ECE-205 : Dynamical Systems

Homework #8

Due : Thursday May 6 at the beginning of class

1) For the following transfer functions

$$
H(s) = \frac{2}{s^2 + 2s + 2} \qquad H(s) = \frac{3}{s^2 + 4s + 6} \qquad H(s) = \frac{5}{s^2 + 6s + 10}
$$

$$
H(s) = \frac{4}{s^2 - 4s + 7} \qquad H(s) = \frac{1}{s^2 + 4}
$$

By computing the inverse Laplace transform show that the step responses are given by

$$
y(t) = \left[1 - e^{-t}\cos(t) - e^{-t}\sin(t)\right]u(t) \quad y(t) = \left[\frac{1}{2} - \frac{1}{\sqrt{2}}e^{-2t}\sin(\sqrt{2}t) - \frac{1}{2}e^{-2t}\cos(\sqrt{2}t)\right]u(t)
$$

\n
$$
y(t) = \left[\frac{1}{2} - \frac{3}{2}e^{-3t}\sin(t) - \frac{1}{2}e^{-3t}\cos(t)\right]u(t) \quad y(t) = \left[\frac{4}{7} + \frac{8\sqrt{3}}{21}e^{2t}\sin(\sqrt{3}t) - \frac{4}{7}e^{2t}\cos(\sqrt{3}t)\right]u(t)
$$

\n
$$
y(t) = \left[\frac{1}{4} - \frac{1}{4}\cos(2t)\right]u(t)
$$

2) For the following transfer functions, determine

- the characteristic polynomial
- the characteristic modes
- if the system is (asymptotically) stable, unstable, or marginally stable

a)
$$
H(s) = \frac{s-1}{s(s+2)(s+10)}
$$

b) $H(s) = \frac{s(s-1)}{(s+1)^2(s^2+s+1)}$
c) $H(s) = \frac{1}{s^2(s+1)}$

d)
$$
H(s) = \frac{s^2 - 1}{(s - 1)(s + 2)(s^2 + 1)}
$$
 e) $H(s) = \frac{1}{(s^2 + 2)(s + 1)}$

Partial Answer: 1 stable, 2 unstable, 2 marginally stable

3) For a system with the following pole locations, estimate the settling time and determine the dominant poles

a) $-1, -2, -4, -5$ b) $-4, -6, -7, -8$ c) $-1+j$, $-1-j$, -2 , -3 d) $-3-2j$, $-3+2j$, $-4+j$, $-4-j$ *Scrambled Answers: 4/3, 4, 4, 1*

4) Determine the static gain for the systems represented by the following transfer functions, and then the steady state output for an input step of amplitude 3:

$$
H(s) = \frac{s+2}{s^2+s+1}, \quad H(s) = \frac{1}{s^2+4s+4}, \quad H(s) = \frac{s-4}{s^2+s+1}
$$

Answers: 2, 0.25, -4, 6, 0.75, -12 (this should be very easy)

5) Consider the following simple feedback control block diagram. The plant, the thing we want to control, has the transfer function $G_p(s) = \frac{3}{s+2}$ and the controller is a proportional controller, so $G_c(s) = k_p$.

- a) Determine the settling time of the plant alone (assuming there is no feedback)
- b) Determine the closed loop transfer function, $G_0(s)$
- c) Determine the value of k_p so the settling time of the system is 0.5 seconds.

d) If the input to the system is a unit step, determine the output of the system.

e) The steady state error is the difference between the input and the output as $t \to \infty$. Determine the steady state error for this system.

Partial Answer: $y(t) = \frac{3}{4} \left[1 - e^{-8t} \right] u(t), \quad e_{ss} = 0.25$

6) Show that the following circuit can be used to implement the PI controller

$$
G_c(s) = \frac{U(s)}{E(s)} = k_p + k_i \frac{1}{s} = \frac{R_4 R_2}{R_3 R_1} + \frac{R_4}{R_3 R_1 C_2} \frac{1}{s}
$$
\n
$$
R_2 C_2
$$
\n
$$
V_m(t)
$$
\n
$$
R_3
$$
\n
$$
V_m(t)
$$
\n
$$
V_m(t)
$$

7) Consider the following simple feedback control block diagram. The plant, the thing we want to control, has the transfer function $G_p(s) = \frac{3}{s+2}$ and the controller is an integral controller, so $G_c(s) = \frac{k_i}{s}$.

a) Determine the closed loop transfer function, $G_0(s)$

b) Determine the poles of value of $G_0(s)$ and show they are only real if $0 < k_i < \frac{1}{3}$. Note that the best possible setting time is 4 seconds. Use $k_i = \frac{1}{3}$ for the remainder of this problem.

c) If the input to the system is a unit step, determine the output of the system.

d) The steady state error is the difference between the input and the output as $t \to \infty$. Determine the steady state error for this system.

Partial Answer: $y(t) = \left[1 - e^{-t} - te^{-t}\right]u(t), \quad e_{ss} = 0$

8) Consider the following simple feedback control block diagram. The plant is $G_p(s) = \frac{2}{s+4}$. The input is a unit step.

a) Determine the settling time and steady state error of the plant alone (assuming there is no feedback)

b) Assuming a proportional controller, $G_c(s) = k_p$, determine the closed loop transfer function, $G_0(s)$

c) Assuming a proportional controller, $G_c(s) = k_p$, determine the value of k_p so the steady state error for a unit step is 0.1, and the corresponding settling time for the system.

d) Assuming a proportional controller, $G_c(s) = k_p$, determine the value of k_p so the settling time is 0.5 seconds, and the corresponding steady state error.

e) Assuming an integral controller, $G_c(s) = k_i / s$, determine closed loop transfer function, $G_0(s)$

f) Assuming an integral controller, $G_c(s) = k_i / s$, determine the value of k_i so the steady state error for a unit step is less than 0.1 and the system is stable.

PartialAnswers: $T_s = 1$, $e_{ss} = 0.5$, $k_p = 18$, $k_p = 2$, $T_s = 0.1$, $e_{ss} = 0.5$, $k_i > 0$