
5.0 Impulse Response, Step Response, and Convolution 
 
In this chapter we confine ourselves to systems that can be modeled as linear and time-invariant, or LTI 
systems. For these types of systems, we can determine the output of the system to any input in a very 
systematic way. We can also determine a great deal about the system just by looking at how it responds 
to various types of inputs. The most fundamental of these inputs is the impulse response, or the response 
of a system at rest to an impulse. However, the response of a system to a step is much easier to 
determine and can be used to determine the impulse response of any LTI system. 
 
5.1 Impulse or Delta Functions 
 
An impulse, or delta function, ( )tδ , is defined as a function that is zero everywhere except at one point, 
and has an area of one. Mathematically, we can write this as  
  

 

( ) 0, 0

( ) 1, 0d
μ

μ

δ λ λ

δ λ λ μ
−

= ≠

= >∫
 

Note that we do not know the value of (0)δ , it is undefined! We can think of, or model, delta functions 
as functions that exist in some type of limit. For example, the functions displayed in Figures 5.1, 5.2, 
and 5.3 can be thought of as different models for delta functions, since the meet our two (simplistic) 
requirements above. 
 

 
Figure 5.1. Rectangular model of an impulse (delta) function. 
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Figure 5.2. Triangular model of an impulse (delta) function. 

 

 
 

Figure 5.3. Gaussian model of an impulse (delta) function. 
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Although delta functions are really idealized functions, they form the basis for much or the study of 
systems. Knowing how a system will respond to an impulse (an impulse response) tells us a great deal 
about a system, and lets us determine how the system will response to any arbitrary input. 
 
There following two very important properties of delta functions  will be used extensively: 
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0Property 1: 0 0( ) ( ) ( ) ( )t t t t t tφ δ φ δ− = −  

Property 2 (Sifting Property):  0 0 0( ) ( ) ( )
b

a

t t t dt t a tφ δ φ b− = <∫ <  

The first property is pretty easy to understand if we think about the definition of a delta function. A delta 
function is zero everywhere except when its argument is zero, so both sides of the equation are zero 
everywhere except at , and then at both sides have the same value.  0t 0t
 
The second property follows directly from the first property as follows: 
 

0 0 0 0 0 0 0( ) ( ) ( ) ( ) ( ) ( ) ( )
b b b

a a a

t t t dt t t t dt t t t dt t a t bφ δ φ δ φ δ φ− = − = − = < <∫ ∫ ∫  

It is very important that the limits of the integral are such that the delta function is within the limits of 
the integral, or else the integral is zero. 
 
Example 5.1.1. You should understand each of the following identities, and how to use the two 
properties to arrive at the correct solution. 

1

2

2

0
10

1

0
10

10

( 1) ( 1)

( 2) 4 ( 2)

( 2)dt = 4

( 1)

( 20) 0

( 1) ( 2) 0

t

t

t

e t e t

t t t

t t

e t dt e

e t dt

t t dt

δ δ

δ δ

δ

δ

δ

δ δ

∞

−
∞

−∞

− = −

− = −

−

− =

− =

− − =

∫

∫

∫

∫

 

 
 
 
 
5.2 Unit Step (Heaviside) Functions 
 
We will define the unit step function as 
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We will not define , though some textbooks define (0)u 1(0)
2

u = . The argument of the unit step was 

deliberately not written as , since this sometimes leads to some confusion when solving problems. It is 
generally better to remember that the unit step is one whenever the argument (

t
τ ) is positive, and then 

try and figure out what this might mean in terms of t . 
 
Example. 5.2.1. The following are some simple examples with unit step functions: 
 
a)   for  or  ( 1)u t − =1 1 0t − > 1t >
b)    for  or  (2 ) 1u t− = 2 0t− > 2 t>

c)   4 1
3
tu ⎛ ⎞− =⎜ ⎟

⎝ ⎠
 for 4 0

3
t

− >  or 12  t>

 
Unit step functions also show up in integrals, and it is useful to be able to deal with them in that context. 
The usual procedure is to determine when the unit step function (or functions) are one, and then do the 
integrals. If the unit step functions are not one, then the integral will be zero. When you are done with 
the integral, you may need to preserve the information indicating that the integral is zero unless the unit 
step functions are “on”, and this is usually done by including unit step functions. A few examples will 
hopefully clear this up. 
 

Example 5.2.1. Simplify ) ( 1)(u ut dλ λ
∞

∞−

−−∫ λ

1

 as much as possible. We need both unit step functions to 

be one, or the integral is zero. We need then 
 

( )u t λ− =  for 0t λ− >  or t λ>  
( 1)u 1λ − =  for 1 0λ − >  or 1λ >  

 

The integral then becomes . However, we are not done yet. We need to be sure both of 

the unit step functions are 1, which means we need 
1

(1)(1) 1
t

d tλ = −∫
1t λ> > , or . So the answer is zero for 1t > 1t <  

and  for . The way we can write this compactly is 1t − 1t > ( 1 1)) (t u t− − , which is the final answer. 
 

Example 5.2.2. Simplify
2

( 2)
t

te u dλ λ
+

−

−∞

−∫ as much as possible. We need the step function to be one, or 

the integral is zero. We need then 
 
           ( 2)u 1λ − =  for 2 0λ − >  or 2λ >  
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The integral becomes  
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However, the integral will be zero unless 2 2t λ+ > >  or . The final answer is then . 0t > 2 (1 ) ( )te e u− −− t
 

Example 5.2.3. Simplify ( ) ( 2)u t dλ δ λ λ
∞

−∞

− +∫  as much as possible. This integral has both an impulse 

and a unit step function. While we might be tempted to use the unit step function to set the limits of the 
integral, the best (and easiest) thing to do is to just use the sifting property of impulse functions. This 
gives the result  
 

( ) ( 2) ( 2u t d u tλ δ λ λ
∞

−∞

)− + = +∫  

 

Example 5.2.4. Simplify ( ) ( 2)
t

t de λ δ λ− −

−∞

−∫ λ as much as possible. We can again use the sifting 

property with this integral, but we must be careful. If we do not integrate past the impulse function, the 
integral will be zero. Hence we have 
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which we can write in a more compressed form as ( 2) ( 2t ue t− − )− . 
 

Example 5.2.5. Simplify 
1

( 2)t

t

e λ dδ λ
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+

−
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 as much as possible. Using the sifting property we have  
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which we can write more compactly as 2 (1 )te u t− − . 
 
 

Finally, if we consider integrating an impulse, ( )
t

dδ λ λ
−∞
∫ , we will either get a one (if we integrate past 

the impulse) or a zero (if we do not). Thus we have 
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or  

( ) ( )
t

d u tδ λ λ
−∞

=∫  

If we differentiate both sides of this we get  
( ) ( )du t t

dt
δ=  

This relationship is important to remember, but when doing integrals it is generally a better idea to 
remember what conditions you may need to impose in order to determine if and what unit step functions 
will be required. 
 
5.3 Impulse Response 
 
The impulse response of an LTI system is the response of the system initially at rest (no initial energy, 
all initial conditions are zero) to an impulse at time 0t = . The most common way to denote the impulse 
response is by lower case letters h and g, though others are used. 
 
Example 5.3.1. Consider the circuit shown in Figure 5.4. Determine the impulse response of the system. 
The circuit is a simple voltage divider, so we have 

( ) ( )
a b

bRy t x
RR

t
⎛ ⎞

= ⎜ ⎟+⎝ ⎠
 

and the impulse response is  

( ) ( )
a b

bRh t t
R R

δ
⎛ ⎞

= ⎜ ⎟+⎝ ⎠
 

 
 
Example 5.3.2. Consider the circuit shown in Figure 5.5. Determine the impulse response of the system. 
We have 
 

( ) ( ) ( ) ( )x t y t dy t y tC
R dt R
−

= +  

or 
( ) 2 1( ) ( )dy t y t x t

dt RC RC
+ =  

Then 
 

2 / 2 / 1( ) ( )t RC t RCd y t e xe t
dt RC
⎡ ⎤ =⎣ ⎦  

Integrating from  up to t , and assuming the system is initially at rest, we have −∞
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2( )/1( ) ( )
t

t RCy t x de
RC

λ λ λ− −

−∞

= ∫  

The impulse response is then given by 

2( )/ 2 /1 1( ) ( ) ( )
t

t RC t RCh t d e u te
RC RC

λ δ λ λ− − −

−∞

== ∫  

 

 
 
 

Figure 5.4. Circuit used for Example 5.3.1. 
 

 
 

Figure 5.5. Circuit used for Example 5.3.2. 
 

Example 5.3.3. Consider the system described by the mathematical model 

( )( ) ( 1) ( 2)
t

ty t x t e x dλ λ λ− −

−∞

= − + +∫  

The impulse response will be given by 

( ) ( 2)( ) ( 1) ( 2) ( 1) ( 2
t

t th t t e d t e u tλδ δ λ λ δ− − − +

−∞

= − + + = − + +∫ )  

5.4 Step Response 
 
The step response of an LTI system is the response of the system initially at rest (no initial energy, all 
initial conditions are zero) to a step at time 0t = .  There is no common method for denoting the step 
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response, but we will sometimes denote the step response as . If we know the step response of an 
LTI system, we can determine the impulse response of the system using the relationship 

( )s t

[ ]( ) ( )dh t s t
dt

=  

 
Example 5.4.1. Determine the step response and then use it to determine the impulse response for the 
system in Example 5.3.2. From the example we have 

2( )/1( ) ( )C x
t

t Ry t de
RC

λ λ λ− −

−∞

= ∫  

The step response is then given by 

2( )/1( ) ( )Cu
t

t Rs t de
RC

λ λ λ− −

−∞

= ∫  

or 

2 / 2 / 2 / 2 / 2 /

0

1 1 1( ) [ ] ( ) [1 ] (1 )
2 2

t
t RC RC t RC t RC − t RCs t e e d e e u t e u t

RC
λ λ− − −= = = −∫  

 
The impulse response is then given by 
 

2 / 2 / 2 /e− 2 /1 1( ) [1 1 1( ) ] ( ) ( ) [1 ] ( ) ( )
2 2

t RC t RC t RC t RCd ds t e u t e u t t e u t
dt dt

h t
RC RC

δ− − − −⎧ ⎫= − = + =⎨ ⎬=
⎩ ⎭

 

which is the same answer we obtained before. 
 
5.5. Convolution 
 
Derivation of the Convolution Integral 
 
We will derive the convolution integral using two different, though equivalent methods. Consider an 
LTI system with input ( )x t . We can approximate ( )x t  as a piecewise constant function over intervals of 
length  , as shown in Figure 5.6. Thus we have the approximation  TΔ

 1 1k⎡ ⎛− +⎜⎢ ⎝⎣
( ))

2
(

2

k

k
T u t k T u tx t x k T

=

=−

∞

∞

⎧ ⎫⎡ ⎤ ⎤⎛ ⎞ ⎞≈ Δ − − Δ − Δ⎨ ⎬⎜ ⎟ ⎟⎢ ⎥ ⎥⎝ ⎠ ⎠⎣ ⎦ ⎦⎩ ⎭
∑  

Next, we can write the step response of the system as . Because the system is time-invariant, the 

response of the system to the input 

( )s t
1( ( )
2

u t k T− − Δ )  is 1( (
2

ks t ) )T− − Δ , and the response of the system 

to  1( ( )
2

u t k T− + Δ ) is 1( ( )
2

s t k T− + Δ ) .  Because the system is both linear and time-invariant, the 

response of the system to input ( )x t  can then be approximated as  
1 1( ))

2
(

2

k

k
T s t k T
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s ty t x kk T
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Now we can approximate the derivative of the step response as 

)(

1 1
2 2

s t k T s t k T
t

T
h t k

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞− − Δ − − + Δ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦Δ ≈
Δ

−  

or 
1)( 1
2 2

t T s t k T s t k Th t k ⎡ ⎤ ⎡⎛ ⎞ ⎛ ⎞Δ Δ ≈ − − Δ − − + Δ⎜ ⎟ ⎜ ⎟
⎤

⎢ ⎥ ⎢⎝ ⎠ ⎝ ⎠ ⎥
⎣ ⎦ ⎣

−
⎦

 

Thus the output can be approximated as  

) (( ) ( )
k

k
T h ty t x k k T T

=∞

∞=−

≈ Δ − Δ Δ∑  

If we define k Tλ = Δ , then as  the sum becomes an integral and we have 0TΔ →
 

( ) ( ) ( )y t x h t dλ λ λ
∞

−∞

= −∫  

This is one form of the convolution integral, which tells us how to determine the output of an LTI 
system if we know the impulse response of the system and the system input. We would write this as 

, where  represents the convolution operator. ( ) ( ) ( )y t x t h t= � �
 
An alternative derivation for convolution would be to start with the same approximation  
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We can then approximate the impulse response as  

 

)(
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2 2

u t k T u t k T
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T
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⎡ ⎤ ⎡⎛ ⎞ ⎛ ⎞ ⎤
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⎣ ⎦ ⎣
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Figure 5.6. Approximating the continuous function ( )x t  as a piecewise constant function for the 
derivation of the convolution integral. 
 

 
We then have 
 

) (( ) ( )
k

k
T t k Tx t x Tk δ

∞

=∞

=−

≈ Δ − Δ Δ∑  

If the input to the LTI system is (t k T )δ − Δ  the output will be (h t k T )− Δ , so we can write the output as 
 

) (( ) ( )
k

k
T h ty t x k k T T

=∞

∞=−

≈ Δ − Δ Δ∑  

 
If we define k Tλ = Δ , then as  the sum again becomes an integral and we have 0TΔ →
 

( ) ( ) ( )y t x h t dλ λ λ
∞

−∞

= −∫  

By a change of variable we can show that convolution has the commutative property, or 
 

( ) ( ) ( ) ( ) ( )y t h t x t x t h t= =� �  



 
This means that we can compute the output in one of two equivalent ways:  

  

) ( ) (( )( () )y t x h t d x t h dλ λ λ λ λ λ
−

∞ ∞

∞ −∞

− = −= ∫∫  

 
Now that we know how to determine the output of a system given the impulse response and the input, 
we need to determine the best way to compute this. There are two general ways for computing the 
convolution, analytical and graphical. Both methods give the same results, but usually the answers 
initially look different.  Analytical convolution is generally used for very simple problems, and becomes 
unwieldy for very complicated problems. Graphical convolution is usually used for more complicated 
problems and is also useful for visualizing what is happening to the signals during convolution. 
 
Analytical Convolution 
 
In analytical convolution, we basically just evaluate the integral. It is necessary to utilize any step 
function in the impulse response or system input to change the limits of the integral. In addition, it is 
important to remember to include any necessary unit step functions on the output, since the output of 
one system may be the input to another system. 
 
Example 5.5.1.  Determine the output of an LTI system with impulse response to i

( )x t = solve this problem we must first choose the way we are going to perfor
the convolution. We will use the form  

/( ) ( )th t Ae u tτ−= nput
 To m ( 1) ( 2)Bu t Bu t− − − .

( ) ( ) ( )y t h t x dλ λ λ
∞

−∞

= −∫  

Substituting in our functions we have 

( )/( ) ( )[ ( 1) ( 2)]ty t Ae u t Bu Bu dλ τ λ λ λ
∞

− −

−∞

= − − −∫ λ−  

or 

( )/ ( )/( ) ) ( 1) ) ( 2( )(t ty t ABe u d ABeu t u t u dλ τ λ τλ λ λ λ λ
∞ ∞

− − − −

−∞ −∞

= − −− −∫ ∫ λ−  

Using the step functions to change the limits on the integrals we have 

( )/ ( )/ / / / /

1 2 1 2

( )
t t t t

t t t ty t ABe d ABe d ABe e d ABe e dλ τ λ τ τ λ τ τ λ τλ λ λ− − − − − −= − = −∫ ∫ ∫ ∫ λ

−

 

Finally we have 
/ / 1/ / / 2/

( 1)/ ( 2)/

( ) [ ] ( 1) [ ] ( 2)

[1 ] ( 1) [1 ] ( 2)

t t t t

t t

y t ABe e e u t ABe e e u t

AB e u t AB e u t

τ τ τ τ τ τ

τ τ

τ τ

τ τ

− −

− − − −

= − − − −

= − − − − −
 

 
Graphical Convolution 
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As with analytical convolution, the first thing to do is decide which of the two forms of the convolution 
integral to use. Let’s assume that we are going to use the form  

( ) ( ) ( )y t h t x dλ λ λ
∞

−∞

= −∫  

We need to keep in mind that we want the area under the product of two functions, (h t )λ−  and ( )x λ . 
In addition, we need to remember that we are integrating with respect to the dummy variable λ , not . 
This is important to understand, since the function 

t
(h t )λ− will be at different places along the λ axis as 

the variable t varies. In fact, the whole point of doing graphical convolution is to sketch the function 
( )h t λ−  as a function of t and ( )x λ , determine the overlap, and then perform the integration.  

 
One simple method for being able to locate (h t )λ− as a function of  and t λ is to look at and find 
suitable “marker” points. Let’s call two such points and . The we can find where these marker points 
are on the 

( )h t

1t 2t
λ axis as follows 

 
1 1
2 2

) ( )
( ) ( )
( h t t t

h t h t t
h t

t
λ λ
λ λ

= − → = −
= − → = −  

 
This will all make more sense with a few examples. 
 
Example 5.5.2. Determine the output of an LTI system with impulse response to i

( )x t = is is the same problem as Example 5.5.1.) Let’s use the integral form
  

/( ) ( )th t Ae u tτ−= nput
 (Th( 1) ( 2)Bu t Bu t− − − .

) (( ) )( x t dy t h λ λ λ
∞

∞−

= −∫  

The top panel of Figure 5.7 displays the input signal. For this signal the most convenient markers are 
(1)x  and (2)x . If we can figure out how these points move we can determine the location of  )(x t λ− on 

the λ axis as t . For these points we have  
 

(1) ( ) 1
(2) ( ) 2

x x t t
x x t t

λ λ
λ λ

= − → = −
= − → = −  

The bottom panel of Figure 5.7 displays (x t )λ− as a function of λ . From this figure we can determine 
where this function is as varies.  t
 
We next need to graph pictures of ( )h λ  and (x t )λ−  and look for times when the product of the 
functions is not zero. For these functions there are three different pictures, corresponding to 1t < , 

, and , as shown in Figure 5.8.  1 t≤ ≤ 2

2

2t ≥
 
For  there is no place the product of the functions is not zero, so the output . 1t < ( ) 0y t =
 
For 1  we have  t≤ ≤
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1)/
1

/ (

0

( ) 1
t

ty t Ae Bd AB eλ τ τλ τ
−

− −= = − −⎡ ⎤
⎣ ⎦∫  

which agrees with our previous answer. 
 

 
 
Figure 5.7. Input signal for Example 5.5.2. The original signal ( )x t

)
is shown in the top panel, with the 

two convenient “marker” points. The lower panel shows (x t λ− as a function ofλ , and shows how 
these marker points move as the parameter t  is varied. Note that the function ( )x t has been flipped 
(reversed) from its original orientation. 
 
   
For  we have 2t ≥

1
/ ( 2)/

2

( )
t

t t

t

y t Ae Bd AB e e ( 1)/λ τ τλ τ
−

− − −

−
⎦= = − τ− −⎡ ⎤

⎣∫  

 

Our solution is then ( 1)/

( 2)/ ( 1)/

0 1
( ) 1 1 2

2

t

t t

t
y t AB e t

AB e e t

τ

τ τ

τ
τ

− −

− − − −

⎡ ⎤
⎣ ⎦

⎡

⎧ ≤⎪⎪= − ≤⎨
⎪ − ≥⎤

⎦⎩ ⎣⎪

≤  

Our solution should be continuous, so we need to check the values at the boundaries. We have 



1/
(1) 0
(2) [1 ]

y
y AB e ττ −

=
= −  

While this looks different than our previous answer, it is really the same thing for this range of . To see 
this note that from before we had 

t

 
( 1)/ ( 2)/( ) [1 ] ( 1) [1 ] ( 2)t ty t AB e u t AB e u tτ ττ τ− − − −= − − − − −  

 
If both unit step functions are one and we have  2t ≥
 

( 1)/ ( 2)/ ( 2)/ ( 1)/( ) [1 ] [1 ] [ ]t t ty t AB e AB e AB e e tτ τ ττ τ τ− − − − − − − −= − − − = − τ  
 
The solution is plotted in Figure 5.9. 
 

 
 
Figure 5.8. Plots of ( )h λ  and (x t )λ−

0.8
 (dashed line) for Example 5.5.2 for representative values of t . 

For these graphs A=2, B=3, and τ = . 
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Figure 5.9. Result (output ) for Example 5.5.2 assuming A=2, B=3, and ( )y t 0.8τ = . 
 
 
Example 5.5.3. Determine the output of an LTI system with impulse response  to 
input . Let’s use the integral form  

( 1)/( ) ( 1)th t Ae u tτ− −= −
( ) 2 ( ) 2 ( 2) 3 ( 3)x t u t u t u t= − − − −

( ) ( ) ( )y t h t x dλ λ λ
∞

−∞

= −∫  

There is really only one marker point of note, that of , which gives (1)h (1) ( ) 1h h t tλ λ= − → = − .  
 
There are four different graphs we need for this example, 1t ≤ , 1 3t≤ ≤ , 3 t 4≤ ≤ , and . For 4t ≥ 1t ≤
the p )roduct of the functions (h t λ− ( ) and x λ is zero, so ( )y t 0= . 
 
For 1  we have the situation shown in Figure 5.10. Evaluating the integrals we have 3

te

t≤ ≤
1

( 1)/ ( 1)/ / ( 1)/ ( 1)/ ( 1)/

0

1

0

(2) 2( ) 2 2 1 1
t

t t
t

t ty dt e e d ee eλ τ τ λ τ τ τλ λ τ τ
−

− − − − − − − − − −
−

τ⎡ ⎤ ⎡== = = − − ⎤
⎣ ⎦ ⎣∫ ∫ ⎦  

 



16 
©2009 Robert D. Throne 
 

 
 
 
Figure 5.10. First overlapping region for Example 5.5.3 assuming 1.5τ = . This figure is valid f
1≤

or
3. 

4

t

t ≤
 
For we have the situation shown in Figure 5.11. Evaluating the integral we have 3 t≤ ≤

2
( 1)/ ( 1)/ / ( 1)/ 2/ ( 3)/ ( 1)/

2

00

( (2 1) 2) 2 2t t t ty t e e d e e e ed eλ τ τ λ τ τ τ τλ λ τ τ− − − − − − − − − − −= = = − − τ⎡ ⎤ ⎡= ⎤
⎣ ⎦ ⎣∫ ∫ ⎦  

 

 
Figure 5.11. Second overlapping region for Example 5.5.3 assuming 1.5τ = . This figure is valid f
3≤

or
4t ≤ . 

 
For  we have the situation shown in Figure 5.12. For this situation we will need two integrals,  4t ≥



 
2 1

( 1)/ ( 1)/

0 3
1

( 1)/ / ( 1)/ /

3
( 1)/ 2/ ( 1)/ ( 1)/ 3/

( 3)/ ( 1)/ ( 4

2

0

)/

( ) ( 3(2)

3

3
2

2

2
13

)

1

t
t t

t
t t

t t t

t t t

y t e e d

e d e d

e e e e e
e e e

d

e e

λ τ λ τ

τ λ τ τ λ τ

τ τ τ τ

τ τ τ

τ

λ λ

λ λ

τ τ
τ τ

−
− − − − − −

−
− − − −

− − − − −

− − − − − −

−

⎡ ⎤ ⎡− ⎤
⎣ ⎦ ⎣

⎡ ⎤ ⎡= −⎣ ⎦

= + −

=

= −

− ⎣ ⎦−

∫ ∫

∫ ∫

⎦
⎤

=

−

 

In summary we have 
 

( 1)/

( 3)/ ( 1)/

( 3)/ ( 1)/ ( 4)/

0
2 1

1
1 3

4
1 4

( ) 2 3
2 3

t

t t

t t t

e t
e e t

e e e

t

y t

t

τ

τ τ

τ τ τ

τ
τ

τ τ

− −

− − − −

− − − − − −

≤
− ≤ ≤

− ≤

⎧
⎪ ⎡ ⎤

⎣ ⎦⎪= ⎨ ⎡ ⎤
⎣ ⎦⎪

⎡ ⎤ ⎡ ⎤⎪ −⎣ ⎦ ⎣ ⎦

≤

−⎩ − ≥
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Figure 5.12. Third overlapping region for Example 5.5.3 assuming 1.5τ = . This figure is valid for . 4t ≥
 
 
Checking the values of at each boundaries we have ( )y t
 

2/

1/ 3/
[1

(1)
]

(4) 2 [ ]

0
(3) 2

y
e

y
y

ee

τ

τ τ
τ
τ

−

−
−=

−=

=
 

 
The final solution is plotted in Figure 5.13. 
 



 
Example. 5.5.4.  Determine the output of an LTI system with impulse response 

to input . Let’s use the integral form  ( ) [ ( 1) ( 1)]h t t u t u t= + − − ( ) ( ) ( 1) 2 ( 2)x t u t u t u t= − − + −

( ) ( ) ( )y t h t x dλ λ λ
∞

−∞

= −∫  

There are two marker points of note, that of, ( 1)h − which gives  
 

( 1) ( ) 1h h t tλ λ− = − → = +  
(1) ( ) 1h h t tλ λ= − → = −  

 
Figure 5.13. Result (output ) for Example 5.5.3 assuming( )y t 1.5τ = . 

 
 
 
There are six different graphs we need for this example, 1t ≤ − , 1 0t− ≤ ≤ , 0 1t≤ ≤ , 1 2 , t≤ ≤ 2 3t≤ ≤  
and .  3t ≥
 
For the product of the functions 1t ≤ − (h t )λ−  and ( )x λ is zero, so ( ) 0y t = . 
 
For we have the situation depicted in Figure 5.14, and 1 t− ≤ ≤ 0

1
2

0

1( ) ( )(1) ( 1)
2

t

y t t d tλ λ
+

= − =∫ −  

18 
©2009 Robert D. Throne 
 



 
Figure 5.14. Initial overlapping region for Example 5.5.4. This figure is valid for . 1 0t− ≤ ≤
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1
 
For  we have the situation depicted in Figure 5.15, and  0 t≤ ≤

1

0

1( ) ( )(1)
2

y t t d tλ λ= − =∫ −

2

 

 
Figure 5.15. Second overlapping region for Example 5.5.4. This figure is valid for 0 1. t≤ ≤
For 1 we have the situation depicted in Figure 5.16, and  t≤ ≤



 
1 1

2

1 2

1( ) ( )(1) ( )(2) ( 6 6)
2

t

t

y t t d t d t tλ λ λ λ
+

−

= − + − = − +∫ ∫
 

 
Figure 5.16. Third overlapping region for Example 5.5.4. This figure is valid for 1 2 . t≤ ≤

 
For we have the situation depicted in Figure 5.17, and  2 t≤ ≤ 3
 

1
2

2

( ) ( )(2) 4 3
t

y t t d t tλ λ
+

= − = −∫ +
 

 
 
For we have the situation depicted in Figure 5.18, and 3t ≥

1

1

( ) ( )(2) 0
t

t

y t t dλ λ
+

−

= − =∫  
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Figure 5.17. Fourth overlapping region for Example 5.5.4. This figure is valid for . 2 3t≤ ≤

 

 
 

Figure 5.18. Final overlapping region for Example 5.5.4. This figure is valid for . 3t ≥

 
 

 
In summary we have 
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2

2

2

0 1
1 ( 1) 1
2

1 0 1( ) 2
1 ( 6 6) 1 2
2

4 3 2 3
0 3

t
t t

t ty t
t t t

t t t
t

0
≤ −⎧

⎪ − − ≤ ≤⎪
⎪
⎪ − ≤ ≤= ⎨
⎪ − + ≤ ≤⎪
⎪ − + ≤
⎪ ≥⎩

≤

 

 
Note that although the input to the system starts at time 0t = , the output starts at time . Thus the 
system is noncausal. The system output is graphed in Figure 5.19. 

1t = −

 
 

 
Figure 5.19 Result (output ) for Example 5.5.4. Note that the system is not causal since the input 

starts at 
( )y t

0t =  but the output starts at 1t = −  
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0.5

Time (sec)

y(
t)
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5.6 Causality and BIBO Stability 
 
Now that we can write the output of an LTI system in terms of the convolution of the input with the 
impulse response, we can also determine some fairly simple tests to determine if an LTI system is BIBO 
stable or causal. We have 

) (( ) )( x t dy t h λ λ λ
∞

∞−

= −∫  

If we know the input is bounded, | ( , then we know ) |x t N≤

) ( ) ) || ( )| ( ) | ( | ( || ( ) | | ( )y t |x t d x t d Nd N h dh h hλ λ λ λ λ λ λ λ λ λ
− − −

∞ ∞ ∞ ∞

∞ ∞ ∞ −∞

≤ − ≤ − ≤ =∫ ∫∫ ∫  

Thus an LTI system will be BIBO stable if  
  

| )( |h dλ λ
∞

∞−

< ∞∫  

Next, let’s assume we want to find the output of an LTI system at the time , so we have 0t

0 0( ) ( ) ( )y t h t x dλ λ λ
∞

−∞

= −∫  

We can then break the integral into two parts, 
0

0

0 0 0( ) ( ) ( ) ( ) ( )
t

t

y t h t x d h t x dλ λ λ λ λ λ
∞

−∞

= − + −∫ ∫  

If the system is causal, then the second integral must be zero, since it depends on future values of the 
input. In order of the second integral to be zero we need 
 

0( )h t 0λ− =   for 0( , )tλ∈ ∞  
Let’s assume 0 ,t 0λ = + >ε ε . Substituting this into our expression for the impulse response we have  

0 0 0( ) ( [ ]) ( ) 0, 0h t h t t hλ− = − + = − = >ε ε ε  
or 

( ) 0, 0h t t= <  
This means the impulse response must be zero for any time less than zero in order for the LTI system to 
be causal. 
 
 
In summary, an LTI system is BIBO stable if  

| )( |h dλ λ
∞

∞−

< ∞∫  

and is causal if  
( ) 0, 0h t t= <  

Note that these are independent properties, a system can be stable and not causal, or causal and not 
stable. 
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5.7 Convolution Properties and Interconnected Systems 
 
There are a number of useful and important properties of convolution. Among the most useful are the 
following:  
 
Commutative Property:  ( ) ( ) ( ) ( ) ( )y t h t x t x t h t= =� �
 
Associative Property: 2 1 2 1( ) [ ( ) ( )] [ ( ) ( )] ( )h t h t x t h t h t x t=� � � �  
 
Distributive Property:  1 2 1 2( ) [ ( ) ( )] ( ) ( ) ( ) ( )h t x t x t h t x t h t x t+ = +� � �
 
The commutative property means that 

) ( ) (( )( () )y t x h t d x t h dλ λ λ λ λ λ
−

∞ ∞

∞ −∞

− = −= ∫∫  

so that we have two equivalent ways of determining the system output, . A convenient method of 
presenting the relationship between the input, output, and impulse response of a system is depicted in 
Figure 5.7. 

( )y t

 
 

 
 
 

Figure 5.20. Input, impulse response, and output for an LTI system. 
 
If we have two LTI systems in series, as shown in Figure 5.21, then we can relate the input to the output 
as follows: 

1( )( ) ( )v t x t h t= �  
Then  

[ ]2 1( ) ( ) ( ) ( ) ( ) ( )y t v t h t x t h t h t= =� � � 2  
 

Using the commutative property we can write this as  
 

1 2( ) [ ( ) ( )] ( )y t h t h t x t= � �  
The impulse response between the input and output is then  
 

1 2( ) ( ) ( )h t h t h t= �  
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Figure 5.21. Two LTI systems connected in series. 
 

If we have to LTI systems in parallel, as shown in Figure 5.22, then we can relate the input to the output 
as follows 
 

1( )( ) ( )v t x t h t= �  and 2( ) ( ) ( )w t x t h t= �  
Combining we have  

1 2( ) ( ) ( ) ( ) ( ) ( ) ( )y t v t w t x t h t x t h t= + = =� �  
 

Using the associative and distributive properties we then have 
 

1 2( ) [ ( ) ( )] ( )y t h t h t x t= + �  
 

Hence the system transfer function is then  
 

1 2( ) ( ) ( )h t h t h t= +  
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Figure 5.22. Two LTI systems connected in parallel. 
 
 
Example 5.7.1. Consider the system shown in Figure 5.23. In this figure we have negative feedback. For 
this system we have 
 

( ) ( ) ( )e t x t v t= − and 2( ) ( ) ( )v t y t h t= �  
Combining we have 
 

1 1 2( ) ( ) ( ) [ ( ) ( )] ( ) ] ( ) ( ) ( )] ( )1y t e t h t x t v t h t x t y t h t h t= = − = −� � � �  
We can rearrange this as  
 



1 2 1( ) ( ) ( ) ( ) ( ) )(h t hy t y t t x t h t+ =� � �  
or 

1 2 1[ ( ) ( ) ( )] ( ) [ () )( ]t h t h t x ty ht tδ + =� � �  
 

This is an awkward expression, but at this point we cannot simplify it anymore.  
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Figure 5-23. System for Example 5.7.1. 
 
 
Example 5.7.2. Consider the system shown in Figure 5.24. Again we have negative feedback in this 
system. Here we have 
 

1

4

2 5

3

( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

e t x t h t v t
v t y t h t
w t e t h t x t h t
y t w t h t

= −
=
= +
=

�
�
� �
�

 

 
 

 
 
 

Figure 5-24. System for Example 5.7.2. 
 
 

 



 
 
Starting with our expression for  and working backwards we have ( )y t
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3

3

2 5 3

1 2 5 3

1 4 2 5

( ) ( ) ( )
( ) [ ( ) ( ) ( ) ( )] ( )
( ) [{ ( ) ( ) ( )} ( ) ( ) ( )] ( )
( ) [{ ( ) ( ) ( ( ) ( ))} ( ) ( ) ( )] ( )

y t w t h t
y t e t h t x t h t h t
y t x t h t v t h t x t h t h t
y t x t h t y t h t h t x t h t h t

=
= +
= − +
= − +

�
� � �
� � � �
� � � � �

 

 
Simplifying we get 
 

1 2 3 4 2 3 5 3( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )y t x t h t h t h t y t h t h t h t x t h t h t= − +� � � � � � � �  
Finally 
 

2 3 4 1 2 3 3 5( ) [ ( ) ( ) ( ) ( )] ( ) [ ( ) ( ) ( ) ( ) ( )]y t t h t h t h t x t h t h t h t h t h tδ + = +� � � � � � �  
 
 
Trying to determine the system impulse response in this way is very difficult, if not impossible. In 
addition, if we are trying to modify one of the subsystems system to change the behavior of the overall 
system, this method of relating the input to the output does not lend itself to any intuition or easy 
analysis. This is one of the primary reasons Laplace and Fourier transforms were developed. Laplace 
transforms are hence our next topic. 


