CEG453/653 Embedded Systems

- · Computer : Processor, Memory, I/O, Bus
- · Embedded Systems
 - See textbook p. 3 for a list of applications
 - Challenges: real-time execution, physical size, power consumption, multirate operation, cost, limited memory
- Technology
 - Microprocessor versus microcontroller; Flash, SRAM, DRAM; Sensors, Bluetooth, Ethernet, etc.
 - VLSI, SOC
 - FPGA, Hard/Soft Processor, SOPC
 - RTOS (Real-Time Operating System)
- · What is this course about?

- EVB (Evaluation Board): Axiom CSM12C32 (www.axman.com)
- Chip: MC9S12C32 from Freescale (formerly, a Motorola division) - For chip documentation in PDF
 - files, see C:\AxIDE3\CSM12C32\ FREESCALE\9S12C32_ZIP

• 68HC12 versus 68HCS12

Lab 1 Preparation

- · Address versus data
- · Hexadecimal number system and Memory map
- Monitor, MON12, Monitor commands : MD, MM, LOAD, CALL
- · C, Assembly, Machine Code
- ICC12 and as12
- · Step by step instructions
- · S record file, list file, map file

Sample C Programs

- C review (Chapter 3, sample_c.c)
 - main(), function call
 - data types (char, unsigned char, int, short, long, float)
 - array and array initialization
 - decimal, hexadecimal constants
 - condition check (true, false, if, else)
 - for loop, while loop
 - putchar(), puts(), printf()

- tone.c : timer, output compare (p.179)
 - Flag: set by hardware, cleared by software
 - Why 4 KHz?
 - Why "Hello World" once every second?
- · Various changes to tone.c
 - What if TC0 += 3000;
 - What if TCO += 1500;
 - What if TC0 += 1;
 - How to clear flags slowly (explicitly)?
 - How to produce a square wave of 25% duty cycle? (using O.C. instead of Pulse Width Modulation)

Simple Parallel Port Usage Let Y be a generic register which can be PORTA, PORTB, PORTE, PTAD, PTT, PTP, PTS, PTM, DDRA, DDRB, and so on Contents of Y: $Y_7 Y_6 Y_5 Y_4 Y_3 Y_2 Y_1 Y_0$ • Output (Use Y₁ as an example) – Set bits : Y |= 0x02; – Clear bits : Y &= ~0x02: or Y &= 0xFD: Toggle bits : Y ^= 0x02; Input - Check if set : if(Y & 0x02) - Check if clear : if(!(Y & 0x02))

- Wait until set : while(!(Y & 0x02))
- Wait until clear: while(Y & 0x02)

Interrupt Programming

- · Interrupt versus polling
- Interrupt programming
 - Write an ISR (interrupt service routine)
 - Register the ISR (p. 153)
 - Enable ISR (locally and globally)
- tone_interrupt.c example
- On EVB, pressing the reset button clears the MON12 (user) interrupt vector table contents

ADC

- ADC basics, a 2-bit ADC example

 Analog = V_L + Digital * (V_H-V_L)/(2^N-1)
- ADC Internal: Successive Approximation
- Signal Conditioning Circuits (based on OP Amp)
- 6812 ADC Programming

 adc_scan.c (see p. 277 for registers)

ADC Timing (ATDCTL4)

- ATD Clock = Bus Clock / [2(PRS+1)]
 Bus Clock : 24 MHz on EVB
 - PRS : bits 4 to 0 of ATDCTL4
- ATD Conversion Time per Sample =
 - [2 + 2(SMP+1) + B] ATD clock cycles
 - SMP : bits 6 and 5 of ATDCTL4
 - B: 8 or 10 (for 8-bit and 10-bit ADC, respectively)

More Timer Functions

- <u>Timer Overflow</u> : TSCR2 bit 7 (TOI), TFLAG2 bit 7(TOF)
- Input Capture (p. 176) and Examples

 Measure the period of a square wave
 Very slow square wave => Timer overflow interrupt
- <u>Real-Time Interrupt</u> (Sec. 4.15): CRGINT bit 7 (RTIE), CRGFLG bit 7 (RTIF) m = RTICTL bits 6-4; n = RTICTL bits 3-0 OSCCLK (16MHz on EVB)/[(m+1)2⁽ⁿ⁺⁹⁾]
- Pulse Accumulator: a 16-bit counter
- Pulse Width Modulation (PWM) Function

- Parallel Ports (Chap. 5), I/O Synchronization and Handshaking
- Serial Interface : SCI (Sec. 4.18) vs. SPI (Sec. 4.19)
 - RS-232, Start-bit, Stop-bit, Parity
- SCI Registers
 - SCIBDH, SCIBDL
 - SCICR1, SCICR2
 - SCISR1, SCISR2
 - SCIDRH, SCIDRL

- Hardware Design Issues
 - Memory : Flash, SRAM, DRAM, Memory configuration
 - CPU Memory/IO Interface (Address Decoding)
 - Noise Consideration (Sec. 6.3)
 - Power Management (Sec. 6.6)
- Embedded System Examples (Chap. 7)
 - Wall-Following Mobile Robot System
 - Motor Speed Control with Optical Tachometer
 - Flying Robot

Chap. 8 RTOS

- An OS that handles multiple tasks in a timely manner
- RT Systems (p. 513): when missing deadlines – Hard (leads to a system failure)
 - Firm (a low occurrence can be tolerated)
 - Soft (leads only to performance degradation)
- RTOS
 - Hard RTOS: guarantee to meet deadlines
 - Soft RTOS: meet deadlines a percentage (say, 90%) of the time

RTOS Basics

- Kernel: task scheduling, dispatching, and inter-task communication
- Task States (p. 544 and p. 562): Dormant, Ready, Active, Waiting (for some time), Suspended (for resources), Rescheduled (until reschedule interval is expired) → multiple linked lists
- Task Control Block (p. 548)
- Task Partitioning (p.550): insert break points

Multitasking without a Commercial RTOS

- Round-Robin: similar to polled loop; tasks are allowed to run to completion; may use time-slicing (Special case: Polled Loop, poll inputs one by one)
- Round-Robin with interrupts (Hybrid): interrupts (foreground) for time-sensitive tasks, round-robin for mundane tasks (background)
- · Interrupt-Driven: all tasks are inside ISRs

Types of (Commercial) RTOS

- Cooperative Multitasking
 - Priority based
 - Tasks voluntarily relinquish control back to the OS.
 - A low-priority task may never get processor time.
 Eg. Salvo
- Preemptive Multitasking
 - Priority based
 - A lower priority task is preempted by a higher priority one.
 - Eg. VxWorks

RTOS Issues

- Concurrency: prevent simultaneous access to critical resources by (1) disabling interrupts, (2) employing semaphores or locks
- Reentrancy: create a reentrant function by (1) disabling interrupts, (2) using local variables and CPU registers (instead of using global variables)
- Inter-task Communication: mailbox (a shared memory location, with its key provided to one task at a time), message passing
- Fail-Safe Operation: in the event of system failure, enter a safe condition (e.g, red lights for a failed traffic light control system)