
Homework 5

Please turn in all verilog code and a hardcopy of your simulation results. You can
demonstrate proper operation by either a printout of the “monitor” output (the table
printed once the simulation has been run) or by a printout of the waveforms (the results
of some problems are easier to see one way and the results of other problems are easier to
see another). Be sure to annotate your simulation results telling me how your results
prove that you have met all specifications.

The Problem:

Envision a stream of 4-bit data packets that is traveling across an asynchronous channel.
The source of the information has two 1-bit communication ports, READY and DONE.
This configuration is illustrated in figure 1:

Stream Source

Figure 1: Interface of Stream Source Module.

When the Stream Source Module (SSM) has a new packet of data available, it asserts the
active-high READY port. It continues to assert READY until the DONE port is asserted,
telling the SSM that the data has been received and that it is ok to produce a new packet
of data.

Your job is design, implement, and test a Stream Receiving Buffer Module (SRBM) that

• Communicates with the SSM via READY and DONE
• Stores up to two packets of data
• Outputs a stored packet of data on an output line OUT
• Communicates with a third device through the ports NEW and UPDATE

The SRBM asserts DONE when it has successfully stored the new data packet from the
SSM. It outputs the next packet in sequential order of arrival on the 4-bit output OUT,
asserting NEW whenever new data is available. When the third, unknown device has

 4
DATA

READY

DONE

collected the data from OUT, it will assert UPDATE, signaling to the SRBM that it can
output the next packet of data.

Note that at any time the SRBM could be in one of the following situations:

• Both packets are stored, waiting for the third device to signal UPDATE
• Both packets are empty, waiting for the SSM to signal READY
• One packet stored, transmitting to third device while storing a second packet from

the SSM
• etc.

1. Draw a top-level interface diagram of the SRBM

SRBM

READY

NEW
DONE

UPDATE
DATA

OUT

2. Divide your SRBM into two sub-units: a data partition and a controller partition
3. Outline the responsibilities of each of your two sub-units

Control Unit Data Unit
• Interact with SSM via READY and

DONE
• Assert DONE after DATA is loaded

(implies that storage had room for the
new DATA)

• Interact with “third device” via NEW
and UPDATE

• Assert NEW when a new DATA is
available on OUT

• Instruct Data Unit to shift when
UPDATE is asserted

• Store new DATA in one of two storage
units

• Shift DATA out when instructed by the
controller

4. Draw interface diagrams for each of your sub-units

Control

5. Draw lower-middle level schematics of your sub-units. If you plan to use a finite

state machine, include a block called FSM in your design – you don’t have to go
deeper into your schematic.

The data unit is a pair of two 4-bit registers that has shifting capability. The mux’s select
between feedback and data in.

READY

STORE1
DONE

STORE2
UPDATE

SHIFT
NEW

Data

DATA
STORE1

OUT
STORE2

SHIFT

3 3 4-bit Register 4-bit Register

D Q

>

D Q

>

2

1

s1 s2 s3

2

1

s1 s2 s3

DATA
OUT

 st1 st2

clk

The controller can be implemented with just a finite state machine. I chose a Meely
machine because it has fewer states.

State
RDY, UPD
DN, NW, ST1, ST2, SH

Empty
<none>

Half

Full

RDY (w/ or wx UPD)
DN, NW, ST1

UPD

<none> or RDY
RDY, UPD NW
DN, NW, ST2, SH

<none>
NW

RDY
DN, NW, ST2

UPD RDY, UPD
NW, SH DN, NW, ST1

YOU WILL NOT RECEIVE CREDIT FOR ANY OF THE FOLLOWING PARTS IF YOU
HAVE NOT FINISHED THE ABOVE PARTS

6. Implement your sub-units in Verilog. Use multi-module design whenever convenient.

srbm.v

module srbm(clk, reset, READY, UPDATE, DONE, NEW, DATA, OUT);

input clk, reset, READY, UPDATE;
input [3:0] DATA;

output NEW, DONE;
output [3:0] OUT;

wire [3:0] OUT;
wire STORE1, STORE2, SHIFT;

cu controller(clk, reset, READY, UPDATE, DONE, NEW, STORE1, STORE2,
SHIFT);

du datapath(clk, reset, DATA, STORE1, STORE2, SHIFT, OUT);

endmodule

cu.v

module cu(clk, reset, READY, UPDATE, DONE, NEW, STORE1, STORE2,
SHIFT);

input clk, reset, READY, UPDATE;
output DONE, NEW, STORE1, STORE2, SHIFT;

reg DONE, NEW, STORE1, STORE2, SHIFT;
reg [1:0] STATE, NEXT_STATE;

parameter EMPTY = 2'b00,
 HALF = 2'b01,
 FULL = 2'b10,
 ERROR = 2'b11;

// state register
always @ (posedge clk, posedge reset)
 if(reset)
 STATE <= EMPTY;
 else
 STATE <= NEXT_STATE;

// next state decoder
always @ (STATE, READY, UPDATE)
 case(STATE)
 EMPTY : if(READY)
 NEXT_STATE <= HALF;
 else
 NEXT_STATE <= EMPTY;
 HALF : case({READY, UPDATE})
 2'b01 : NEXT_STATE <= EMPTY;
 2'b10 : NEXT_STATE <= FULL;
 default : NEXT_STATE <= HALF;
 endcase
 FULL : case({READY, UPDATE})
 2'b01 : NEXT_STATE <= HALF;
 default : NEXT_STATE <= FULL;
 endcase
 default : NEXT_STATE <= ERROR;
 endcase

// output decoder
// (Meely, so a function of state and inputs)
always @ (STATE, READY, UPDATE)
 case(STATE)
 EMPTY : case({READY, UPDATE})
 2'b10 : {DONE, NEW, STORE1, STORE2, SHIFT} = 5'b11100;
 default:{DONE, NEW, STORE1, STORE2, SHIFT} = 5'b00000;
 endcase
 HALF : case({READY, UPDATE})
 2'b00 : {DONE, NEW, STORE1, STORE2, SHIFT} = 5'b01000;
 2'b01 : {DONE, NEW, STORE1, STORE2, SHIFT} = 5'b00000;
 2'b10 : {DONE, NEW, STORE1, STORE2, SHIFT} = 5'b11010;
 2'b11 : {DONE, NEW, STORE1, STORE2, SHIFT} = 5'b11100;

 endcase
 FULL : case({READY, UPDATE})
 2'b01 : {DONE, NEW, STORE1, STORE2, SHIFT} = 5'b01001;
 2'b11 : {DONE, NEW, STORE1, STORE2, SHIFT} = 5'b11011;
 default:{DONE, NEW, STORE1, STORE2, SHIFT} = 5'b01000;
 endcase
 default : {DONE, NEW, STORE1, STORE2, SHIFT} = 5'b00000;
 endcase

endmodule

du.v

module du(clk, reset, DATA, STORE1, STORE2, SHIFT, OUT);

input clk, reset, STORE1, STORE2, SHIFT;
input [3:0] DATA;

output [3:0] OUT;

reg [3:0] q2, q1, OUT, muxout1, muxout2;

always @ (q1)
 OUT <= q1;

// mux1
always @ (STORE1, SHIFT, DATA, q2, q1)
 case({STORE1, SHIFT})
 2'b01 : muxout1 <= q2;
 2'b10 : muxout1 <= DATA;
 default : muxout1 <= q1;
 endcase

// mux2
always @ (STORE2, SHIFT, DATA, q2, q1)
 casex({STORE2, SHIFT})
 2'b01 : muxout2 <= 4'b0000;
 2'b1x : muxout2 <= DATA;
 default : muxout2 <= q2;
 endcase

// reg1
always @ (posedge clk, posedge reset)
 if(reset)
 q1 <= 0;
 else
 q1 <= muxout1;

// reg2
always @ (posedge clk, posedge reset)

 if(reset)
 q2 <= 0;
 else
 q2 <= muxout2;

endmodule

7. Write a test-bench for your Verilog.

module srbm_TB;

reg clk, reset, READY, UPDATE;
wire DONE, NEW;
reg [3:0] DATA;
wire [3:0] OUT;

srbm testUnit(clk, reset, READY, UPDATE, DONE, NEW, DATA, OUT);

always #5 clk <= ~clk;

initial begin
 $shm_open("srbm.waves");
 $shm_probe("AC");

 clk = 0;
 READY = 0;
 UPDATE = 0;
 DATA = 0;
 reset = 1;

 #7 // takes it off the clock
 reset = 0;

 DATA = 5;
 READY = 1; // trace path from EMPTY to FULL through HALF

 #50
 DATA = 7; // test shifting (it should not)

 #50
 UPDATE = 1; // test shifting (it should)

 #50
 READY = 0; // should go back to empty
 // etc.

 #50
 $finish;

end

endmodule

8. Simulate and annotate your work.

next page

	Homework 5

