
4.0 System Properties 
 
In this chapter we will start looking at various properties that can be used to characterize a system. We will 
initially illustrate these concepts as much as possible with examples from circuits and mechanical systems. 
However, since these are general concepts we will begin to explore abstract systems described only by 
algebraic, integral, or differential equations. Our goal is to be able to be able to determine whether or not a 
mathematical model of a system possesses these properties, and to develop the necessary vocabulary. 
 
4.1 Linear (L) Systems 

(

 
Let’s assume we have a system with an input x(t) producing and output y(t). We can write this graphically as 

. A system possesses the scaling or homogeneity property if )( )x t y t→ ( ) ( )x t y tα α→ for any constant α  and 
any input ( )x t . In particular, if a system possesses the homogeneity property, if the input is zero the output will 
be zero  
( 0α = ), if the input is doubled the output is doubled ( 2α = ), and if we change the sign of the input we also 
change the sign of the output ( 1α = − ). These are very simple and common tests that can quickly be used to 
determine if a system does not possess the homogeneity property.  
 
Next let’s assume we name possible two inputs as 1( )x t and 2 ( )x t , and we name the corresponding outputs 

1( )y t  and 2( )y t . Hence we know 1 1( ) ( )x t y→ t and 2 2 ( )( )x t → y t . 
A system possesses the additivity property if  

1 1 2 2 1 1 2 2( ) ( ) ( ) ( )x t x t y t y tα α α α+ → +  
for all constants 1α  and 2α , and all inputs 1( )x t and 2 ( )x t . 
 
Definition: A linear system is any system that possesses both the homogeneity and the additivity properties.  
 
Example 4.1.1. Consider the simple resistive circuit shown in Figure 4.1, with the system input defined as the  
input voltage and the system output defined as the current flowing in the circuit, . For this simple 
system we have the mathematical model 

( )inv t ( )outi t

( )( )
in

out ti v
R

t =   

Clearly this model satisfies the homogeneity requirement, since if we scale the input by a constantα  we also 
scale the output by α ,  

( )( )
in

out v ti t
R

αα =  

Let’s next assume we have two inputs and , as shown in Figure 4.2. If we use superposition, we 
replace each voltage source with a short circuit and determine the resulting output current for each input voltage 
source acting alone. This gives us 

1 ( )inv t 2 ( )inv t

1
1

( )( )
in

outi v tt
R

= and  2
2

( )( )
in

outi v tt
R

=  

Adding these we clearly have 

1 2
1 2

( ) ( ) ( )( ) ( ) ( )
in in in

out out out v t v t v tt i t t
R R

i i +
= + = =

 
If should be clear for this example that if we scale both of the inputs, we would also scale both of the outputs, so 
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 1 1 2 2
1 1 2 2

( ) ( )( ) ( )
in in

out out v t v tt
R

i ti α αα α +
+ =  

 
Since the system has both the property of homogeneity and additivity, the system is linear.  
 

 
 

Figure 4.1. Circuit used in Example 4.1.1. 
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Figure 4.2. Second circuit used in Example 4.1.1. 
 
Example 4.1.2. Consider the simple resistive circuit shown in Figure 4.3, with system input equal to the input 
voltage  and the system output equal to the voltage  measured across the resistor ( )inv t ( )outv t bR . We assume 
the voltage . The current flowing through the circuit is  0v 0≠
 

0)( ()
in

a b

v tt vi
R R

−
=

+
 

and the output voltage is 

0( ))( ()
in

out
b b

a b

v tv i t v R
R R

Rt −
=

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠+

 

Now let’s check to see if the homogeneity condition is satisfied. If the system input (the  input voltage) is zero, 
, then we expect the system output (the output voltage) to be zero. However, it is clear that under these 

circumstances the system output will be  
( ) 0inv t =

0 0( )out
b

a b
v vt R

R R
−

= ≠
+

 



Hence the homogeneity condition is not satisfied, and thus the system is not linear. It is important to note in this 
example that we need to look carefully at the system input and the system output.  
 

 
 

Figure 4.3. Circuit used in Example. 4.1.2. 
 
Example 4.1.3. Consider the circuit shown in Figure 4.4. The system input is the input voltage  and the 
system output is the voltage across the capacitor, . The current flowing in the circuit is given by 

( )inv t
)(outv t

 
(( ))

out

t
i dC v tt

d
=  

We then have 
 

( )( ) ( )
out

in outdv tv t C R v t
dt

⎛ ⎞
− =⎜ ⎟⎜ ⎟
⎝ ⎠

 

or 
 

( ) 1 1( ) ( )
out

out indv t v t v t
dt RC RC

+ =  

 
We can solve this using integrating factors, as before, 
 

( )/ /( ) ( )out t RC in t RCd v e t e
t

vt
d

=  

Next we integrate from some initial time up to the current time, , 0t t

( )
0

/ /( ) ( )
o

t
out RC in R

t

t
C

t

d v d ve e
d

dλ λλ λ λ λ
λ

=∫ ∫  

0

0

// /
0( ) ( ) ( )t RCout t RC out i

t

t

n RCt e v t e ev dv λλ λ− = ∫  

Finally, we have the input-output relationship  
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0

0

( )/ ( )
0( ) ( ) ( )t t RCout out in t

t

t

v vt v t e e dλλ λ− − − −= + ∫
 

 
Figure 4.4. Circuit used in Example 4.1.3. 

 
First let’s check for homogeneity. If the input is zero, then we expect the output to be zero. However, in this 
case, if the input is zero, the output will be 

0( )/
0( ) ( ) t t RCout outt v tv e− −=  

Hence, in order for the system to possess the homogeneity property, the initial conditions must be zero. This is 
a general requirement for all systems. Let’s then assume the initial conditions are zero, then we have 

0

( )( ) ( )out in t
t

t

t ev v λ dλ λ− −= ∫  

If we scale the input, we scale the output, 

0

( )( ) ( )
t

ou

t

t in tt ev v λ dα α λ − −⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦∫ λ  

Finally, if  

0

( )
1 1( ) ( )out i

t
n t

t

e dv vt λλ λ− −= ∫  

and 
 

0

( )
2 2( ) ( )out i

t
n t

t

e dv vt λλ λ− −= ∫  

then 

0

( )
1 1 2 1 1 22 2( ) ( ) ( ) ( )out out out

t

t

in tt t v t ev v v λ dα α α α λ − −⎡ ⎤ ⎡ ⎤+ = +⎣ ⎦ ⎣ ⎦∫ λ  

Hence the system also meets the additivity condition and is thus a linear system. 
 
Example 4.1.4. The following models of systems, with system input ( )x t , and system output ,  do not 
satisfy the homogeneity condition, and hence are not linear models: 

( )y t
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( )

( ) ( ) 2
( )

( ) sin

| ( ) |

(
( ( ))

1(

)

)
( )

x t

y t x

y t x t
y

y t

t x t

y t e

x t

=

=

=

t

= +

=
 

 
 
 
4.2 Testing for Linear Systems 
 
We will present two different, though equivalent, methods for testing for linearity of a mathematical model of a 
system. A mathematical model of a system must pass one of these (or an equivalent) test for the model to be 
linear. It is much easier to show a mathematical model of a system is not linear than it is linear. The first method 
we will demonstrate assumes we have an algebraic or integral relationship between the system input and the 
system output. This test is straightforward, but we do not want to have to solve a differential equation to use it. 
Thus, we will present a second method to use with differential equations.  
 
In order to simplify notation, we will assume we have a system operator, which we will denote as . The 
output of a system is the result of the system operator operating on the input. Hence if the system input is 

H
( )x t  

and the system output is , then we would have ( )y t
  

{ })( () ty t x=H  
Consider the two signal flow diagrams shown in Figure 4.5. In the top figure, we examine the output of the 
system, , when the input to the system is the input1( )z t 1 1 2 2( ) ( )x t x tα α+ , { }1 1 1 2 2( ) ( ) ( )z t x t xα α= +H t . In the 

bottom figure, we examine the output of the system to input 1( )x t , { }1 1( )x t=H 2 ( )( )y t , and input x t , 

{ }2 2( ) ( )y t t= xH , then form the linear combination of these, 

{ } { }2 1 ( )1( ) 2 2 1 1 2 2( ) ( ) ( )z t y tα α= + y t x t x tα α= +H H . If the output is the same for both paths, i.e., if , 
then the system is linear. If this is not true, then the system is not linear. Let’s illustrate the method with a few 
examples. In the following examples, we assume the system input is

1 2( ) = z ( )z t t

( )x t and the system output is . (y t)
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Figure 4.5. Signal flow graph of linearity test. 
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)x tExample 4.2.1. Consider the mathematical model . Does this represent a linear system? For 
this system, the linear operator is 

2s) in ) (( (y tt =

{ } 2( ) sin ( ) ( )x t =H t x t . Along the top path we have 

{ } { }2
1 1 1 2 2 1 1 2 2( ) ( ) ( ) sin ( ) ( ) ( )z t x t x t t x t x tα α α α= + = +H  

Along the bottom  path we have 
{ } { } { }2 2 2

2 1 1 2 2 1 1 2 2 1 1 2 2( ) ( ) ( ) sin ( ) ( ) sin ( ) ( ) sin ( ) ) ( ) (z t x t x t t x t t x t t x t x tα α α α α α= + = + = +H H

1 2( ) ( )z t z t=

Since 
, the mathematical model is linear. 

 
Example 4.2.2. Consider the mathematical model ( ) ( )y t x t b= + . Does this represent a linear system? Without 
even really trying, we know this equation does not satisfy the homogeneity condition, so it does not represent a 
linear system. However, let’s see what happens with our new test. For this system, the linear operator is 
{ }( ) ( )x t x t= +H b . Along the top path we have 

 { } { }1 1 1 2 2 1 1 2 2( ) ( ) ( ) ( ) ( )z t x t x t x t x tα α α α= + = +H b+  
Along the bottom path we have  

{ } { } { } { } { } { }2 1 1 2 2 1 1 2 2 1 1 2 2 1( ) ( ) ( ) ( ) ( ) ( ) ( )z t x t x t x t b x t b x t x t b 2α α α α α α α= + = + + ++ = + +H H

1 2( ) ( )z t z t= 1

α Now if we 
compare these, we do not have  for all possibleα  and 2α , hence the model is not linear. 
 

Example 4.2.3.  Consider the mathematical model 2( ) (( ) t
t

ey t xλ )dλ λ− −

−∞

= ∫ . Does this represent a linear system? 

Along the top path we have 
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}{ } {1 1 1 2 2 1 1 2 2( ) ( ) ( ) ( ) ( )
t

z t x t x t x x dα α α λ α λ
−∞

= + = +∫H λ  

Along the bottom path we have 
 

{ } { }

{ }

2 1 1 2 2

2( ) 2( ) 2( )
2 1 1 2 1 1 2 22

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
t

t
t

t t
t

z t x t x t

z t x d x d e x x de eλ λ λ

α α

α λ λ α λ λ α λ α λ λ− − − − − −

∞ ∞− − −∞

= +

= + = +∫∫ ∫

H H

 

Since , the mathematical model is linear. 1 2( ) ( )z t z t=
 
The signal flow graph method we have presented works well for determining if a mathematical model of a 
system is linear, provided we have the output of the system written as an algebraic or integral function of the 
input. However, it is very common to model systems in terms of differential equations, and we would like to be 
able to determine if a system modeled by a differential equation is linear without having to solve the differential 
equation, as fun as that might be.  
 
The second method we will present for determining if a mathematical description of a system is linear is easier 
to demonstrate then explain, but the general idea is as follows: 
 

1. Write two differential equations, one with system input 1( )x t and system output 1( )y t , the second with 
system input 2 ( )x t  and system output 2 ( )y t . 

 
2. Multiply the 1 1( ) ( )x t y→ t  equation by 1α  and the equation by 2 2( ) ( )x t y t→ 2α  

 
3. Add the equations together and regroup, we want to write the resulting differential equation in terms of 

1 1 2 2( ) ( )x t x tα α+  and 1 1 2 2( ) ( )t ty yα α+ . 
 

4. Make the substitutions 1 1 2 2)( ) ( )(x t tX t xα α+=  and 1 1 2 2))( (tY t y y t( )α α= +  in the differential equation.  
 

5. If the resulting differential equation is the same as the original differential equation, with ( )x t  replaced 
by ( )X t and replaced by , then we have shown that  ( )y t ( )Y t

1 1 2 2 1 1 2 2( ) ( ) ( ) ( )x t x t y t y tα α α α+ → +  
and we can conclude that the system is linear. If this is not true, then the system is not linear.  
 

Note that in order to satisfy the homogeneity conditions, we must assume the initial conditions for the system 
are all zero. 
 
Example 4.2.4. Consider the mathematical model . Does this represent a linear 
system? We have 

2( ) sin ( ) ( ) ( )ty t t y t e x t−+ =

2
1 1( ) sin ( ) ( ) ( )ty t t y t e x t−+ = 1 2  and  2

2 2( ) sin ( ) ( ) ( )ty t t y t e x t−+ =
Multiplying by 1α and 2α we have 

2
1 1 1 1 1 1( ) sin ( ) ( ) ( )ty t t y t e x tα α α −+ =  and  2 2

2
2 22( ) sin ( ) ( ) ( )ty t t y t e x tα α α −+ = 2

Adding and regrouping we have 
[ ] [ ] [ ]2

1 1 2 1 1 2 1 22 12 2( ) ( ) sin ( ) ( ) ( ) ( ) ( )ty t y t t y t y t e x t x tα α α α α α−+ + + = +  
 



Substituting we have 
2( ) sin ( ) ( ) ( )t X tY t t Y t e−+ =  

 
Thus, this system represents a linear system. 
 
Example 4.2.5. Consider the mathematical model ( ) ( ) ( ) ( )y t y t x t x t+ = . Does this represent a linear system? 
We have 

1 1 1 1( ) ( ) ( ) ( )y t y t x t x t+ =  and 2 2 22( ) ( ) ( ) ( )y t y t x t x t+ =  
Multiplying by 1α and 2α we have 

1 1 1 1 1 1 1( ) ( ) ( ) ( )y t y t x t x tα α α+ = and 2 2 2 2 2 2 2( ) ( ) ( ) ( )y t y t x t x tα α α+ =  
Adding and regrouping we have 

[ ] [ ]1 1 2 2 1 1 1 2 2 2 1 1 2 2( ) ) ( ) ( ) ( ) ( ) ( (( )y t y t y t x t y t x t x t x tα α α α α α+ + + = + )  
Substituting we have 

1 1 1 2 2 2( ) ( ) ( ) ( ) ( ) ( )Y t y t x t y t x t X tα α+ + =  
At this points, it is clear that we cannot write this resulting differential equation just in terms of ( )X t and , 
so the system is not linear. 

( )Y t

 
Example 4.2.6. Consider the mathematical model )( ) ( (y ty x tt 2)=+ + . Does this represent a linear system? This 
one is easy if we use the homogeneity condition. If the input is zero the output should also be zero. However, in 
this model, if the input is zero, we still have the output being nonzero. Hence this model is nonlinear. 
 
We should point out that this technique can be used for systems that are not differential equations, but it may 
sometimes be more difficult than the flow-graph techniques. 
 
 
4.2 Time-Invariant (TI) Systems 
 
A time-invariant (TI) system is one in which, if the input ( )x t

) → −

 is delayed by an amount T  then the output 
layed by the same amount, without changing shape. Symbolically, if for a system we have ( )x t → n 

if the system is also time-invariant we will have (tx

( )y t
)(t , theis de y

( )T Ty t− . Figure 4.6 presents a signal flow graph test 
for time-invariance, assuming we can write the output as an algebraic function or integral of the input. Alon
the top path we delay the input and then determine the output. Along the bottom path, we put the usual input 
into the system and then delay the usual output. If the results of these two paths are identical, then the system i
time-invariant. There are a few subtleties involved in this test, so read through the following examples care
 

g 

s 
fully. 

Figure 4.6. Signal flow graph of time invariance test. 
 

xample 4.2.1. Consider a system with the mathematical model 

 

E ( ) ( ) ( )y t t x tα= . Does this model represent a 
linear system? Along the top path, delaying the input we have   
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{ }1( ) ( ) ( ) ( )z t x t T tα= − =H x t T−  

 
Along the second path (delaying the output) we have  
 

{ }2( ) ( )
t

( ) ( )
t T

z t x t= ⎡ ⎤⎣ ⎦H t T x tα
= −

= −  T−

learly , so the model is not time-invariant. 
 

xample 4.2.2. Consider the RC circuit shown in Figure 4.7, with an initial charge on the capacitor. The system 
put is the applied voltage

C  1 2( ) ( )z t z t≠

 
E
in  ( )x t  and the system output is the voltage across the capacitor . We need to ( )y t
write the output as a function of the input. The current in the loop is given by 
 

 ( ) ( ) ( )x t y t dy tC
R dt

r 

−
=  

o

/ /

( ) 1 1( ) ( )

( ) ( )t RC t RC

dy t y t x t
dt RC RC

d y t e x t
dt

e⎡ ⎤ =⎣ ⎦

+ =
 

Integrating both sides and rearranging we get 
 

0

0 0

//( )
t

RCd / /
0( ) ( )( ) t RCt RC

t

t

RC

t

y e yd yλ t e e x dt e
d

λλ λ λ⎡ ⎤ λ
λ

=⎣ ⎦ −=∫ ∫  

)0

0

( )/ ( )/
0 )( (( ) t t RC R

t
t C

t

y t y t e e x dλ λ λ− − − −= + ∫  

Along the top path of the signal flow graph, delaying the input, we have 
  

{ } 0( )/ ( )/t t RC
t

tx t Tz t y t ee Tλ

0

1 0( ) )( ) ( ( )
t

RC x dλ λ−= + ∫H  − − − −− =

Note that we only delay the input, we do not change any other functions. Along the second path of the signal 
flow graph we only delay the output, which means we take the output and replace all instances of  with t t T− . 
This leads to  

{ } 0( )/ ( )/
t

t T t RC t T RC
T

0

02 ( ( )) () )(
t t T

t

x t e dz t y t e xλ λ λ− − − − − −
−

=⎡ ⎤
= −⎣ ⎦= + ∫H  

Now we want to see if .  Since we do not know what the input is, we will change variables in the 
integrals so both of them are sim unctions of the dummy integral variable.  is already in the correct 

 1 2( ) ( )z t z t=
ple f 2

form, so we need to change variables in 1 )(z t . Let’s let T
( )z t

σ λ= − , or Tλ σ= + . Then can rewrite 1 )(z t  as 

0( )/ /
1 0( ) t t R

t T
C Rt yz σ

0

( ))( ( )
t T

t T Cet e dx σ σ− −

−

−∫− −
−

+=  

Now let’s compare  and , and determine if they are equal or if we can make them equal. First of all, 
the terms associated with the initial conditions cannot be made equal, so if this system is going to be time 

1 )(z t 2 ( )z t
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ond

 
, 

invariant the initial c itions must be zero. Both of them have the same integrand, and both have the same 
upper limit on the integral. The only difference in the integral term is the lower limit. In order for the two 
integrals to be equal there are two choices. The most obvious choice is to assume that the input is zero for all
times before the initial time 0t . Then the lower limit on the integral in 1 )(z t  is effectively still effectively 0t

( )/ )( ) (t T RC
t T

dt e xσ σ σ
0

0

0 0

0

( ) 0

( )/ )/

( )

i

/

) )

)

( (

(

t T RC t

this range

t T

t t T

t T t

x n

t T

t

t T RC

d d

d

e x e x

e x

σ

σ

1z

( T RCσ σσ σ σ

σ σ

− − − −

−

−

−

− − −

=

−

= +

=

∫ ∫

∫

 σ

The other option is for . With this choice of initial value, s are equal and we have 

− − −
−

= ∫

− −

the first term0t = −∞

( )/
1 2 )) ((( ) t T CRtt z e x dz σ

Tt

σ σ− − −== ∫
−∞

−

 
Note that in order for a system to be time-invariant, the initia just as they are for the 
linearity requirements. 

 
Figure 4.7. Circuit used in Exam

 

Example 4.2.3. Consider the mode

l conditions must be zero, 

ple 4.2.2. 

 

 

l of a system 
2

( )y t x t⎛ ⎞
⎜ ⎟= . Is this model tim
⎝ ⎠

e-invariant? This exam

sts correctly t 

ple is 

somewhat tricky, since we have to interpret the te . Along the top path, we are supposed to subtrac
T  from the argument of ( )x t , so we have  

 { }1( ) ( ) tz t x t T x T⎛ ⎞= − = −⎜ ⎟H  
2⎝ ⎠

his is not the result you e ct, but it is the correct way to interpret the top path of our signal flow graph. 
long the bottom path we delay the output by  so we have

T
A  

xpe
T ,

  

 { }2 ( ) ( ) t Tt t xz x −⎛ ⎞= =⎡ ⎤ ⎜ ⎟⎣ ⎦H
2t T ⎝ ⎠

 
t= −
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learly , so the model is not time-invariant. 

Example 4.2.4.  Consider the model of a system

 1 2( ) ( )z t z t≠C
 

 ( ) (1 )y t x t= − .  Is this model time-invariant? We have  
 

{ }1( ) ( ) (1 )z t x t T x t T= − = − −H  
and 

{ }2( ) ( ) (1 )
t t T

z t x t x t
= −

T= = − +⎡ ⎤⎣ ⎦H  

Clearly , so the model is not time-invariant. 

Testing differential equations for time-invariance in general is somewhat more difficult, so we will just state a 
 the differen  inpu

 1 2( ) ( )z t z t≠
  

result: If tial equation is just a function of  the t ( )x t
), (1

 and the output , and these are both just 
mple functions of  (e.g. there are no terms like 

( )y t
t (2 ), ( / 2 )x t y t tx −si ), then the d rential equation is time-

are not time invarian

 
The following models of systems are time-invariant: 
 

iffe
invariant if there are no other functions of time other than the input and output functions.  
 
Example 4.2.5. The following models of systems t (though they are linear!):  
 

( ) ( )ty t e x t
sin( ) ( ) cos( ) ( )y t y t t x t+ =  

( ) ( ) ( )y t y t tx t

=

+ =

2

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( )

y t x t t x t
t x t

y t y t x t

y
( )y t y

+ =
=

+ =

 +

 
4.3 Causal Systems 
 
If a system is causal, then the system output 0( )y t  at so e arbitrary time can only depend on the system 0tm
input ( )x t  up until (and including) time . Another way of describing a causal system is that it is 
ona ative, the output doe hile most of the systems we think of are causal, this 

a or music 

 0t
n nticip s not anticipate the input. W
is because they work in real-time. That is, we are collecting or storing data to be processed as the data comes in, 
not at a later time.  However, many discrete-time systems, such as an ipod or MP3 player, have dat
stored in advance. When the music is played it is possible for the system to look at future values of the input 
(the discrete-time signal representing the music) and make adjustments based on the “future”.  This is possible 
because these systems do not need to work in real-time. In what follows, we again assume the system input is 

( )x t , the system output is ( )y t , and )( ()x t y t→ . 
 
Example 4.3.1. Consider the mathematical model of a system ( ) ( 1)y t x t= + . Does this model represent a causa

em?  Often the easiest w  to ana m
l 

syst ay lyze proble s . Thus for  like this is to put in various values of t 0t =  we 
ave , and clearly the output at time e

ple 4.3.2. 

h  (0) (1)y x= zero depends on the input at tim  one, and the system is not 
causal. 
 
Exam Consider the mathematical model of a system ( 1)( )) (t ty e xt += . Does this model represent a 
causal system? This is a causal system, since the output depends only on the system input at ( )y t  at any time t
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e same time. Remember that we are only concerned with input-output relationships. The exponential term th
does not affect the causality of the system. 
 
Example 4.3.3. Consider the mathematical model of a system ( ) ( )y t x t= − . Does this model represent a causal 
system? This system is not causal, since for 1t = −  we have ( 1) (1)y x− = , and the output depends on a future 
value of the input. 

odel of a system

 

Example 4.3.4. Consider the mathematical m ( 1
2

) ty t x ⎛= − ⎞
⎜
⎝ ⎠

ausal system? This system is a bit more difficult to analyze than the previous systems. If this system is causal, 

⎟ . Does this model represent a 

c

then we must have 1
2
tt ≥ − or 3 1

2
t ≥ . This will not be true for  system is not causal. 

 
Example 4.3.5. Consider the m thematical model of a system ( ) 2 ( ) ( 1)y t ty t x t

 all time, so the

a + = + . Does this model represent 
a causal system? In  an his, we will solve for the output as a function of the input (and review order to swer t

tegration factors as an added bonus!). We have in

[ ]
2 2 2 2

( ) ( ) ( ) [ 1)2t t t td y t e y t e y t e y
dt

te⎡ ⎤ = +⎢ ⎥⎣ ⎦
2

( ) 2 ( )] (tt ty t e x t== + +  

or 
 

[ ]
2 2

( ) ( 1)t td y t e e x t
dt
⎡ ⎤ =⎥⎦

+⎢⎣
 

Integrating both sides from some initial time up to an arbitrary final time  we have 0t t

22 2 2
0

0 0t t
0[ ( ) ] ( ) ( ) ( 1)tt

t td y ee d y t e y t e x d
d

λ λλ λ λ λ
λ

= − +=∫ ∫  

Rearranging this we have  
2 2 2 2

0

0

0( ) ( ) ( 1)t t t
t

t

ey t y t e dxλ λ λ− + − += ++ ∫  

Now we can determine that the output at any time , depends on the input from time  up until time 
. Thus the system is not causal. 

 

 system is memoryless or instantaneous if the output at any time  does not depend on past or future values of 
 directly depend on the input, then  must be an algebraic function of 

t , ( )y t 0 1t +
1t +

 
4.4 Memoryless Systems 
 

t
( )

A
the input. If the output does y t ( )x t .  
 
Example 4.4.1. Consider the mathematical model of a system ( ) ( 1)y t x t= + . Does this model represent a 
memoryless system? No, the system model is not memoryless, since the output at any time depends o futn a ure 

put. in
 
Example 4.4.2. . Consider the mathematical model of a system ( ) ( 1)y t x t= − . Does this model represent a 
memoryless system? No, the system model is not memoryless, since the output at any time depends on a past 

put. in
 



Example 4.4.3. . Consider the mathematical model of a system 22( ) ( )y t x t= + . Does this model represent a
memoryless system? Yes, the system model is  memoryless, since the output at any time depends on the input 
only at

 

 that time. 
 
Example 4.4..4 . Consider the mathematical model of a system ( 1)t( ) 2 ( )y t ty t x+ = + . Does this model 
represent a memoryless system? No, the system model is not  memoryless, since the output at any time depends
on past and future

 
 values of the input. 

n invertible system a system in which each output is associated with a unique input. That is, there is a one-to-
ne relationship between the system input and the system output. 

xample 4.5.1. The mathematical models of system

 
 
4.5 Invertible Systems 
 
A
o
 
E s ( ) cos( ( ))y t x t=  and  are not invertible, since 

 Systems 

 mathematical model of a system that produces a bounded output for every bounded input is a bounded-input 
ounded-output stable system. Note that we do not need to know what the output is for every input, only that it 

elationship we assume all of the initial 
onditions are zero. Mathematically, if

2 (( ) )y t x t=
there is more than one input that produces the same output. 
  
 
4.6 Bounded Input Bounded Output (BIBO) Stable
 
A
b
is bounded. In addition, since we are looking at the input output r
c  | ( ) |x t M≤ for some finite constant M means  for some finite | ( ) |y t N<
constant N , then the system is BIBO stable. 
 
Example 4.6.1. Is the mathematical model of a system ( )( ) x ty t e= BIBO stable? If we assume | ( ) |x t M≤ then 
we have ( ) My t e N≤ = and the model is BIBO stable.  
 

Example 4.6.2. Is the mathematical model of a system 1
)(x

y t
t
⎞
⎟   BIBO stable ? The answer is yes, 

ince we  cosine is always bounded betwe

( ) cos⎛⎜
⎝ ⎠

=

 know that the en -1 and 1, so the output is always bounded, even if we 
o not know what it is. 

s
d

Example 4.6.3. Is the mathematical model of a system
0

)( ) (( )
t

t xy t e λ

©2009 Robert D. Throne 13

dλ λ BIBO stable? Since we assume

input is bounded,  | ( ) |x t

− −= ∫  the 

M≤ , we can write 

( () )( ) )( )
0 00

( 1) (1
t t

t t
t

e e Mt t t ty x d M d d Mt e e M e Me eλ λ λλ λ λ λ− − − − −≤ == − −− = − ≤=∫ ∫ ∫  

  
Hence | ( ) |y t M≤ and the output is bounded, so this is a BIBO stable model. 
 
 

7 Linear Time-Invariant (LTI) Systems 

 this course we will focus our attention on systems that are both linear and time-invariant, commonly referred 
 as LTI systems. If we have an LTI system and know the response of the system to specific input, then we can 

4.
 
In
to
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inear and time shifted combination of those inputs. For example, 
ssume we know the input/output relationships for various inputs  

determine the response of the system to any l
( ) ( )i ix t y t→ ( )ix ta and the corresponding 

outputs ( )iy t . Then, since the system is LTI, we know ( ) ( )i i i itx y tα α→ , 
( ) ( )i i i i

i i
tx t yα α→∑ ∑ , ( ) ( )i i i ix t t y t t− → − , and ( ) ( )i i i i i it t y tx tα α

i i
− → −∑ ∑ . Let’s illustrate the 

implications of this with a few examples. 
 
Example 4.7.1. Assum hat we know that if put ise t the in  ( ) ( )x t u t= , a unit step (Heaviside) function, then the 

( . Now assum e this information to determine the 
ation)

output of an LTI system will be ( )
esponse of the system to a pulse of width 

)ty t e u t−=
(dur

e we want to us
and amplitude r  T A . The first thing we need to do is to 

write out new input ( )newx t in terms of our known input. W te the pulse input as  
( ) ( ) ( )

e can wri
( ) ( )newx t Au= t Au t T Ax t Ax t T− − = − −  

Since the system is LTI we know 
 

( ) ( )Ax t Ay t→
( ) ( )Ax t T Ay t T− → −

 

and the new output will be  
( )( ) ( ) ( ) ( ) ( )t t T

newy t Ay t Ay t T Ae u t Ae u t T− − −= − − = − −  
 

4.8 Linearizing Nonlinear System Models 
hile we will be focusing on linear systems, many systems we commonly use are actually nonlinear. However, 

 we operate them only over a limited range of inputs, the assumption of linearity is reasonably accurate. This 
 very common with electronic circuits, such as BJT and MOSFET transistors, where we use “small signal” 

eled as linear for small enough input signals. 

 
 

W
if
is
models and assume these devices can be mod
 
In general, if we have an input-output relationship of the form, ( ) ( ( ))y t f x t= , then we can use a Taylor series 
approximation of f that we can use for small ( )x t . It may seem odd that we are allowing x  to be a function o
time, but the idea is the same. When the input is zero we have (0) (0)y f

f 
= , and this provides our nominal 

nputs as operating point. We can then approximate the output for small i

 0 0
( ) ( )(0) | ( ) (0) | (( )x x

df x df x) f x t x t
dx x

y
d= =≈ + ⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥⎦
+

⎣ ⎦ ⎣
 

If we look at the deviations from the operating point, we have 

yt =

0
( )( ) |( ) (0) ( ) ( )x

df x⎡ ⎤y t
d

y t y x t
x

t mx=− = =⎢ ⎥⎣ ⎦
Δ ≈  

where we have defined m as the slope near 0x = , 0
( ) |x

df xm
dx == . With this approximation we have the linear 

relationship between  and ( )y tΔ ( )x t , ( )y t t( ) mxΔ = . 
 

r m modelExample 4.8.1. Conside the nonlinear syste 1( )
2 (

y t
)x t

=
+

. Determine a linear model for small 

signals. We can write this as  

(0) ( 1
2

0)y f= =  



1) (2 )x x −= +  ( ) (y t f=
 

2
0 0

( ) 1| 1(2 |)
4x x

df x x
dx

−
= == − + = −  

so 
1 1 ( )
2

( )
4

ty t x≈ −  

 
Looking at the deviation about the operating point we get the small signal linear model 
 

1 1( ) ( ) x(t)
2 4

y t y tΔ = − ≈ −  

Example 4.8.2. Consider the nonlinear system model

 
 
 
 

 ( )( ) 1 3 x ty t e= + .  Determine a linear model for small 
gnals. We can write this as 

 
si

( ) (0) 4y t f= =  
( ) ( ) 1 3 xy t f x e= = +  

©2009 Robert D. Throne 15

 0 0
( ) | 3 |xdf x e 3x xdx = == =  

so 

( ) 4 3 ( )y t x t≈ +  

W
 

e then have the small signal linear model 

( ) ( ) 4 3 ( )y t y t x tΔ = − =  
  
  
 
 


