
ECE-521 
 

Lab 1: Modeling, Simulation, and Control 
of a 1 Degree of Freedom System 

 
Overview In this lab, as in virtually all labs in this course, you will do the following: 
 
1) Experimentally determine the frequency response of a system and use this to identify 
the system (find the transfer function or state space model) 
 
2) Simulate the model (with your controller and/or observer system) using Simulink. 
 
3) Implement the controller/observer on the ECP system by modifying your Simulink 
model 
 
4) Controlling the ECP system with Simulink 
 
5) Comparing the predicted response (from the model) with the actual response (from the 
ECP system) 
 
Since this is the first lab, many of the tools you will need will be given to you. In the 
future you will be modifying the tools before lab (as part of your homework) and then 
using them on the real systems during lab. 
 
Step 0: Set Up the System. Only the first cart should move, all other carts should be fixed. 
You need to have at least one spring connected to the cart and at least one mass on the 
cart. If you want to use the active damper, unscrew the screw in the damper. You will be 
using this configuration throughout most of the course so be sure you write down all of 
the information you need to duplicate this configuration. 
 
 The transfer function between input and output for this configuration can easily be 
shown to be 
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where K is the static gain, nω is the natural frequency, and ζ is the damping ratio. These 
are the parameters we need to determine for this model. 
 
 
 
 



1a) Initial Estimate of Static Gain 
 
We will obtain our initial estimate of the static gain by looping at the response of the 
open loop system to a step input. 
 
You will go through the following steps: 
 

• Reset the system using ECPDSPresetmdl.mdl. 
• Modify Model210_Openloop.mdl so the input is a step. To make any changes to 

Model210_Openloop.mdl, the mode must be Normal. 
• Set the amplitude to something small, like 0.01 or 0.02.  
• Compile Model210_Openloop.mdl 
• Connect Model210_Openloop.mdl to the ECP system. (The mode should be 

External.) 
• Run Model210_Openloop.mdl. If the cart does not seem to move much, increase 

the amplitude of the step. If the cart moves too much, decrease the amplitude of 
the step. You must also recompile after any changes. 

• Estimate the static gain as  
ssxK
A

=  

where ssx is the steady state value of the cart position, and A is the input amplitude. 
 

1b) Log Decrement Estimate of ζ and  nω
 
As you recall, the log decrement method is a way of estimating the natural frequency 

nω and damping ratio ζ of a second order system. We will use these estimates as starting 
point for the optimization routines.  
 
You will go through the following steps: 
 

• Reset the system using ECPDSPresetmdl.mdl. 
• Modify Model210_Openloop.mdl so the input has zero amplitude. To make any 

changes to Model210_Openloop.mdl, the mode must be Normal. 
• Compile Model210_Openloop.mdl 
• Connect Model210_Openloop.mdl to the ECP system. (The mode should be 

External.) 
• Displace the first mass, and hold it. 
• Start (play) Model210_Openloop.mdl and let the mass go. 
• Run the m-file Log_Dec.m. This should be in the same directory as 

Model210_Openloop.mdl and Log_Dec.fig. This routine assumes the position of 
the first cart is labeled x1, the position of the second cart is labeled x2, the 
position of the third cart is labeled x3, and the time is labeled time. (These are the 
defaults in Model210_Openloop.mdl.)  

 



The program Log_Dec comes up with the following GUI: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
You need to  

• Select the cart to be analyzed (cart one in this case) 
• Select Load IC (initial condition) Response (the variables time and x1, x2, or x3 

will be loaded from the workspace). At this point some initial estimates will be 
made. 

• Set/modify the Final Time 
• Select Plot IC Response to plot the initial condition response 
• Choose to identify the positive peaks (Locate + Peaks) or negative peaks (Locate 

- Peaks) . If the peaks are not numbered consecutively, you need to decrease the 
Samples Between Peaks and try again until all peaks have been identified. 

• Choose the initial peak (Peak x(n)) and final peak (Peak x(n+N)) to use in the 
log-decrement analysis. These should be fairly close to the beginning of the initial 
condition response. Don't try and use more than a few peaks. 

• Select Estimate Parameters to get the initial estimates of ζ and nω  
• Select Make Log-Decrement Figure to get a plot and summary of the results. 

You need to put this figure in your memo. 
 



1c) Fitting the Estimated Frequency Response to the Measured Frequency Response  
 
We will be constructing the magnitude portion of the Bode plot and fitting this measured 
frequency response to the frequency response of the expected transfer function to 
determine K , ζ , and nω . For each frequency 2 fω π=  we have as input 

( ) cos( )u t A tω=  where, for out systems, A is measured in centimeters. After a transition 
period, the steady state output will be 1( ) cos( )x t B tω θ= + , where B is also measured in 
cm. Since we will be looking only at the magnitude portion of the Bode plot, we will 
ignore the phase angleθ . 
 
You will go through the following steps 
 
For frequencies  Hz 0.5,1,1.5...7.5f =
 

• Modify Model210_Openloop.mdl so the input is a sinusoid. To make any 
changes to Model210_Openloop.mdl, the mode must be Normal.  

• Set the frequency and amplitude of the sinusoid. Try a small amplitude to start, 
like 0.01  

• Compile Model210_Openloop.mdl 
• Connect Model210_Openloop.mdl to the ECP system. (The mode should be 

External.) 
• Run Model210_Openloop.mdl. If the cart does not seem to move much, increase 

the amplitude of the input sinusoid.. If the cart moves too much, decrease the 
amplitude of the input sinusoid.  

• Record the input frequency ( ), the amplitude of the input (f A ), and the 
amplitude of the output ( B ) when the system is in steady state. In Matlab you can 
just type  plot(time,x1); grid; once the system has stopped. 

      
Enter the values of  , f A , and B  into the program process_data.m (you need to edit the 
file) 
 
At the Matlab prompt, type data = process_data; 
 
Run the program model_1cart.m. There are four input arguments to this program: 
 

• data, the measured data as determined by process_data.m 
•  K  the estimated static gain  
• nω  the estimated natural frequency (from the log decrement analysis) 
• ζ the estimated damping ratio (from the log decrement analysis) 

 
 
 
 
 



The program model_1cart.m will produce the following: 
 

• A graph indicating the fit of the identified transfer function to the measured data. 
(You need to include this graph in your memo.) 

• The optimal estimates of K , ζ , and nω  (written at the top of the graph) 
• A file state_model.mat in your directory. This file contains the A, B, C, and D 

matrices for the state variable model of the system. If you subsequently type load 
state_model you will load these matrices into your workspace. 

 
You need to be sure you have 4 points close to the resonant peak of the transfer 
function. At this point you probably should go back and add a few points near the 
resonant peak.  
 
2) Simulating the Model Using Simulink 
 
You have been given the Simulink model Basic_1_dof_State_Variable_Model.mdl, 
which is shown below. This Simulink model implements a state variable feedback 
controller. We have assumed for our system that D = 0. It is important to note that 
virtually all of the values in the Simulink model are variables, and this model will be 
driven by Matlab. Hence all of the variables we use in the simulation of our system will 
be available in the Matlab workspace, so we can use them again when we want to use 
Simulink to control the ECP system. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
All of the output variable names begin with an m, such as m_x1. This is to distinguish the 
variables from the model with the actual values from the ECP system. 
 
 
 
 



3) Implementing the Controller/Observer on the ECP System 
 
At this point you need to be sure and save your Simulink model in a safe place (i.e. make 
a backup of the model by saving it with a different name), since we are going to be 
cutting and pasting. 
 
 
First we need to get the Simulink model ECP210_Template.mdl, as shown below.  

 

Error signal 
in (cm) goes 
here The states are 

output here 

The next step is to remove the model of the system and the output from your Simulink  
model of the system, and prepare to merge the two Simulink files, as shown below: 

 

ECP Driver 
takes place of 
model 

 
Then we finish connecting the systems and rename variables (so there is no overlab in 
names between the model and the real system) as shown on the next page: 
 
 



Note that we need to use different names in the Simulink files for  
 

• the time (time or m_time) 
• the reference input (r or m_r) 
• the position of the first cart (x1 or m_x1) 
• the velocity of the first cart (x1_dot or m_x1_dot) 

 
This is so we can compare the response of the model with the response of the real system. 
 
 
4)  Controlling the ECP System with Simulink 
 
a) First you need to use your model to place the closed loop poles at -50 and -60 and try 
to track a 1 cm input. If the control effort is too large (reaches 0.5) you will need to move 
the poles in closer. (You will need to turn in your graph from this simulation.) 
Once you have run your model you will have determined all of the parameters you need 
and they are available in Matlab's workspace. 
 
Now try to compile your Simulink that will be driving the  ECP system with these same 
parameters. 
 
Run the Simulink driving the ECP system. If the system runs acceptably, produce plots 
comparing the position of the cart as a function of time with the predicted position of the 
cart as a function of time. Similarly, compare the velocity of the cart as a function of time 
with the predicted velocity of the cart as a function of time. (You will be doing this alot, 
you may want to write an m-file to help you.) Both of these plots should be well labeled 
using legends and different line types and included in your memo. How close is the 
predicted response to the real (measured) response? 
 
If the ECP system does not work (or buzzes), first try resetting the system. 
Then try making the closed loop poles closer to the origin. Be sure to rerun the model of 
the system to get all the necessary parameters in the workspace before compiling the ECP 
system.  



 
b) Utilize the linear quadratic regulator algorithm to achieve the same performance (at 
least in terms of settling time) as the direct pole placement. You will have to simulate 
your model a number of times to get the performance you want before you try it on the 
ECP system. Record the weights you used.  
 
Run the Simulink driving the ECP system. If the system runs acceptably, produce plots 
comparing the position of the cart as a function of time with the predicted position of the 
cart as a function of time. Similarly, compare the velocity of the cart as a function of time 
with the predicted velocity of the cart as a function of time. Both of these plots should be 
well labeled using legends and different line types and included in your memo. How 
close is the predicted response to the real (measured) response? 
 
If the ECP system does not work (or buzzes), first try resetting the system. 
Then try making the closed loop poles closer to the origin. Be sure to rerun the model of 
the system to get all the necessary parameters in the workspace before compiling the ECP 
system.  
 


