
ECE/CS 5780/6780: Embedded System Design

Chris J. Myers

Lecture 7: Interrupt Synchronization

Chris J. Myers (Lecture 7: Interrupts) ECE/CS 5780/6780: Embedded System Design 1 / 38

Introduction

Interrupts provide guarantee on response time.

Interrupts allow response to rare but important events.

Periodic interrupts used for data aquisition and control.

Interrupts can provide a way to buffer I/O data.

Chris J. Myers (Lecture 7: Interrupts) ECE/CS 5780/6780: Embedded System Design 2 / 38

What are Interrupts?

An automatic transfer of software execution in response to hardware that
is asynchronous with current software.

Hardware can be external I/O device or internal event.

When hardware needs service, it requests an interrupt.

Calls interrupt service routine as a background thread.

Thread is terminated with rti instruction.

Threads may communicate using FIFO queues and synchronize using
semaphores.

Threads share global variables while processes do not.

Each potential interrupt has separate arm bit.

Interrupt enable bit, I, found in condition code.

Chris J. Myers (Lecture 7: Interrupts) ECE/CS 5780/6780: Embedded System Design 3 / 38

Shared versus Dedicated

Chris J. Myers (Lecture 7: Interrupts) ECE/CS 5780/6780: Embedded System Design 4 / 38

Shared versus Dedicated

Wire- or negative-logic interrrupt requests:
Can add additional I/O devices w/o redesigning H/W.
No limit to number of interrupting I/O devices.
Microcomputer hardware is simple.

Dedicated edge-triggered interrupt requests:
Software is simpler, easier to debug, and faster.
Less coupling between software modules.
Easier to implement priority.

Chris J. Myers (Lecture 7: Interrupts) ECE/CS 5780/6780: Embedded System Design 5 / 38

Interrupt Service Routines (ISR)

Software executed when hardware requests an interrupt.

Polled interrupts - one large ISR handles all requests.

Vectored interrupts - many small, specific ISRs.

When the device is armed, the I bit is zero, and an interrupt is requested,
it is serviced as follows:

1 Execution of main program is suspended.
2 All registers are pushed onto the stack.
3 The ISR, or background thread, is executed.
4 The ISR executes rti instruction.
5 All registers are restored from the stack.
6 The main program is resumed.

Chris J. Myers (Lecture 7: Interrupts) ECE/CS 5780/6780: Embedded System Design 6 / 38



Interrupt Execution

Chris J. Myers (Lecture 7: Interrupts) ECE/CS 5780/6780: Embedded System Design 7 / 38

When to Use Interrupts

Gadfly Interrupts DMA
Predictable Variable arrival times Low latency
Simple I/O Complex I/O High bandwidth
Fixed load Variable load
Single thread Multithread
Nothing else to do Infrequent alarms

Program errors
Overflow, illegal op
Illegal memory access
Machine/memory errors
Power failure
Real-time clocks
Data acquisition/control

Chris J. Myers (Lecture 7: Interrupts) ECE/CS 5780/6780: Embedded System Design 8 / 38

Interthread Communication

Interrupt threads have logically separate registers/stack, so
communication must occur through global memory.

Chris J. Myers (Lecture 7: Interrupts) ECE/CS 5780/6780: Embedded System Design 9 / 38

Input Device Interrupts

Chris J. Myers (Lecture 7: Interrupts) ECE/CS 5780/6780: Embedded System Design 10 / 38

Output Device Interrupts

Chris J. Myers (Lecture 7: Interrupts) ECE/CS 5780/6780: Embedded System Design 11 / 38

Other Interrupt Issues

Periodic interrupts are neither input or output.

Essential for data acquisition and control systems.

ISR should only occur when needed, come in clean, perform function,
and return right away.

Gadfly loops and iterations should be avoided in ISRs.

Percent of time in ISRs should be minimized.

Interface latency is time between new input available and when software
reads the input data.

device latency is response time of external I/O device.

A real-time system guarantees bound on interface latency.

Chris J. Myers (Lecture 7: Interrupts) ECE/CS 5780/6780: Embedded System Design 12 / 38



Reentrant Programming

A program segment is reentrant if it can be concurrently executed by two
(or more) threads.

Reentrant software must place local variables on stack.

A nonreentrant subroutine has a section of code called a vulnerable
window or critical section, and error occurs if:

One thread calls the nonreentrant subroutine,
That thread is executing in the “vulnerable” window when interrupted by a
second thread, and
Second thread calls same sub or shared variable.

Need to implement mutual exclusion, often done by disabling interrupts.

Chris J. Myers (Lecture 7: Interrupts) ECE/CS 5780/6780: Embedded System Design 13 / 38

Nonrentrant Subroutine in Assembly

Second rmb 2 Temporary global variable
* Input parameters: Reg X,Y contain 2 16 bit numbers
* Output parameter: Reg X is returned with the average
Ave sty Second Save the second number in memory

xgdx Reg D contains first number
addd Second Reg D=First+Second
lsrd (First+Second)/2
adcb #0 round up?
adca #0
xgdx
rts

Chris J. Myers (Lecture 7: Interrupts) ECE/CS 5780/6780: Embedded System Design 15 / 38

Bad Sequence of Events

Chris J. Myers (Lecture 7: Interrupts) ECE/CS 5780/6780: Embedded System Design 16 / 38

Nonrentrant Subroutine in C

int Result; /* Temporary global variable */
int Ave(int x,y){

Result = y; /* Save second number */
Result = (Result + x) >> 1; /* (1st+2nd)/2 */
return(Result);}

Chris J. Myers (Lecture 7: Interrupts) ECE/CS 5780/6780: Embedded System Design 18 / 38

Atomic Operations

Atomic operation is one that once started is guaranteed to finish.

In most computers, machine instructions are atomic.

The following is atomic:

inc counter where counter is global variable

The following is nonatomic:

ldaa counter where counter is global variable
inca
staa counter

Chris J. Myers (Lecture 7: Interrupts) ECE/CS 5780/6780: Embedded System Design 20 / 38

Read-Modify-Write Example

1 Software reads global variable, producing a copy of the data.

2 Software modifies the copy.

3 Software writes modification back into global variable.

unsigned int Money; /* bank balance (global) */
/* add 100 dollars */
void more(void){

Money += 100;}

Money rmb 2 bank balance implemented as a global
* add 100 dollars to the account
more ldd Money where Money is a global variable

addd #100
std Money Money=Money+100
rts

Chris J. Myers (Lecture 7: Interrupts) ECE/CS 5780/6780: Embedded System Design 22 / 38



Write Followed by Read Example

1 Software writes to a global variable.

2 Software reads from global variable expecting original data.

int temp; /* global temporary */
/* calculate x+2*d */
int mac(int x, int d){

temp = x+2*d; /* write to a global variable */
return (temp);} /* read from global */

temp rmb 2 global temporary result
* calculate RegX=RegX+2*RegD
mac stx temp Save X so that it can be added

lsld RegD=2*RegD
addd temp RegD=RegX+2*RegD
xgdx RegX=RegX+2*RegD
rts

Chris J. Myers (Lecture 7: Interrupts) ECE/CS 5780/6780: Embedded System Design 24 / 38

Nonatomic Multistep Write

1 Software write part of new value to a global variable.

2 Software write rest of new value to a global variable.

int info[2]; /* 32-bit global */
void set(int x, int y){

info[0]=x;
info[1]=y;}

Info rmb 4 32-bit data implemented as a global
* set the variable using RegX and RegY
set stx Info Info is a 32 bit global variable

sty Info+2
rts

Chris J. Myers (Lecture 7: Interrupts) ECE/CS 5780/6780: Embedded System Design 26 / 38

Make a Subroutine Reentrant Using a Stack Variable

* Input parameters: Reg X,Y contain 2 16 bit numbers
* Output parameter: Reg X is returned with the average
Ave pshy Save the second number on the stack

tsy Reg Y points the Second number
xgdx Reg D contains first number
addd 0,Y Reg D=First+Second
lsrd (First+Second)/2
adcb #0 round up?
adca #0
xgdx
puly
rts

Chris J. Myers (Lecture 7: Interrupts) ECE/CS 5780/6780: Embedded System Design 28 / 38

A Nonreentrant Subroutine

Status rmb 1 0 means empty, -1 otherwise
Message rmb 1 data to be communicated
* Input param: Reg B contains an 8 bit message
* Output param: Reg CC (C bit) is 1 for OK, 0 for busy
Send tst Status check if mailbox is empty

bmi Busy full, can’t store, so return C=0
stab Message store
dec Status signify now contains a message
sec stored OK, so return with C=1

Busy rts

Chris J. Myers (Lecture 7: Interrupts) ECE/CS 5780/6780: Embedded System Design 30 / 38

Make a Subroutine Reentrant by Disabling Interrupts

Status rmb 1 0 means empty, -1 otherwise
Message rmb 1 data to be communicated
* Input param: Reg B contains an 8 bit message
* Output param: Reg CC (C bit) is 1 for OK, 0 for busy error
Send clc Initialize carry=0

tpa save current interrupt state
psha
sei disable interrupts when vulnerable
tst Status check if mailbox is empty
bmi Busy full, so return with C=0
staa Message store
dec Status signify it is now contains a message
pula
oraa #1 OK, so return with C=1
psha

Busy pula restore interrupt status
tap
rts

Chris J. Myers (Lecture 7: Interrupts) ECE/CS 5780/6780: Embedded System Design 32 / 38

Disabling Interrupts in C

int Empty; /* -1 means empty, 0 means it contains something */
int Message; /* data to be communicated */
int SEND(int data){ int OK;

char SaveSP;
asm tpa
asm staa SaveSP
asm sei /* make atomic, entering critical */
OK=0; /* Assume it is not OK */
if(Empty){

Message=data;
Empty=0; /* signify it is now contains a message*/
OK=-1;} /* Successfull */

asm ldaa SaveSP
asm tap /* end critical section */
return(OK);}

Chris J. Myers (Lecture 7: Interrupts) ECE/CS 5780/6780: Embedded System Design 34 / 38



A Binary Semaphore

* Global parameter: Semi4 is the mem loc to test and set
* If the location is zero, it will set it (make it -1)
* and return Reg CC (Z bit) is 1 for OK
* If location is nonzero, return Reg CC (Z bit) = 0
Semi4 fcb 0 Semaphore is initially free
Tas tst Semi4 check if already set

bne Out busy, operation failed, return Z=0
dec Semi4 signify it is now busy
bita #0 operation successful, return Z=1

Out rts

Chris J. Myers (Lecture 7: Interrupts) ECE/CS 5780/6780: Embedded System Design 36 / 38

Reentrant or Not?

Must be able to recognize potential sources of bugs due to nonreentrant
code in high-level languagues.

Is the following atomic?

time++;

Yes, if the compiler generates:

inc time

No, if the compiler generates:

ldd time
addd #1
std time

Chris J. Myers (Lecture 7: Interrupts) ECE/CS 5780/6780: Embedded System Design 38 / 38


