Name ______ Mailbox _____

ECE-205 Exam 2

Winter 2009

Calculators and computers are not allowed. You must show your work to receive credit.

Problem 1	/20
Problem 2	/15
Problem 3	/20
Problem 4	/25
Problem 5-9	/20
Total	

1) (20 points) Fill in the following table with a Y (yes) or N (no) for each of the system models given. Assume $-\infty < t < \infty$ for all of the systems and all initial conditions are zero.

System	System Model	Linear?	Time- Invariant?	Causal?	Memoryless?
1	$y(t) = e^{t+1}\cos(t)x(t)$		mvariant:		
2	y(t) = x(t-1)				
3	y(t) = x(1-t)				
4	$\dot{y}(t) + y(t) = e^{-t}x(t+1)$				
5	$y(t) = \int_{-\infty}^{t} e^{-(t-\lambda)} x(\lambda+1) d\lambda$				

2) (15 points) Determine the impulse responses for the following systems

a)
$$y(t) = x(t-1) + \int_{-\infty}^{t-1} e^{-(t-\lambda-2)} x(\lambda+2) d\lambda$$

b) $\tau \dot{y}(t) + y(t) = Kx(t)$

- 3) (20 points) For the following interconnected systems,
- i) determine the overall impulse response (the impulse response between input x(t) and output y(t)) and
- ii) determine if the system is causal.

- **a**) $h_1(t) = u(t-1), h_2(t) = u(t+1)$
- **b)** $h_1(t) = e^{-(t-1)}u(t-1), h_2(t) = \delta(t-2)$

4) (25 points) Consider a noncausal linear time invariant system with impulse response given by

$$h(t) = e^{-t}[u(t+1) - u(t-2)]$$

The input to the system is given by

$$x(t) = 2u(t-1) - 5u(t-2) + 3u(t-3)$$

Using *graphical convolution*, determine the output y(t) Specifically, you must

- Flip and slide h(t), $\underline{NOT} x(t)$
- Show graphs displaying both $h(t \lambda)$ and $x(\lambda)$ for each region of interest
- \bullet Determine the range of t for which each part of your solution is valid
- Set up any necessary integrals to compute y(t). Your integrals must be complete, in that they cannot contain the symbols $x(\lambda)$ or $h(t-\lambda)$ but must contain the actual functions.
- Your integrals cannot contain any unit step functions
- DO NOT EVALUATE THE INTEGRALS!!

Multiple Choice Problems (4 points each)

5) Assume we have a first order system in standard form, and the input is a step. The usual form used to compute the response of the system is

a)
$$y(t) = [y(0) - y(\infty)]e^{-t/\tau} + y(0)$$
 b) $y(t) = [y(\infty) - y(0)]e^{-t/\tau} + y(0)$

b)
$$y(t) = [y(\infty) - y(0)]e^{-t/\tau} + y(0)$$

c)
$$y(t) = [y(\infty) - y(0)]e^{-t/\tau} + y(\infty)$$
 d) $y(t) = [y(0) - y(\infty)]e^{-t/\tau} + y(\infty)$

d)
$$y(t) = [y(0) - y(\infty)]e^{-t/\tau} + y(\infty)$$

Problems 6 and 7 refer the following graph showing the response of a second order system to a step input.

6) The percent overshoot for this system is best estimated as

- a) 200 % b) 150 %
- c) 100%
- d) 67 %

e) 50 % f) 33%

7) The static gain for this system is best estimated as

- a) 0.1 b) 0.5 c) 1.0
- d) 1.2
- e) 1.5 d) 2.0

8) The following figure shows a capacitor charging.

- Based on this figure, the best estimate of the **time constant** for this system is
- a) 5 sec

- b) 10 sec c) 15 sec d) 20 sec e) 30 sec f) 40 sec
- 9) For the second order equation $\ddot{y}(t) + 4\dot{y}(t) + 5y(t) = x(t)$ with an input x(t) = u(t), we should look for a solution of the form
- a) $y(t) = ce^{-2t} \sin(t+\theta) + 1$ b) $y(t) = ce^{-t} \sin(2t+\theta) + 1$ c) $y(t) = ce^{-t} \sin(2t+\theta) + 5$
- d) $y(t) = ce^{-2t} \sin(t + \theta) + 5$ e) $y(t) = ce^{2t} \sin(t + \theta) + 5$ f) none of these

Name	Mailbox

Name	Mailbox

Name	Mailbox