
ECE-320 Linear Control Systems

Laboratory 8
System Modelling, State Variable Controller Design, and the Real World

Preview In this Lab you will first obtain a second order model of your spring/mass/damper
system, design a state variable feedback controller for it, implement the controller on the real
system, and then compare the predicted response with the actual response. You will probably
make at least two observations during this lab:

• models are not perfect, they are just guides

• real motors have real limits, which can make designing more difficult

Pre-Lab

1) Print out this lab and read it.

In what follows, assume we begin with the unity feedback system shown below. Gc(s) is a
classical controller (not state variable feedback), ωn and ζ are estimates obtained using either
time-domain or frequency domain methods, and kclg is the system closed loop gain. Note that
we are modelling the motor as contributing only a gain to the system, and we are lumping both
the plant’s gain and the motor gain together into one parameter.

-
½¼

¾»
- Gc(s) -

kclg
1

ω2
n
s2+ 2ζ

ωn
s+1

-

6

+
-

For

Gc(s) = kp

the steady state output yss due to a step input of amplitude Amp is given by

yss =
Ampkpkclg

1 + kpkclg

1



2) Assume we have the plant transfer function

G(s) =
kclg

1
ω2

n
s2 + 2ζ

ωn
s + 1

If the input is u(t) and the output is x(t) we can represent this system with the differential
equation

1

ω2
n

ẍ(t) +
2ζ

ωn

ẋ(t) + x(t) = kclgu(t)

Assume q1(t) = x(t) and q2(t) = ẋ(t). Show that in terms of these variables we can write a state
variable description of the system as

d

dt

[
q1(t)
q2(t)

]
=

[
0 1
−ω2

n −2ζωn

] [
q1(t)
q2(t)

]
+

[
0

kclgω
2
n

]
u(t)

y(t) = [1 0]q(t)

3) Assume we are using state variable feedback of the form u(t) = kpfr(t) − kq(t), so the new
form of the system equations is

q̇(t) = (A−Bk)q + Bkpfr(t)

y(t) = Cq(t)

Assume the input r(t) is a unit step with amplitude Amp. Show that in steady state for y(t) to
equal Amp we must have

kpf = −1/C(A−Bk)−1B

4) Assume we want to use our state variable representation to implement a simple proportional
controller. Hence we assume the feedback gain is k = [kp 0] (we are only feeding back the
position). Show that the closed loop transfer function is given by

H(s) =
kclgkpf

1
ω2

n
s2 + 2ζ

ωn
s + kclgkp + 1

and hence, for the state variable feedback system to be the same as the simple proportional
controller system we must have kpf = kp. (Hint: Compare steady state values for the same
amplitude inputs.)

2



We need to first identify the system:

1. Estimate an initial second order system model using time domain analysis (using either
the log dec or fit programs).

2. Measure the frequency response (make one measurement at 1Hz, 2Hz, ..., 7 Hz, and at
least 4 points near the resonant peak)

3. Use the fit bode command to estimate the gain of the system.

4. Use the opt fit bode command to fine tune the system model.

5. Determine the closed loop system gain kclg (to be described below)

Estimating the Closed Loop Gain kclg

0. Set the units

Click Setup → User Units and set the units to cm.

1. Setting up the controller

Click Setup → Control Algorithm. Be sure the system is set for Continuous Time. Select
PID under Control Algorithm. Click on Setup Algorithm. Be sure Feedback is from
Encoder 1. Set kp to a small number (less than or equal to 0.05) and be sure kd = 0 and
ki = 0. Then click OK. Next Click Implement Algorithm. The click OK.

2. Setting up the closed loop trajectory

Click Command → Trajectory. Select Step and click on Setup. Select Closed Loop Step
and set Step Size to 0.5 to 1.5 cm. Be sure to record this step size (we’ll refer to the amplitude
as Amp below). Set the Dwell Time to something like 2000 ms, this is the time the system
will be recording data. Finally click OK, then OK and you should be back to the main menu.

3. Executing the closed loop step

Click Command Execute. A menu box will come up with a number of options, and a big
green Run button. Click on the Run button. When the system has finished collecting data,
a box will appear indicating the how many sample points of data have been collected. (If you
have hit a stop, the system stops recording data. This usually means you’re input amplitude
was too large or kp was too large. ) Click on OK to get back to the main menu.

4. Determining the steady state value

Click Plotting → Setup Plot, or just Plotting Data → Plot Data. Look at the steady
state value (yss). You may need to change the dwell time if your system has not reached steady
state.

3



5. Estimating the closed loop gain

Estimate the closed loop gain kclg using the formula derived previously: kclg = yss

kp

1
Amp−yss

.

You need to go through this procedure at least three times for each configuration. You must
use at least two different values of kp and two different values of input amplitude Amp. If none
of the steady state values is larger than 0.4 cm, increase either kp or Amp. Average the three
results to get your kclg (they should be similar). For the trials I’ve run, I’ve got kclg between 10
and 20. Your values may be outside this range though.

6. Estimating the transfer function

The final plant transfer function we will use is then

G(s) =
kclg

1
ω2

n
s2 + 2ζ

ωn
s + 1

where ωn and ζ were found previously.

7. Comparison of State Feedback and Proportional Control

In this step we should get identical results between the proportional controller and the state
feedback controller.

• Choose a value of kp run the ECP system with a proportional controller. (It’s probably
easiest to just use the last of the value of kp you used to determine kclg). Save the output
and edit the file for Matlab.

• Implement a state variable controller (using the ECP state feedback control algorithm)
that produces the same closed loop transfer function as a proportional controller (see the
prelab for how to do this.) Save the output and edit the file for Matlab.

• Use the program compare tf sv to plot the results on the same graph. There are three
arguments to be passed to this file:

– The first argument is the file containing the step response with the proportional
controller in single quotes.

– The second argument is the file containing the step response of the corresponding
state variable model, again in single quotes.

– The final argument is the final time to display. Set the final time a short time after
the system reaches steady state. It is not good to have a plot of 5 seconds, 4 second
of which are the system at steady state.

If the two plots are not on top of each other you screwed up. Include this graph in your
documentation for each system you model.

4



Designing and Implementing the State variable Controllers

Our general goals for the state variable controllers are as follows:

• produce a position error of less than 0.15

• reach steady state within 1 seconds (the faster the better)

• have as little overshoot as you can manage

Here are some general ideas:

• You need to try and use positive values for k1 and k2 (k = [k1 k2]). The system does not
respond very well to negative values. In particular, the steady state values may be off.

• k1 should be larger than k2. k2 is multiplying the derivative, and the estimate of the
derivative tends to be noisy.

• Try to keep k2 less than 0.05 and k1 less than 1.0.

• A good initial guess is k = [0.1 0.01]

• Be sure that the gains for the second and third carriages are set to zero

• You may need to reset the controller often, such as every time you want to implement
a new controller. Click Utility → Reset Controller. Only do this before you have
implemented a controller.

• You may need to rephase the motor. Click Utility → Rephase Motor

• Be sure to Implement the controller you have designed.

• Try and track a step with an input amplitude of 0.5 to 1 cm.

5



Direct (Trial and Error) Method

1. Estimate the Gains

Use the program state variables 1cart to guess values for k1 and k2. The program will print
out the corresponding locations of the closed loop poles and the correct gain kpf , as well as
produce a plot of the estimated system response with state variable feedback.

The arguments to this program are:

• the amplitude of the input signal (in cm)

• the feedback gain matrix k = [k1 k2]

• the closed loop system gain kclg

• the estimated natural frequency of the system ωn

• the estimated damping ratio of the system ζ

• the length of time to run the simulation for

• the file name with containing the response of the real system in single quotes. At this
point, the filename is just ”

2. Implement the Gains on the ECP System

Once your simulated system has a reasonable response, and probably more importantly, reason-
able gains, try running the ECP system with these gains. If the gains are not too large and the
system works, save the results to a file. If the system buzzes and doesn’t work, go back to step
1 and try again.

3. Comparing the Simulation and the ECP system

Edit the file you saved in part 2 so Matlab can read it. Run the program state variables 1cart
again, with the same gains as you used on the system. This time the last argument to the pro-
gram is the name of the file you saved the response of the system into. You should get a plot
containing both the real system and the simulated system. You may want to reduce the final
time of the plot so there is not alot of time at steady state showing.

4. Practice Makes Perfect

Try at least three different combinations of gains before you move on the the next method. Be
sure to produce a plot for each system, and record the gains and closed loop poles for each
system.

6



Linear Quadratic Regulator Method

1. Estimating the Feedback Gains

Use the Matlab routine lqr to estimate the feedback gains k1 and k2. The arguments to this
routine are

• the A matrix of the system (see the prelab)

• the B matrix of the system (see the prelab)

• a penalty matrix Q

• a penalty matrix R

(Note there is one more possible argument, but we won’t use it. Type help lqr for more infor-
mation).
The Linear Quadratic Regulator finds the gain k to minimize

J =
∫ ∞

0

[
xT (t)Qx(t) + u(t)Ru(t)

]
dt

where

ẋ(t) = Ax(t) + Bu(t)

u(t) = −kx(t)

In our case Q is a two by two positive definite matrix, and R is a scalar. Since Q is most likely
a diagonal matrix, it’s easiest to iterate using the following command in Matlab

> K = lqr(A,B,diag([q1 q2]),R)

where q1 and q2 are the desired diagonal elements of Q and R is a scalar. In general, as R gets
larger (it may have to get very large), the size of the gains goes down. Also, if a gain is negative,
try setting the weight on that gain very large. Note that if all of the gains are large there is no
real effect! Iterate on values of Q and R until you think you have something that works.

2. Determining kpf

Again used the program state variables 1cart. The values for k have been determined by the
lqr routine above. The program will print out the corresponding locations of the closed loop
poles and the correct gain kpf , as well as produce a plot of the estimated system response with
state variable feedback.

The arguments to this program are:

• the amplitude of the input signal (in cm)

• the feedback gain matrix k = [k1 k2]

• the closed loop system gain kclg

7



• the estimated natural frequency of the system ωn

• the estimated damping ratio of the system ζ

• the length of time to run the simulation for

• the file name with containing the response of the real system in single quotes. At this
point, the filename is just ”

3. Implement the Gains on the ECP System

Once your simulated system has a reasonable response, and probably more importantly, reason-
able gains, try running the ECP system with these gains. If the gains are not too large and the
system works, save the results to a file. If the system buzzes and doesn’t work, go back to step
1 and try again.

4. Comparing the Simulation and the ECP system

Edit the file you saved in part 3 so Matlab can read it. Run the program state variables 1cart
again, with the same gains as you used on the system. This time the last argument to the pro-
gram is the name of the file you saved the response of the system into. You should get a plot
containing both the real system and the simulated system. You may want to reduce the final
time of the plot so there is not alot of time at steady state showing.

4. Practice Makes Perfect

Try at least three different combinations of gains (corresponding to three different values of Q
and R). Be sure to produce a plot for each system, and record the gains and closed loop poles
for each system.

8



Memo

Your memo should compare (briefly) the response of the model and the response of the real
system for the different gains you tried. You should have some description of the configuration
of the system you were trying to control.

You should include the following items as attachments. Most of these are figures which should
have reasonable captions.

• The step response of the time-domain model.

• The initial frequency response of the system.

• The optimized frequency response of the system.

• The data used to determine the closed loop gain.

• The final model of the system.

• The predicted and actual response of the system to each of the different controllers where
you guessed the values of k, and the corresponding closed loop pole locations.

• The predicted and actual response of the system to each of the different controllers where
you used the lqr algorithm to determine the values of k. Also record values of Q and R
used and the corresponding closed loop pole locations.

9


