ECE-205 Practice Quiz 1

1) For a first order RC circuit, the time constant is of the form

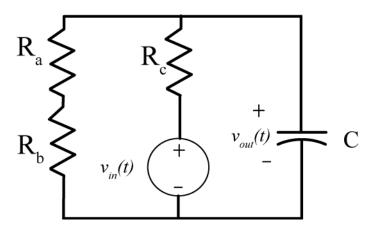
- a) $\tau = R_{th}C$ b) $\tau = R_{th}/C$ c) $\tau = C/R_{th}$ d) none of these
- 2) For a first order RL circuit, the time constant is of the form

- a) $\tau = R_{th}L$ b) $\tau = R_{th}/L$ c) $\tau = L/R_{th}$ d) none of these
- 3) The differential equation that relates the current through a capacitor to the voltage across a capacitor is

- a) $i_c(t) = C \frac{dv_c(t)}{dt}$ b) $v_c(t) = C \frac{di_c(t)}{dt}$ c) $i_c(t) = \frac{1}{C} \frac{dv_c(t)}{dt}$ d) $v_c(t) = \frac{1}{C} \frac{di_c(t)}{dt}$
- 4) The differential equation that relates the current though an inductor to the voltage across an inductor

- a) $i_L(t) = L \frac{dv_L(t)}{dt}$ b) $v_L(t) = L \frac{di_L(t)}{dt}$ c) $i_L(t) = \frac{1}{L} \frac{dv_L(t)}{dt}$ d) $v_L(t) = \frac{1}{L} \frac{di_L(t)}{dt}$
- 5) The standard form for an RC or RL first order circuit, with input x(t) and output y(t), is

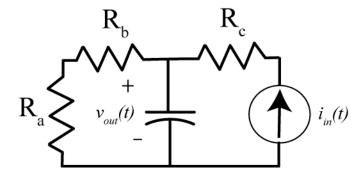
a) $\frac{1}{\tau} \frac{dy(t)}{dt} + y(t) = Kx(t)$ b) $\tau \frac{dy(t)}{dt} + y(t) = Kx(t)$ c) $\frac{dy(t)}{dt} + \tau y(t) = Kx(t)$


d) $\frac{dy(t)}{dt} + \tau y(t) = \frac{1}{K}x(t)$ e) $\tau \frac{dy(t)}{dt} + y(t) = \frac{1}{K}x(t)$ f) $\frac{dy(t)}{dt} + \tau y(t) = Kx(t)$

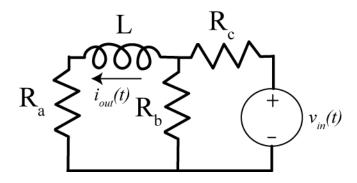
6) A capacitor is a/an

- a) open circuit b) short circuit to DC signals.

7) An inductor is a/an a) open circuit b) short circuit to DC signals.

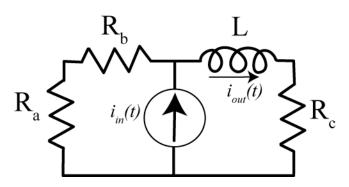

Problems 8 and 9 refer to the following circuit:

- 8) The Thevenin resistance seen from the ports of the capacitor is
- a) $R_{th} = R_a + R_b$ b) $R_{th} = R_c$ c) $R_{th} = R_c \parallel (R_a + R_b)$ d) $R_{th} = R_a + R_b + R_c$ e) none of these
- 9) The static gain for the system is


a)
$$K = 1$$
 b) $K = \frac{R_c}{R_a + R_b + R_c}$ c) $K = \frac{R_a + R_b}{R_a + R_b + R_c}$ d) $K = \frac{R_c}{R_a + R_b}$ e) none of these

Problems 10 and 11 refer to the following circuit

- 10) The Thevenin resistance seen from the ports of the capacitor is
- a) $R_{th} = R_a + R_b$ b) $R_{th} = R_c$ c) $R_{th} = R_c \parallel (R_a + R_b)$ d) $R_{th} = R_a + R_b + R_c$ e) none of these
- 11) The static gain for the system is
- a) K = 1 b) $K = R_c$ c) $K = R_a + R_b$ d) $K = R_c \parallel (R_a + R_b)$ e) none of these


Problems 12 and 13 refer to the following circuit

- 12) The Thevenin resistance seen from the ports of the inductor is
- a) $R_{th} = R_a + R_b \parallel R_c$ b) $R_{th} = R_c + R_a \parallel R_b$ c) $R_{th} = R_a + R_b$ d) $R_{th} = R_a + R_c$ e) none of these
- 13) The static gain for the system is

a)
$$K = 1$$
 b) $K = \frac{R_b}{R_a + R_b}$ c) $K = \frac{R_a}{R_a + R_b}$ d) $K = \frac{R_b}{R_c + R_b}$ e) none of these

Problems 14 and 15 refer to the following circuit

- 14) The Thevenin resistance seen from the ports of the inductor is
- a) $R_{th} = R_c \parallel (R_a + R_b)$ b) $R_{th} = R_c$ c) $R_{th} = R_a + R_b$ d) $R_{th} = R_a + R_b + R_c$ e) none of these
- 15) The static gain for the system is

a)
$$K = 1$$
 b) $K = \frac{R_a + R_b}{R_a + R_b + R_c}$ c) $K = \frac{R_c}{R_a + R_b + R_c}$ d) $K = \frac{R_c}{R_a + R_b}$ e) none of these

Answers: 1-a, 2-c, 3-a, 4-b, 5-b, 6-a, 7-b, 8-c, 9-c, 10-a, 11-c, 12-a, 13-e, 14-d, 15-b