
  
3.0 Second Order Circuits 

 
A second order circuit is a circuit with two effective energy storage elements, either two capacitors, two 
inductors, or one of each. (In some circuits it may be possible to combine multiple capacitors or inductors into 
one equivalent capacitor or inductor ) We begin this section with the derivation of the governing differential 
equation for various second order circuits. At this point we will focus on circuits that we can put into a standard 
form. Once we have covered Laplace transforms we will analyze different types of second order circuits. This 
standard second order form will again allow us to easily determine physical characteristics of the circuit and 
predict the time response. We then solve the differential equations for the case of a constant input. 
 
3.1 Governing Differential Equations for Second Order Circuits: Standard Form 

 
In this section we derive the governing differential equations that model various RL, RC, and RLC circuits.  We 
then put the governing second order differential equations into a standard form, which allows us to read off 
descriptive information about the system very easily. The standard form we will use is 

2
2 2( ) ( (( ))2 )n n n

d dy t
dt d
y t y t K

t
x tζω ω ω+ =+  

or 
2

2

1 ( ) 2 ( ) ( )( )

n n

d dy t y ty t
dt d

x t
t

Kζ
ω ω

+ =+  

Here we assume the system input is ( )x t  and the system output is . ( )y t nω  is the system natural frequency, 
which indicates the frequency at which the system will oscillate if there is no dampling. The natural frequency

nω  has units of radians/second. ζ is the damping ratio, which indicates how much damping there is in the 
system. A damping ratio of zero indicates there is no damping at all. The damping ratioζ is dimensionaless. K  
is the static gain of the system. For a constant input of amplitude A  ( ( ) ( )x t Au t= , where  is the unit step 

function), in steady state we have

( )u t
( )dy t

dt
0= , 

2

2

( ) 0d y t
dt

= ,  and ( )y t ( )Kx t KA= = . Hence the static gain lets us 

easily compute the steady state value of the output. To determine the units of the static gain we use 
 

[units of y] = [units of K][units of x] 
or 

[units of K] = [units of y]/[units of x] 
 
Note that not all second order circuits can be modeled by a differential equation of this form. While we can 
always write the left hand side of the differential equation in this form, for some circuits the right hand side of 
the differential equation may contain derivatives of the inputs. In addition, this form may not always be the best 
way to write the differential equation. 
 
Example 3.2.1. Consider the RLC circuit shown in Figure 3.1. The input, ( )x t ,  is the applied voltage and the 
output, ,  is the voltage across the capacitor. If we denote the current flowing in the circuit as , then 
applying Kirchhoff’s voltage law around the single loop gives us the equation 

( )y t ( )i t

 
( ) ( )) (( di t y t i t R

dt
x t L + +− + ) 0=  

We can also relate the voltage across the capacitor with the current flowing through the capacitor 
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( )( ) dy ti t C
dt

=  

Substituting this equation into our first expression we get  
 

2

2

( ) ( ) 0( ) ( )d y t dy ty t RC
dt dt

x t LC + +− =+  

or 
2

2

( ) ( ) ( ) ( )d y t dyLC tRC y
d dt

t x t
t

+ + =  

Comparing this expression with our standard form we get 
 

natural frequency: 2

1

n

LC
ω

= , or 1
n LC

ω =  

 

damping ratio: 2

n

RCζ
ω

= , or 
2
R C

L
ζ =  

 
static gain: 1K =  

 
 
 

( )y t
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Figure 3.1. Circuit for Example 3.2.1. 
 

Example 3.2.2. Consider the RLC circuit shown in Figure 3.2. The input, ( )x t ,  is the applied current and the 
output, , is the current through the inductor. If we denote the node voltage at the top of the circuit as , 
then applying Kirchhoff’s current law  give us 

( )y t *( )v t

* *( ) ( )( ) y(t) + Cv t dv tx t
R dt

= +  

We can also relate the voltage across the inductor with the current flowing through the inductor 
* ( )( ) dy tv t L

dt
=  

Substituting this equation into our first expression we get  
 

2

2

( ) ( )( ) y(t) + LCL dy t d y tx t
R dt dt

= +  

or 

 

( )x t  + 
 - 

-+ ( )i t
R



2

2

( ) ( )LC y(t) = x(t)d y t L dy t
dt R dt

+ +  

 
Comparing this expression with our standard form we get 
 

natural frequency: 2

1

n

LC
ω

= , or 1
n LC

ω =  

 

damping ratio: 2

n

L
R

ζ
ω

= , or 1
2

L
CR

ζ =   

 
static gain: 1K =  

 
 

( )x t  R

( )y t

•
*v

L

 
 
 
 

C 
 
  

 
 
 
 

Figure 3.2. Circuit used in Example 3.2.2. 
 
Example 3.2.3. Consider the RLC circuit shown in Figure 3.3. The input, ( )x t ,  is the applied current and the 
output, , is the current through the inductor. If we denote the node voltage at the top of the circuit as , 
then applyingKirchhoff’s current law  give us 

( )y t *( )v t

 
* ( )( ) y(t) + C dv tx t
dt

=  

We can then determine the node voltage  as *( )v t
 

* ( )( ) ( ) dy tv t Ry t L
dt

= +  

Substituting this equation into our first expression we get  
 

2

2

( ) ( ) ( )( ) ( ) [ ( ) ] ( )d dy t dy t dx t y t C Ry t L y t RC LC
dt dt dt dt

= + + = + +
y t  

or 
2

2

( ) ( ) ( ) ( )d y t dy tLC RC y t x t
dt dt

+ + =  

 
Comparing this expression with our standard form we get 
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natural frequency: 2

1

n

LC
ω

= , or 1
n LC

ω =  

 

damping ratio: 2

n

RCζ
ω

= , or 
2
R C

L
ζ =  

 
static gain: 1K =  

 
 

R
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Figure 3.3. Circuit used in Example 3.2.3. 
 
Example 3.2.4. Consider the RLC circuit shown in Figure 3.4. The input, ( )x t , is the applied voltage and the 
output, , is the voltage across resistor ( )y t bR . Node voltages  and are as shown in the figure. 
Applying Kirchhoff’s current law gives at node  gives 

( )av t ( )bv t
( )av t

 
( ) ( ) ( ) ( ) ( ) ( ) 0a a b a a

a
v t x t v t v t v t dv tC

R R R dt
− −

+ + + =  

 
which we can simplify as  

( )3 ( ) ( ) ( ) a
a b a

dv tv t x t v t RC
dt

− − = −  

Summing the currents into the negative terminal of the op amp gives us 
 

( ) ( ) 0a b
b

v t dv tC
R dt

+ =  

or 
( )( ) b

a b
dv tv t RC

dt
= −  

Substituting this expression into our simplified equation above we get 
 

( ) ( )3 ( ) ( )b b
b b a b

dv t dv tdRC x t v t RC RC
dt dt dt

⎡ ⎤ ⎡ ⎤− − − = − −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 

or 
2

2
2

( ) ( )3 ( )b
a b b

b
b

d t dv tC C RC v t x t
dt dt
vR + + = ( )−  

 

 

C

•
*v

L( )x t  

( )y t



Finally, we have 

)( () b
b

a b

Rty v
R R

t =
+

 

or 

( ) ( )a b

b
b

R Rv t y t
R
+

=  

 
resulting in the differential equation 
 

2
2

2

( ) ( )3 ( )a b b
a b

bRd t dy tC C RC y t x t
dt dt R
yR

R
+ + = −

+
( )  

 
Comparing this expression with our standard form we get 
 

natural frequency: 2
2

1
a b

n

R C C
ω

= , or 1
n

a bR C C
ω =  

 

damping ratio: 2 3 b
n

RCζ
ω

= , or 3
2

b

a

C
C

ζ =  

 

static gain: b

a b

RK
R R

= −
+
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Figure 3.4. Circuit used in Example 3.2.4. 
 

 
3.3 Solving Second Order Differential Equations in Standard Form 
 
In this section we will solve second order differential equations the standard form 
 

+ 
 - 

 

-

+ 

R
R

R

aR

bR

bC

aC

•a

•

v  

 bv  

( )x t  

y( )t
+ 

 

 - 



2
2 2

2

( ) (( ( ))2 )n n n
d dy t

dt d
y t y t K

t
x tζω ω ω+ =+  

 
 for a constant (step) input.  We will solve this equation in two parts. We will first determine the natural 
response, ( . The natural response is the response due only to initial conditions when no inputs are present. 
Then we will determine the forced response, . The forced response is the response due to the input only, 
assuming all initial conditions are zero. The total response is then the sum of the natural and forced responses,  

)ny t
( )fy t

( ) ( ) ( )n fy t y t y t= + . 
3.3.1 Natural Response. To determine the natural response we assume there is no input in the system, so we 
have the equation 

2
2

2

( ) )( (2 0)n n
n n n

d dy t
dt dt
y t y tζω ω+ + =  

Let’s assume a solution of the form , where c  and are parameters to be determined. Substituting 
this assumption into the differential equation we get 

( ) rt
ny t c e= r

 
2 22 0rt rt rt

n nr e e cec rcζω ω+ + =  
or 
 

2 22 0[ ]rt
n nce rr ζω ω+ + =  

 
If  then we are done, and the natural response will be0c = ( ) 0ny t = . This solution certainly satisfies the 
differential equation. However, if , and since  can never be zero, we must have 0c ≠ rte

2 22 0n nrr ζω ω+ + =  
Using the quadratic formula, the roots of this equation are 
 

2 2
2 2 2 2(2

2
) 4

1
2 n n n

n n n n nr
ζω ζω ω

ζω ζ ω ω ζω ω ζ
± −−

= = ± =− ±− − −  

 
We now have four cases to consider depending on the value of the damping ratio ζ . These four cases are:  over 
damped ( 1ζ > ),  critically damped ( 1ζ = ), undamped ( 0ζ = ),  and  under damped ( 0 1ζ< < ). We will 
consider each of these in turn. 
 
 
Overdamped ( 1ζ > ).  In this case we have two real and distinct roots,  
 

2
1

2
2

1

1
n n

n n

r

r

ζω ω ζ

ζω ω ζ

= − + −

= − − −
 

The natural response is then 
1 2

1 2( ) r t r t
ny t c e c e= +  

where  and  are constants to be determined by the initial conditions. Note that both  and  are always 

negative, since 
1c 2c 1r 2r

2 1ζ ζ> − . 
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Critically Damped ( 1ζ = ). In this case we initially appear to have only one solution, 
 

1 2 nr r r ω= = = −  
 
From differential equations, we know that in this situation we should look for an additional solution of the form 

( ) rt
ny t cte=  

Let’s check to see if this works. With 1ζ = , the differential equation becomes 
 

2
2

2

( ) )( (2 0)n n
n n n

d dy t
dt dt
y t y tω ω+ =+  

We have then 

)(( ) rt rt rtn d ctedy t ce ctre
d tt d

= = +  

2 2
2 2

2 2

( ) ) 2( rt rt rt rt rt rt rt rtnd y t d ce ctre cre crd cte ctr
dt

e e cre ctr
dt dt

⎡ ⎤ = +⎣ ⎦= = + + = + e

] 2 [ ] 0nω =

 

 
Substituting these into the differential equation we get 
 

2 2 2 2[ ] 2 [ ] [ [2 ] 2rt rt rt rt rt rt rt
n n n nctr e ce ctre ctre r rcre c ce et rω ω ω ω+ + + + + + + +=  

 
Since we know nr ω= −  this equation is clearly satisfied. Hence our natural solution in this case will be of the 
form 

1 2( ) rt rt
n ey t c c te= +  

where  and  are constants to be determined by the initial conditions. 1c 2c
 
Undamped ( 0ζ = ).  In this case there is no damping, and the system oscillates at frequency nω . The natural 
response is of the form 
 

( ) sin( )n nty t c ω φ= +  
 

where c and φ  are constants to be determined by the initial conditions. 
 
 
Under Damped ( 0 1ζ< < ). In this case will have two complex conjugate roots, which we can write as 

21n n n dr j jζω ω ζ ζω ω= − ± − = − ±  
21d nω ω ζ= −  is the damped frequency. This is the frequency this system will oscillate with. As we go on, it 

will be usually easier to remember the roots of this equation as 
 

n dr j djζω ω σ ω= − ± = − ±  
 
It is also useful at this point to examine the roots of this equation in the complex plane and see what we can 
determine. Figure 3.5 illustrates the relationships we will be discussing. 
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Figure 3.5.  Relationship between the location of the complex roots(+) and the natural frequency ( nω , the 

magnitude of the roots) ,  the damped frequency ( 21d nω ω ζ= − , the imaginary part of the root and the 
frequency of oscillation), and the damping ratio (ζ , cos( )θ ζ= ).  When 0ζ =  (undamped )  the angle  
and the roots are purely imaginary. In this case 

90oθ =

d nω ω=  and the system just oscillates at the natural frequency.  
When 1ζ =  (critically damped) the angle 0θ o=  and the roots are purely real and are repeated. If 1ζ ≥  both 
roots are real, not repeated, and are on the real axis. In this case 0dω = and there is no oscillation. Between these  
extremes we have an under damped system ( 0 1ζ< < ). 
 
 First of all, since our equation for the roots is real we must have complex conjugate roots to the equation, 
which the figure shows.  If we look at the magnitude of the roots, we get  
 

2 * 2 2 2 2 2 2 2 2( ) ( 1 )| | n n n n nr rr 2
nζω ω ζ ζ ω ω ω ζ= × = − + − − == + ω  

 
So the roots will all lie on a circle with magnitude| | nr ω= .  Secondly, if we look at the angle made with the 
negative real axis, we can see that  

cos( ) n

n

ζωθ ζ
ω

= =  

When 0ζ =  (undamped )  the angle  and the poles are purely imaginary. In this case 90oθ = d nω ω=  and the 
system just oscillates at the natural frequency.  When 1ζ =  (critically damped) the angle  and the poles 
are purely real. In this case

0oθ =
0dω = and there is no oscillation. Between these two extremes we have an under 

damped system ( 0 1ζ< < ). 
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Our solution at this point for the natural response to the under damped system is then  
 

( ) ( )
1 2 1 2( ) n d n d n d dj t j t t j t

ny t c e c e c e c eeζω ω ζω ω ζω ω ω− + − − − −+ +== j t⎡ ⎤⎣ ⎦  
 

Since we want a real valued solution, let’s make an assumption about the relationship between the two unknown 
constants. Assume  

1

2

2

2

j

j

c c e
j
c ec
j

φ

φ−

=

−
=

 

Then we have 
( ) ( )( )

2
n d dt j t j t

n
c e ey t e
j

ζω ω φ ω φ− + − +⎡ ⎤−⎣= ⎦  

 
Finally we expand this out using Euler’s identity to get 

[ ]( ) ) sin( )} cos( ) sin({co
2

s )( {nt
n d d d

ct e t j t t j
j

y tζω }dω φ ω φ ω φ ω φ−= + + −+ + − +  

or 
 

s( ) ( )innt
n dt ce ty ζω ω φ−= +  

 
where c andφ   are constants to be determined by the initial conditions. 
 

 
3.3.2 Forced Response.  
 
To determine the forced response we must know the system input, ( )x t . For now we will assume an input that is 
zero before  and then has constant amplitude 0t = A  for , 0t ≥

0 0
( )

0
t

x t
A t

<
≥

⎧
= ⎨
⎩

 

 Then for  we have the equation 0t ≥
 

2
2

2

( )( ) (2 )n n
n n n

d dy t
dt d

t A
t

y t y Kω ω+ =+  

 
Since this is a linear ordinary differential equation we only need to find one solution. One obvious solution to 

this equation is the solution in steady state, when
2

2

( ) ( )
0f fd y t dy t

dt dt
= = . In steady state we have 

( )fy t KA=  
Note that for a constant input, the steady state output is the product of the static gain and the amplitude of the 
input. 
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3.3.3 Total Solution.  The total solution to our differential equation is the sum of the natural and forced 
responses, which is summarized below: 
 

1 2

( ) sin
0 ( )

0 (
1 (

1
n

, ( )

, (1

n

n n

n
t

d
t t

imaginary roots y t KA c
complex conjugate roots y t KA ce

rea

undamped t
under damped

l repeated roots y t KA c

real di

t
crititally damped e c te

over dampe stinct roots yd

ζω

ω ω

si
)

)
ζ ω φ
ζ ω φ

ζ

ζ

−

− −

= +
< +

= +
< =

=

>

+
+= +

2 2( 1) (
1 2) n n n nt tt KA c e c eζω ω ζ ζω ω ζ− − −+ −= + + 1)−

 

 
 
3.4 Response of Under Damped Systems at Rest  
 
For the under damped case, we have the solution  
 

sin(( ) )nt
dy t KA ce tζω ω φ−+ +=  

 
We will determine the solution assuming the system is initially at rest ( (0) 0y =  and ).  Let’s look first 
at the derivative term, 

(0) 0y =

( )sin( ) ( ) cos( )( )
n nt t

n d d d
dy t tce

dt
ce tζω ζωζω ω φ ω ω− −= − + + +φ  

At the initial time ( ) we will have 0t =
 

(0) sin( ) cos( ) 0n dy ζω φ ω φ= − + =  
or 

2 21 1sin( ) tan( )
cos( )

nd

n n

ω ζ ζωφ φ
φ ζω ζω

− −
= = = =

ζ
 

Hence 
2

1 1tan ζ
φ

ζ
−
⎡ ⎤
⎢
⎣

−

⎢
= ⎥

⎥⎦
 

From this  we can determine that the hypotenuse of the triangle is 1r = , so that 2)i ( 1s n φ ζ= − and cos( )φ ζ= . 
 
Next we use the initial condition that the initial position is zero, 
 

(0) 0 sin( )y KA c φ= = +  
 

or 

2sin( ) 1
KA KAc
φ ζ

= − = −
−

 

 
Finally, our solution for  is ( )y t

2

1( ) 1 sin( )
1

nt
dy t KA e tζω ω φ

ζ
−

⎡ ⎤
= − +⎢ ⎥

−⎢ ⎥⎣ ⎦
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2
1 1

tan
ζ

φ
ζ

−
⎡ ⎤
⎢
⎣

−

⎢
= ⎥

⎥⎦
 

 
Figure 3.6 shows the response (output) of a system initially at rest. For this system 1KA =  and 10nω = rad/sec. 
There are four responses for under damped systems ( 0 1.0ζ< < ) and one response for a critically damped 
system ( 1.0)ζ = . The only thing changing in the responses shown in Figure 3.6 is the damping ratio, so it 
should be clear that the damping ratio can affect the response of the system quite a lot.  For example, the peak 
amplitude and time at which the system reaches the peak amplitude is different for the different responses. 
Similarly, the frequency at which the system oscillates, the damped frequency, is different for the different 
responses. Finally, the time it takes the system to reach steady state is different for the different responses. 
 
For systems which fit into our standard second order form, we can predict the response of the system and 
characterize the response in terms of our parameters ( , ,n Kω ζ ). The most common characterizations are 
depicted in Figure 3.7, which shows the response of a second order system 

10 / ,( 0.15, 2.0)n rad sec Kω ζ= =

pT

= initially at rest to a unit step input (an input of constant amplitude 1.0 
starting at time zero). Typical characterizations of second order systems shown in the figure are (1) the time to 
peak ( ), the time it takes the output to reach its peak value; (2) the percent overshoot ( ), which indicates 
the amount the largest peak of the output overshoots the final (steady state) value of the output; and (3) the 
settling time (

PO

sT ), which indicates the time it takes for the transients in the output to settling out. After the 
settling time the system output remains within 2%± of the final (steady state) value. (This is a 2% definition of 
settling time, 1% definitions are also used, though the 1% definition is not as commonly used.) In the 
following sections we indicate how we can determine these quantities in terms of the parameters that 
characterize our system. 
 
3.4.1 Time to Peak. From our solution to the response of our under damped second order system to a step 
input, we can determine the time at which  reaches its peak value by taking the derivative of  and 
setting it equal to zero. This will give us the maximum value of  and the time this occurs at will be called 
the time to peak, . 

( )y t ( )y t
( )y t

pT

[ ]
2

( ) sin( ) cos( ) 0
1

n d d d
dy t KA t t

dt
ζω ω φ ω ω φ

ζ
= − − + + + =

−
 

sin( ) cos( )n d d dt tζω ω φ ω ω φ+ = +  
 

2 21 1tan( ) nd
d

n n

t ω ζ ζωω φ
ζω ζω ζ

− −
+ = = =  

2
1 1tandt ζ

ω φ φ
ζ

− −
+ = =  

 
Hence d tω  at the time to peak, , must equal one period of the tangent, which is pt T= π , so  

p
d

T π
ω

=  

Remember that dω  is equal to the imaginary part of the complex roots of   
 

2 22 0n nrr ζω ω+ + =  
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Figure 3.6.  The response (output) of a system initially at rest. For this system 1KA =  and 10nω = rad/sec. 
There are four responses for under damped systems ( 0 1.0ζ< < ) and one response for a critically damped 
system ( 1.0)ζ = . The only thing changing in the responses is the damping ratio. 
 
3.4.2 Percent Overshoot. Evaluating  at the peak time  we get the maximum value of , ( )y t pT ( )y t
 

2

1) 1 sin(
1

( n pT
p dKA e Ty T ζω )pω φ

ζ
−

⎡ ⎤
= − +⎢ ⎥

−⎢ ⎥⎣ ⎦
 

 

2

1) 1 sin(
1

(
n

d
p d

d

KAT ey
πζω
ω π )ω φ

ωζ

−⎡ ⎤
= − +⎢ ⎥

−⎢ ⎥⎣ ⎦
 

21

2

1) 1 sin(
1

( py T KA e
ζπ

ζ )φ
ζ

−
−

⎡ ⎤
⎢ ⎥= +
⎢ ⎥−⎣ ⎦

 

 
We get the last equation by using the fact that sin( ) sin( )φ π φ+ = − . Finally, since we have previously 

determined that 2sin( ) 1φ ζ= − , 
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211( )p KAy T e
ζπ

ζ
−

−
⎡ ⎤
⎢ ⎥= +
⎢ ⎥⎣ ⎦

 

The percent overshoot is defined as 
 

) ( )
10 %

)
(

(
0py T

Percent Overshoot P
y

y
O= =

− ∞
×

∞
 

Note that this is a standard definition for percent overshoot, independent of the system order or type of system 
we are analyzing. Note also that the reference level is the value of the function in steady state. 
 
For our under damped second order system we have y( ) KA∞ = , so we have 
 

21

100%

1 e KAKA

PO
KA

ζπ

ζ

−

−
⎡ ⎤
⎢ ⎥ −
⎢ ⎥⎣ ⎦ ×

+

=  

 
or 

21 100%ePO
ζπ

ζ

−

− ×=  
 
 

3.4.3 Settling Time. The settling time of a system is defined as the time it takes for the output of a system with 
a step input to stay within a given percentage of its final value. We will use the 2% settling time criteria, which 
is generally four time constants, 4sT τ= . For any exponential decay, the general form is written as /te τ− , where 
τ  is the time constant. Functions of the form / cos( )t

de tτ ω φ− +  or / sin( )t
de tτ ω φ− +  such as we have in our 

solution will oscillate, but will still decay at the same rate as the exponential alone. For our system we have 
1

n

τ
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ζω
=  or nσ ζω= , where σ  is the absolute value of the real parts of the solutions to . 

Hence for our system we estimate the settling time as 

2 2
n ω+ +2 0nrr ζω =

4 44s
n

T τ
ζω σ

= = =  

 
 



 
 
Figure 3.7.  The response (output) of a system initially at rest. For this system 2KA = ,  10nω = rad/sec, and 

0.15ζ = . Typical characterizations of second order systems (1) the time to peak ( ), the time it takes the 
output to reach its peak value; (2) the percent overshoot ( ), which indicates the amount the largest peak of 
the output overshoots the final (steady state) value of the output ; and (3) the settling time (

pT
PO

sT ), which indicates 
the time it takes for the transients in the output to settling out. After the settling time the system output remains 
within of the final (steady state) value.  2%±
 

 
3.5 Second Order System Examples 
 
Example 3.5.1. Consider the circuit used in Example 3.2.2 with parameter values, , 10 mHL = 10 FC μ= , 

. Assume the input is  0.5 amp step, 40R = Ω ( ) 0.5 ( )x t u t= . We can then determine the parameters: 

3 6

1 1 3,162.2 rad / sec
(10 10 )(10 10 )

n LC
ω

− −
= = =

× ×
 

3

6

1 10 10 0.395
2 (2)(40) 1
1

10 0
L

R C
ζ

−

−

×
= = =

×
 

1K =  

2 2
0.011sec

1 3,162.2 1 0.395
p

d n

T π π π
ω ω ζ

= = = =
− −
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4 4 0.032sec
(0.395)(3162.2)s

n

T
ζω

= = =  

 
2 2

0.395
1 1 0.395100% 100% 26%ePO e
ζπ π
ζ

− −
− −× = ≈= ×  

 
The time domain expression for the output is then given by 
 

2 2
1 1 11 1 0.395tan tan tan [2.3257] 1.1647 rad

0.395
ζ

φ
ζ

− − −
⎡ ⎤

=⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤− −
= =⎢ ⎥

⎢ ⎥⎣ ⎦
=  

1249.07

2

1( ) 1 sin( ) 0.5[1 1.09 sin(2905.05 1.1647)]
1

nt t
dy t KA e t e tζω ω φ

ζ
− −

⎡ ⎤
= − + = − +⎢ ⎥

−⎢ ⎥⎣ ⎦
 

 
The response for this system is shown in Figure 3.8. The time to peak, settling time, and percent overshoot are 
displayed on the figure. 
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Figure 3.8. Response of the circuit used in Example 3.5.1 with parameter values , 10 mHL = 10 FC μ= , 

. Assume the input is  0.5 amp step. 40R = Ω
 



Example 3.5.2. Consider the circuit used in Example 3.2.4 with parameter values, 10aC Fμ= , 1bC Fμ= , 

R 1 k= Ω , 3  , aR k= Ω 2bR k= Ω . Assume the input is a 1 volt step, ( ) ( )x t u t= . We can then determine the 

parameters: 

3 6 6

1 1 316.2 rad / sec
1 10 (10 10 )(1 10 )

n
a bR C C

ω
− −

= = =
× × ×

 

6

6

3 1 10 0.47
2 2 10 10
3 b

a

C
C

ζ
−

−

×
= = =

×
 

3

3 3

2 10 0.4
3 10 2 10

b

a b

RK
R R

×
= − = − = −

+ × + ×
 

2 2
0.011sec

1 316.2 1 0.47
p

d n

T π π π
ω ω ζ

= = = =
− −

 

 
4 4 0.027sec

(0.47)(316.2)s
n

T
ζω

= = =  

 
2 2

0.47
1 1 0.47100% 100% 18.5%PO e e
ζπ π
ζ

− −
− −× = × ≈=  

 
The time domain expression for the output is then given by 
 

2 2
1 1 11 1 0.47tan tan tan [1.657] 1.0815 rad

0.47
ζ

φ
ζ

− − −
⎡ ⎤

=
⎡ ⎤− −

= =⎢ ⎥
⎢ ⎥⎣ ⎦

⎢ ⎥
⎢ ⎥⎣ ⎦

=  

 

148.6

2

1( ) 1 sin( ) 0.4[1 1.1329 sin(279.1 1.0815)]
1

nt t
dy t KA e t e tζω ω φ

ζ
− −

⎡ ⎤
= − + = − − +⎢ ⎥

−⎢ ⎥⎣ ⎦
 

The response for this system is shown in Figure 3.9. Note that although the input is positive, the output has a 
negative steady state value. This is because the static gain is negative. However, all of the parameters we are 
interested in (time to peak, settling time, or percent overshoot) are still measured in the same way. 
 
Example 3.5.3.  Consider the response of an unknown second order system, with step input 4 volts, 
x( ) 4 ( )t u t=

1.5

. The measured output is also in volts. The response of this unknown system is shown in Figure 
3.10. We want to try and determine the system parameters from the system output. 
 
For this system, the steady state value is )(ssy y b= ∞ = = . Since we know the input was 4, we have 

, or (4) 1.5ssKA y K= = =
1.5 0.375=

4 4
ssyK = = . The 2% settling time sT  occurs when | 2( 0) 0| ssy t y .<−  for all 

st T≥ . Based on this graph, this occurs somewhere  
near 0.26 seconds, so . The time to peak  can be measured off the graph to be approximately 
0.11 seconds, so .To determine the percent overshoot, we first need the steady state value of the 
output, which we have determined, and then how much beyond this the system has travelled. For this system we 
have  and . Hence the percent overshoot is given by

0.26 secsT ≈

0.11sec

1.5b = ( )py T

pT

1.5−

pT ≈

=( ) ssy y∞ = ( ) 1.75 0.25y a− ∞ = ≈ ≈
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0.25100% 100% 17%
1.5

aPO
b

= × = × ≈ . It is important to remember that the percent overshoot is measured from 

the steady state value of the output, not from the value of the input. We can now use these parameters, or 
various combinations of them, to determine the damping ratio and natural frequency.  
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Figure 3.9. Response of the circuit used in Example 3.5.2 with parameter values 10aC Fμ= , 1bC Fμ= , 

1R k= Ω , 3  , aR k= Ω 2bR k= Ω . The input is a 1 volt step. Note that although the input to the circuit is a 

positive voltage, the output is negative because the static gain is negative.  

 
 
 



 
Figure 3.10. Output of an unknown second order system, analyzed in Example 3.5.3. 

 
 
Example 3.5.4. Consider the circuit used in Example 3.2.3 with parameter values, , 1 mFC = 10 mHL = , 

. Assume the system is initially at rest and the input is a 1 amp step,10R = Ω ( ) ( )x t u t= . We want to determine 
and characterize the output of the system. We start by determining the system parameters: 
 

3 3

1 1 316.2 rad / sec
(10 10 )(1 10 )

n LC
ω

− −
= = =

× ×
 

3

3

10 1 10 1.581
2 2 10 10
R C

L
ζ

−

−

×
= = =

×
 

 
Since 1.0ζ >  we have an over damped system. We know from our previous solution we will have a solution of 
the form 
 

1 2
1 2( ) cr t r tey t KA c e+ +=  

where  
2 2

1 1 (1.581)(316.2) (316.2) 1.581 1 112.7n nr ζω ω ζ= − + − = − + − ≈ −  
and 

2
2

21 (1.581)(316.2) (316.2) 1.581 1 887.1n nr ζω ω ζ−= − − = − − − ≈ −  

©2009 Robert D. Throne 18



 
In order to determine the complete response we will use the general form of the solution in what follows. 
Because the system starts at zero we have the condition 
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21(0) 0y KA c c= + +=   or  1 2c Ac K+ = −  
 

Because the system starts at rest we need to look at the slope 
 

1 2
1 1 2 2( ) r t r ty t r c e r c e= +  

At the initial time then we also have 
 

1 1 2 2(0) 0y rc r c= + =  or 2
1 2

1

crc
r

= −  

Combining these conditions we have 

1 2

1 1

2 2
1 2 2 2 2 2

1

1r r r rc c c c c c KA
r r r

⎡ ⎤
=⎢ ⎥

⎣

−
+ = − + = − = −

⎦
 

 

or 
2

2
1

1rc K
r r

A
−

=  and
2

1
1

2r KA
r

c
r

−
=

−
. Our solution is then 

1 22 1

2 1 2 1

( ) 1 r t r ty t KA r re e
r r r r− −

⎡ ⎤
= − +⎢ ⎥

⎣ ⎦
 

For our system this becomes 
112.7 887.1( ) 1 1.145 0.145t ty t e e− −= − +  
 

The response of this system is displayed in Figure 3.11. As this figure shows, there is no overshoot, so 
determining the time to peak or percent overshoot is meaningless. We can, however, determine the settling time. 

However, we cannot use our previous formula 4
s

n

T
ζω

= , since this was derived for an under damped system.  

What we need is to use the more general form that the settling time is equal to four time constants, 4sT τ= . 
Recall that the general form of a decaying exponential is /te τ− , whereτ  is the system time constant.  For this 
system we are going to have two time constants since we have two exponential terms, 

112.7 /

887.1 /

1 0.00887sec
112.7

1, 0.00113 sec
887.1

,t t

t t

e e

e e

τ

τ

τ

τ

− −

− −

= = =

= = =
 

The system response and a plot of these exponentials is shown in Figure 3.12. As this figure shows, the 
response of the exponential with the smaller time constant is much more rapid than the response of the 
exponential with the larger time constant. The response of the system is more nearly like the response of the 
exponential with the larger time constant. Hence, to determine the settling time, we use the largest time constant 
 

4 (4)(0.00887) 0.0355secsT τ= ≈ =  
 

This is a general result that we will use later, the response of the system is dominated by the response of the 
part with the largest time constant. 
 



 
 
Figure 3.11. Response of system analyzed in Example 3.5.4. This is an over damped system. The settling time 
of the system is estimated to be .  0.0355 secsT =
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Figure 3.12. Response of system analyzed in Example 3.5.4 and plots of the exponentials that make up the 
response. For this system, . This system has components with time constants 112.7 887.1( ) 1 1.145 0.145ty t e e−= − +

1 0.00887sec
112.7

τ = =  and 1 0.00113sec
887.1

τ = = . The response of the system is clearly dominated by the 

component of the response with the largest time constant. 
  



 
 

Chapter 3 Problems 
 
3.1) Show that the governing differential equation for the following circuit is given by 

2 ( ) ( ) ( ) ( ) ( )b
b a b b a b

a

RC C y t R C C y t y t x t
R

R + + + =  

and that for this circuit 1
n

b a bR C C
ω = , 

2
a b

a b

C C
C C

ζ +
= , and a

b

RK
R

=  

©2009 Robert D. Throne 22

 
 
 
 
 
3.2)  Show that the governing differential equation for the following circuit is given by 

1( ) ( ) ( ) ( )a a b

a b a b a b

LCR L R R Cy t y t y t x t
R R R R R R

⎛ ⎞ ⎛ ⎞ ⎛ ⎞+
+ + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ + +⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

and that for this circuit a b
n

a

R R
LCR

ω +
= , 

2
a b

a a b

L R R C
LCR R R

ζ +
=

+
, and 1

a b

K
R R

=
+

. 

 



 
3.3) For this problem, consider six second order systems described by the following differential equations: 
 

( ) 9 ( ) 20 ( ) 20 ( )
( ) 10 ( ) 25 ( ) 25 ( )
( ) 4 ( ) 13 ( ) 13 ( )
( ) 6 ( ) 8 ( ) 8 ( )
( ) 6 ( ) 9 ( ) 9 ( )
( ) 6 ( ) 13 ( ) 13 ( )

y t y t y t Kx t
y t y t y t Kx t
y t y t y t Kx t
y t y t y t Kx t
y t y t y t Kx t
y t y t y t Kx t

+ + =
+ + =
+ + =
+ + =
+ + =
+ + =  

 
a) Assume the systems are initially at rest and input is a step, ( ) ( )x t Au t= , determine expressions for the 
system output by finding the forced and unforced responses and then solving for the unknown coefficients just 
as we did in class. 
b) For the systems with real roots, show that your solution meets the two initial conditions ( ((0) 0) 0yy = = ). 
For the systems with complex roots, determine ζ and nω from the governing differential equation, and show 
that your solution agrees with the form  

2

1 si )) (( 1 n
1

nt
dy t tKA e ζω ω θ

ζ
−

⎡ ⎤
+⎢ ⎥

−⎢ ⎥⎣ ⎦
= −      1cos ( )θ ζ−=      21d nω ω ζ= −  

 Do not assume this is the form of the solution, but use it to check your answer.  
Answers: 

4 5 5 5

2 4

3 5 3

4 5
sin(3 56.3 )], ( ) 2

3 s

( ) 5 , ( )
( ) [1 1.202
( ) , ( )) [1 1.803 ]

t t t t

t o t

t t t

y t KA KAe y t KA KAe
y t KA e
y t K

KAe KAte
t y t KA KAe K

KAtA KAe y t Ke tA e

− − − −

− −

− − −

+ −

+ = +

= − = −

= −

= − − += −

− 2

in(2 33.7

t

o

Ae−

 
 
 
3.4)  The response of a second order system is  
 
  sin(9.9( ) 1 1.0050 1.4706 rad5 0 )0ty t te−= − +
 
a) Take the derivative of this function to determine the time at which the maximum occurs (the time to peak) 
b) Determine the maximum value of this function (the value at the time to peak) 
c) Determine the percent overshoot using your answer to (b) 
d) For this response determine ζ , dω , and nω  
e) Compute the percent overshoot using the formula 

21 100%PO e
ζπ

ζ
−

− ×=  
and verify your answer to (c). 
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3.5)  The response of a second order system is 
 

3.75 sin(14.( ) 2[1 1. 52370328 1.3181 rad)]te ty t − += −    
 

a) Take the derivative of this function to determine the time at which the maximum occurs (the time to peak) 
b) Determine the maximum value of this function (the value at the time to peak) 
c) Determine the percent overshoot using your answer to (b) 
d) For this response determine ζ , dω , and nω  
e) Compute the percent overshoot using the formula 

21 100%PO e
ζπ

ζ
−

− ×=  
and verify your answer to (c). 
 
 
3.6) One of the methods that can be used to identify ζ and nω for mechanical systems the log-decrement 
method, which we will derive in this problem. If our system is at rest and we provide the mass with an initial 
displacement away from equilibrium, the response due to this displacement can be written 

1( ) cos( )nt
dx t Ae tζω ω θ−= +  

where 
1( )x t = displacement of the mass as a function of time 
ζ  = damping ratio 

nω = natural frequency 

dω = damped frequency = 21nω ζ−  

After the mass is released, the mass will oscillate back and forth with period given by 2
d

d

T π
ω

= , so if we 

measure the period of the oscillation ( ) we can estimate dT dω .Let's assume is the time of one peak of the 
cosine. Since the cosine is periodic, subsequent peaks will occur at times given by , where is an 
integer. 

0t

0n dt t nT= + n

a) Show that 
1 0

1

( )
( )

n dT n

n

x t e
x t

ζω=  

b) If we define the log decrement as  

1 0

1

( )ln
( )n

x t
x t

δ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

show that we can compute the damping ratio as 

2 2 24n
δζ
π δ

=
+

 

c) Given the initial condition response shown in the Figures on the next page, estimate the damping ratio and 
natural frequency using the log-decrement method. (You should get answers that include the numbers 15, 0.2, 
0.1 and 15, approximately.) 
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Figure 1. Initial condition response for second order system A. 

 
Figure 2. Initial condition response for second order system B. 
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