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Abstract 
 
The faculty of the mechanical and electrical engineering departments at Rose-Hulman Institute 
of Technology have developed many experiments for system modeling and control.  In this 
work, we present the development of additional experiments intended to broaden the repertoire 
of courses in which the controls lab hardware is used.  First, we capitalize on previous modeling 
experiments using both step response and frequency response to precisely identify the 
parameters of linear and radial hanging crane models.  Second, students use the stable model 
obtained through frequency response to form the open-loop unstable model of the plant in 
inverted pendulum mode.  They then apply Ackermann's formula to obtain the state feedback 
gains to place the closed loop poles at locations suggested by the professor.  Third, we present a 
state feedback control experiment based on a two degree of freedom mass-spring system with 
rigid body mode.  Control of this device is analogous to control through a flexible manipulator, 
except that the system is simplified to one-dimensional motion.  Fourth, we show a proposed 
modeling and parameter identification laboratory for a graduate level dynamics course.  Students 
are required to develop the system non-linear kinematic equations, then apply LaGrange's 
formulae to obtain two degree of freedom kinetic equations.  They are then expected to obtain 
experimental response data, and provide precise estimates of system physical parameters through 
matching theoretical response with experimental. 
 
Introduction 
 
We have developed a series of four advanced modeling and control labs for use in the senior 
level introductory controls course and the graduate level advanced dynamics course.  The ECP 
Model 210 Rectilinear Control System (ECP210) and the ECP Model 205 Torsional Control 
System (ECP205)1 are used for these experiments.  These commercially available plants are 
precisely instrumented mechanical systems that are user configurable for a wide variety of 
degrees of freedom and plant parameters.  Although very different in appearance, the 
components of stiffness, inertia and damping are completely analogous between the systems, and 
using both in the lab provides an opportunity to emphasize the concept of system analogy.  That 
is, the form of the state space models is identical, only the parameters and units change when 
moving from rectilinear to torsional and back.  The ECP210 and ECP205 are shown in Figures 
1a and 1b respectively. 

 



 
Fig. 1a.  The ECP Rectilinear Control System (ECP 210) 

 
Fig. 1b.  The ECP 205 

 
Fig 1c.  Inverted Pendulum Accessory 

 
In addition, the first and second and fourth experiments described below use the Inverted 
Pendulum Accessory (ECP A51).  The ECP A51 consists of a base attachment with an 
instrumented revolute joint for attaching the pendulum, and the pendulum itself which is a 
hollow brass rod with a moveable additional disk shaped mass.  This is an add-on feature that 
provides the capability of performing the historically renowned stick balancing problem using 
either the first cart of ECP210 or the first disk of ECP205 as the base. 
 
Section 2 describes the cart (disk) / pendulum parameter identification procedure.  Section 3 
outlines inverted pendulum and Furuta2 pendulum experiments.  Section 4 discusses control 
through a flexible manipulator experiment.  Section 5 presents the advanced dynamics spatial, 
non-linear free-response experiment.  Section 6 shows assessment data from the senior level 
controls class which performed the first three experiments. 
 

 



Experimental Parameter Identification of Inverted Pendulum and Furuta Pendulum  
 
The Furuta Pendulum2 (FP) systems are represented in the crane or hanging mode by the 
schematics shown in Figure 3.  Figure 3 shows the symbols and sign conventions that will be 
used in describing experiments 1, 2 and 4.  The Inverted Pendulum (IP) and FP are famous 
control experiments since they require feedback stabilization of an open-loop unstable plant.  
Thus the significant modeling challenge is how to experimentally determine the physical 
parameters without knowing a priori a stabilizing control law.  This challenge is answered by 
observing that the system has both stable (hanging or crane mode) and unstable (inverted) 
equilibria.  The physical parameters are not changed by changing mode, and we shall see shortly 
that the state space models differ only by sign on a few terms.  The same can be said of the IP, 
and the corresponding equations are shown in the Appendix. 

Fig. 3a.  Schematic of the Furuta Pendulum in Crane 
Mode 

Fig. 3b.  Schematic of the Furuta Pendulum in 
Inverted Mode 

 
First principle modeling, followed by Taylor series linearization results in the following state-
space model for the Furuta pendulum in crane mode: 
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Where, x is the state vector consisting of base disk twist angle ψ  and angular velocity ψ& , and 
pendulum swing angle θ  angular velocity . θ&

 

 [ ]Tθθψψ &&=x   
 
As illustrated above, r is the distance from the center axis of the base disk to pendulum 
longitudinal axis, Jd and Jp are the disk and pendulum centroidal moments of inertia respectively, 
b1 and b2 are revolute joint viscous damping, T is the applied control torque, lCG is the distance 
from mounting joint to pendulum center of gravity, and mp is the pendulum mass. 

 



The state space parameter matrices are  
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Where K1 and K2 are static gains,  is a combination term 2D
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and  is the pendulum moment of inertia about its mounting joint. AJ
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In order to precisely determine the physical parameters of the Inverted Pendulum (IP) and Furuta 
Pendulum (FP) systems, each system is first subdivided into a one degree-of-freedom (DOF) 
model consisting of the base cart (disk) with a stiffness and damper attached.  For the linear case, 
the one DOF system can be modeled according to the schematic shown in Figure 4 below.  

 



 
Fig. 4.  Schematic of One DOF System 

 
The inertia of the linear cart can be systematically varied by adding 500g masses underneath the 
ECP X base attachment.  In the torsional case, 500g masses can be added, and moved between 2 
and 9cm from the disk center.  The effective change in moment of inertia is thus known through 
a simple calculation involving the parallel axis theorem.  By taking step responses with at least 
three different inertia configurations, the students use a technique from reference 3 to determine 
the stiffness value and inertia of cart (disk) with base attachment.  The students used this 
technique in the course’s first lab, so they are quite familiar with it. 
 
After finding the inertia parameter of the one DOF system, the students assemble the overall 
system and take experimental frequency response data.  A simplex-based search is used to 
minimize the squared difference (in dB) between experimental and theoretical frequency 
response data.  For complete details of this method, see reference 4.  This method is rather 
sensitive to initial guesses, therefore, the data is first fitted to the transfer function from input 
force to pendulum swing angle to refine initial guesses of the system parameters, before fitting to 
the full two DOF state space model. 
 
A typical result of fitting experimental frequency response data from the Furuta Pendulum is 
shown in Figure 5 below. 
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Figure 5: Sample result from fitting frequency response data to ECP 205 model with pendulum accessory 

 

 



State Feedback Regulation of the Inverted Pendulum and Furuta Pendulum 
 
Applying first principles to the Furuta Pendulum near the inverted equilibrium point, and 
performing a Taylor Series linearization, we obtain the following state space model.   
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Where all symbols retain their previous definitions.  The state space matrices are 
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and 
 JA = Jp + m plcg

2
.  

Clearly the A matrix in Eqn. 2 differs from the A matrix in Eqn. 1 merely by a few sign changes.   
Thus, knowing the physical parameters of the IP and FP in crane mode, the students can easily 
formulate a state space model of the IP and/or FP in inverted mode.  The equations for the linear 
IP are shown in the Appendix. 
 
In this experiment, the students determine an appropriate set of state feedback gains for the IP or 
FP by applying Ackermann’s formula to the model given above.  Closed-loop pole locations are 
suggested by the professor based on an LQR design from a nominal plant model.  The professor 
determined several sets of LQR gains close to the actuator saturation limits.  The suggested pole 
locations for the FP are shown in Table 1 below. 
 

 



Table 1. Suggested Closed-loop pole locations for State Feedback Regulator Design, FP 
Set 1 Set 2 Set 3 Set 4 

s = -4.1484 ±1.6341j 
-16.8545 
-3.2220 

s = -4.4305 ± 2.0497 j 
-21.915 
-2.9234 

 

s = -4.5628 ± 2.2419 j 
-29.5357 
-2.8285 

 

s = -4.6314 ± 2.3357 j 
-40.7029 
-2.7882 

 
 

The Simulink real-time interface is configured to give the control architecture shown in Figure 6.  
Here x1 is the base disk twist angle, and x2 is the pendulum swing angle.  The hardware encoders 
provide position measurements only, thus the velocity states are determined by numerical 
differentiation.  Since this is a regulation problem, i.e., the set point is zero, the prefilter gain kpf 
is set to zero.  Calculation of the pre-filter gain or ‘outer loop design’ is reserved for the third 
experiment. 

 
Fig. 6. State Feedback Control Architecture 

Typically at least two of the pole locations result in successful closed-loop regulation of the IP or 
FP system, and at least one results in either actuator saturation or insufficient control effort.  In a 
few cases, the sensors were discovered to be improperly scaled.  All of these experiences are 
valuable in reinforcing the importance of actuator limitations, and accurate sensing in feedback 
systems.  We will expound on these observations in the sequel. 
 
State Feedback Tracking Control of a Flexible Manipulator 
 
The ECP 210 or ECP 205 is used in this experiment.  The system is configured in two DOF 
mode with one rigid and one flexible mode as shown in Figure 7.  An analogous torsional 
schematic may be drawn of the ECP 205 by simply changing the coordinates and parameters to 
their angular equivalents. 

 
Fig. 7.  Schematic of two DOF flexible system. 

The students have determined accurate values of the physical parameters of the two DOF 
flexible system through experiments described in References 2 and 3.  Students use 
Ackermann’s formula to directly place the closed-loop poles at desired locations using state 
feedback.  In addition to finding the state feedback gains shown in Figure 6, they must also 

 



compute the prefilter gain kpf.  The professor provides four sets of good closed-loop poles based 
on the LQR root locus.  The four pole sets are shown in Table 2, and were chosen by 
progressively decreasing the control effort penalty in the LQR solution.  Pole set four pushes the 
system performance near the actuator saturation limit on most systems.  Since the feedback gains 
are unique for any specified set of closed-loop poles, the feedback gains found using 
Ackermann’s formula will be identical to the LQR gains.  Performance is shown to improve 
drastically by using state feedback.  Since the plant model varies significantly between set-ups, 
the actual LQR pole locations will also vary, however, the controller found using LQR is very 
robust, and thus the student designed state feedback controller is also very robust. 
 

Table 2. Suggested Closed-loop pole locations for State Feedback Tracker Design, ECP 210 
Set 1 Set 2 Set 3 Set 4 

s = -7.533 ±27.28j 
-18.53 ±10.35j 

s = -8.7164 ±26.7j 
-23.59 ±9.53j 

 

s = -9.3632 ±26.0j 
-35.1 
-26.96 

s = -9.6046 ±25.516j 
-60.124 
-22.841 

 
Free Response Modeling and Parameter Estimation of Rotary Pendulum with Large 
Deflections 
 
A major challenge in teaching three-dimensional rigid body dynamics is that of finding well-
instrumented mechanical systems for realistic experiments.  The ECP205 with ECP X 
attachment provides an excellent example.  A schematic of the system is provided in Figure 3a.  
The system provides two rotations (shown as ψ and θ in Figure 3a) along axes that are mutually 
orthogonal in space.  Each of these rotations is precisely measured using optical encoders.   
 
Given two arbitrary rotations about mutually orthogonal axes, kinematic law states that the body 
(pendulum in this case) can be positioned in an arbitrary rotation in space.  Thus, this system is 
‘truly spatial’.  Determining the dynamic model of this system requires full three-dimensional 
kinematics.  Even without precise instrumentation, the physical system provides an excellent 
opportunity to illustrate the finite rotation relationship between three frames which are required 
to describe the kinematics.  For example, the professor chose a fixed reference frame with one 
axis pointed vertically down, making the ψ rotation positive about one of the fixed reference 
frame axes.  The intermediate frame is related to the fixed frame by the ψ rotation.  The second 
axis of the intermediate frame is chosen to point directly outward through the revolute joint.  
Thus, the body frame is related to the intermediate frame through a simple rotation 
corresponding to rotation about the revolute joint. 
 
Because of the system complexity, students are encouraged to use Lagrange’s equations to find 
the differential equations of motion.  The result is shown as Eqn. 3. 
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Where the terms ( )ψ&sgn1cb  and ( )θ&sgn2cb  are included to account for the presence of Coulomb 
friction in each revolute joint, g is the gravitational constant, and we are using the shorthand 
cos(θ) = cθ, and sin(θ) = sθ.   and  are the pendulum centroidal moments of inertia about 
axes perpendicular to its longitudinal axis, and due to symmetry, both equal the previously 
defined Jp.  All other terms remain unchanged. 

zzJ xxJ

 
Students are then required to obtain experimental free-response data by lifting the pendulum to 
approximately horizontal, releasing, and observing the free response for large displacements.  
They then compare the experimental response to a numerical solution in order to refine estimates 
of poorly known system parameters.  A simplex method is used to minimize the sum square 
difference between experimental response and numerical prediction.  Typical agreement between 
the theoretical and experimental results after parameter optimization is shown in Figure 8. 
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Fig 8.  Typical Results from Advanced Dyanamics Experiment 

 
As seen in Figure 8, agreement of the theoretical pendulum swing angle is satisfactory.  The disk 
oscillation amplitude is captured well by the theoretical simulation, however, the selected initial 
conditions caused a definite drift due to the modeled rigid-body motion of the disk.  This appears 
to be a numerical phenomenon.  When observed in the experiment, such drift can be explained 
by imperfect alignment of gravity with the base disk axis, i.e. the apparatus not being level.  In 
the case shown, the experimental shows no such drift.  This observation leads to a suggested 
improvement for future use—that the disk should be anchored to the ground by a torsional 
stiffness.  This will certainly reduce the amplitude of oscillations, but the stiffness can be 

 



selected to be very soft, and the challenge of matching experimental and theoretical responses 
should be reduced significantly. 
 
Assessment 
 
Fifty-three (53) of the students enrolled in the introductory control class (ME 406) for the fall 
term of 2005 filled out a confidential self-assessment of their abilities prior to and after taking 
the course.  The following three questions are regarded as relevant to this work since two of the 
four physical labs described above involve detailed modeling of mechanical systems. 

 
Table 3.  Student Self-Assessment Questions. 

Question Strongly 
Agree 

Agree Disagree Strongly 
Disagree 

I Don’t 
Know 

I understand the uses of models in 
designing control systems. 46% 54% 0% 0% 0% 

I understand the limitations of models 
in designing control systems. 29% 65% 6% 0% 0% 

This class has helped by better 
understand how modeling systems can 
be applied in engineering systems. 

48% 45% 6% 0% 0% 

 
The results are quite astounding.  The first question has all respondents in the ‘Strongly Agree’ 
or Agree category.  ME 406 emphasizes model based control design, so it is pleasantly 
surprising that students realize the importance of models.  Also, in several cases, the students 
were unable to find a satisfactory model, and relied on parameters provided by the professor to 
complete their control system design.  This perhaps served as further emphasis on the importance 
of having a good model. 
 
The students were also asked to rate their knowledge of various course topics and self-
confidence in being able to apply the knowledge gained.  They provided self-assessment scores 
both prior to and after taking the course.  The following scales were provided to guide the 
students’ self-assessment: 
Knowledge:   What you know regarding this concept area. 

4 = High, I know the concept and I have applied it in this course.    
3 = Moderate, I know the concept but I still have not applied it.   
2 = Low, I have only heard about the concept, but do not know it well enough to apply it.  
1 = No Clue, I do not know the concept. 

 
Confidence:   Level of confidence you have in your ability to solve problems in this area. 

4 = High, I am confident that I understand and can apply the concept to problems. 
3 = Moderate, I am somewhat confident that I understand the concept and I can apply it to 
a new problem. 
2 = Low, I have heard of the concept but I am not sure that I can apply it. 
1 = No Clue, I am not confident that I can apply the concept. 
 

The Pre and post course knowledge and confidence scores for the most relevant concept areas 
are shown in Table 4.  In every category there is approximately 0.6 or better improvement.  All 
improvements shown are statistically significant using a 95% confidence interval.  The sample 

 



size of 53 is certainly significant and represents by far the largest sample among the three 
courses surveyed. 
 
It shouldn’t surprise the reader that the area ‘Benefits of Feedback control systems’ and ‘Size 
Limitations on control signals of real systems’, saw the largest increases.  As described above, 
these concepts were well emphasized in the lab by 1) the IP and FP experiments where an open-
loop unstable plant was stabilized with feedback, and 2) both state feedback control experiments, 
where the closed-loop pole locations were intentionally chosen to push the actuator saturation 
limits.  
 
Concluding Remarks 
 
This paper has described four hardware based experiments for advanced mechanical system 
modeling and state feedback control.  A post-course survey showed that the students’ knowledge 
and confidence on the topics of model determination, benefits of feedback and limitations on the 
size of control signals were significantly increased. 
 

Table 4.  Student Self-Assessed Knowledge and Confidence. 
Concept Pre Course 

Knowledge 
Pre Course 
Confidence 

Post Course 
Knowledge 

Post Course 
Confidence 

Distinctions between a model 
and a real dynamical system 

 
3.27 

 
2.98 

 
3.88 

 
3.58 

Various approaches to 
modeling dynamical systems 

 
2.98 

 
2.50 

 
3.58 

 
3.25 

Comparisons between 
predicted response of a 
mathematical model and the 
response of a physical 
system. 

 
 

3.15 

 
 

2.79 

 
 

3.75 

 
 

3.42 

Benefits of Feedback control 
systems 

 
2.54 

 
2.23 

 
3.83 

 
3.46 

Size Limitations on control 
signals of real systems 

 
1.60 

 
1.50 

 
3.02 

 
2.69 

Benefits of a state variable 
model 

 
2.26 

 
2.04 

 
3.44 

 
2.96 
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Appendix 
 
Here we show the equations of motion for the linear pendulum system in crane and inverted 
mode.  The system parameters and coordinates are defined in Figure A1. 

 
Fig. A1. Schematic of the Linear Inverted Pendulum 

The linearized state space model in crane mode is. 
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The corresponding state matrices for inverted mode are: 
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The state definition, output matrix (C), and intermediate quantities remain unchanged. 
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