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ABSTRACT 
One of the essential objectives of any undergraduate controls 
curriculum  is understanding the frequency response, its 
physical meaning, and  stability consequences.  In addition, the 
student should gain an appreciation for simple system 
identification techniques, and the relationship between 
frequency response and the system complex plane pole-zero 
map.  These skills allow the student to analyze “black box” 
systems.  With these objectives in mind, the authors have 
developed a system identification laboratory using 
commercially available physical plants and digital computer 
controllers.  This paper outlines the present course background, 
lesson objectives, data collection and  reduction techniques for 
a system identification laboratory taught in the introductory 
system dynamics course in the Mechanical and Electrical 
Engineering  programs at Rose-Hulman Institute of 
Technology. 

INTRODUCTION 
In 2002, the mechanical engineering and electrical engineering 
faculty at Rose-Hulman (RHIT) applied for a Course, 
Curriculum and Laboratory Improvement (CCLI) grant from 
the National Science Foundation to improve the system 
dynamics and controls lab at RHIT.  RHIT has a unique 
sophomore engineering curriculum that culminates in a five-
credit-hour course in system dynamics.  This course, Analysis 
and Design of Engineering Systems (ADES) is a 
comprehensive overview of modeling, analysis and simulation 
of mechanical, electrical, thermal and fluid systems and is 
taught to Electrical and Mechanical Engineering majors in an 
interdisciplinary setting.  One of the most important objectives 
of this course is that the student learn to model systems using 
lumped parameters, and understand the assumptions and 
limitations of such modeling.  

Frequency response is one of the fundamental concepts in 
linear system theory and classical  control.  We have found that 
our mechanical  engineering students have a particularly 
difficult time relating frequency response to the physical world.  
This laboratory gives the student an opportunity to gather 
frequency response data, while watching the response of a 
physical system, summarize this data on a  Bode plot, and 
determine the underlying Laplace domain model.  This is  the 
eighth laboratory in the course. 

LESSON OBJECTIVES  
The objectives of this lab are as follows.  Students will become  
familiar with the Educational Control Products (ECP) 
Rectilinear Control System [1], and Matlab [2] interface.  They 
will collect input-output data for several sinusoid  inputs to the 
system.  In doing so, they will learn the physical meaning of 
frequency response.  They will then compile their  data on a 
Bode magnitude plot.  This exercise will augment 
understanding of the Bode plot and spectral representations of 
frequency response data.  Students will determine a fourth 
order transfer function model from the Bode magnitude plot.  
Since the phase data is not used, the student must infer stability 
and pole locations from the system physical characteristics.  
This emphasizes the relationship between frequency response 
plots and the system pole-zero map. 

DATA COLLECTION 
We developed this lab on the ECP Rectilinear Control System 
[1] which is shown in Figure 1.  The system consists of the 
hardware plant which is essentially a three degree of freedom 
spring-mass-damper system, and a digital computer running  
ECP's own Interface Software “Executive Program”.    The 
ECP Interface Software provides an ASCII data output 
capability which allows for easy import of the data to Matlab 
for off-line analysis.  The plant can be configured for one, two 
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or three degrees of freedom.  For this lab, we prefer the two 
degree of freedom configuration since we would expect a 
fourth-order transfer function model, and have the ability to 
demonstrate two resonant mode shapes.  The system has the 
flexibility of varying spring constants, masses of the carts, and 
the location of a viscous damper.  For this lab, the instructor 
configures the system masses to approximately 1.0 kg per cart.  
Each set up may have a different spring configuration which 
will allow students' answers to vary from team to team.  It is 
preferable to have a stiffness configuration that will provide 
two distinct resonant frequencies and mode shapes.   

 

 
Figure 1:  The ECP Rectilinear Control System 

 
The student may obtain system frequency response  data 

by following these steps:  
a.  Under the Command/Trajectory menu, set the open-

loop input amplitude to 0.5 V with a frequency of 1 Hz. Set the 
number of repetitions equal to 10 times the frequency (in Hz).   

b.  Under Utility, select Zero Position 
c.  Select Command/Execute and press Run. 
d.  Watch the response.  After the Upload successful dialog 

completes, click OK. 
e.  (Optional)  To look at an individual data set, select 

Plotting/Setup Plot.  Do this for some of the higher frequencies 
to insure that the system has reached steady state. 

f.  Export your data using the Data/Export Raw Data 
menu.  

g.  Repeat for the remaining frequencies of interest.  As a 
minimum, use the frequencies [1 2 3 4 5 6 7 8 9 10] Hz.   

DATA REDUCTION 
Looking at a typical response such as Figure 2, the student 
should  immediately recognize this as a linear system response 
to a  sinusoidal input.  That is, frequency is preserved in the 
output,  and output can be related to input by a gain factor and 
phase lag.   The input is a smooth sinusoid from the internal 
signal generator.  
 tAtu ωsin)( =  (1) 

 fπω 2=  (2) 

The output shows some transient behavior for the first six 
seconds of motion.  In steady state the response can be 

described by Eq. 3.  In the case shown, the phase angle is 
approximately 180 degrees. 
 [ ])(argsin)()( ωωω jGtAjGty += , (3) 

where |G(jω)| is the transfer function magnitude.  We subtract 
the mean from input and output signals prior to plotting them 
on Figure 2.  The student should do likewise prior to comparing 
maximum or minimum amplitudes in order to determine 
|G(jω)|.  We expect the student to exercise some judgment in 
determining whether to use the maximum or minimum of the 
output oscillation in calculating the transfer function 
magnitude.   

 
Figure 2:  Typical System Sinusoidal Response 

 
Figure 3a shows the ASCII format in which the ECP 

executive program saves the data when using Export Raw Data 
in step f above.  Note that the open square bracket used in 
Matlab array assignments is placed at the beginning of the data, 
and data is arranged in columns using space delimiters, and 
semi-colon delimiters for rows.  There is also a close square 
bracket at the end of the file which is not shown in the Figure.   

 

 
Figure 3a:  ECP Data Export Format 

 

Figure 3b:  Data file after Editing 
 

input

output this mass is fixed 
(ground) 

passive mass 

active mass 

actuator 
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Figure 3b shows the file after minimal editing by the 
student, changing the header to a comment, and the open 
square bracket to the array assignment “dat3”. 

The Bode magnitude for each frequency can be determined 
from the ASCII data files using the following steps.  

Extract the Encoder 2 Position data and subtract the mean. 
Convert Encoder 2 Position to centimeters.  The encoder 

sensitivity is 1604.1 counts/cm.   
Now determine the ratio of output to input amplitude.  Plot 

the data to determine where the oscillations have reached 
steady state.  Output amplitude can then be determined by 
taking the maximum value from several steady state 
oscillations.  Since the input amplitude was specified to be 0.5 
volts, we divide by 0.5 to get the ratio of output magnitude over 
input magnitude. 

Note, the array indices in this statement need to be 
adjusted so that you consider only oscillations after the system 
has reached steady state.  It is probably easiest to do these 
calculations inside each data file.   

The student should then write a top-level script that 1) 
executes each data file.  2)  Converts the Magy vector to dB, 
and plots the experimental data on a semilog plot.  3)  Uses 
fminsearch to find the fourth order transfer function that best 
fits the data.  Use a transfer function form with no finite zeros.   
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You should field an initial guess based on where the 
resonant peaks appear to be in the experimental data.  The 
system is very lightly damped, so guess each damping ratio to 
be 0.1.  Reduce the transfer function to the following form, and 
use the xi values  for your initial guess. 
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Then put the coefficients of your guess into a column 
vector to serve as the initial guess for fminsearch.  (A  Matlab 
script for performing this optimization problem is given in the 
Appendix.)  Fminsearch uses the Nelder-Mead Simplex 
approach which finds a local minima near the initial guess and 
does not require gradient information.  The student should be 
reminded that his initial guess of the transfer function 
parameters can greatly influence the success of the search. 

The student will need to write a function “lab3” that 
computes the sum squared error between experimental 
magnitudes and theoretical magnitudes (in dB) along the Bode 
plot.  The student is encouraged to use the features of the 
control toolbox, including, in particular, the bode command.  
See the appendix for a sample script.  

Plot the magnitude of your best fit transfer function, and 
determine the resonant frequencies.  (You will need to re-run 
the bode function with the “best” transfer function coefficients, 
and use a fine frequency vector like ww=logspace(0,2,100)).  

Time permitting, the student should try exciting the system 
at the resonant frequencies.  You will probably need to reduce 

the input amplitude to 0.25 volts to avoid exceeding the travel 
limits of the device.  Incorporate this data into your analysis, 
and re-do the numerical fit analysis.  In the example shown 
below, this step produced two new near-resonant frequencies at 
18 rad/s (2.86 Hz) and 28.2 rad/s (4.48 Hz).  

Figure 4 shows a typical Bode Magnitude plot with 
experimental data and the best theoretical fit transfer function 
response.   
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Figure 4:  Example Experimental Frequency Response with 
Theoretical Fit. 

 
The best theoretical transfer function for the example 

shown in Figure 4 is given by G(s) =  

( ) ( ) ( ) ( ) 11056.31034.41028.51088.3
489.0

3233646 ++++ −−−− ssss
 (6) 

The characteristics of this transfer function are given in Table 
1.  Uncertainties are at a 95% confidence interval based on ten 
numerical trials using the optimization routine with different 
starting points for the search.  While the percentage uncertainty 
in the second damping ratio is large, in absolute terms the 
damping ratio confidence interval is 0.003 ≤ ζ2 ≤ 0.005. 
 

Table 1:  System Identification Results. 

Characteristics Mean value Uncertainty 

SS Gain 489.0=K  ±0.07% 

0.181 =ω  rad/s ±0.003% Natural 
frequencies 2.282 =ω  rad/s ±0.002% 

028.01 =ζ  ±0.3% Damping 
ratios 004.02 =ζ  ±26% 

 
From a transfer function like that shown in Eqn. 6, the 

student may obtain poles that are clearly unstable, that is, in the 
right-hand s-plane.  However, since we only considered the 
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frequency response magnitudes, the identified poles could lie in 
either the left or right half plane.  This is illustrated in Figure 5 
which shows the relationship between the system pole-zero 
map and frequency response.  An animated version of this 
figure is available from the authors.  The × symbols represent 
system poles and the circles represent system zeros.  The dot on 
the imaginary axis represents the current input frequency.   

 

 
Figure 5:  Graphical Evaluation of Frequency Response 

 
The system Bode magnitude at this frequency is the ratio 

of product of lengths of line segments from zeros to excitation 
frequency over product of lengths of line segments from poles 
to excitation frequency or: 
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Note that the two lightly damped poles could lie either in 
the left or right half plane, and this would not change the Bode 
magnitude of the system at all excitation frequencies.  Thus, we 
would have the liberty to arbitrarily change the real part of the 
second pair of poles to be negative. 

The system will clearly oscillate in two distinct mode 
shapes.  At the lower resonant frequency, the masses will move 
in phase.  At the higher frequency the masses will move exactly 
180 degrees out of phase. 

TEACHING CONSIDERATIONS 
This lab provides the students an opportunity to see first hand 
what is meant by frequency response.  Although the input 
signal is an electrical voltage, and not readily observable during 
data collection, using a two degree of freedom spring mass 
configuration introduces obvious phase differences between the 
controlled mass and the passive mass.  This configuration also 
provides a transient response of significant length that the 
students can clearly observe, especially in frequencies near the 
resonant peaks. 

Although the phase shift could be measured, doing so 
would add greatly to the data reduction effort.  Also, ignoring 
the phase data provides an opportunity for the professor to 
emphasize the relationship between complex plane pole-zero 
map and system frequency response.  Non-minimum phase 
implies that the significant difference between left and right 
half plane poles and zeros is that right half plane ones 
contribute significantly more phase lag or lead. 

CONCLUSIONS 
In this paper, we  have presented course background, lesson 
objectives, data collection and  reduction techniques for a 
system identification laboratory.  This laboratory is particularly 
well suited to introducing students to the physical meaning of 
frequency response.  The data reduction is readily done in 
Matlab, since the ECP export format is easy to import into 
Matlab.  The student can determine experimental frequency 
response magnitudes fairly easily by, but should plot each 
input/output data set to insure their calculations are based on 
steady-state behavior.  The hardware we have chosen has 
imperfect sensors and this provides opportunity to address  
uncertainty in experimental data. 
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APPENDIX 
Listed below is an example Matlab script for performing some 
of the functions described in the paper. 
% Extract the steady-state position data and  
% subtract the mean 
enc2cm = dat4(:,5)-mean(dat4(:,5)); 
% Run the optimization 
options = optimset(@fminsearch) 
options = optimset(options,'Display','iter'); 
coeffs = fminsearch(@lab3,x0,options) 
% Compute the sum squared error in dB between  
% experimental and theoretical magnitudes. 
function J = lab3(x) 
num = x(1); den = x(2:6); sys = tf(num,den); 
w = 2*pi*[1 2 2.8 3 4 4.4 5 6 7 8 9 10]'; 
mag = [0.4592; 1.0650; 11.8708; 7.3933; 
 2.5025; 9.6076 0.8568; 0.1852; 0.0733; 
 0.0341; 0.0212; 0.0136]; 
magdB = 20*log10(mag); 
maggie = bode(sys,w);  maggie = maggie(:); 
maggiedB = 20*log10(maggie); 
J = norm(magdB - maggiedB); 


