ECE 333 Design Project
Winter Quarter, 2003-2004
Implementation, Testing, and Analysis of a Digital Surround-Sound Processor Using FPGA and Accessories.

In this design project, you will implement a digital stereo-surround processor similar to the Dolby ProLogic standard. This processor will accept an 8-bit, parallel data packet as an input and will produce analog (but not amplified) speaker/channel audio outputs.

Design Specifications

Inputs

The 8-bit, parallel data packet should be envisioned similar to the data packet in homework #5. The packets will be made available on the parallel input port using a handshaking protocol called “Compatibility” or “Centronics.” You can read more about this protocol at http://www.beyondlogic.org/spp/parallel.htm. The data packets will contain two control signals and two stereo audio signals sampled at a rate of 20.05 kHz, which is slow relative to the 50 MHz clock on the Spartan FPGA board. This data stream will be synchronized with the Spartan board via the “Centronics” handshaking protocol.
The packet information in the data stream will be as follows:
…, CI, CST, L, R, CI, CST, L, R, …, CI, CSS, L, R, CI, CSS, L, R, …

The symbols CI, CST, and CSS stand for control information as follows:
	CI
	4’hFF
	Signals the beginning of a new information set. This control signal should only be recognized when it is immediately followed by CST or CSS

	CST
	4’hFF
	Signals that the output format should be STEREO. This control signal should only be recognized when it immediately follows CI.

	CSS
	4’hFE
	Signals that the output format should be SURROUND. This control signal should only be recognized when it immediately follows CI.

For example, the data stream

… FE FF FA FF FF 3A 3B FF FA …

should be recognized by the controller as

…, G, G, G, CI, CST, L=3A, R=3B, G, G, …

where “G” is garbage data that your circuit will ignore. The controller must watch the data stream for the sequence {CI, CST} or {CI, CSS} in its entirety before proceeding.
When the {CI, CST} sequence is detected, the controller must direct the data unit to output the audio information in a STEREO encoding (see Outputs below).

When the {CI, CSS} sequence is detected, the controller must direct the data unit to output the audio information in a SURROUND encoding (see Outputs below).

The symbols L and R stand for left and right channel information, respectively. These are 8-bit numbers that represent the digital level of the sampled audio stream. These data points are used to produce the final output audio information, depending on the encoding format (i.e., STEREO or SURROUND, see Outputs below). The two most significant bits of L and R are zeros so that the actual information will always be a 6-bit value (with two padded zero bits). As a consequence, you should use only the useful information in the data path, reducing the data path to 6-bits.
There is no guarantee that data packets will always come down the stream in cascading groups of four (e.g., CI, CST, L, R). It is possible that any amount of garbage packets could occur between successive groups of four. Additionally, there is no guaranteed period of time between packets within the stream – it will depend on the handshaking. The most recent set of control information should always be used, no matter how much time goes by before the next set.
To ensure uninterrupted listening pleasure, it will be prudent to construct a small buffer to store the control information for time-periods when the input stream lapses. (Hint: you will need to store the important control and data information – how long must it be stored and when do you know it can be changed?)
Finally, since the audio data has been sampled at 20.05 kHz, you will need to feed it out to the data unit(s) at a rate of 20,050 units per second. You will have to provide for this timing.

Outputs
The processor must output four distinct analog audio channels: LEFT, RIGHT, CENTER, and REAR. These channels are related to the L and R digital inputs from the input stream as follows.

If the control information signals the STEREO encoding format (i.e., {CI, CST}), the output channels should have the following relationship to the input channels:

LEFT

=
L

RIGHT
=
R

CENTER
=
0

REAR

=
0

In other words, the channel information essentially passes through the processor.

On the other hand, if the control information signals the SURROUND encoding format (i.e., {CI, CSS}), the output channels should have the following relationship to the input channels:

LEFT

=
L

RIGHT
=
R

CENTER
=

[image: image1.wmf](

)

2

/

R

L

+

REAR

=

[image: image2.wmf](

)

2

/

R

L

-

A ProLogic decoder module has been supplied with the project specification. It has the following interface:

[image: image3]
In Verilog:

ProLogicDecoder(ss, L, R, Left, Right, Center, Surround);
ss is a select input which specifies whether the output should be stereo (0) or surround (1).

L is the left data packet input. It is 6 bits in size.
R is the right data packet input. It is 6 bits in size.
Left is the decoded left data output. It is 7 bits in size.
Right is the decoded right data output. It is 7 bits in size.
Center is the decoded center data output. It is 7 bits in size.
Surround is the decoded surround data output. It is 7 bits in size.
In either case (STEREO or SURROUND), the 7-bit output channels must be converted to an analog signal at the output. (Hint: you have already designed circuits that can do this function, although you will have to change some of the parameters and design settings…) If you design a filter at this step, you will need to be careful about the cutoff settings. According to Nyquist, if the sampling frequency is 20.05 kHz, what should the filter cutoff be?
Additional Design Specifications
You will be required to account for every level of your design at every stage of its evolution. To accomplish this, you must maintain a working record of your design throughout all of its stages. For example, you might set forth a particular design during week #1, but then decide during week #2 that some changes need to be made. Such changes are o.k. as long as they are fully documented.

Much of your design will exist in Verilog and therefore there are certain requirements that you must observe for all Verilog written in the design:
1. Before you write any Verilog code, you must have a schematic that represents your intended design. At the lowest level, your schematics should break down into basic logical building blocks (adders, muxes, decoders, etc.).

2. Each logical block of your design must be implemented within its own Verilog module.

3. Each Verilog module requires testing with its own test-bench and simulation. DO NOT proceed to hardware with any Verilog that has not been simulated.

4. Test-benches for low-level, combinational modules should be exhaustive to guarantee functionality.

5. For each test-bench, you must accompany the final simulation with an annotated explanation for why your test is sufficient for demonstrating full functionality.

6. You may use intermediate modules to build up units of your design. These modules will also need to be tested and simulated. However, if you have simulated the lower-level blocks (see #2-4), you can assume they work correctly when testing higher-level blocks. The careful student will be able to maximize testing capability while minimizing effort through a proper division of the design into hierarchical modules.

You may decide to integrate elements into your design that are outside of the FPGA. However, these elements must also be properly documented and tested. For example, you may decide to include resistors and capacitors on the connected bread-board to implement certain portions of the design – in such a case the circuit must be fully documented, derived, and explained. NOTE: a maple text dump does not suffice as a derivation of component parameters.
You will be responsible for testing your modules, sub-units, and units throughout the design. I will provide a digital input stream according to the above specification and a set of analog speakers. Obviously, these will provide a means for testing your design in its completed form. However, these will not be useful for most of the stages of your design development. Review previous labs and consider how individual testing was performed. You should feel encouraged to be creative in testing your design. Conversely, I will not accept a design that has only been tested in its final form.

Finally, each student must complete the design project independently. You must not communicate with other students, past or present, about specific aspects of your design. Such communication will be considered cheating and may result in a significant reduction in the final design project grade. If you have a question, be safe and contact Dr. Laflen.
Please be willing to share the FPGA boards with each other as need requires.
Additional Design Elements
There are three distinct sub-projects that you can build into your final design. EACH DESIGN MUST HAVE AT LEAST ONE OF THESE SUB-PROJECTS TO ACHIEVE FULL CREDIT, although the enterprising student may choose to explore more than one. Each of these projects will be worth 10% of the full design project and a student can choose to do any number of them for a total of 20% of additional credit.

Credit for these projects will only be considered AFTER the successful completion of the above main design specifications. Hence, students should place their main effort on the main design while considering how to build these sub-projects into the final processor.

The sub-projects are:

1. Implementation of volume control using the toggle switches on the I/O board

2. Implementation of a channel specific LED amplitude display with selection based on the I/O board push-buttons
3. Implementation of an N ms delay on the REAR output channel (which is an additional part of the surround specification)

Sub-Project #1: Volume Control

Using the toggle switches on the I/O board, implement a control circuit that allows the user to LOWER the output volume. In such a system, the maximum volume is set with the amplifier and the processor lowers the input to the amplifier to gain lower volumes, but no amplification is performed by the processor. In this sub-project, the eight toggle switches represent decreasing levels of volume from right to left, with the most significant asserted bit superceding all prior bits. (For example, 00001010 would be interpreted the same as 00001000.) All 4 channels (Left, Right, Center, Rear) should be attenuated by the same amount. Further, the maximum volume should be output when the switches are set to 00000000 and the minimum volume (silence) should be output when the switches are set to 1xxxxxxx.
The digital output values are directly associated with the discrete level of the amplitude of the corresponding analog signal. Therefore, any decrease in the numerical magnitude of a number will correspond to a decrease in the volume. Our hearing systems our cued to the decibel levels of sound amplitude, so in this case it is appropriate to lower the signal strength in an exponential fashion. This can be accomplished, for example, by successively dividing the output value by some constant amount.

Sub-Project #2: Channel Selected LED Amplitude Display

Using the LED display, visually output the magnitude of the selected channel. The LED display can light from left to right or from right to left, but greater magnitudes should be displayed as greater numbers of LEDs while lesser magnitudes should be displayed with a smaller number of LEDs. Also, the LED amplitude display should light progressively such that as new LEDs are turned on, all of the previous LEDs remain lit. For this sub-project to receive full credit, the successful design must present the highest exponential resolution of the channel’s amplitude using all of the LEDs.

The push-buttons on the I/O board are to be used to select between the four output channels (i.e. one pushbutton will display the Left channel, another pushbutton will display the Right channel, etc.). Note: when a push-button is pressed, the sub-controller should change to the selected channel and should continue to output that channel to the LED Display EVEN AFTER the button is released.
Sub-Project #3: N ms Delay on the REAR Output Channel
A truer representation of the surround protocol consists of a delay of 20 ms to the REAR surround speakers in order to produce a dislocated, ambient effect. For this project, the user should be able to select (as an input selected from the bread-board) a delay anywhere from 1 to 20 ms in discrete 1-ms steps. The output must cascade through the delay. In other words, the output cannot simply be under-sampled at N ms intervals; it must instead be cached across the entire delay interval such that the entire output is preserved, but in a delayed form.
Week #1
1. Prelab

a. Lay out the responsibilities of the project.

i. What is the control unit responsible for?

ii. What are the data units responsible for?

iii. Draw a high-level diagram of the units with clearly labeled communication lines to indicate how the units will work together to accomplish the overall goal.

b. Draw a schematic for the data unit(s). Clearly indicate how the data unit will work in conjunction with the controller to accomplish its responsibilities.

c. Design a controller for reading the input packets.

i. How will you handle the handshaking?

ii. How will you watch the input stream to see if one of the two control sequences has been input?

iii. Use a counter to implement a clock divider circuit to reduce the 50 MHz clock to an 20.05 kHz clock. How high must the counter be able to count and how many bits will this require?

iv. Draw a state diagram for the entire control circuit. You may need two synchronous machines with communication. Draw the state diagram(s).
d. Implement the two machines (above) as separate modules in Verilog.

i. Write test-benches for both circuits and simulate.

e. Design a method for testing the controller on the Spartan board in lab. You may use any external components. Also, remember that you can extend internal nodes to outputs for debugging purposes.

2. Lab
a. Implement the controller on the FPGA.

b. Demonstrate the functioning controller and testing method for checkout.

Week #2
1. Prelab

a. Design the data unit for the processor.

i. You will implement any data storage necessary for the various input and output channels in conjunction with both the ProLogicDecoder and your chosen DAC method.
1. ProLogicDecoder

a. What is the functionality of the ProLogicDecoder?

b. How does it handle precision so that the output of the math sub-circuit is the closest integer representation possible for any two given L and R inputs?
c. How does it handle negative values?
2. DAC method

a. List any filtering and clocking parameters necessary to handle the digital to analog conversion.

b. Derive any discrete components necessary.

c. Write Verilog for any logic processing blocks.

ii. Draw a schematic of the entire data unit. Re-use as many blocks as possible.

iii. Write Verilog implementations for each logical block of the data unit; simulate with appropriate test-benches.

iv. Pull the data unit together in one high-level module and simulate with an appropriate test-bench.

b. Design a method for testing the data unit in lab without the controller or data input stream.

2. Lab

a. Implement the data unit on the FPGA.

b. Demonstrate the functioning data unit and testing method for checkout.

Week #3

1. Prelab

a. Write a verilog file that instantiates your controller and your data path. Test your complete system with an appropriate test-bench.
b. Design and implement a chosen sub-project to complete your design.

2. Lab
a. Demonstrate the functioning processor with at least one working sub-project for checkout.

ProLogicDecoder.v

Left

ss

Right

L

Center

R

Surround

_1127069506.unknown

_1127069576.unknown

