)

= z2 + (−0.1− 0.2 + 0.1K2)z + (0.02− 0.01K2 + 0.02K1)

Equating terms with our desired characteristic polynomial, we get K2 = 3 and then K1 = 0.5,
so

K =
[
0.5 3

]

17.2 State Feedback Examples

In this section we examine the response of a two degree of freedom system using state variable
feedback. For this system, placing the poles using the transfer function method would be very
tedious and so Matlab routines were used which were designed for pole placement of systems
described by state equations.

194

Assume we have the discrete-time state variable model given by

⎡
⎢⎢⎢⎣
x1(k)
v1(k)
x2(k)
v2(k)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0.4964 0.0391 0.5153 0.0095
−15.5298 0.4361 14.7498 0.5022
0.4452 0.0082 0.3068 0.0358
12.7738 0.4326 −21.0039 0.2572

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
x1(k)
v1(k)
x2(k)
v2(k)

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

4.0181
142.8037
0.3955
29.8022

⎤
⎥⎥⎥⎦ u(k)

y(k) =
[
1 0 0 0

]
⎡
⎢⎢⎢⎣
x1(k)
v1(k)
x2(k)
v2(k)

⎤
⎥⎥⎥⎦

The sample interval is Ts = 0.05 seconds. In this model our output is the first state (x1). For
this plant, the transfer function is

Gp(z) =
4.018z3 + 2.048z2 + 1.939z + 3.65

z4 − 1.496z3 + 1.492z2 − 1.392z + 0.8639

with the four poles at −0.1073 ± 0.9583j and 0.8555 ± 0.4437j. This system also has zeros at
−0.9732 and 0.2317± 0.9380j.

The open loop unit step response of this system is shown in Figure 77. We can estimate the
settling time using our previous formula as Ts ≈ −4T

ln(|p|) =
−4(0.05)

ln(|−0.1073+0.9583j|) ≈ 5.5 seconds. This
estimated settling time agrees with the results in the figure.

Figure 78 shows the unit step response using state variable feedback to place the closed loop
poles at 0.1, 0.2, 0.3 and 0.8. This produces a state feedback gain vector

K =
[
−0.1165 0.0044 0.1280 −0.0039

]
and prefilter gain Gpf = 0.0086. We can estimate the settling time of this system as Ts ≈
−4(0.05)
ln(0.8)

≈ 0.9 seconds, which agrees fairly well with the results shown in the figure.

Figure 79 shows the unit step response when the closed loop poles are located at 0.1, 0.2, 0.3
and −0.3± 0.1j. This produces a state feedback gain vector

K =
[
0.1179 0.0089 −0.0796 0.0030

]
and prefilter gain Gpf = 0.1050. We can estimate the settling time of this system as Ts ≈

−4(0.05)
ln(|−0.3+0.1j)

≈ 0.17 seconds, which agrees fairly well with the results shown in the figure.

Figure 80 shows the unit step response when the closed loop poles are located at 0.1, 0.2, 0.3
and 0.3± 0.1j. This produces a state feedback gain vector

K =
[
−0.0468 0.0059 0.0566 −0.0025

]
and prefilter gain Gpf = 0.0309. We can estimate the settling time of this system as Ts ≈

−4(0.05)
ln(|0.3+0.1j)

≈ 0.17 seconds. This settling time does not agree very will the the response of the
system shown in the Figure. This is because our estimate of the settling time is based on a

195

model having only poles and no zeros. In the previous examples the poles of the system were
“far” from the zeros of the system, an had little effect on the step response of the system. In this
example, the poles of the system are “near” the zeros of the system, and the zeros are affecting
the step response of the system.

Figure 80 shows the unit step response when all the closed loop poles are located at 0. This is
deadbeat response and produces a state feedback gain vector

K =
[
0.0765 0.0082 −0.0463 0.0014

]
and prefilter gain Gpf = 0.0858. Since this is a fourth order system, the settling time is four
time steps. Since this is deadbeat response and the zeros of the system do not change, we can
determine the system difference equation as follows:

Y (z)

U(z)
= (0.0858)

4.018z3 + 2.048z2 + 1.939z + 3.65

z4

= 0.3447z−2 + 0.1758z−3 + 0.1663z−3 + 0.3132z−4

or
y(k) = 0.3447u(k − 1) + 0.1758u(k − 2) + 0.1663u(k − 3) + 03132u(k − 4)

Since we assume the system is initially at rest with no initial conditions (all initial conditions
are zero), we have

y(0) = 0

y(1) = 0.3447

y(2) = 0.3447 + 0.1758 = 0.5205

y(3) = 0.3447 + 0.1758 + 0.1663 = 0.6868

y(4) = 0.3447 + 0.1758 + 0.1663 + 0.3132 = 1.0000

All y(k) = 1 for k ≥ 4. These results match those in the Figure.

17.3 General Guidelines for State Feedback Pole Locations

As a general rule the closer in magnitude the system poles are to the origin, the faster the
response of the system. Just as with continuous time systems, if there are multiple poles, the
response of the dominant poles will dominate the response of the overall system. In this case, the
poles with the largest magnitude will dominate the response and system will not reach steady
state until the response of these poles have subsided. However, it should also be noted that
placing the poles closer to the origin increases the system bandwidth and make the system less
robust and more sensitive to noise, external disturbances, and errors in the mathematical model
of the system. In addition, poles closer to the origin increases the control effort. Often, the
designer needs to use some iterative “guess and check” to see if the system preforms adequately.

196

0 2 4 6
0

20

40

60

Time (sec)

x 1 (
cm

)

0 2 4 6
−200

0

200

400

Time (sec)

v 1 (
cm

/s
ec

)

0 2 4 6
0

10

20

30

40

Time (sec)

x 2 (
cm

)

0 2 4 6
−200

−100

0

100

200

Time (sec)

v 2 (
cm

/s
ec

)

Figure 77: Open loop step response of fourth order system. The poles of the plant are at
−0.1073 ± 0.9583j and 0.8555 ± 0.4437j. This system also has zeros at −0.9732 and 0.2317 ±
0.9380j.

197

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

Time (sec)

x 1 (
cm

)

0 0.5 1 1.5
0

1

2

3

Time (sec)

v 1 (
cm

/s
ec

)

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

Time (sec)

x 2 (
cm

)

0 0.5 1 1.5
0

0.5

1

1.5

2

Time (sec)

v 2 (
cm

/s
ec

)

Figure 78: Closed loop step response of fourth order system with state variable feedback. The
poles of the closed loop system are at 0.1, 0.20.3 and 0.8. This system zeros remain at −0.9732
and 0.2317± 0.9380j.

198

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

Time (sec)

x 1 (
cm

)

0 0.1 0.2 0.3 0.4 0.5
−10

−5

0

5

10

15

20

Time (sec)

v 1 (
cm

/s
ec

)

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

Time (sec)

x 2 (
cm

)

0 0.1 0.2 0.3 0.4 0.5
−2

0

2

4

6

8

10

Time (sec)

v 2 (
cm

/s
ec

)

Figure 79: Closed loop step response of fourth order system with state variable feedback. The
poles of the closed loop system are at 0.1, 0.2 and −0.3 ± 0.1j. This system zeros remain at
−0.9732 and 0.2317± 0.9380j.

199

0 0.2 0.4 0.6 0.8
0

0.5

1

1.5

Time (sec)

x 1 (
cm

)

0 0.2 0.4 0.6 0.8
−1

0

1

2

3

4

5

Time (sec)

v 1 (
cm

/s
ec

)

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

Time (sec)

x 2 (
cm

)

0 0.2 0.4 0.6 0.8
−1

0

1

2

3

4

5

Time (sec)

v 2 (
cm

/s
ec

)

Figure 80: Closed loop step response of fourth order system with state variable feedback. The
poles of the closed loop system are at 0.1, 0.2 and 0.3 ± 0.1j. This system zeros remain at
−0.9732 and 0.2317± 0.9380j.

200

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

Time (sec)

x 1 (
cm

)

0 0.1 0.2 0.3 0.4
−5

0

5

10

15

Time (sec)

v 1 (
cm

/s
ec

)

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

Time (sec)

x 2 (
cm

)

0 0.1 0.2 0.3 0.4
0

2

4

6

8

10

Time (sec)

v 2 (
cm

/s
ec

)

Figure 81: Closed loop step response of fourth order system with state variable feedback. The
poles of the closed loop system are at 0. This is deadbeat response. This system zeros remain at
−0.9732 and 0.2317± 0.9380j.

201

18 Frequency Domain Analysis

We have so far been primarily interested in analyzing and designing control systems in the time-
domain or in the s-domain. A different approach is to look directly in the frequency domain.
This method has the advantage that for many systems the experimental determination of the
frequency response is fairly straightforward to determine, while an accurate transfer function
may be more difficult to obtain.

The most important property of any control system is that the system remain stable. We will
thus begin our analysis by determining how close to being unstable is our current system. This
leads to the definitions of the phase and gain margins. Then we will introduce a phase-lead
controller that will allow us to increase the phase margin of our system if we want.

18.1 Phase and Gain Margins

Let’s consider a closed loop system with transfer function given by

G0(s) =
G(s)

1 +G(s)H(s)

We know that the system will be asymptotically stable if all of the poles of the closed loop
system are in the (open) left half plane (the real parts of the poles are negative). When the
system is marginally stable, the poles are on the jω axis. We can view this as the point at which
the system is about to become unstable. If we have poles on the jω axis, then we have

1 +H(jω)G(jω) = 0

We can rewrite this as

H(jω)G(jω) = −1

We can then break this into two different conditions, a magnitude condition and a phase condi-
tion:

magnitude condition: |H(jω)G(jω)| = 1

phase condition: � H(jω)G(jω) = ±180o

When both of these conditions are met, the system is marginally stable. However, we can also
use these conditions to determine how close our system is to being unstable. The additional
amplitude and phase in the product G(jω)H(jω) before the poles of the closed loop system are
on the jω axis are measures of the allowable tolerances or changes in G(jω)H(jω) for system
stability. This leads to the ideas of gain margins and phase margins.

We first define a phase crossover frequency, ωp, to be any frequency at which we meet the phase
condition. That is, at a phase crossover frequency we have

� G(jωp)H(jωp) = ±180o

202

We then define the gain margin of a feedback system to be the additional amplitude necessary to
make |G(jωp)H(jωp)| = 1. If there is more than one phase crossover frequency, we use the phase
crossover frequency that produces the smallest gain margin. Specifically, we can determine the
gain margin using the formula

|G(jωp)H(jωp)| ×Gain Margin = 1

which we can rearrange as

Gain Margin =
1

|G(jωp)H(jωp)|
We usually measure the gain margin in dB, so we have

Gain MargindB = 20 log10(1)− 20 log10 (|G(jωp)H(jωp)|) = −20 log10 (|G(jωp)H(jωp)|)

or simply

Gain MargindB = −|G(jωp)H(jωp)|dB
Note that if there is no phase crossover frequency the gain margin is infinite. Also, if there is
more than one gain margin, then the gain margin for the system is the smallest gain margin of
the possibilities.

Next we define a gain crossover frequency, ωg, to be any frequency at which we meet the
magnitude condition. That is, at a gain crossover frequency we have

|G(jωg)H(jωg)| = 1

or

|G(jωg)H(jωg)|dB = 0

The phase margin is the additional negative phase necessary to make the phase of G(jωg)H(jωG)
equal to ±180o, whichever is closer. We can write this condition as

� G(jωg)H(jωg)− Phase Margin = ±180o

Note that if there is no gain crossover frequency the phase margin is infinite. If there is more
than one phase margin, then the phase margin for a system is the smallest phase margin of the
possibilities.

Finally, for a minimum phase system (all poles and zeros in the left half plane), both the phase
and gain margins must be positive for system stability. A reasonable rule of thumb is that the
phase margin for a system should be 30 to 60 degrees and the gain margin should be greater
than 6 dB.

Example. Consider the feedback system where we have G(s) = 20/(s+2) and H(s) = 1/(s2 +
4s + 1). The Bode plot of the open loop system G(s)H(s) is displayed in Figure 82. In this

203

figure, the gain crossover frequency is displayed as a diamond and the phase crossover frequency
is displayed as a circle. For this example, we have ωg ≈ 1.8 rad/sec and ωp ≈ 3.0 rad/sec. At
the gain crossover frequency the phase of the system is approximately −150o, or

� G(jωg)H(jωg) ≈ −150o

We then have

� G(jωg)H(jωj)− Phase Margin = −180o

−150o − Phase Margin = −180o

which gives a phase margin of approximately 30o. Similarly, at the phase crossover frequency
we have

|G(jωp)H(jωp)| ≈ −9dB

So the gain margin is approximately 9 dB. Since both the phase and gain margins are positive,
and there are no right half plane zeros, this system is stable. In fact, the poles of the closed
loop system are at -50.9 and at −0.46± 2.03j.

Example. Consider the feedback system where we have G(s) = 50/(s2+s+100) and H(s) = 1.
The Bode plot of the open loop system G(s)H(s) is displayed in Figure 83. In this figure,
there are two gain crossover frequencies (displayed as diamonds) and there is no phase crossover
frequency. The first gain crossover frequency is ωg ≈ 7.1 rad/sec. At this gain crossover
frequency the phase of the system is approximately −8o, or

� G(jωg)H(jωg) ≈ −8o

We then have

� G(jωg)H(jωj)− Phase Margin = −180o

−8o − Phase Margin = −180o

which gives a phase margin of approximately 172o. The second gain crossover frequency is
ωg ≈ 12.2 rad/sec, and at this frequency we have

� G(jωg)H(jωg) ≈ −166o

We then have

� G(jωg)H(jωj)− Phase Margin = −180o

−166o − Phase Margin = −180o

which gives a phase margin of approximately 14o. The phase margin of the system is the smaller
of these two, so the phase margin of the system is 14o. Since both the phase and gain margins
of the system are positive, and there are no right hand plane zeros, the system is stable., The
poles for this closed loop system are at −0.50± 12.24j.

204

10
−1

10
0

10
1

−40

−30

−20

−10

0

10

20
M

ag
ni

tu
de

 (
dB

)

10
−1

10
0

10
1

−250

−200

−150

−100

−50

0

P
ha

se
 (

de
g)

Frequency (rad/sec)

Figure 82: Bode plot of G(s)H(s) = 20/(s + 2)(s2 + 4s + 1). The gain crossover frequency is
shown as a circle, and the phase crossover frequency is shown as a diamond. The gain margin
for this system is 9 dB and the phase margin is 30o.

Example. Consider the feedback system where we have G(s) = (s2+50s+1000)/(s3+s2+100s)
and H(s) = 1. The Bode plot of the open loop system G(s)H(s) is displayed in Figure 84. In
this figure, there are two phase crossover frequencies (displayed as circles) and one gain crossover
frequency (displayed as a diamond). The gain crossover frequency is ωg ≈ 13 rad/sec. At the
gain crossover frequency the phase of the system is approximately −220o, or

� G(jωg)H(jωg) ≈ −220o

We then have

� G(jωg)H(jωj)− Phase Margin = −180o

−220o − Phase Margin = −180o

205

10
0

10
1

10
2

−50

−40

−30

−20

−10

0

10

20
M

ag
ni

tu
de

 (
dB

)

10
0

10
1

10
2

−200

−150

−100

−50

0

P
ha

se
 (

de
g)

Frequency (rad/sec)

Figure 83: Bode plot of G(s)H(s) = 50/(s2 + s + 100). The gain crossover frequencies are
shown as circles, and there are no phase crossover frequencies. The gain margin for this system
is infinte and the phase margin is 14o.

which gives a phase margin of approximately −40o. The two phase crossover frequencies
are ωp ≈ 10 rad/sec and ωp ≈ 30 rad/sec. At the first phase crossover frequency we have
|G(jωp)H(jωp)| ≈ 20 dB so this gain margin is approximately -20 dB. At the second phase
crossover frequency we have |G(jωp)H(jωp)| ≈ −25 dB so this gain margin is approximately 25
dB. Hence the gain margin for the system is -20 dB. Since this system has no right half plane
zeros and the gain and phase margins are negative, the system is unstable (if would be unstable
if either the gain or phase margin was negative). The poles of the closed loop system are at

206

-5.81 and at 1.90± 12.98j and the system is clearly unstable.

207

10
0

10
1

10
2

−40

−30

−20

−10

0

10

20

30

M
ag

ni
tu

de
 (

dB
)

10
0

10
1

10
2

−240

−220

−200

−180

−160

−140

−120

−100

−80

−60

P
ha

se
 (

de
g)

Frequency (rad/sec)

Figure 84: Bode plot of G(s)H(s) = (s2 + 50s + 1000)/(s3 + s2 + 100s). The gain crossover
frequencies are shown as circles, and the phase crossover frequency is shown as a diamond. The
gain margin for this system is -20 dB and the phase margin is −40o.

208

19 Lead Controllers for Increasing Phase Margin

Generally, if we want to increase the gain margin of a system we just change the gain. To
increase the phase margin we usually want to add a controller to add phase to the system. A
phase lead controller is the most commonly used type of controller for this purpose. One form
of a lead controller is

Gc(s) = K
Ts+ 1

αTs+ 1
= Kcα

Ts+ 1

αTs+ 1
= Kc

s+ 1
T

s+ 1
αT

Here α is called the attenuation factor, and is mathematically limited to be between 0 and 1,
0 < α < 1. For practical controllers we usually want α > 0.05. Remember that for a lead
controller the zero is always to the right of the pole.
We want to find an expression for the maximum phase φm we can get from a phase lead controller.
To determine the frequency response, we have

Gc(jω) = Kc

(
jω + 1

T

jω + 1
αT

)

= Kc

(
jω + 1

T

jω + 1
αT

)
×
(−jω + 1

αT

−jω + 1
αT

)

= Kc

⎛
⎝ω2 − jω

(
1
T

)
+ jω

(
1
αT

)
+ 1

αT 2

ω2 +
(

1
αT

)
⎞
⎠

= Kc

(
ω2 + 1

αT 2

)
+ jω

(
1
αT

− 1
T

)
ω2 +

(
1
αT

)2
Since we know Kc > 0 and ω2 +

(
1
αT

)2
> 0, the entire phase is determined by the numerator.

Hence we have

� Gc(jω) = tan−1

{
ω(1

αT
− 1

T)
ω2+ 1

αT2

}

Next we need to find the frequency at which this phase angle reaches its maximum. This means
we are going to need to take derivatives of the arctangent function. From calculus we know

d

dω
tan−1 (θ(ω)) =

1

1 + θ(ω)2
d

dω
θ(ω)

where for us

θ(ω) =
ω
(

1
αT

− 1
T

)
ω2 + 1

αT 2

Since we are going to take the derivative and set it equal to zero to determine the frequency
than maximizes the function, we do not need to worry about the 1

1+θ2
term, since it will always

will be positive. We then have

d

dω
θ(ω) =

(
1
αT

− 1
T

) (
ω2 + 1

αT 2

)
− 2ω

(
ω[1

αT
− 1

T
]
)

(
ω2 + 1

αT 2

)2
209

The denominator of this function is always positive, and the numerator reduces to

ω2 +
1

αT 2
− 2ω2 = 0

which leads to ω = 1
T
√
α
. Thus the frequency at which the maximum phase angle is achieved,

ωm, is

ωm =
1

T
√
α

Now that we know the frequency at which the maximum occurs, we need to find and expression
for the maximum phase angle our controller will provide. Hence we have

φm = � Gc(jωm)

= tan−1

⎛
⎝ 1

T
√
α

(
1
αT

− 1
T

)
1

αT 2 +
1

αT 2

⎞
⎠

= tan−1

⎛
⎝αT 2

(
1

T
√
α

) (
1
αT

− 1
T

)
2

⎞
⎠

= tan−1

⎛
⎝√

α
(
1
α
− 1

)
2

⎞
⎠

= tan−1

⎛
⎝ 1√

α
−√

α

2

⎞
⎠

For reasons that will become clear when we start to using the lead controller in designing systems,
we want to rewrite this expression. We can visualize the above trigonometric relationship using
the triangle shown in Figure 85. From this graph, we can compute the length of the hypotenuse
as

R2 =

(
1√
α
−√

α

)2

+ 22 =
1

α
− 2 + α + 4 =

1

α
+ 2 + α =

(
1√
α
+
√
α

)2

We can then write

sin(φm) =

1√
α
−√

α

R
=

1√
α
−√

α
1√
α
+
√
α

=
1− α

1 + α

We can rewrite this expression in a more useful form as

1− α = (1 + α) sin(φm) = sin(φm) + α sin(φm)

1− sin(φm) = α + α sin(φm) = α (1 + sin(φm))

or

α =
1− sin(φm)

1 + sin(φm)

210

This equation is very useful for design, since if we know the phase angle φm we want our controller
to add, we now have a way of determining α. Finally we need to determine how much gain the
phase lead controller will add to the system. We have

Gc(s) = K
Ts+ 1

αTs+ 1

Here the gain K will be used for controlling the steady state error so we do not want to include
it in our calculations for the gain contributed by the controller. Hence we want

∣∣∣∣∣Gc(s)

K

∣∣∣∣∣
s=jωm

=

∣∣∣∣∣∣
T
(
j 1√

αT

)
+ 1

αT
(
j 1√

αT

)
+ 1

∣∣∣∣∣∣
=

∣∣∣∣∣∣
j√
α
+ 1

j
√
α + 1

∣∣∣∣∣∣ =
√

1
α
+ 1

α + 1
=

√
1
α
(1 + α)

α + 1
=

1√
α

Hence our controller will add 20 log10
(

1√
α

)
= −20 log10

√
α dB of gain to the system.

2

R 1
α α

φm

Figure 85: Triangle depicting φm = arctan((1√
α
−√

α)/2). From this triangle we can determine

that R =
(

1√
α
+
√
α
)2
.

19.1 Algorithm for Controller Design Using Bode Plots

The primary function of the lead compensator is to reshape the frequency response curve by
adding phase to the system. The phase lead compensator also adds gain to the system.

1 Assume the compensator has the form

Gc(s) = Kc

s+ 1
T

s+ 1
αT

= Kcα
Ts+ 1

αTs+ 1
= K

Ts+ 1

αTs+ 1

Determine K to satisfy the static error constant requirements.

2 Using this value of K, draw the Bode diagram of KG(s)H(s). Determine the phase margin.

3 Determine the necessary phase-lead angle to be added to the system. Add an additional 5o

to 12o to the phase lead required, because the phase lead compensator shifts the phase crossover

211

frequency to the right and decreases the phase margin. φm is then the total phase our compen-
sator needs to add to the system.

4 Determine α using

α =
1− sin(φm)

1 + sin(φm)

Determine the magnitude where KG(jω)H(jω) is equal to −20 log10(
1√
α
) = 10 log10(α). This is

the new gain crossover frequency ωm = 1
T
√
α
, or T = 1

ωm
√
α
.

Note: If α < 0.05, you will probably need two compensators. Choose a phase angle φm that
produces an acceptable α. Finish the design, then treat KGc(s)G(s)H(s) as the system and go
back to step 2 .

5 Determine the corner frequencies of the compensator as z = 1
T
and p = 1

αT
.

6 Determine Kc =
K
α
.

7 Check the gain and phase margins to be sure they are satisfactory.

19.2 Examples

This section includes two examples using the Bode lead controller design algorithm from the
previous section.

Example. Assume we have the open loop system

G(s) =
1

s(s+ 10)(s+ 50)

and we want a steady state error for a unit ramp of 0.01 and a phase margin of approximately
60 degrees. We will use a phase lead controller of the form

Gc(s) = K
Ts+ 1

Tαs+ 1

to try and accomplish both of these. First of all we take care of the steady state error,

Kv = lim
s→0

sGc(s)G(s) =
K

500

ess =
1

Kv

=
500

K
= 0.1

which means we need K = 5000.

212

Next we plot the Bode plot of the system using this gain, so in this case we plot the Bode plot
of

G̃(s) =
5000

s(s+ 10)(s+ 50)

This plot is shown in Figure 86. This Bode plot indicates a phase margin of approximately 43
degrees, so we need to add at least 17 degrees of phase to the system. Hence we will add 17
degrees plus a fudge factor of about 12 degrees. So the total phase we want to add to the system
is

φm = 17o + 12o = 29o

Next we compute the attenuation factor

α =
1− sin(29o)

1 + sin(29o)
≈ 0.347

Next we find the place where the magnitude is equal to 20 log10
√
α,

20 log10
√
0.346 = = −4.6dB

This occurs at ωm ≈ 11.1 rad/sec, this will be our new gain crossover frequency. Finally, we use
the relationship T = 1

ωm
√
α
to determine that T = 0.153. Now we have all of the parameters we

need for our controller,

Gc(s) = K
Ts+ 1

Tαs+ 1
= 5000

0.153s+ 1

0.05309s+ 1

Note that with this controller we can construct the Bode plot of the open loop system with the
phase lead controller, as shown in Figure 87. This graphs shows an actual phase margin of 58.5
degrees. Often we may have to iterate or use something like Matlab’s sisotool once we get an
initial controller.

Example. Consider a system with plant

Gp(s) =
10(s+ 10)

(s+ 1)(s+ 20)2

and we want a steady state error equal to 0.05 for a unit step and a phase margin of 83 degrees
(this is a bit extreme). We will again use a phase lead controller to accomplish this. To determine
the required gain, we have

Kp = lim
s→0

Gc(s)Gp(s) =
100K

400
=

K

4

ess =
1

1 +Kp

=
1

1 + K
4

=
1

20

We will use K = 80 in this case. Next we plot the Bode plot of

Gc(s)Gp(s) =
800(s+ 10)

(s+ 1)(s+ 20)2

213

10
0

10
1

10
2

−50

−40

−30

−20

−10

0

10

20
M

ag
ni

tu
de

 (
dB

)

10
0

10
1

10
2

−250

−200

−150

−100

−50

P
ha

se
 (

de
g)

Frequency (rad/sec)

Figure 86: Bode plot of G(s)H(s) = 5000/(s3 + 60s2 + 500s). The gain phase margin of this
system is approximately 43o.

which is shown in Figure 88. This figure indicates a phase margin of approximately 63 degrees.
We need to add approximately 20 degrees of phase plus a fudge factor. We will use a fudge
factor of 5 degrees, so

φm = 20o + 5o = 25o

The attenuation factor is then

α =
1− sin(25o)

1 + sin(25o)
= 0.406

Then we need the frequency ωm where the magnitude is equal to 10 log10
√
α ≈ −4dB. This

occurs at ωm ≈ 30.5. Finally, using T = 1
T
√
α
we get T ≈ 0.051. The transfer function for the

phase lead controller is then

Gc(s) = 80
0.051s+ 1

0.071s+ 1

214

10
0

10
1

10
2

−40

−30

−20

−10

0

10

20

30
M

ag
ni

tu
de

 (
dB

)

10
0

10
1

10
2

−240

−220

−200

−180

−160

−140

−120

−100

−80

P
ha

se
 (

de
g)

Frequency (rad/sec)

Figure 87: Bode plot of G(s)H(s) = 1/(s3 + 60s2 + 500s) with phase lead controller Gc(s) =
5000(0.153s + 1)/(0.05309s + 1). The gain phase margin of this system is now approximately
59o.

Figure 89 shows the Bode plot of the final system, which has a phase margin of approximately
75o. This initial design can now be modified using sisotool.

At this point you might be wondering why we do not just use software directly. The reason is
that for many systems it is easier to measure the Bode plot directly and then deal directly with
the measured Bode plot, rather than trying to fit the Bode plot to a transfer function (which
will likely introduce more errors).

215

10
1

10
2

−25

−20

−15

−10

−5

0

5

10

M
ag

ni
tu

de
 (

dB
)

10
1

10
2

−170

−160

−150

−140

−130

−120

−110

−100

−90

P
ha

se
 (

de
g)

Frequency (rad/sec)

Figure 88: Bode plot of G(s)H(s) = 800(s + 10)/(s + 1)(s + 20)2. The gain phase margin of
this system is approximately 63o.

216

10
1

10
2

−30

−25

−20

−15

−10

−5

0

5

10

M
ag

ni
tu

de
 (

dB
)

10
1

10
2

−170

−160

−150

−140

−130

−120

−110

−100

P
ha

se
 (

de
g)

Frequency (rad/sec)

Figure 89: Bode plot of G(s)H(s) = 10(s + 10)/(s + 1)(s + 20)2 with phase lead controller
Gc(s) = 80(0.051s+1)/(0.071s+1). The gain phase margin of this system is now approximately
59o.

217

A Matlab Commands

In this section I have listed some common Matlab commands and sections of code that you will
be using on the homework problems. You will probably want to use the help, doc, and lookfor
commands to learn more about theses various functions and commands as you go on though
this course. We will only go over some very simple uses of the commands here.

A.1 Figures

The first time you tell Matlab to plot something, it opens a new window and produces a graph.
Matlab’s default is to plot each graph in the same window, overwriting the previous graph. The
figure command is given before plotting a new graph to tell Matlab to open a new window for
a new graph.

A.2 Transfer Functions

We will make extensive use of transfer functions in this course, so we need to know how to enter
them into Matlab. In general, to enter a polynomial such as

as4 + bs3 + cs2 + ds+ e

into Matlab, type

poly = [a b c d e];

where the powers are implied, only the coefficients are entered. (The semicolon at the end tell
Matlab not to regurgitate what you just told it.) Hence, if we have a rational transfer function,
such as

H(s) =
s3 + 2s

s4 + 3s3 + s+ 5

we can enter the numerator and denominator polynomials separately, as

num = [1 0 2 0]; den = [1 3 0 1 5];

We will usually need to construct the transfer functions explicitly. To do this, type

H = tf(num,den)

This, without the semicolons, should display the transfer function, so you can check that you
entered the correct function. In fact, at any time you can just type H to have Matlab display
what the transfer function is.

i

A.3 Feedback Systems

Let’s assume we want to find the closed loop transfer function for the following system using
Matlab,

R(s)
� s+1

s2+2s+3
���

��
� 10

s
� s2+2

s3+2s2+1
�
Y (s)

�1
s+1

�

+-

We first need to define all of the transfer functions

Gpre = tf([1 1],[1 2 3]);

Gc = tf(10,[1 0]);

Gp = tf([1 0 2],[1 2 0 1]);

H = tf(1,[1 1]);

Next, we compute the transfer function for the feedback block using the feedback command

T = feedback(Gc*Gp,H);

Finally we add the prefilter to get the close loop transfer function

G0 = Gpre*T;

A.4 System Response to Arbitrary Inputs

We will make extensive use both the unit step response and the unit ramp response of a system
in this course. For the unit step response, we assume the system is at rest and the input is
u(t) = 1 (a constant) for all t ≥ 0, while for the unit ramp response, we assume the system is
at rest and the input is u(t) = t for all t ≥ 0.

The simplest way to determine the step response to a system is

step(H);

A figure will appear on the screen, with the step response of the system. Note that the system
will determine what it thinks are appropriate parameters. Sometimes, we want more control
and want different inputs other than a step. In that case we use the command lsim. There
are many forms for this command. In its basic form, you need to tell it a transfer function, the
input function ‘u’, and the sample times ‘t’. For example, the following sequence of commands
plots the response of the system

H(s) =
1

s2 + 2s+ 1

ii

which is initially at rest (the initial conditions are 0) to an input of cos(3t) from 0 to 100 seconds
in increments of 0.05 seconds and then plots the output.

num=[1]; den=[1 2 1];

H = tf(num,den); % get the transfer function

t=[0:0.05:100]; % times from 0 to 100 seconds by increments of 0.05

u = cos(3*t); % input is cos(3t) at the sampe times

y=lsim(H,u,t); % system output is y

plot(t,y); % plot the output

We can (obviously) use the lsim command to determine the step response,

num=[1]; den=[1 2 1];

H = tf(num,den); % get the transfer function

t=[0:0.05:100]; % times from 0 to 100 seconds by increments of 0.05

nt = length(t); % get the length of the t array

u = ones(1,nt); % input is a sequence of 1’s

y=lsim(H,u,t); % system output is y

plot(t,y); % plot the output

The following piece of code will plot the step response of system H, showing both the system
response and the input (we generally want the system to track the input), with neat labelling.

%

% The Step Response

%

t = [0:0.1:10]; % time from 0 to 10 in increments of 0.1

u = ones(1,length(t)); % the input is a sequence of 1’s

y = lsim(H,u,t); % sumulate the friggin system

figure; % set up a new figure (window)

plot(t,y,’-’,t,u,’.-’); % plot the system response/input on one graph

grid; % put on a grid;

title(’Step Response of H’); % put on a title

xlabel(’Time (Seconds)’); % put on an x axis label

legend(’Step Response’,’Unit Step’); % put on a legend

A.5 Changing the Line Thickness

As you hopefully have figured out, Matlab allows you to chose the colors for your graphs.
However, sometimes you do not have access to a color printer, or just want to do something
different. The following section of code allows you to plot using different line thicknesses.

%

% Now do line thickness

%

figure;

hold on % this basically means everything else is on one graph

plot(t,y,’-’,’Linewidth’,4); % make the linewidth 4 (really quite large)

iii

plot(t,u,’-’,’Linewidth’,0.2); % make the linewidth 0.2 (really quite small)

legend(’output’,’input’); grid;

hold off % we are done with this graph

%

You should note that even though you are changing the line width, you can still chose both the
type of line to draw (dashed, dotted, etc) and the color. Also, this may not look so good on the
screen, but usually prints out much better with a reasonable quality printer. Also, sometimes
hold on and hold off can act really weird when you are doing many graphs. This is particularly
true if you forgot the hold off.

A.6 Poles and Zeros

For any transfer function, the poles of the system are the roots of the denominator polynomial,
while the zeros of the system are the roots of the numerator polynomial. Hence, if we have a
transfer function

G(s) =
(s+ 1)(s− 1)

(s+ 2)2(s+ 3)(s+ 4)

the poles of the system are at -2 (repeated), -3, and -4 while the zeros of the system are at -1,
+1 (and ∞, but we don’t usually talk about this). The poles of the transfer function are the
same as the eigenvalues of the system. We care about the poles of the system since they indicate
how fast the system will respond and the bandwidth of the system. The commands pole(G)
and zero(G) will return the poles and zeros of transfer function G.

A.7 Roots and Polynomials

If we want the roots of a polynomial Q assigned to a variable r , we would use the Matlab
command roots

r = roots(Q);

For example, if Q(s) = s3 + s+ 1 and we wanted the roots of Q(s), we would type

Q = [1 0 1 1];

r = roots(Q);

and we would get an array

r =

0.3412 + 1.1615i

0.3412 - 1.1615i

-0.6823

If we wanted to determine the polynomial with roots at 0.3412± 1.1615j,−0.6823 we would use
the poly command

Q = poly([0.3412+1.1615*i 0.3412-1.1615*i -0.6823]);

iv

or, in our case

Q = poly(r);

or

Q = poly([r(1) r(2) r(3)]);

If we want to polynomial with roots at 0.3412± 1.1615j,−0.6823 we can just type

Q = poly([r(1) r(2)]);

A.8 Root Locus Plots

To plot the root locus of a system with open loop transfer function H(s), we use the rlocus
command,

rlocus(H);

You will be able to click on a line and determine both the value of the gain K at that point
and the corresponding closed loop pole values. If we want to know the values of the closed loop
poles at a particular value of K, say K = 10, we type

r = rlocus(H,10)

A.9 Bode Plots, Gain and Phase Margins

To determine the gain and phase margin of a system with open loop transfer function H(s), we
use the margin command

margin(H)

To create the bode plot of a system with open loop transfer function H(s), we use the bode
command

bode(H)

There are a number of useful variations on the bode command. For example, if we want to view
to bode plot over a specified range of frequencies, we type

w = logspace(0,2,100); % create 100 logarithmically spaced points

% between 1 (10^0) and 100 (10^2)

bode(H,w);

Sometimes we want the magnitude and phase of the transfer function H(s). We can use the
command

[Mag,Phase,w] = bode(H);

Mag = Mag(:);

Phase = Phase(:);

v

In this command, Matlab returns the magnitude (not in dB), phase,and frequencies the function
was evaluated at, but the magnitude and phase are stored in a weird way. The command
Mag = Mag(:) forces Matlab to put them in a column. We can also specify which frequencies
we want to evaluate the function at

[Mag,Phase] = bode(H,w);

If we then want to just plot the magnitude of the transfer function we can use

Mag = Mag(:);

Mag_dB = 20*log10(Mag);

semilogx(w,Mag_dB); grid;

vi

