ECE/CS 5780/6780: Embedded System Design

Chris J. Myers

Lecture 7: Interrupt Synchronization

Chris J. Myers (Lecture 7: Interrupts) ECE/CS 5780/6780: Embedded System Design 1/38

Introduction

@ Interrupts provide guarantee on response time.
@ Interrupts allow response to rare but important events.
@ Periodic interrupts used for data aquisition and control.
@ Interrupts can provide a way to buffer I/O data.

Chris J. Myers (Lecture 7: Interrupts) ECE/CS 5780/6780: Embedded System Design 2/38

What are Interrupts? Shared versus Dedicated

@ An automatic transfer of software execution in response to hardware that
is asynchronous with current software.

Hardware can be external I/O device or internal event.

When hardware needs service, it requests an interrupt.
Calls interrupt service routine as a background thread.

Thread is terminated with rt i instruction.

¢ ¢ ¢ ¢ ¢

Threads may communicate using FIFO queues and synchronize using
semaphores.

©

Threads share global variables while processes do not.
@ Each potential interrupt has separate ar mbit.
@ Interrupt enable bit, I, found in condition code.

Chris J. Myers (Lecture 7: Interrupts) ECE/CS 5780/6780: Embedded System Design 3/38

Microcomputer Request A 1/0 Device

—— Amm
+5 Request m
(.

1/0 Device

Enable — T Arm
IR equest M

= §

1/0 Device

. 3 Arm :
Microcomputer | Request [Statws — /0 Device
1)
able Arm g
Enable Request | Staws — 1O Device
I K -
Arm ;
Request | Staws — VO Device
il

Shared versus Dedicated Interrupt Service Routines (ISR)

@ Wire- or negative-logic interrrupt requests:
@ Can add additional 1/0O devices w/o redesigning H/W.
@ No limit to number of interrupting I/0 devices.
@ Microcomputer hardware is simple.
@ Dedicated edge-triggered interrupt requests:
@ Software is simpler, easier to debug, and faster.
@ Less coupling between software modules.
@ Easier to implement priority.

Chris J. Myers (Lecture 7: Interrupts) ECE/CS 5780/6780: Embedded System Design 5/38

@ Software executed when hardware requests an interrupt.
@ Polled interrupts - one large ISR handles all requests.
@ \ectored interrupts - many small, specific ISRs.
@ When the device is armed, the | bit is zero, and an interrupt is requested,
it is serviced as follows:
@ Execution of main program is suspended.
@ All registers are pushed onto the stack.
© The ISR, or background thread, is executed.
© The ISR executes r'ti instruction.
© Allregisters are restored from the stack.
© The main program is resumed.

Chris J. Myers (Lecture 7: Interrupts) ECE/CS 5780/6780: Embedded System Design 6/38

Interrupt Execution

When to Use Interrupts

Hardware Busy Done Busy
Hardware
needs
service
Main
thread
Saves
execution Restores
slate execution
Interrupt sale
thread
ISR —— Time
provides
service

ECE/CS 5780/6780: Embedded System Design 7138

Chris J. Myers (Lecture 7: Interrupts)
Interthread Communication

@ Interrupt threads have logically separate registers/stack, so
communication must occur through global memory.

Producerfconsumer problem
with an input device

Producer/consumer problem
with an output device

Foreground
thread

Background
thread

Foreground
thread

Background
thread

Read data
from input

Other calculations

Disarm
outpul

Chris J. Myers (Lecture 7: Interrupts)

ECE/CS 5780/6780: Embedded System Design

9/38

Output Device Interrupts

Busy performing
last output

Interrupt serviced
Output device completes

Software »\.‘mcs new data output operation
Asks device to output it

Causes an interrupt

K‘\Tzl I Disarmed ‘DUIW‘ Busy anncIDmunml|Done| Busy ‘Dﬂneg :’L‘:“f:‘:' ‘Dimmc«l‘Done‘ Busy ‘Dom:‘ Busy

o i

routine routine

e wogen [[T T T < T
‘r”k;‘l;\z‘;\l Empty II] Empty IT‘ Empty 5'“;]’;(")“|Emply| I | 0 ‘ 1 l 2) | 3 | 4 |5l 4 | 5 ‘

) main program generates data

b) main program puts data into FIFO, arms
¢) ISR gets from FIFO and writes to port
d) ISR disarms itself because FIFO is empty

4) main program generates data

ain program puts data into FIFO, arms
from FIFO and writes to port

d) ISR disarms itself because FIFO is empty

— Time

—— Time

Chris J. Myers (Lecture 7: Interrupts) ECE/CS 5780/6780: Embedded System Design 11/38

Gadfly Interrupts DMA
Predictable Variable arrival times Low latency
Simple 1/0 Complex I/O High bandwidth
Fixed load Variable load

Single thread Multithread

Nothing else to do Infrequent alarms
Program errors
Overflow, illegal op
lllegal memory access
Machine/memory errors
Power failure

Real-time clocks

Data acquisition/control

Chris J. Myers (Lecture 7: Interrupts) ECE/CS 5780/6780: Embedded System Design 8/38

Input Device Interrupts

Interrupt serviced 2
Input device creates
new data

Software reads data . :
asks for another Caseg an ntemupt
New input is ready
done

Input Tnput
d\ziw ‘ Busy |D0ne‘ Busy IDWE[é JT:TW Busy { Done | Busy | Done |Busy | Done | Busy | Done | Busy| Dane | Busy
Interrupt I Interrupt
service b service
service
routine W{ X routine
’ Main
g?::::mn ‘ i H g | & ‘ cl g ‘ 4 é program
Elements 5 _ = Elements = = 5
in FIFO Empty M Empty M Empty é inFIFO Empy H Enmpty ‘ 1 ‘ : 3 2 é

a) main program waits because FIFO s empty
b) ISR reads data and puts into FIFO

¢) main program get data from FIFO

d) main program processes data

4) main program wais because FIFO is empty
bYISR reads data and puts into FIFO

¢) main program get data from FIFO

dy main program processes data

Time

Chris J. Myers (Lecture 7: Interrupts) ECE/CS 5780/6780: Embedded System Design

Other Interrupt Issues

@ Periodic interrupts are neither input or output.
@ Essential for data acquisition and control systems.

@ ISR should only occur when needed, come in clean, perform function,
and return right away.

@ Gadfly loops and iterations should be avoided in ISRs.
@ Percent of time in ISRs should be minimized.

@ Interface latency is time between new input available and when software
reads the input data.

@ device latency is response time of external 1/0O device.
@ A real-time system guarantees bound on interface latency.

Chris J. Myers (Lecture 7: Interrupts)

ECE/CS 5780/6780: Embedded System Design

Reentrant Programming

@ A program segment is reentrant if it can be concurrently executed by two
(or more) threads.

@ Reentrant software must place local variables on stack.
@ A nonreentrant subroutine has a section of code called a vulnerable
window or critical section, and error occurs if:
@ One thread calls the nonreentrant subroutine,
@ That thread is executing in the “vulnerable” window when interrupted by a
second thread, and
@ Second thread calls same sub or shared variable.

@ Need to implement mutual exclusion, often done by disabling interrupts.

Chris J. Myers (Lecture 7: Interrupts) ECE/CS 5780/6780: Embedded System Design 13/38

Bad Sequence of Events Nonrentrant Subroutine in C

Main R Ave .. 4| InterruptService
sty Second i
e xdax
jsr Ave addd Second
jsr Ave

H

"
n

~@-

rti

Chris J. Myers (Lecture 7: Interrupts) ECE/CS 5780/6780: Embedded System Design 16/38

@ Atomic operation is one that once started is guaranteed to finish.
@ In most computers, machine instructions are atomic.
@ The following is atomic:
inc counter where counter is global variable
@ The following is nonatomic:

| daa counter where counter is global variable
inca
staa counter

Chris J. Myers (Lecture 7: Interrupts)

ECE/CS 5780/6780: Embedded System Design

Nonrentrant Subroutine in Assembly

Second rnb 2 Tenporary gl obal variable
* |nput paraneters: Reg X, Y contain 2 16 bit numbers
* Qutput paraneter: Reg X is returned with the average

Ave sty Second Save the second nunber in nmenory
xgadx Reg D contains first number
addd Second Reg D=First+Second
|'srd (First+Second)/2
adch #0 round up?
adca #0
xgadx
rts

Chris J. Myers (Lecture 7: Interrupts)

int Result; /* Tenporary global variable */

int Ave(int x,y){
Result =vy; /* Save second number */
Result = (Result + x) >> 1; /* (1st+2nd)/2 */
return(Result);}

Main ... Ave

Result=y;
c=Avela,b);

Result=(Result+x)>»1;

InterruptService

Chris J. Myers (Lecture 7: Interrupts) ECE/CS 5780/6780: Embedded System Design

@ Software reads global variable, producing a copy of the data.
@ Software modifies the copy.
© Software writes modification back into global variable.

unsi gned int Money;

/* add 100 dol l ars */

voi d nmore(voi d){
Money += 100;}

/* bank bal ance (global) */

Money rnb 2 bank bal ance inplenented as a gl obal
* add 100 dollars to the account

more |dd Mney where Mney is a global variable
addd #100
std Money Mney=Money+100
rts

Chris J. Myers (Lecture 7: Interrupts) ECE/CS 5780/6780: Embedded System Design

f=Ave(d,e);

. ecture 7 s) ECE/CS 5780/6780: Embedded System Design

15/38

18/38

22/38

Write Followed by Read Example Nonatomic Multistep Write

© Software writes to a global variable.
@ Software reads from global variable expecting original data.

mac stx Save X so that it can be added

tenp

int tenp; /* global tenporary */
/* calculate x+2*d */ int info[2]; /* 32-bit global */
int mc(int x, int d){ void set(int x, int y){
tenp = x+2*d; /* wite to a global variable */ i nfo[0] =x;
return (temp);} [/* read fromglobal */ info[1]=y;}
ie”p rmb 2) gl obaL tenporary result Info rnb 4 32-bit data inplenmented as a gl obal
cal cul ate RegX=RegX+2*RegD * set the variable using RegX and RegY

© Software write part of new value to a global variable.
@ Software write rest of new value to a global variable.

set stx Info Infois a 32 bit global variable
I'sld RegD=2* RegD sty Info+2
addd tenp RegD=RegX+2* RegD rts
xgadx RegX=RegX+2* RegD
rts
Chris J. Myers (Lecture 7: Interrupts) ECE/CS 5780/6780: Embedded System Design 24/38 Chris J. Myers (Lecture 7: Interrupts) ECE/CS 5780/6780: Embedded System Design

A Nonreentrant Subroutine

Make a Subroutine Reentrant Using a Stack Variable

* |nput paraneters: Reg X, Y contain 2 16 bit numbers
* Qutput paraneter: Reg X is returned with the average
Ave pshy Save the second nunber on the stack

tsy Reg Y points the Second nunber

xgdx Reg D contains first number
addd 0,Y Reg D=Fi rst +Second

| srd (First+Second)/2

adch #0 round up?

adca #0

xgdx

pul'y

rts

Chris J. Myers (Lecture 7: Interrupts) ECE/CS 5780/6780: Embedded System Design

Make a Subroutine Reentrant by Disabling Interrupts

Status rmb 1 0 neans enpty, -1 otherwise
Message rmbh 1 data to be communi cated
* Input param Reg B contains an 8 bit message
* Qutput param Reg CC (Chit) is 1 for OK O for busy error
Send cle Initialize carry=0
tpa save current interrupt state
psha
sei disable interrupts when vul nerable
tst Status check if mailbox is enpty
bm Busy full, so return with C=0
staa Message store
dec Status signify it is now contains a nessage
pul a
oraa #1 X, so return with C=1
psha
Busy pul a restore interrupt status
tap
rts

28/38

Status rnb 1 0 neans enpty, -1 otherw se
Message rmb 1 data to be comnuni cated

* |Input param Reg B contains an 8 bit nessage

* Qutput param Reg CC (Cbit) is 1 for OK O for busy

Send tst Status check if mailbox is enpty
bmi Busy full, can't store, so return C=0
stab Message store
dec Status signify now contains a nessage
sec stored OK, so return with C=1
Busy rts

Chris J. Myers (Lecture 7: Interrupts) ECE/CS 5780/6780: Embedded System Design 30/38

Disabling Interrupts in C

int Enpty; /* -1 neans enpty, O neans it contains sonething */
int Message; /* data to be communicated */
int SEND(int data){ int OK;
char SaveSP;
asmtpa
asm staa SaveSP
asm sei /* make atonmic, entering critical */
X=0; /* Assunme it is not OK */
if (Enpty){
Message=dat a;
Enpty=0; /* signify it is now contains a message*/
K=-1;} /* Successfull */
asm | daa SaveSP
asmtap /* end critical section */
return(oK);}

Chris J. Myers (Lecture 7: Interrupts)

ECE/CS 5780/6780: Embedded System Design

Chris J. Myers (Lecture 7: Interrupts) ECE/CS 5780/6780: Embedded System Design

A Binary Semaphore Reentrant or Not?

@ Must be able to recognize potential sources of bugs due to nonreentrant

* Gobal parameter: Senmi4 is the memloc to test and set code in high-level languagues.
* |f the location is zero, it will set it (make it -1) o Is the following atomic?
* and return Reg CC (Z bit) is 1 for K i 9 ’
* |f location is nonzero, return Reg CC (Z hit) =0 thme++
Seni4 fch 0 Semaphore is initially free @ Yes, if the compiler generates:
Tas tst Sem4 check if already set inc tim
bne Outl b_usy: op_era.tl on failed, return Z=0 @ No, if the compiler generates:
dec Seni4 signify it is now busy Ldd ti
bita #0 operation successful, return Z=1 | me
addd #1
Qut rts .
std tinme

Chris J. Myers (Lecture 7: Interrupts) ECE/CS 5780/6780: Embedded System Design 36/38 Chris J. Myers (Lecture 7: Interrupts) ECE/CS 5780/6780: Embedded System Design 38/38

