ECE-205 Exam 3 Spring 2010

Calculators and computers are not allowed. You must show your work to receive credit.

- Problem 1 ____/20
- Problem 2 ____/20
- Problem 3 ____/20
- Problem 4 ____/20
- Problem 5 ____/20

Total _____

1) (20 points) For a system with transfer function

$$H(s) = \frac{3}{s^2 + 4s + 6}$$

determine the *unit step response* of the system:

Do not forget any necessary unit step functions.

2) (20 points) Consider the following simple feedback control block diagram. The plant, the thing we want to control, has the transfer function $G_p(s) = \frac{2}{s+4}$

a) Determine the settling time of the plant alone (assuming there is no feedback)

b) For a proportional controller, $G_c(s) = k_p$, determine the closed loop transfer function $G_0(s)$ and then

i) the settling time, in terms of k_p

ii) the steady state error for a unit step, in terms of k_p

c) For and integral controller, $G_c(s) = \frac{k_i}{s}$, determine the closed loop transfer function $G_0(s)$ and the steady state error for a unit step in terms of k_i

3) (20 points) Show that the following circuit can be used to implement the PI controller

Determine expression for both k_p and k_i in terms of the parameters R_1, R_2, R_3, R_4, C_2

4) (**20 points**) For the following circuit determine the *<u>transfer function</u>* and the corresponding *<u>impulse response</u>*.

•

5) (20 points) For the following block diagram

a) Draw the corresponding signal flow graph, labeling each branch and direction

b) Determine the system transfer function using Mason's gain rule. You must simplify your final answer as much as possible.