8.0 Steady State Frequency Response

Consider the response of two LTI system with transfer functions

5

H,(s)=—

() s+1

80
Ho(s)=———
2(5) s? +1.2s+10

to the inputs x(t) =sin(a,t)u(t) forw,= 5, 10, and 15 radians/sec. Figure 8.1 displays the

response of the first system to the three input sinusoids, while Figure 8.2 displays the
response of the second system to the three input sinusoids. In both figures, the input
sinusoid is displayed as a dashed line and the output is a continuous line. Both figures
include heavy solid lines that bound the amplitude of the output sinusoid in steady state.
As the figures demonstrate, both of the systems go through some initial transients, and
then reach a steady state response. The first system has a pole at -1 and the second system
has its poles at approximately —0.6+3.1j, so the 2% setting times for the two systems

are estimated to be 4 and 6.7 seconds which corresponds pretty well with the results in
the figures. Once the systems come into steady state, the output of the system has a
constant amplitude, and there is a constant relationship between the input signal and the
output signal. It is important to note that the settling time for the system is not a function
of the frequency of the input, but is a property of the system!

At this point we know how to quickly estimate the settling time of a system based on the
poles of the system, and we next want to be able to quickly estimate the steady state
output of an asymptotically stable system with a sinusoidal input. In order to do this we
first need to review Euler’s identities and write them in a different form than you are used
to seeing.

8.1 Euler’s Identity and Other Useful Relationships

The usual form of Euler’s identity is
e = cos(awyt) + jsin(w,t)
We can also write this as
e 1" = cos(awyt) — jsin(w,t)
If we add and subtract these two expressions we get
el + e = 2cos(myt)
el —e7 %' = 2 jsin(myt)
Finally, we get our alternate forms of Euler’s identity

jw0t+efj(“0t
cos(a,t) =
2
ja’ot _ efjwot
sin(w,t) =
(@) ==
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estimated settling time of the system is 4 seconds. The input signal is the dashed line and
the output signal is the solid line. The thick solid line bounds the steady state amplitude.

Next, let’s assume our usual case of a proper transfer function that is the ratio of two

This form of Euler’s identity is very useful in both this and in later courses.
polynomials,

Figure 8.1. Response of the first system to sinusoids of 5

"+b,
"+a, S

_b,s

S

H(s)

d"y(t)

Since this is proper we have m <n. Let’s also assume that we have a real valued system,
dtnfl

so that if the input is a real valued function the output will be a real valued function. This

means that all of the coefficients must be real values. To understand this, remember that
this transfer function means the input and output are related by the differential equation

+8,Y(t)

0]
dt

_|_..._|_a:l

+a,

d"y(®)
dt"

Hence, if the input is real and we want the output to be real all of the coefficients must

also be real.
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Figure 8.2. Response of the second system to sinusoids of 5, 10, and 15 radians/sec.
The estimated settling time of the system is 6.7 seconds. The input signal is the dashed
line and the output signal is the solid line. The thick solid line bounds the steady state
amplitude.

Next, let’s assume we want to evaluate the transfer function ats = ja, and also at
s=—]ja, and if we can relate the two. Remember that as we raise j to increasing powers
we cycle through the same four values, ie., j'=j,j>=-1, j°=—j, j*=1,and j°=j
so we are right back where we started. To determine what is going on with transfer

functions we will look at low order systems and build are way up. Finally, remember that
to determine the complex conjugate of a number, you replace j with —j.
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First Order System:

b;s+b, bla)0+b

. jba, +b .
H(S) =20 H(jop) = 2272 H (- j,) =~ = H’(jy)
0 Jo, + —ja, +
Second Order System:
b,s* +bs+h, —b,@} + jbw, +hb,
H(S): 22 bl 0 H( ) 0 J 0
s“+as+a, -} + jayw, +a,
. —b,w} - jba, +h, ., .
H (- jo,) = 22 JAB D _ e
_a)o jaw, +a,
Third Order System:
3 2 ik 3 2, :
H(s) = b§§+;b;§ ++ b,s+Db, Hja,) = _Jpac;)o_ bzaz)0 +_jbla)0 +Db, ’
s +a, Joy -, + Ja,0, + 3,

2 -
jba)0 ba)O _Jbla)°+b0=H*(ja)O)
j o_aa)o Jaw, + 8,

H(-jw,) =

Fourth Order System:

b,s* +h,s® +h,s* +bs+b, b,a; — jb,0 —b,0 + jbo, +b,

H(S): 4 3 2 1H(ja)0): 44 - 3 2 - ’
s"+a,5°+a,5"+a,5+4a, @, — ja,w, —a,w; + jaw, +a,
4 H 3 2
H(ja,) = by + jbyw5 —b,wp — jowy +, H (jo,)

a’g + Jasa)g - aza)g — jam, +a,
At this point it is pretty straightforward to generalize the relationship H™(jo) = H (- jo) .

The last thing we need to do is look at representing the transfer function in polar form to
determine two important properties of transfer functions for real-valued systems. Assume
that we have the complex function written in rectangular form as
2(w) = a(w) + jb(w)
where a(w) and b(w) are real valued functions. We can write this in polar form as
2() = c(0)e" = 2(0) | &

c(@) =a(@)’ +b(w)’ = 2(a)|

M@=wﬂ@wq £2(o)

where

a(w)

Now let’s assume we have a complex valued transfer function H (jw). We can write this
in polar form as
H(j@) = H(jo)| e
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Next, let’s look at H™(jw) and H (- jw) to derive some useful relationships.

H*(jo) = H (jo)|e " o H(jo)|e <"
H(-jo)=|H(-jo)| pidH (o) —IH(-jo)| pidH(-jo)

Now since we know that for a real valued system H™(jw) = H (- jo) we can conclude the
following useful information:

e |H(jo)|HH(-jw)| (the magnitude is an even function of frequency)
e —XH(jw)=4H(-]jw) (the phase is an odd function of frequency)

Although we have only shown this to be true for transfer functions that are ratios of
polynomials, it is true in general for any transfer function that corresponds to a real
valued system. It may also seem a bit odd to talk about negative frequencies, but this is
necessary for the mathematics to work out. Often when we plot the frequency response of
a system we will plot both negative and positive frequencies, even if we can only
measure the positive frequencies.

With this background, we can now solve our problem.

8.2 Steady State Response to a Periodic Input

Let’s assume we have strictly proper rational transfer function for a real valued ,
asymptotically stable, system which has n distinct poles. The we can represent the
transfer function as

b,s" +b, " +--+bs+b,  b,s"+b, S" 4 +bs+D,
s'+a, s ++as+a,  (Z2-p)(z-p,)--(2-D,)

Next, assume the input to our system is a cosine with amplitude A, x(t) = Acos(a,t)u(t) .

We can then use Laplace transforms to determine the output of the system,

H(s) =

As As
Y(s)=H(s)X(s)=H(s) z—==H(s)— :
S ta (s—jap)(s+ jay,)
Using partial fraction expansion we will have
Y(s)=H(s) - As —— = B, + B, et B, + C_l + C_Z
(s—jw)(s+ jm,) s—p, s—p, StP, S—Jw, S+ ],

In the time domain we can represent this as
Y(t) = Bl¢1 (t) + Bz¢2 (t) toeeet Bn¢n (t) + CleWOt + Cze_J%t
where ¢ (t) is the i" characteristic mode. Now, since we have assumed our system is

asymptotically stable, in steady state, ast — oo, all of the characteristic modes will go to
zero and we will have

Vs (t) = Cie!™ +C e
Using the partial fraction expansion we have

©2009 Robert D. Throne 5



: o, A .
C,=AH ———=—H
1 (Ja)o)j + o, 2 (jar)

C2 = AH (—Ja)o)i =é H (_ja)o)
_Ja)o - JCOO 2
so we have
VO =2 (i) + AR (e

Now we need the relationships we derived in the last section. We can write

H(jw) = H(jo) e
H(-jo) = H(jw)|e <"
Inserting this into our steady state response, and combining exponents and factoring out
common terms we have
i(oxtrH (joo) | g i(oxt+<H (jop))

2

Y () =AlH(j,)]

Using Euler’s identity we finally have

Yo (1) = Al H(jay) | cos(ayt + £H (e, )
This is a very important result that you will use repeatedly in the future. Although we
assumed our system had distinct poles, it should be obvious that that is not necessary.
Also, although we assumed the input contained no phase, that was to keep the
mathematics to a simpler level. If the input has a phase, it is just added to the output.

In summary if we have a proper, rational transfer function for a real valued system that is
asymptotically stable, then we can compute the steady state output of the system as
follows

x(t) = Acos(a,t + ) —> — v, ()= A|H(ja,) | cos(m,t + £H (jay,) +0)

Note that this result is only valid after the transients have died out, usually after
approximately four time constants (i.e., the system has passed the settling time).

Example 8.2.1. Determine the steady state output for the system represented by the
transfer function

2
H(s)=——
®) s+3

if the input to the system is x(t) = 4cos(3t +45°) . First, we must recognize «, =3,
6 =45°,and A=4.Nextwe compute the magnitude and phase of the transfer function,

H(j3) =2 | H(j3) |=1.075, £H (j3) = —45°
J3+3

Combining these we get

©2009 Robert D. Throne 6



Y. (t) = (4)(2.075) cos(3t —45° +45°) = 4.30 cos(3t)

Example 8.2.2. Determine the steady state output for the system represented by the
transfer function
H(s)=————
(s+1)(s+2)
if the input to the system is x(t) = 3sin(2t + 30°). First we must convert the sine to a
cosine,
x(t) = 3sin(2t +30°) = 3cos(2t +30° —90°) = 3cos(2t —60°)
Next we recognizew, =2,  =—60°, and A= 3. Evaluating the transfer function at the
correct frequency we have
. j2
H(j2)= =
(J2+D(j2+2)

| H(j2)|=0.3162, £H (j2) = —18.4349°

Finally we have
Y. (t) = (3)(0.3162) cos(2t —18.4349° — 60°) = 0.9487 cos(2t — 68.4349°) = 0.9487 sin(2t + 48.4349)

Note that we subtracted 90 degrees to convert from the cosine to the sine, and then added
90 degrees when we were done to convert back to the sine. Since the initial phase is just
carried through, we really did not have to convert from the cosine to the sine to do this
problem. In short, we could have used the relationship

X(t) = Asin(aw,t + 6) > -y, ()= A|H(ja,)|sin(at + £H (ja,) +6)

Finally, note that the notation H (ja,) usually refers to evaluating the Laplace transform
of an asymptotically stable system at the frequency a,,

H(ja,) =H(s)|

s=jay
8.3 Computation of H(ja,)Using The Pole-Zero Diagram

In addition to being able to compute H(jo,) analytically, it is sometimes useful to

utilize the pole-zero diagram to determine the magnitude and phase of the transfer
function. With some practice, this method allows one to get a feeling for how the
magnitude and phase of the transfer function changes as the frequency «, is changed.

Let’s assume we have a strictly proper transfer function written in terms of poles and
zeros as

K(S—Zl)(S—ZZ)---(S-Zm)

H(s) =
)= e h)s—py) (5= py)
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We need to evaluate this at s = ja,, S0 we have

K(aw, —2)(jo, —2,) (o, - 2,,)

(Joy = p)(J, = P,) -~ (Jap — )

Next, we need to represent each of these terms in polar form, rather than in rectangular
form. To standardize this, let’s write

H(jw) =

oy =2, = e, f, = (Re(z)" + (@~ Im(2))" 4 :tan-{%?lf?)]
jwo —h= aiej&i » & :\/(Re( pi)2 +(a)0 - Im(pi))2 6 = tan™' (%r(r})(,?l)}

B, and ¢, represent the distances between zero z, and pole p, from the point ja,,
respectively. ¢ represents the angle (measured from the positive real axis) between zero
z, and jaw,, while &, represents the angle between pole p, and ja,. While these formulas

look pretty messy, you will see they are actually fairly easy to understand graphically.
Finally we have

KBe™Be™..one™ _ KBPyPu yihstrss-t-t,-0)

H(jao) =— 577" =
 aea,e. o e aa,..a,
This means
 KBB..p
|H(jo,) s ~2P2Fn
a,a,..q,

LH(joy)) =+ b+ +¢,—6,-0,——6,
To see how to use these formulas, let’s do a few examples. In words, the first formula
means that the magnitude is equal to K times the product of distances from the zeros to
Jja, divided by the product of distances from the poles to j,. The second formula
indicates that the phase of the transfer function is the sum of the phases between the zeros
and the point je, minus the sum of the phases between the poles and the point jo,. A
few examples will help clear this up, and you will see it is quite easy to view this
graphically.

Example 8.3.1 For the system with transfer function
4
H(s)=—
®) s+4

use the pole zero plot to determine the frequency response at frequencies @,=2, 5, and 8
radians/sec. We will first look at the magnitude and then the phase of H(jw,) for the

three frequencies. Figures 8.3-8.5 shows the corresponding pole-zero plots and the
distances we need to compute.

©2009 Robert D. Throne 8



At a frequency of 2 radians/second (Figure 8.3), we first need to compute the distance
between the pole at -4 and the point j2, so we have

a, =+/(-4—0)? +(0-2)? =~/20

and then
] K 4
H(j2)|=—=—=0.894
IH(j2)| x T2

We next need to determine the angle between the pole at -4 and the point j2, which we
can compute as

6, =tan™ (EJ = 26.6°
4

Hence the phase is—26.6°. Thus we have H(j2) =0.894x —26.6.°.

...................................

Figure 8.3. Pole-zero plot of H(s) = i4 evaluated at 2 radians/second. The distance
S+

between the pole and the point j2is used in the magnitude computation, while the angle
between the pole and the point j2 is used in the phase computation.

©2009 Robert D. Throne 9



At a frequency of 5 radians/second (Figure 8.4), we need to compute the distance
between the pole at -4 and the point j5 so we have

a, =+/(-4—0)? +(0—5)? =~/41

and then
] K 4
H(j5) | —=—=0.625
[H(j5)| o« Jal

Similarly, to compute the phase we need the angle between the pole at -4 and the point j5

, SO we have

g, =tan™ (Ej =51.3°
4

and hence H(j5) =0.254£ —51.3°.

Figure 8.4. Pole-zero plot of H(s) = i4 evaluated at 5 radians/second. The distance
S+

between the pole and the point j5 is used in the magnitude computation, while the angle

between the pole and the point j5 is used in the phase computation.

At a frequency of 8 radians/second (Figure 8.5), we need to compute the distance
between the pole at -4 and the point j8, so we have

o, =/(-4-0)° +(0-8)’ =80

©2009 Robert D. Throne 10



and then

IH(8) =% — 0447

a, /80

The phase is given by
g, =tan™ (ﬁ =63.4°
4

and we have H(j8)=0.447x —63.4°.

—_
'
—_

Figure 8.5. Pole-zero plot of H(s) = i4 evaluated at 8 radians/second. The distance
S+

between the pole and the point j8is used in the magnitude computation, while the angle
between the pole and the point j8is used in the phase computation.

Figure 8.6 displays the magnitude and phase as a continuous function of frequency, with
the points we just calculated shown with a star. Note that the magnitude is an even
function of the frequency, and the phase is an odd function of the frequency.

©2009 Robert D. Throne 11
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Figure 8.6. Magnitude and phase plots of H(s) = i4 . The stars (*) are located the at
S+

discrete points we evaluated in Example 8.3.1.

Example 8.3.2. Consider the system with transfer function

s°+20s+200  (s+10+10j)(s+10-10j)
(s* +16s+80)(s+10) (s+8+4j)(s+8-4j)(s+10)

H(s) =

Use the pole-zero diagram to determine H (j2). The appropriate pole-zero diagram is
shown in Figure 8.7. Computing the distances and angles between the zeros and the point
j2we have

B, =+/(-10-0)* + (10~ 2)* =164 =12.806, ¢ =tan™ (I—g] =-38.66°

B, =+/(-10-0)? + (~10—2)* = /244 =15.621, ¢, =tan* (%) ~50.19°

Computing the distances and angles between the poles and the point j2 we have

©2009 Robert D. Throne 12



&, =+/(-10-0)* +(0-2)* =+/104 =10.198, 6, =tan™ (%) ~11.30°

@, =+/(-8-0)* +(4-2)? =/68 =8.246, 6, =tan™ (%Zj = —14.04°

, =/(-8-0)? + (-4 —2)? =~/100 =10.000, 6, =tan™ (gj —36.87°

We can then compute

H(j2) | BB, (12.806)(15.621)
ayo,a,  (10.198)(8.246)(10)
£H(j2)=¢ +¢,—-6,-0,-0,=-38.66° +50.19° —11.31° +14.04° —36.87° ~ —22.6°

A plot of the magnitude and phase of this transfer function as a continuous function of
frequency is shown in Figure 8.8. In this figure, the point on the plot we just computed is
identified with a star (*).

While computing the magnitude and phase of the transfer function this way can become
quite tedious if we need to compute it for many frequencies, it does help to visualize the
frequency response. For example, if a system has a single real pole at—p, then the
smallest the distance between this point and any point on the je axis occurs when o = 0.
This means the maximum of | H (jw) | occurs when @ =0 and will be monotonically
decreasing in magnitude as the frequency increase. If a system has two complex
conjugate poles, such as at —o + ja, , then at the frequency o = @, the denominator
tends to have its smallest value, and the magnitude of the transfer function its largest
value. This is not always true, but is a general trend especially when the imaginary part of
the pole is large compared to the real part of the pole (@, >> o ). Figure 8-9 demonstrates
this type of behavior. In this figure, the imaginary part of the pole is fixed at £16 as the
real part varies. The magnitude of each plot is scaled to a maximum of one. As the figure
shows, as the magnitude of the imaginary part of the pole becomes larger than the
magnitude of the real part of the pole, we see peaks or resonances at the frequency
corresponding to the imaginary part of the poles.

©2009 Robert D. Throne 13



Figure 8.7. Pole-zero diagram for Example 8.3.2. We are evaluating the transfer
(s+10+10j)(s+10-10j)

function H(s) =
(s) (s+8+4j)(s+8-4j)(s+10)

at the frequency 2 radians/sec.

©2009 Robert D. Throne 14
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frequency. This is the transfer function from Example 8.3.2, and the stars (*) denote the
points we computed in that example.

Figure 8.8. Plot of H(s) = as a continuous function of
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Figure 8.9. This figure shows the magnitude of the frequency response of various
systems that have two complex conjugate poles. All of these systems have poles of the
form o £16 where the real part of the pole varies from -32 to -1. The magnitudes for
these systems have been scaled to have a maximum value of one.
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8.4 Using Decibels

Before the advent of calculators and computers, people needed an easy way to sketch
frequency response plots, and it was determined that the use of a logarithmic scale was
the best choice. This is primarily because of the following relationships

log(ab) = log(a) + log(b)
log(a/b) =log(a) —log(b)
log(a") = N log(a)

In many engineering systems, we are interested in the relationship between the input and
the output. One very useful measure for many applications is to measure the ratio of the
output power to the input power, so this idea is also included in our measurement scale.
We then define the power gain G in decibels (or dBs) as

Gg =1010g,, ( PPOUt j

in

Note that we are using a base ten logarithmic scale. If we think about a circuit, we often
want to measure the ratio of the output voltage (or current) to the input voltage (or
current). It is customary to assume we measure the voltage across (or through) a common
resistance (typically we assume 1 ohm), so we have

Ve IR |Vou | [Vou |
Gdelologm |:W :10|0910 |V.2t| :20|0910 |Vt

in|

Now note that if we have a transfer function relating the input and output,

Vout (S) = H (S) Vin (S)
then we have

Vo (8)]

[H(s)]
Vi, (S) |
and
G.=20lo [Vou | =201 H
= 20l0g, vl 00y, | H |

We can also measure the power with respect to a known reference power. The reference
power is measured as the rms value of the signal across (through) a 1 ohm resistor.
However, since we are assuming the common one ohm resistor, we just reference it to an
rms voltage. For example, to measure a signal in dBV, we reference the signal to a 1 volt
rms signal,

©2009 Robert D. Throne 17



VI’mS
Comy = 20108, Lvolt (rms)}

To measure power in dBmV, we reference our signal to a 1 mV rms signal, and compute
it as

vV
G _ 20 IO rms
demy 910 Lmillivolt (rmS)}

In what follows, we will just use the convention above, that

GdB: 20Iogm |H(jo)|
8.5 Bode Plots

A very common method of representing the frequency response of a transfer function is
with a Bode plot. This form of representation was very important before the advent of
computers. However, it is still very useful to be able to quickly sketch Bode plots to
estimate the frequency response of a system, and also to be able to determine how the
frequency response may change as poles and zeros are added to a transfer function.

The Bode plot is based on knowledge of how to construct the Bode plot for basic building
blocks that make up our transfer functions and then combining the Bode plots for these
basic building blocks into the Bode plot for the entire transfer function. The ability to
easily combine the Bode plots of the building blocks is based on the properties of the
polar form of writing complex functions of frequency and properties of the logarithm,.

The building blocks that make up the transfer functions we have been studying are the
following:

e Constant gains, K
e Integrators or differentiators, s"

e Simple poles or zeros, (zs+1)"

e Complex conjugate poles or zeros, (izsz ﬁs +1]
w w

Basically, any transfer function we have studied (except for those with delays) can be
written as a combination of these building blocks.

Next, let’s assume we have two complex functions, A(jw)and B( jw). We can represent
these in polar form as

Ajw) =| A(jw) | &40
B(jo) =| B(jw)|e**1”
Let’s now look at two new functions of these basic functions,
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Z,(jo) = A(jw)B(jo)

. A(jw)
Z,(jow)=
,(jo) B(jo)
If we write these new functions in polar form we will have

Z,(j) =] Aj) [ [B(j) €1 =| A(jo) | B(ja) |e/ X1 <)

Z,(jo) = | A(jo) | eJ:KA(J:w) _ | A(jo) | o i(€A(j0)-4B(jo)
’ |B(jw)|e*U” | B(jo)|
Then we can write the magnitudes and phases as,
|Z,(jo) = Aljo) [ B(jo) | £Z,(jw) = £A(jw)+ £B(jw)
. Aljo . i .
12, (jo) |- 202 £, (jo) = £A(jo) - £B(jo)
|B(jo)|
Represent the magnitudes in terms of dBs, then we have

| Z,(j@) l=20l0g,, [| A(j@) | B(j) []=20log,, | A(je) | +2010g,, | B(j@) I A(j@) |y, +|B(j®) |

| Aljo) |
|B(jo)|

| Zz(ja)) |dB: 20|Oglo { } = 20|Oglo | A(jo) | _20|0910 | B(jow) = A jo) |dB ~|B(jo) |dB

Finally, representing the magnitude in dB and the phase in either degrees or radians we
have

|Z,(jo)|lg=| Ali®) |3 +|B(j0) g £Z,(Jo) = £A(jo) + £B(jo)
1Z,(] ) |e=l Alj®) |z —|B(jo) |y £Z,(jo)=£A(jo)+ £B(jo)

It is these simple relationships that form the basis of constructing the Bode plot. We
basically need to figure out how to plot the magnitude or phase of a building block
function, and then add the responses. Note that a Bode plot really refers to two different
plots, a magnitude plot and a phase plot. Finally, it will be convenient to plot the Bode
plots as semi-log plots, where the frequency axis is plotted on a logarithmic scale and the
magnitude (in dB) or phase is plotted on a linear scale.

8.5.1. Constant Terms

The first building block is the constant term in the transfer function, H(jw) = K . We can

represent this in terms of magnitude and phase as H (jw) =| K | &' . It is important to
note that the magnitude must be zero or positive. Hence if the gain is negative, then this

will be included in the phase. For example, we can write —8 =8e/**” . Next, when we
look at the magnitude we have

|H(jw)|s=20log,, | K|
We can break this into three regions
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0<|K|<1 20log,,|K|<0
|K|=1 20log,,|K|=0
|K[>1 20log,,|K|>0

In summary, the magnitude plot of a constant will be a flat line, and the phase plot will
also be a flat line.

8.5.2. Integrators and Differentiators

The transfer function for these building blocks are of the form H (s) = s"where ncan be
positive (differentiators) or negative (integrators). To determine the frequency response
we look at

H(jo) = (jo) = (0™ )| = 0'e"™

The phase of this building block is then easy to determine asn90°, which is just a
constant. To determine the magnitude part, we have

20log,, »" =n20log,, ®
At this point, it is important to note that when @ =1 we have 20log,, @ = 20log,,1=0, so

the point (1,0) will be on the Bode plot for this building block. Next, let’s see how much
the magnitude changes as the frequency changes by a factor of 10 (a decade). To do this,

let’s assume that at some frequency®, we havew, =10, and then we have another
frequency w,a decade later, @, =10**"*. Looking at the magnitudes for these frequencies
we have

20log,, @" =n20log,, @ =n20log,,10* =n20a

20log,, ®," =n20log,, @, = n20log,,10** = n20(a +1)
Thus in a decade (factor of 10) change in frequency, the magnitude changes by 20n dB.
This is corresponds to a slope of 20n dB/decade.

Example 8.5.1. Sketch the Bode plot for the transfer functionG(s) = l. The magnitude
S

of this transfer function goes through the point (0 dB,1rad/sec) and has a slope of -20

dB/decade. The phase is a constant —90°. The Bode plot for this system is shown in
Figure 8.10.

Example 8.5.2. Sketch the Bode plot for the transfer function G(s) = s*. The magnitude
of this transfer function goes through the point (0 dB,1rad/sec) and has a slope of +40

dB/decade. The phase is a constant —180°. The Bode plot for this system is shown in
Figure 8.11.

©2009 Robert D. Throne 20



. Note that

_100

Example 8.5.3. Sketch the Bode plot for the transfer function G(s)

S
=G, () xG,(s) . We will

1
s

construct the Bode plot for the individual components, and then add them. For

there are two building blocks for this example, G(s) =100x

1 the

S

magnitude goes through the point (0 dB,1 rad / sec) with a slope of — 20 dB/decade, and

=40dB and the phase is 0°. For G,(s)

G,(s) =100 we have 20log,,100

the phase is a constant —90°. The Bode plots for G, and G, are shown in Figure 8.12 as

dashed lines. The Bode plot for G(s) is then determined by adding these components, and

is displayed as a solid line in Figure 8.12.
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Figure 8.10. Bode plot of the transfer function G(s) = s*. Note that that a diamond

delineates the point (0 dB,1rad/sec).
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delineates the point (0 dB,1rad/sec).
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10™
values (at a given frequency) on the dashed lines equals the value on the solid line at the

the phase diagram, the subcomponent at -90 degrees overlaps with the final phase of -90
same frequency.

degrees (since the other subcomponent’s phase is zero). Note that the sum of any two

Figure 8.12. Bode plot of the transfer function G(s) = 100 . The Bode plots of the two
subcomponents are shown as dashed lines, the final Bode plot is shown as a solid line. In
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8.5.3. Simple Poles and Zeros

This building block has the form H(s) = (zs+1)" where again n is negative (for a pole)
and positive (for a zero). To get the frequency response, we look at

We”} [y oo™ (%)

H(jo)=(rjo+1)" =

The phase response is

£H(jo)=ntan™ (%j
Rather than trying to exactly determine what this looks like, let’s just look at a few
points. For small frequencies,  ~ 0, we have XH (jo)~ntan™ [%) ~ 0. For very large
frequencies, w~ o, we have £H(jw)~ntan™ (%j ~n90°. Finally, when = 1 we

r

have £H(jo)~ntan™ Gj ~n45°,

A more precise formula is as follows:

AH(jo)=0° w= 01 (one decade beforelj
T T
. . 1
AH(jo)~nd5" w==
.
ALH(jow)=n90° w= 10 (one decade after lj
T T

When we sketch the phase as follows: for o < 01 the phase is zero, and for > 10 the
T T

phase isn90° . We then connect these points with a straight line.

The magnitude response is | H (jw) |= [(m))2 +1]5, and again we will look at three points.

For small frequencies, @~ 0, we have | H (jo) |~ 20log,,(1) = 0. For large very
frequencies, o = o, we have

| H(j) |~ 20log,,| (zw)” 2 =n20log,, (ze) = n20l0g,, z +n20log,, @ ~ n20log, o

This means that for large frequencies we will have a slope of 20n dB/decade. Finally,
when o = 1 we have | H(jo)|s=20log,,[2]2 =n10log,,(2) =3n. Summarizing these
T

results we have
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Magnitude Phase

w=~0 0dB 4H(jw)z0°ata):g(one decade beforeEJ
T T
1 . .
w== 3ndB £H(jw) = n45
T

=~ slope~20ndB/decade XH(jw)~n90°atw= E(one decade after 1)
T T

. Here we

Example 8.5.5. Sketch the Bode plot for the transfer function G(s) = 5 11 1
S+

have 1 =10, and this is referred to as the break or corner frequency. The magnitude is
T

. 1 . . . . .
then zero until @ =10==. At this point the magnitude decreases linearly with a slope of
T

-20 dB/decade. Both the approximate (straight line) approximation and true magnitude
portion of the Bode plot is shown in the top panel of Figure 8.13. The approximate
magnitude is shown in the dashed line while the true magnitude is shown as a solid line.
Note that at the corner frequency there is a difference of approximately 3 dB between the

estimate and true magnitude plot. The phase plot is zero until 01 =0.1x10=1 and is
T

—90° for frequencies above 10_ 10x10=100. Between these points we draw a straight
T

line. The estimated phase plot (dashed line) and true phase plots are shown in the lower
panel of Figure 8.13.

2
Example 8.5.6 Sketch the Bode plot for the transfer function G(s) :ﬁ(ﬁs +1j :

This transfer function is again made up of two building blocks, G,(s) = ﬁ and

2
G,(s)= i3 +1| . The magnitude of the first building block is just the constant
? 100

20lo0g,,(0.01) = -40dB and the phase is zero. The corner frequency for the second

building block is 100 rad/sec. The magnitude of the estimate will be zero before this
corner point, and will have a positive slope of 40 dB/decade for frequencies above this.
The phase of this component will be zero until 10 rad/sec, and will be 180° for
frequencies above 1000 rad/sec. The estimated phase will be linear between these points.
The estimated magnitude and phase plots, as well as the correct magnitude and phase
plots, are shown in Figure 8.14. In this plot, the building block estimates are dashed lines,
the sum of the building blocks are dotted lines, and the correct plots are shown as solid
lines.
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Example 8.5.7. Sketch the Bode plot approximation for the transfer function

G(s) = 100

. First we need to put this into the correct form,
s(s+10

G(s) = 100 _ 100 _ 10
s(s+10) sx10x(0.1s+1) s(0.1s+1)
We will then have three components, or building blocks,
G,(s)=10

Gz (S) :%

G,(s) = [% S +1j_

The straight line approximations for the building blocks, and the final Bode plot are
shown in Figure 8.15.

Example 8.5.8. Sketch the Bode plot for the transfer function G(s) = s+1 .
(s +10)(s+100)
Again, we first need to put this into the correct form,
s+1 s+1 10°3(s+1)

G(s)=

(5+10)(5+100) 10x(0.15+1)x100x (0.015+1)  (0.15+1)(0.01s +1)
The building blocks are then

G,(s)=10"
G,(s)=(s+1)
G,(s)=(0.1s+1)™
G,(s)=(0.01s+1)*

The straight line approximation for the building blocks, and the final Bode plot are shown
in Figure 8.16.

Example 8.5.9. Sketch the Bode plot for the transfer function G(s) = % Putting
+
this transfer function into the correct form and identifying the building blocks we have
10s 10s 107°s
G(S) = 2 = 5 = 2
(s+100)° (100x(0.01s+1))" (0.01s+1)
G,(s)=10"
G,(s)=s

G,(s)=(0.01s+1)?
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The straight line approximation for the building blocks, and the final Bode plot are shown
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0.1s+1

discrepancy at the corner frequency in the magnitude plot. The Bode plot of the straight

Figure 8.13. Bode plot for the transfer function G(s)

line approximation is shown as dashed lines while the exact Bode plot is shown as a solid

line.
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Figure 8.14. Bode plot for the transfer function G(s)

approximations of the individual components are shown as dashed lines, the actual Bode
plot is shown as a continuous line. Note that for any given frequency, if you sum the

values of the straight line approximations you get reasonable approximations to the true

(continuous curve) Bode plot.
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straight line approximations of the individual components are shown as dashed lines, the

Figure 8.15. Bode plot for the transfer function G(s)

actual Bode plot is shown as a continuous line. Note that for any given frequency, if you
sum the values of the straight line approximations you get reasonable approximations to

the true (continuous curve) Bode plot.
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line approximations of the individual components are shown as dashed lines, the actual
Bode plot is shown as a continuous line. Note that for any given frequency, if you sum

the values of the straight line approximations you get reasonable approximations to the

true (continuous curve) Bode plot.

Figure 8.16. Bode plot for the transfer function G(s)
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10°

if you sum the

> The straight line

10°%s
(0.01s+1)

approximations of the individual components are shown as dashed lines, the actual Bode

Frequency (rad/sec)

plot is shown as a continuous line. Note that for any given frequency
values of the straight line approximations you get reasonable approximations to the true

Figure 8.17. Bode plot for the transfer function. G(s)

(continuous curve) Bode plot.
Evaluating this at s = jowe get

The basic building block for a system with complex conjugate poles or zeros can be put
into the standard form

8.5.3. Complex Conjugate Poles and Zeros
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where we have defined u = Computing the magnitude and phase we have

G(jw) = ( = +j2§wﬁ} :(1—u2+j2§u)n
o
a,

6Gio)[a-v'y s o], £6(io)=nian (2]

u’
Let’s first look at the magnitude in decibels,

|G(jo) |5 = 2010g,,[(1-u?)* + (24 u)*]? =10nlog,[(L-u?)* H24u)*]
For @w~0we have u=0, and|G(jw)|=1,50 |G(jw)|g=0.

4n
For larger frequencies, w >> @, , we have|G(jw) |~ u*" = (—j , SO in decibels we have
w

n

| G(jw) |45~ 10nlog,,[u*]=40nlog,, u = 40nlog,, @ — 40nlog, @, ~ 40nlog,,@
So for large frequencies we have a slope of 40n dB/decade.

For o = w,we have u~1. Then we have|G(jw) |~ (2£)", and in decibels,

|G(j@) |~ 20nl0g,, (2¢)
Now if we have two regions to consider,

0<¢ <05 log,,(24)<0
05<¢ <1 log,,(24)>0
Figure 8.18 displays the magnitude plot of a the second order system
Ko’
G(s) == . 2
s° + 24w, S+,

forK =10,@, =20, and ¢ =0.01,0.1,0.250.5,0.75,0.99 . Note that there is a sharp peak

at the resonant frequency, which is given by o, = @, /1-2¢? . Not that for

¢ >+/0.5=0.707 there is no resonance. As this figure shows, the smaller the damping
ratio, the higher the peak frequency will be.

Now we need to look at the phase of the response of this system. For low frequencies,
u~0we have ZG(jw)=~ntan™(2£u)=0°. For large frequencies, @ >> @, we have

/G(jw) ~ ntan‘lz—gz n180°. Finally, foro =@, (u=1) we have
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ZG(jw)=ntan™ (%} =n90°. Figure 8.19 shows the phase plot of the second order

2
K% fork =10,0, =20, and ¢ =0.01,0.1,0.250.5,0.75,0.99
S°+24w.S +w;
Notice that as the damping ratio is smaller, the phase transition is much sharper. Also
notice that all of the phase plots pass through —90°when @ = w, = 20 rad/sec.

We can then summarize our rules as

system G(s) =

Magnitude Phase
w=0 0dB AH(jow)~0°at a):%(one decade before o, )
o=, depends on ¢ AH(jw) =~ n45°

w~o slope~40ndB/decade «H (jw)=~nl80°at »=10w, (one decade after m, )

8.6 Bandwidth, Filter Types, and Quality Factor

How a system affects an input signal is often used to classify the system type in terms of
its filtering characteristics. Sometimes, when we are designing a control system for
example, we are primarily concerned with making the output match the input with a
reasonable transient response, and are not primarily concerned with the frequency
response of our system. In other situations, such as designing a circuit for a music system,
we are designing a system to enhance or remove frequencies from the input signal. In
these cases we are interested in talking about these filtering characteristics that are most
relevant in those applications. Three of the most useful system characteristics in filtering
applications are the bandwidth of the filter, the filter type, and the quality of the filter.
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Figure 8.18. Magnitude of the frequency response for the transfer function
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10,w, =20, and ¢ =0.01,0.1,0.250.5,0.75,0.99

5 forK

n

n

@, S +w

S° + 24

G(s)

8.6.1 System Bandwidth

The system bandwidth is usually defined as the frequency range for which the power of

the output is within one half of the peak output power. Thus we determine the bandwidth

as the difference between the minimum and maximum frequencies as which

max
PO

ut

Pout (@)

In terms of dB’s we have

35
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1 max 1 max
10l0g,, [P, (®)] = 10Iog10{ Pout} 10Iogm{ }+10IoglO[Pout]

Then we have

10log,, B} ~-3dB

Hence we determine the bandwidth as
Bandwidth = @, — @,

where

10log,, [P, (@)] >101log,,[R);"]1 -3 dB

out
Dioy <O Day

This form is useful for reading information off of Bode plots. Sometimes we don’t want
to have to convert to Bode plots. Then we can just use

Pou (@) 2 =R

Doy SOSOpay \/_ o
In terms of transfer functions, we have

[H(jo) |2 —=H™ (jo)|
(QOWS[U<wmaX \/_

10log,,[| H(jew)|] =10log,, | H™ (jew)|-3dB
a’lowgwgwmax
Example 8.6.1. Consider the RC circuit shown in Figure ??, The transfer function for
this circuit is clearly

or

1
H(s)=
®) RCs+1
In terms of frequency response we have
H(jo)=———

(Je) jJoRC +1

The magnitude of the transfer function is then
1

H(jo)r ——

Clearly the maximum of this transfer function occurs when o =0, so for this system
|H™ (jo) =1

We next need to find the frequency at which

H max _ 1
IH(Jw)|<\/7|H (Jjo)|= 7

Since our transfer function is a decreasing function of frequency, we can just find the
largest frequency for which this is true,
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. 1 1
[H(jo) |- ——=—=—
JRCw)?+1 2
which leadsto RCw =1, or = % Thus the bandwidth for this system is
Y
RC RC
A Bode plot of the magnitude of this transfer function for R =1kQ, C =1 uf is shown in

Dhigh — Orow =

Figure 8.21. We expect the bandwidth to be % =1000 rad/sec. The maximum value of

the transfer function is 1 (or 0 dB), and the bandwidth is then the frequency at which the
magnitude has dropped 3 dB. This Bode plot has a dashed line at the -3 dB point, and you
can see it intersects the magnitude of the transfer function at 1000 rad/sec.

R
— M——

+ +
v,(1) () v ) == C

Figure 8.20. RC circuit for Example 8.6.1.

Figure 8.22 displays three different bandpass systems with bandwidths of 400, 100, and
50 radians/sec. In these figures, the -3 dB line is shown as a dashed line, and is measured
from the peak amplitude.
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Figure 8.21. Bode plot of the magnitude of the transfer function for Example 8.6.1. The
maximum value of the transfer function is 1 (0 dB), so the bandwidth will be determined

by the point where the magnitude falls to — 3dB. This occurs at 1000 rad/sec.
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and is measured from the peak

i)

Frequency (rad/sec)
ao,t+ @), then the steady state output of the

Acos(

is shown as a dashed line
A|lH(jw,)|cos(at + ¢+ ZH(jw,)). The filter type is determined

by the magnitude of the transfer function at various frequencies, since this directly affects

the output signal. Specifically, if the magnitude of the transfer function as a specific

In discussing filter types, it is good to remember the basic relationship that if the input
frequency is zero, the output signal is zero. Altyernatively, if the magnitude of the

signal to a stable system is x(t)

Figure 8.22. Three different bandpass systems with bandwidths of 400, 100, and 50
system will be y_(t)

radians/sec. The -3 dB line

amplitude.
©2009 Robert D. Throne
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transfer function at a specific frequency is one, then the input signal passes without
change. In talking about ideal filter types, this is generally what we are looking at: does
the signal in a range of input frequencies pass or is the signal removed from the output.

The four major filter types are displayed in Figure 8.23, as ideal filters. Note that the
magnitude of the transfer function is symmetric about the real axis, and we are plotting
the magnitude response for both positive and negative frequencies. Although the phase of
the filter is important in some applications, it is not important in classifying the filter

type.

The first characterization is the lowpass filter, and this filter passes signals with low
frequencies and removes high frequencies from the input signal. Note that the lowpass
filter is centered at zero frequency, but the bandwidth is only measured from 0 to the
edge of the passpband. Next, a highpass filter removes all low frequencies and only
allows high frequencies to pass. The bandwidth of a high pass filter is not really
meaningful. A bandpass filter allows frequencies only in a range of frequencies to pass.
Finally, a bandreject or notch filter removes only very specific frequencies. Notch filters
are often used to remove 60 Hz noise from AC power systems.

A |H(o)|

BW

Lowpass Filter

BW

A |H(o)|

BW

[0}

Bandpass Filter

0}

A |H(jo)|

0]

Highpass Filter

A |H(jo)|

Band Reject/Notch Filter

Figure 8.23. Ideal lowpass, highpass, bandpass, and bandreject filters.
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8.6.3. Quality Factor of a Filter

The quality factor, or Q, of a bandpass filter is simply defined to be the ratio of the center
frequency to the bandwidth of the filter.
o Center Frequency

Band Width

Note that the Q of a filter is dimensionless. The quality factor gives a measure of the
width of the pass band, independent of the location of filter on the frequency axis. Figure
8.24 shows three filters with the same center frequency and different bandwidths, and
hence different Q’s. Note that the narrower the filter, the higher the Q (since the
numerator is the same for all filters in this case). Figure 8.25 gives an example of three
filters with the same Q, but at three different frequencies. Note that in this case, as the
center frequency is increased, the bandwidth must also increase to maintain the same Q.

L e
B
]
|
|
I B
|
< ; >
& ®
(4]
: 0,
Q= =2
: 2B
|
|
<€ . >
| 2B
|
< , >
o ®
O
| (O]
| Q:T‘
X 2
|
|
< ' »
| 3B
|
< : »
& ®

(8}

Figure 8.24. These three filters have the same center frequency but different quality (Q)
factors. The filter quality factor decreases from the top filter to the bottom filter in this
figure.

©2009 Robert D. Throne 41



I I (00 I
| | =5 |
| I |
| I |
<_|£> < | 2B > < ;3B >
| | I
< | 1 | )"
o, 20, 3w, @

Figure 8.25. These three filters have the same quality factors.
8.7 Gain and Phase Margins

We now want to return to the concept of asymptotic stability, and determine if we can use
the frequency response of a system to help us. Let’s consider a closed loop system with
transfer function given by

G(s)
1+H(s)G(s)
We know the system will be asymptotically stable if all of the poles of the closed loop
system are in the (open) left half plane (the real parts of the poles are negative). When the
system is asymptotically marginally stable, the poles are on the jo axis. We can view

this as the point at which the system is about to become unstable. If we have poles on the
jw axis, then we have

Go (S) =

1+H(jo)G(jw)=0
We can rewrite this as
H(jo)G(jw)=-1
We can then break this into two different conditions, a magnitude condition and a phase
condition:
magnitude condtion: |H(jo)G(jw)|=1
phase condition: «H(jw)G(jw)=+180°
When both of these conditions are met, then the system is asymptotically marginally

stable. However, we can also used these conditions to determine how close to be
unstable is our system. The additional amplitude of G(jw)H (jw) and the additional

phase of G(jw)H (jw)which result in purely imaginary poles of G, (s)are measures of
the allowable tolerances or changes in G(jw)H (jw) for system stability. This leads to
the ideas of gain margins and phase margins.

We first define a phase crossover frequency, o, , to be any frequency at which we meet
the phase condition. That is, at a phase crossover frequency we have

£G(jo,)H(jo,) = +180°
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We then define the gain margin of a feedback system to be the additional amplitude
necessary to make|G(jw,)H (jw,)[=1. If there is more than one phase crossover

frequency, we use the phase crossover frequency that produces the smallest gain margin.
Specifically, we can write this as
|G(jow,)H (jo,)|xGain Margin =1

magnitude at phase
crossover frequency

which we can rearrange as
1

|G(jw,)H (jo,)]
We usually measure the gain margin in dB, so we have

Gain Margin =

Gain Margin,, = 20l0g,, (1) - 20l0g,, (|G (je,)H (j@,)] ) = ~20log, (| G(jw,)H (jo,)| )

or simply
Gain Margin ;; = _lG(jwp)H (Ja)p) loe

Note that if there is no phase crossover frequency, then the gain margin is infinite.

Next we define a gain crossover frequency, o, , to be any frequency at which we meet
the magnitude condition. That is, at a gain crossover frequency we have

|G(joy)H (Joy) =1
or,
|G(jwy)H (Jay) =0
The phase margin is then the additional negative phase necessary to make the phase of
G(jw,)H (jo,) equal to £180°, whichever is closer. We can write this condition as

£G(jw,)H (jo,)—Phase Margin = +180°

Phase at gain
crossover frequency

Note that if there is no gain crossover frequency, then the phase margin is infinite.

In summary, the gain and phase margins are indications of how close to becoming
asymptotically unstable our system is. Acceptable gain and phase margins will depend on
the application. However, it can be shown that if the system has no zeros in the right half
plane, then the system is stable only if both the phase and gain margins are positive. The
following examples illustrate determining the gain and phase margins using Bode plots of
the frequency response.

20

Example 8.7.1. Consider the following feedback system, where we have G(s) = e
+

and H(s)= ﬁ The bode plot of the open loop systemG(s)H (s) is displayed in
+4s+
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Figure 8.26. In this figure, the gain crossover frequency is displayed as a triangle, and

the phase crossover frequency is displayed as a circle. For this example, we have
o, ~1.8 rad/sec and @, ~ 3.0 rad/sec. At the gain crossover frequency the phase of the

system is approximately —150°, or £G(jo,)H (jw,) ~-150°. We then have

£G(jw,)H (jw,)—Phase Margin = -180° ~ —150° — Phase Margin =-180°
which gives a phase margin of approximately 30°. Similarly, at the phase crossover

this system is stable. In fact the poles of the closed loop system are at -5.09 and at

~0.46+2.03] .

(bap) aseyd

(gp) spnuuben

frequency we have |G(jw,)H (jw,)|~ -9 dB, so the gain margin is approximately 9 dB.

Since both the phase and gain margins are positive, and there are no right hand plane

Zeros

10°

10°

10"

Frequency (rad/sec)

Figure 8.26. Bode plot for Example 8.7.1. The gain crossover frequency is shown as the
Since the system has no poles in the right half plane and both the gain and phase margins

for this system is approximately 30 degrees, and the gain margin is approximately 9 dB.
are positive, the system is stable.

diamond while the phase crossover frequency is shown as the circle. The phase margin
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Example 8.7.2. Consider the following feedback system, where we have

G(s) = ZLand. H (s) =1 The bode plot of the open loop system G(s)H (s) is
s°+s+100

displayed in Figure 8.27. In this figure, there are two gain crossover frequencies
(displayed as triangles) and there is no phase crossover frequency. The first gain
crossover frequency isw, ~ 7.1 rad/sec. At this gain crossover frequency the phase of the

system is approximately,—8° or £G(jw,)H (jo,) ~-8°. We then have
£G(jw,)H (jo,)—Phase Margin = -180° ~ —8° — Phase Margin = -180°

which gives a phase margin of approximately 172°. The second gain crossover frequency
IS w, ~12.2 rad/sec. At this gain crossover frequency the phase of the system is

approximately -166°, or £G(ja,)H (jo,) ~—-166°. We then have
£G(jw,)H (jw,)—Phase Margin = -180° ~ —166° — Phase Margin = -180°

Which gives a phase margin of approximately 14°. The phase margin is the smaller of
these two, so for our system the phase margin is 14°. The gain margin for this system is
infinite. Since this system has no zeros in the right half plane and both the phase and gain
margins are positive, the system is stable. The poles for this closed loop system are at
—0.50+12.24].

Example 8.8.3. Consider the following feedback system, where we have
2

G(s) = S 3+ 5023 +1000

s”+s°+100s

displayed in Figure 8.28. In this figure, there are two phase crossover frequencies

(displayed as circles) and there is one gain crossover frequency (displayed as a diamond).

The gain crossover frequency ism, ~13 rad/sec. At this gain crossover frequency the

and. H(s) =1 The bode plot of the open loop systemG(s)H (s) is

phase of the system is approximately —220°, or £G( jw,)H (jo,) ~ —220° . We then have
£G(jw,)H (jo,)—Phase Margin = -180° ~ —220° — Phase Margin =-180°
which gives a phase margin of approximately —40°. The two phase crossover frequencies
are w, ~10rad/sec and w, ~ 30 rad/sec. At the first phase crossover frequency we have
|G(jow,)H (jo,)|~-20dB, so the gain margin at this phase crossover frequency is

approximately 20 dB. At the second phase crossover frequency we have
|G(jo,)H (jo,)|~-25 dB, so the gain margin at this phase crossover frequency is

approximately 25 dB. For this system then the phase margin is approximately —40° and
the gain margin is approximately -25 dB. Since this system has no zeros in the right half
plane the system is unstable and both the gain and phase margins are negative, the system
is unstable. The poles of this system are in fact at -5.81 and 1.90+12.98j .
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Figure 8.27. Bode plot for Example 8.7.2. The gain crossover frequencies are shown as
diamonds. There is no phase crossover frequency. The phase margin for this system is

approximately 14 degrees, and the gain margin is infinte.
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Figure 8.28. Bode plot for Example 8.7.3. The gain crossover frequency is shown as a

diamond, and the two phase crossoever frequency is shown as the open circles.
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