
ECE-205 Lab 5 
Numerical Integration, Matlab, and Fourier Series 

 
Overview 
 
In this lab we will explore numerical integration using Matlab. As an application of numerical integration in 
Matlab, we will show how we can use a Fourier series to represent a periodic signal. 
 
Your memo will need to include code and results from part I, four plots from part II, and three plots from part 
III, one plot from part IV, and your final code. Your code should be neat and organized (you can comment out 
the functions of x(t) you are not using) 
  
PART I : Simple integration using Matlab 
 
Maple is often used for symbolically integrating a function. Sometimes, though, what we really care about is the 
numerical value of the integral. Rather than integrating symbolically, we might want to just use numerical 
integration to evaluate the integral. In order to do this we will learn to use one of Matlab’s built-in functions for 
numerical integration. In order to efficiently use this function, we need to use anonymous functions, which you 
have used already. We will then use this information to determine the average and rms value of a function. 
Some of this is going to seem a bit strange at first, so just try and learn from the examples. 
 
Let’s assume we want to numerically integrate the following: 

2
2

0

( 2)I t d
π

= +∫ t  

 
In order to do numerical integration in Matlab, we will use the built-in command quadl. The arguments to 
quadl, e.g., the information passed to quadl, are 
 

• A function which represents the integrand (the function which is being integrated). Let’s call the 
integrand ( )x t . This function must be written in such a way that it returns the value of ( )x t  at each time 
t.  Clearly here  2( ) 2x t t= +

• The lower limit of integration, here that would be 0 
• The upper limit of integration, here that would be 2π  

 
Note that an optional fourth argument is the tolerance, which defaults to 610− . When the function value is very 
small, or the integration time is very small, you will have to change this, which we will do at the end of this lab 
so you will see how it works. 
 
Anonymous Functions  Let’s assume we wanted to use Matlab to construct the function . We can 
do this by creating what Matlab calls an anonymous function. To do this, we type into Matlab 

2( ) 2x t t= +

 
x = @(t) t.*t+2; 
 
If we want the value of ( )x t  at , we just type x(2) 2t =

Hence, to evaluate the integral 
2

2

0

( 2)I t
π

= +∫ dt  in Matlab we would type  
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x = @(t) t.*t+2; 
I = quadl(x,0,2*pi) 
 
Note that it is important to define x before it is used by (passed to) quadl 
 

Example 1 To numerically evaluate  we could type 
1

1

cos(2 )t t dI e−

−

= ∫ t

 
x = @(t) exp(-t).*cos(2*t); 
I = quadl(x,-1,1); 
 
 

Example 2 To numerically evaluate  we could  type |
1

|

2

| | t dtI t e−

−

= ∫
 
y = @(t) abs(t).*exp(-abs(t)); 
I = quadl(y,-2,1); 
 
 
Integrating Products of Functions Sometimes we are going to want to integrate the product of functions. 
While we could just multiply the functions together, it is usually easier to let Matlab do it for us.  
 

Let’s assume we want to evaluate the integral 
1

0
( ) ( )I x t y t dt= ∫ , and let’s assume that we already have 

anonymous functions x and y. The function quadl needs to be passed a function which is the product of x and y. 
To do this, we make a new anonymous function z, using the following: 
 
z = @(t) x(t).*y(t); 
 
and then perform the integration  
 
I = quadl(z,0,1) 
 
An alternative is to write 
 
I = quadl(@(t) x(t).*y(t),0,1); 
 

 Example 3 To numerically evaluate  we could type 
1

1

cos(2 )t t dI e−

−

= ∫ t

 
x = @(t) exp(-t) 
y = @(t) cos(2*t); 
z = @(t) x(t).*y(t); 
I = quadl(z,-1,1); 
 
or 
 
I = quadl(@(t) x(t).*y(t),-1,1); 
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Example 4 To numerically evaluate  we could  type |
1

|

2

| | t dtI t e−

−

= ∫
 
x = @(t) abs(t); 
y = @(t) exp(-abs(t)); 
z = @(t) x(t).*y(t); 
I = quadl(z,-2,1); 
 
or 
 
I = quadl(@(t) x(t).*y(t),-2,1); 
 
 
The average value of a function x(t) is defined as 

1 ( )
b

a
x x t dt

b a
=

− ∫  

 
and the root-mean-square (rms) value of a function is defined as 
 

21 ( )
b

rms a
x x t dt

b a
=

− ∫  

 
For you to do:  Write an m-file to use Matlab to find the average and rms values of the functions 
 

( ) cos( ) 0
( ) cos( ) 0 2

( ) | | 1 1
( ) cos( ) 2 4

x t t t
x t t t

x t t t
x t t t t

π
π

= < <
= < <
= − < <

= − < <  
 
 
Hint: You will probably find the sqrt function useful.  Attach your m-file to  your e-mail, and put the answers in 
your memo. 

 
 

PART II : Trigonometric Fourier Series in  Matlab 
 
It is often convenient to represent a periodic function in terms of a sum of cosines. If we can do that, then we 
can use phasor analysis to determine how a system responds to a periodic input. We will begin with a simple 
Fourier sine series, then convert it to a sine and cosine series. The only new thing we will need is the idea of a 
loop. 

 
Trigonometric Fourier Series If ( )x t  is a periodic function with fundamental period T , then we can represent 

 3

( )t

o

 as a Fourier series x
 

0
1 1

( ) cos( ) sin( )k o k
k k

x t a a k t b k tω ω
∞ ∞

= =

= + +∑ ∑  

 



where 2
o T

πω =  is the fundamental period,  is the average (or DC, i.e. zero frequency) value, and oa

1 ( )

2 ( ) cos( )

2 ( )sin( )

o
T

k o
T

k o
T

a x t dt
T

a x t k t
T

b x t k t
T

ω

ω

=

=

=

∫

∫

∫

dt

dt

 

 
Even and Odd Functions  Recall that a function ( )x t  is even if ( ) ( )x t x t= −  (it is symmetric about the y-axis) 
and is odd if x( ) ( )t x t− = − (it is antisymmetric about the y-axis). If we know in advance that functions are even 
or odd, we can determine that some of the Fourier series coefficients are zero. Specifically, 

 
If ( )x t  is even all of the  are zero. kb
 
If ( )x t  is odd all of the  (including ) are zero. ka oa
 

For Loops Let’s assume we want to generate the coefficients 21k
kb
k

=
+

 for 1k =  to . One way of doing 

this in Matlab is by using the following for loop 

10k =

 
for k=1:10 
  b(k) = k/(1+k^2); 
end; 

 
In this loop, the variable k first takes the value of 1 until the end is reached, then the value 2, all the way up to k 
= 10. In this loop we are assigning the coefficients to the array b, hence b(1) = , b(2) = , etc. 1b 2b
 

Similarly, if we wanted to generate the coefficients 1
1ka

k
=

+
 and 2

2
1kb

k
=

+
 for  to , we could do 

this using for loops as follows: 

1k = 5k =

 
for k=1:5 
  a(k) = 1/(k+1); 
  b(k) = 2/(k^2+1); 
end; 
 
Note that Matlab requires the indices in an array to start at 1, and that for loops should usually be avoided in 
Matlab if possible since they are usually less efficient (Matlab is designed for vectorized operations). 
 
Fourier Sine Series  Now we want to generate the Fourier series for the periodic function 

 
0 2

( ) 1 1
0 1 2

t
x t t t

t

1− ≤ < −⎧
⎪= − ≤ <⎨
⎪ ≤ <⎩
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We will only need to generate a Fourier series with sine terms for this series (don’t worry about why, but if you 
want to know it is because x(t) is an odd function). Download the program Fourier_Sine_Series.m from the 
class website. This program determines the Fourier series for this x(t). 

 
 If you type (in Matlab’s command line)  Fourier_Sine_Series(5) you should get a plot like that shown in 
Figure 1. As you increase the number of terms in the Fourier series, you should get a better match to the 
function. Run the code for N=100 and include your plot in your memo. 
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Figure 1. Trigonometric Fourier series example. 

 
 
For you do to:  Copy Fourier_Sine_Series.m to a file named Trig_Fourier_Series.m and modify the code to 
produce a full trigonometric Fourier series representation. This means you will have to compute the average 
value  and the , and then use these values in the final estimate. Using this code  use Matlab to find the 
trigonometric Fourier series representation for the following functions (defined over a single period) 

oa ka

 
1( ) ( ) 0 3tx t e u t t−= ≤ <  

2

0 2
( ) 3 2 3

0 3 4

t t
x t t

t

≤ <⎧
⎪= ≤ <⎨
⎪ ≤ <⎩

 

3

0 2
1 1 2

( )
3 2 3
0 3 4

t
t

x t
t
t

1− ≤ < −⎧
⎪ − ≤ <⎪= ⎨ ≤ <⎪
⎪ ≤ <⎩

 

Use N = 10 for each function You do not need to include these graphs in your memo, but you need to go 
through this step to be sure your anonymous functions are working at this point. Note that the values of low and 
high will be different for each of these functions! 
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PART III : Compact  Fourier Series in  Matlab 
 
We can now write period functions as a sum of sines and cosines, but we really want to be able to write them as 
a sum of cosines in the form 

0
1

( ) cos( )
k

k

N

o kx t d d k t θω
=

≈ + +∑  

and we need to be able to compute the  and kd kθ  from the and . To do this we use the trigonometric 
identity 

ka kb

cos( ) cos( ) cos( ) sin( ) sin( )α β α β α+ = − β

0t

 
 
to equate the two forms of the Fourier series 
 

0 0 0 0cos( ) cos( ) cos( ) sin( )sin( ) cos( ) sin( )k k k k k k k kd k t d k t d k t a k t b kω θ ω θ ω θ ω+ = − = + ω

k

k

 
 

 
so we have 

 
cos( )

sin( )
k k

k k

a
d b

d θ
θ−

=
=

 

 
We can then determine 

2 2 1tan, k
k k k k

k

bd
a

a b θ − ⎛ ⎞
= + = ⎜ ⎟

⎝ ⎠

−  

In Matlab, we can compute these as  
 
d0=a0; 
d = sqrt(a.*a + b.*b); 
theta = atan2(-b,a);    % atan2 includes the correct angle quadrant  
 
For you to do: Determine the compact Fourier series representation for the following functions (defined over a 
single period), which are the same as those you used previously 
 

1( ) ( ) 0 3tx t e u t t−= ≤ <  

2

0 2
( ) 3 2 3

0 3 4

t t
x t t

t

≤ <⎧
⎪= ≤ <⎨
⎪ ≤ <⎩

 

3

0 2
1 1 2

( )
3 2 3
0 3 4

t
t

x t
t
t

1− ≤ < −⎧
⎪ − ≤ <⎪= ⎨ ≤ <⎪
⎪ ≤ <⎩

 

 
Use N = 10 and include each of your plots in your memo. Note that the values of low and high will be different 
for each of these functions! (do not include your code) 
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PART IV : Compact  Fourier Series in Matlab using tolerances 
 
For many engineering systems we are concerned with time functions that occur on small time scale. We can still 
use a Fourier series to approximate these functions, but we have to be more careful (and look at our results to 
see if they make any sense). 
 
As an example, use your compact Fourier series code to try and determine a Fourier series for the following 
function: 
 

 
6

6 6

1 0
( )

1 1
1 10

10 2 10
t

x
t

t
−

− −

≤ < ×
× ≤

=
×

−
<

⎧
⎨
⎩

 

(In Matlab you represent as 2e-6). If your look at your approximation, it is not very good. The problem 
is that Matlab does the numerical integration until it thinks the answer is “good enough”, or within a certain 
tolerance. However, the default tolerance it not good enough for this signal and you will need to change it. 

62 10−×

 
For you to do: 
 
Use the help or doc command to look up quadl and figure out how to set the tolerance for each of your 
integrals (every time you use quadl). Set a variable called tol near the beginning of your code and assign this 
variable to be the tolerance for all of your integrals. Vary the value of tol until you think the integral has 
converged reasonably (note that a tolerance too small is as bad as one too large, so don’t just make this 
ridiculously small). Once you have a good value for your tolerance, include a plot of your Fourier series 
approximation (use N = 10) and the original function in your memo, and attach your final code to your e-mail. 
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