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Introduction

@ Interrupts provide guarantee on response time.
@ Interrupts allow response to rare but important events.
@ Periodic interrupts used for data aquisition and control.
@ Interrupts can provide a way to buffer I/O data.
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What are Interrupts? Shared versus Dedicated

@ An automatic transfer of software execution in response to hardware that
is asynchronous with current software.

Hardware can be external I/O device or internal event.

When hardware needs service, it requests an interrupt.
Calls interrupt service routine as a background thread.

Thread is terminated with rt i instruction.

¢ ¢ ¢ ¢ ¢

Threads may communicate using FIFO queues and synchronize using
semaphores.

©

Threads share global variables while processes do not.
@ Each potential interrupt has separate ar mbit.
@ Interrupt enable bit, I, found in condition code.
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Shared versus Dedicated Interrupt Service Routines (ISR)

@ Wire- or negative-logic interrrupt requests:
@ Can add additional 1/0O devices w/o redesigning H/W.
@ No limit to number of interrupting I/0 devices.
@ Microcomputer hardware is simple.
@ Dedicated edge-triggered interrupt requests:
@ Software is simpler, easier to debug, and faster.
@ Less coupling between software modules.
@ Easier to implement priority.
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@ Software executed when hardware requests an interrupt.
@ Polled interrupts - one large ISR handles all requests.
@ \ectored interrupts - many small, specific ISRs.
@ When the device is armed, the | bit is zero, and an interrupt is requested,
it is serviced as follows:
@ Execution of main program is suspended.
@ All registers are pushed onto the stack.
© The ISR, or background thread, is executed.
© The ISR executes r'ti instruction.
© Allregisters are restored from the stack.
© The main program is resumed.
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Interrupt Execution

When to Use Interrupts
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Interthread Communication

@ Interrupt threads have logically separate registers/stack, so
communication must occur through global memory.
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Output Device Interrupts
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Gadfly Interrupts DMA
Predictable Variable arrival times Low latency
Simple 1/0 Complex I/O High bandwidth
Fixed load Variable load

Single thread Multithread

Nothing else to do  Infrequent alarms
Program errors
Overflow, illegal op
lllegal memory access
Machine/memory errors
Power failure

Real-time clocks

Data acquisition/control

Chris J. Myers (Lecture 7: Interrupts) ECE/CS 5780/6780: Embedded System Design 8/38

Input Device Interrupts

Interrupt serviced 2
Input device creates
new data

Software reads data . :
asks for another Caseg an ntemupt
New input is ready
done

Input Tnput
d\ziw ‘ Busy |D0ne‘ Busy IDWE[ é JT:TW Busy { Done | Busy | Done |Busy | Done | Busy | Done | Busy| Dane | Busy
Interrupt I Interrupt
service b service
service
routine W{ X routine
’ Main
g?::::mn ‘ i H g | & ‘ cl g ‘ 4 é program
Elements 5 _ = Elements = = 5
in FIFO Empty M Empty M Empty é inFIFO Empy H Enmpty ‘ 1 ‘ : 3 2 é

a) main program waits because FIFO s empty
b) ISR reads data and puts into FIFO

¢) main program get data from FIFO

d) main program processes data

4) main program wais because FIFO is empty
bYISR reads data and puts into FIFO

¢) main program get data from FIFO

dy main program processes data

Time

Chris J. Myers (Lecture 7: Interrupts) ECE/CS 5780/6780: Embedded System Design

Other Interrupt Issues

@ Periodic interrupts are neither input or output.
@ Essential for data acquisition and control systems.

@ ISR should only occur when needed, come in clean, perform function,
and return right away.

@ Gadfly loops and iterations should be avoided in ISRs.
@ Percent of time in ISRs should be minimized.

@ Interface latency is time between new input available and when software
reads the input data.

@ device latency is response time of external 1/0O device.
@ A real-time system guarantees bound on interface latency.
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Reentrant Programming

@ A program segment is reentrant if it can be concurrently executed by two
(or more) threads.

@ Reentrant software must place local variables on stack.
@ A nonreentrant subroutine has a section of code called a vulnerable
window or critical section, and error occurs if:
@ One thread calls the nonreentrant subroutine,
@ That thread is executing in the “vulnerable” window when interrupted by a
second thread, and
@ Second thread calls same sub or shared variable.

@ Need to implement mutual exclusion, often done by disabling interrupts.
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Bad Sequence of Events Nonrentrant Subroutine in C
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@ Atomic operation is one that once started is guaranteed to finish.
@ In most computers, machine instructions are atomic.
@ The following is atomic:
inc counter where counter is global variable
@ The following is nonatomic:

| daa counter where counter is global variable
inca
staa counter
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Nonrentrant Subroutine in Assembly

Second rnb 2 Tenporary gl obal variable
* |nput paraneters: Reg X, Y contain 2 16 bit numbers
* Qutput paraneter: Reg X is returned with the average

Ave sty Second Save the second nunber in nmenory
xgadx Reg D contains first number
addd Second Reg D=First+Second
|'srd (First+Second)/2
adch #0 round up?
adca #0
xgadx
rts
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int Result; /* Tenporary global variable */

int Ave(int x,y){
Result =vy; /* Save second number */
Result = (Result + x) >> 1; /* (1st+2nd)/2 */
return(Result);}

Main ... Ave

Result=y;
c=Avela,b);

Result=(Result+x)>»1;

InterruptService
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@ Software reads global variable, producing a copy of the data.
@ Software modifies the copy.
© Software writes modification back into global variable.

unsi gned int Money;

/* add 100 dol l ars */

voi d nmore(voi d){
Money += 100;}

/* bank bal ance (global) */

Money rnb 2 bank bal ance inplenented as a gl obal
* add 100 dollars to the account

more |dd Mney where Mney is a global variable
addd #100
std Money Mney=Money+100
rts
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f=Ave(d,e);
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Write Followed by Read Example Nonatomic Multistep Write

© Software writes to a global variable.
@ Software reads from global variable expecting original data.

mac  stx Save X so that it can be added

tenp

int tenp; /* global tenporary */
/* calculate x+2*d */ int info[2]; /* 32-bit global */
int mc(int x, int d){ void set(int x, int y){
tenp = x+2*d; /* wite to a global variable */ i nfo[ 0] =x;
return (temp);} [/* read fromglobal */ info[1]=y;}
ie”p rmb 2 ) gl obaL tenporary result Info rnb 4 32-bit data inplenmented as a gl obal
cal cul ate RegX=RegX+2*RegD * set the variable using RegX and RegY

© Software write part of new value to a global variable.
@ Software write rest of new value to a global variable.

set stx Info Infois a 32 bit global variable
I'sld RegD=2* RegD sty Info+2
addd tenp  RegD=RegX+2* RegD rts
xgadx RegX=RegX+2* RegD
rts
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A Nonreentrant Subroutine

Make a Subroutine Reentrant Using a Stack Variable

* |nput paraneters: Reg X, Y contain 2 16 bit numbers
* Qutput paraneter: Reg X is returned with the average
Ave pshy Save the second nunber on the stack

tsy Reg Y points the Second nunber

xgdx Reg D contains first number
addd 0,Y Reg D=Fi rst +Second

| srd (First+Second)/2

adch #0 round up?

adca #0

xgdx

pul'y

rts
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Make a Subroutine Reentrant by Disabling Interrupts

Status  rmb 1 0 neans enpty, -1 otherwise
Message rmbh 1 data to be communi cated
* Input param Reg B contains an 8 bit message
* Qutput param Reg CC (Chit) is 1 for OK O for busy error
Send cle Initialize carry=0
tpa save current interrupt state
psha
sei disable interrupts when vul nerable
tst Status check if mailbox is enpty
bm  Busy full, so return with C=0
staa Message store
dec Status signify it is now contains a nessage
pul a
oraa #1 X, so return with C=1
psha
Busy pul a restore interrupt status
tap
rts

28/38

Status rnb 1 0 neans enpty, -1 otherw se
Message rmb 1 data to be comnuni cated

* |Input param Reg B contains an 8 bit nessage

* Qutput param Reg CC (Cbit) is 1 for OK O for busy

Send tst Status check if mailbox is enpty
bmi  Busy full, can't store, so return C=0
stab Message store
dec Status signify now contains a nessage
sec stored OK, so return with C=1
Busy rts
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Disabling Interrupts in C

int Enpty; /* -1 neans enpty, O neans it contains sonething */
int Message; /* data to be communicated */
int SEND(int data){ int OK;
char SaveSP;
asmtpa
asm staa SaveSP
asm sei /* make atonmic, entering critical */
X=0; /* Assunme it is not OK */
if (Enpty){
Message=dat a;
Enpty=0; /* signify it is now contains a message*/
K=-1;} /* Successfull */
asm | daa SaveSP
asmtap /* end critical section */
return(oK);}
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A Binary Semaphore Reentrant or Not?

@ Must be able to recognize potential sources of bugs due to nonreentrant

* Gobal parameter: Senmi4 is the memloc to test and set code in high-level languagues.
* |f the location is zero, it will set it (make it -1) o Is the following atomic?
* and return Reg CC (Z bit) is 1 for K i 9 ’
* |f location is nonzero, return Reg CC (Z hit) =0 thme++
Seni4 fch 0 Semaphore is initially free @ Yes, if the compiler generates:
Tas tst Sem4 check if already set inc tim
bne Outl b_usy: op_era.tl on failed, return Z=0 @ No, if the compiler generates:
dec Seni4 signify it is now busy Ldd ti
bita #0 operation successful, return Z=1 | me
addd #1
Qut rts .
std tinme
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