ECE-205 Quiz 4

Fill in the following table with a Y (yes) or N (no) for each of the system models given. Assume $-\infty < t < \infty$ for all of the systems and all initial conditions are zero.

System	System Model	Linear?	Time-	Causal?	Memoryless?
			Invariant?		
1	$y(t) = e^{t-1}x(t+1)$				
2	$y(t) = x \left(t - \frac{1}{2} \right)$				
3	y(t) = x(1-t)				
4	$\dot{y}(t) + y(t) = e^{-t}x(t)$				
5	$y(t) = \int_{-\infty}^{t} e^{-(t-\lambda)} x(\lambda+1) d\lambda$				
6	$y(t-1) = \cos(t)x(t)$				
7	$y(t) = x\left(\frac{t}{2}\right)$				
8	$y(t) = \frac{1}{2} \left[x(t-1) + x(t+1) \right]$				

- 9) For a system with input x(t) and output y(t), is it necessary for $y(t_0) = 0$ in order for the system to be linear?
- a) Yes b) No
- **10**) For a system with input x(t) and output y(t), is it necessary for $y(t_0) = 0$ in order for the system to be **time-invariant**?
- a) Yes b) No

11) Assume we know a system is a linear time invariant (LTI) system. We also know the following input x(t) – output y(t) pair:

If the input to the system is now $x_{new}(t)$

Which of the following best represents the output of the system?

a)
$$y_a(t)$$
 b) $y_b(t)$ c) $y_c(t)$ d) $y_d(t)$

