
1

CEG453/653 Embedded Systems

• Computer : Processor, Memory, I/O, Bus

• Embedded Systems
– See textbook p. 3 for a list of applications

– Challenges: real-time execution, physical size, power
consumption, multirate operation, cost, limited memory

• Technology
– Microprocessor versus microcontroller; Flash, SRAM,
DRAM; Sensors, Bluetooth, Ethernet, etc.

– VLSI, SOC

– FPGA, Hard/Soft Processor, SOPC

– RTOS (Real-Time Operating System)

• What is this course about?

• EVB (Evaluation Board):
Axiom CSM12C32

(www.axman.com)

• Chip: MC9S12C32 from
Freescale (formerly, a
Motorola division)
– For chip documentation in PDF
files, see C:\AxIDE3\CSM12C32\

FREESCALE\9S12C32_ZIP

• 68HC12 versus 68HCS12

Lab 1 Preparation

• Address versus data

• Hexadecimal number system and Memory map

• Monitor, MON12, Monitor commands : MD, MM,

LOAD, CALL

• C, Assembly, Machine Code

• ICC12 and as12

• Step by step instructions

• S record file, list file, map file

Sample C Programs

• C review (Chapter 3, sample_c.c)

– main(), function call

– data types (char, unsigned char, int, short,
long, float)

– array and array initialization

– decimal, hexadecimal constants

– condition check (true, false, if, else)

– for loop, while loop

– putchar(), puts(), printf()

• tone.c : timer, output compare (p.179)

– Flag: set by hardware, cleared by software

– Why 4 KHz?

– Why “Hello World” once every second?

• Various changes to tone.c

– What if TC0 += 3000;

– What if TCO += 1500;

– What if TC0 += 1;

– How to clear flags slowly (explicitly)?

– How to produce a square wave of 25% duty
cycle? (using O.C. instead of Pulse Width
Modulation)

• Let Y be a generic register which can be PORTA,
PORTB, PORTE, PTAD, PTT, PTP, PTS, PTM, DDRA,
DDRB, and so on.

• Contents of Y: Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0

• Output (Use Y1 as an example)
– Set bits : Y |= 0x02;

– Clear bits : Y &= ~0x02; or Y &= 0xFD;

– Toggle bits : Y ^= 0x02;

• Input
– Check if set : if(Y & 0x02)

– Check if clear : if(!(Y & 0x02))

– Wait until set : while(!(Y & 0x02))

– Wait until clear: while(Y & 0x02)

Simple Parallel Port Usage

2

A simple parallel port usage example:

switch_LED.c

MC9S12C32

PB4

PE0

PT5

PA0

SW1 VCC

SW2 VCC

VCC

LED1

VCC

LED2

Measuring Pulse Width Without

Using Input Capture

• Use while loops and read TCNT to get T1,

T2

• If(T2 > T1) T = T2 – T1;

else T = 0xffff – T1 + T2 + 1;

• Timer Overflow?

6812

Interrupt Programming

• Interrupt versus polling

• Interrupt programming

– Write an ISR (interrupt service routine)

– Register the ISR (p. 153)

– Enable ISR (locally and globally)

• tone_interrupt.c example

• On EVB, pressing the reset button clears

the MON12 (user) interrupt vector table

contents

ADC

• ADC basics, a 2-bit ADC example

– Analog = VL + Digital * (VH-VL)/(2
N-1)

• ADC Internal: Successive Approximation

• Signal Conditioning Circuits (based on OP

Amp)

• 6812 ADC Programming

– adc_scan.c (see p. 277 for registers)

ADC Timing (ATDCTL4)

• ATD Clock = Bus Clock / [2(PRS+1)]

– Bus Clock : 24 MHz on EVB

– PRS : bits 4 to 0 of ATDCTL4

• ATD Conversion Time per Sample =

[2 + 2(SMP+1) + B] ATD clock cycles

– SMP : bits 6 and 5 of ATDCTL4

– B: 8 or 10 (for 8-bit and 10-bit ADC,

respectively)

More Timer Functions

• Timer Overflow : TSCR2 bit 7 (TOI), TFLAG2 bit
7(TOF)

• Input Capture (p. 176) and Examples
– Measure the period of a square wave

– Very slow square wave => Timer overflow interrupt

• Real-Time Interrupt (Sec. 4.15):

CRGINT bit 7 (RTIE), CRGFLG bit 7 (RTIF)

m = RTICTL bits 6-4; n = RTICTL bits 3-0

OSCCLK (16MHz on EVB)/[(m+1)2(n+9)]

• Pulse Accumulator: a 16-bit counter

• Pulse Width Modulation (PWM) Function

3

• Parallel Ports (Chap. 5), I/O

Synchronization and Handshaking

• Serial Interface : SCI (Sec. 4.18) vs. SPI

(Sec. 4.19)

– RS-232, Start-bit, Stop-bit, Parity

• SCI Registers

– SCIBDH, SCIBDL

– SCICR1, SCICR2

– SCISR1, SCISR2

– SCIDRH, SCIDRL

• Hardware Design Issues

– Memory : Flash, SRAM, DRAM, Memory

configuration

– CPU Memory/IO Interface (Address Decoding)

– Noise Consideration (Sec. 6.3)

– Power Management (Sec. 6.6)

• Embedded System Examples (Chap. 7)

– Wall-Following Mobile Robot System

– Motor Speed Control with Optical Tachometer

– Flying Robot

Chap. 8 RTOS

• An OS that handles multiple tasks in a timely

manner

• RT Systems (p. 513): when missing deadlines

– Hard (leads to a system failure)

– Firm (a low occurrence can be tolerated)

– Soft (leads only to performance degradation)

• RTOS

– Hard RTOS: guarantee to meet deadlines

– Soft RTOS: meet deadlines a percentage (say,

90%) of the time

RTOS Basics

• Kernel: task scheduling, dispatching, and
inter-task communication

• Task States (p. 544 and p. 562): Dormant,
Ready, Active, Waiting (for some time),
Suspended (for resources), Rescheduled
(until reschedule interval is expired) →
multiple linked lists

• Task Control Block (p. 548)

• Task Partitioning (p.550): insert break
points

Multitasking without a Commercial RTOS

• Round-Robin: similar to polled loop; tasks

are allowed to run to completion; may use

time-slicing (Special case: Polled Loop,

poll inputs one by one)

• Round-Robin with interrupts (Hybrid):

interrupts (foreground) for time-sensitive

tasks, round-robin for mundane tasks

(background)

• Interrupt-Driven: all tasks are inside ISRs

Types of (Commercial) RTOS

• Cooperative Multitasking

– Priority based

– Tasks voluntarily relinquish control back to the
OS.

– A low-priority task may never get processor time.

– Eg. Salvo

• Preemptive Multitasking

– Priority based

– A lower priority task is preempted by a higher
priority one.

– Eg. VxWorks

4

RTOS Issues

• Concurrency: prevent simultaneous access to
critical resources by (1) disabling interrupts, (2)
employing semaphores or locks

• Reentrancy: create a reentrant function by (1)
disabling interrupts, (2) using local variables and
CPU registers (instead of using global variables)

• Inter-task Communication: mailbox (a shared
memory location, with its key provided to one
task at a time), message passing

• Fail-Safe Operation: in the event of system
failure, enter a safe condition (e.g, red lights for
a failed traffic light control system)

