Introduction Interrupts provide guarantee on response time. Chris J. Myers Lecture 7: Interrupt Synchronization Chris J. Myers Chris J. Myers Lecture 7: Interrupt Synchronization Chris J. Myers (Lature 7: Interrupts Construct Enclosed Synem Decey) Chris J. Myers (Lature 7: Interrupts Construct Enclosed Synem Decey) Chris J. Myers (Lature 7: Interrupts Construct Enclosed Synem Decey) Chris J. Myers (Lature 7: Interrupts Construct Enclosed Synem Decey) Chris J. Myers (Lature 7: Interrupts Construct Enclosed Synem Decey) Chris J. Myers (Lature 7: Interrupts) Chris J. Myers (Lature 7: Interrupts) Chris J. Myers (Lature 7: Interru		
ECE/CS 5780/6780: Embedded System Design Chris J. Myers Lecture 7: Interrupt Synchronization Interrupts allow response to rare but important events. Periodic interrupts used for data aquisition and control. Interrupts can provide a way to buffer I/O data. Oreal Ware lactors? Interrupts Editors of software execution in response to hardware that is asynchronous with current software. Hardware can be external I/O device or internal event. When hardware needs service, it requests an interrupt. 		Introduction
Chris J. Myers (Lecture 7: Interrupts) ECE/CS 5780/6780: Embedded System Design 1/38 Chris J. Myers (Lecture 7: Interrupts) ECE/CS 5780/6780: Embedded System Design Mat are Interrupts? Shared versus Dedicated Microcomputer An automatic transfer of software execution in response to hardware that is asynchronous with current software. Hardware can be external I/O device or internal event. When hardware needs service, it requests an interrupt. Orlis interrupt events executed thread it	ECE/CS 5780/6780: Embedded System Design Chris J. Myers Lecture 7: Interrupt Synchronization	 Interrupts provide guarantee on response time. Interrupts allow response to rare but important events. Periodic interrupts used for data aquisition and control. Interrupts can provide a way to buffer I/O data.
Chris J. Myers (Lecture 7: Interrupts) ECE/CS 5780/6780: Embedded System Design What are Interrupts? Chris J. Myers (Lecture 7: Interrupts) ECE/CS 5780/6780: Embedded System Design What are Interrupts? Shared versus Dedicated • An automatic transfer of software execution in response to hardware that is asynchronous with current software. • Hardware can be external I/O device or internal event. • When hardware needs service, it requests an interrupt. • Oally interrupt empirica end to be a backgroup and thread		
 What are Interrupts? An automatic transfer of software execution in response to hardware that is asynchronous with current software. Hardware can be external I/O device or internal event. When hardware needs service, it requests an interrupt. Only interrupt convict and an interrupt. 	Chris J. Myers (Lecture 7: Interrupts) ECE/CS 5780/6780; Embedded System Design 1 / 38	Chris J. Myers (Lecture 7: Interrupts) ECE/CS 5780/6780: Embedded System Design 2/3
 An automatic transfer of software execution in response to hardware that is asynchronous with current software. Hardware can be external I/O device or internal event. When hardware needs service, it requests an interrupt. Only interment convicts and thread 	What are Interrupts?	Shared versus Dedicated
 Can's <i>interrupt service routine</i> as a <i>background thread</i>. Thread is terminated with rti instruction. Threads may communicate using <i>FIFO queues</i> and synchronize using <i>semaphores</i>. Threads share global variables while <i>processes</i> do not. Each potential interrupt has separate arm bit. Interrupt enable bit, I, found in condition code. 	<list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item>	<complex-block><complex-block><complex-block> Microcomputer Request Arm 1/0 Device Enable Request Micro Device Request Micro Device Microcomputer Request Micro Device Request Micro Device Micro Device Microcomputer Request Status Micro Device Micro Device</complex-block></complex-block></complex-block>
Shared versus Dedicated	Sharad various Dadiastad	Interrupt Service Doutines (ISD)
 Wire- or negative-logic interrupt requests: Can add additional I/O devices w/o redesigning H/W. No limit to number of interrupting I/O devices. Microcomputer hardware is simple. Dedicated edge-triggered interrupt requests: Software is simpler, easier to debug, and faster. Less coupling between software modules. Easier to implement priority. 	 Wire- or negative-logic interrrupt requests: Can add additional I/O devices w/o redesigning H/W. No limit to number of interrupting I/O devices. Microcomputer hardware is simple. Dedicated edge-triggered interrupt requests: Software is simpler, easier to debug, and faster. Less coupling between software modules. Easier to implement priority. 	 Software executed when hardware requests an interrupt. <i>Polled interrupts</i> - one large ISR handles all requests. <i>Vectored interrupts</i> - many small, specific ISRs. When the device is armed, the <i>I</i> bit is zero, and an interrupt is requested, it is serviced as follows: Execution of main program is suspended. All registers are pushed onto the stack. The ISR, or background thread, is executed. The ISR executes <i>xti</i> instruction. All registers are restored from the stack. The main program is resumed.

Nonrentrant Subroutine in Assembly
<pre>Second rmb 2 Temporary global variable * Input parameters: Reg X,Y contain 2 16 bit numbers * Output parameter: Reg X is returned with the average Ave sty Second Save the second number in memory xgdx</pre>
Chris J. Myers (Lecture 7: Interrupts) ECE/CS 5780/6780: Embedded System Design 15 / 38
Nonrentrant Subroutine in C
<pre>int Result; /* Temporary global variable */ int Ave(int x,y){ Result = y; /* Save second number */ Result = (Result + x) >> 1; /* (lst+2nd)/2 */ return(Result);} Main C=Ave(a,b); C=Ave(a,b); Prove the result = (Result + x) >> 1; Result = (Result + x) >> 1; Result = (Result + x) >> 1; Prove the result = (Result + x) = (Result</pre>
Consult Wyers (Lecture /: Interrupts) ECE/CS 5/80/6/80: Embedded System Design 18/38
 Software reads global variable, producing a copy of the data. Software modifies the copy. Software writes modification back into global variable. unsigned int Money; /* bank balance (global) */ /* add 100 dollars */ void more(void){ Money += 100;} Money rmb 2 bank balance implemented as a global * add 100 dollars to the account more ldd Money where Money is a global variable addd #100 std Money Money=Money+100 rts

Write Followed by Read Example	Nonatomic Multistep Write
 Software writes to a global variable. Software reads from global variable expecting original data. int temp; /* global temporary */ /* calculate x+2*d */ int mac(int x, int d){ temp = x+2*d; /* write to a global variable */ return (temp);} /* read from global */ temp rmb 2 global temporary result * calculate RegX=RegX+2*RegD mac stx temp Save X so that it can be added lsld RegD=2*RegD addd temp RegD=RegX+2*RegD rts 	 Software write part of new value to a global variable. Software write rest of new value to a global variable. int info[2]; /* 32-bit global */ void set(int x, int y){ info[0]=x; info[1]=y;} Info rmb 4 32-bit data implemented as a global * set the variable using RegX and RegY set stx Info Info is a 32 bit global variable sty Info+2 rts
Chris J. Myers (Lecture 7: Interrupts) ECE/CS 5780/6780: Embedded System Design 24/38	Chris J. Myers (Lecture 7: Interrupts) ECE/CS 5780/6780: Embedded System Design 26 / 38
Make a Subroutine Reentrant Using a Stack Variable	A Nonreentrant Subroutine
<pre>* Input parameters: Reg X,Y contain 2 16 bit numbers * Output parameter: Reg X is returned with the average Ave pshy Save the second number on the stack tsy Reg Y points the Second number xgdx Reg D contains first number addd 0,Y Reg D=First+Second lsrd (First+Second)/2 adcb #0 round up? adca #0 xgdx puly rts</pre>	<pre>Status rmb 1 0 means empty, -1 otherwise Message rmb 1 data to be communicated * Input param: Reg B contains an 8 bit message * Output param: Reg CC (C bit) is 1 for OK, 0 for busy Send tst Status check if mailbox is empty bmi Busy full, can't store, so return C=0 stab Message store dec Status signify now contains a message sec stored OK, so return with C=1 Busy rts</pre>
Chris J. Myers (Lecture 7: Interrupts) ECE/CS 5780/6780: Embedded System Design 28 / 38	Chris J. Myers (Lecture 7: Interrupts) ECE/CS 5780/6780: Embedded System Design 30/38
Make a Subroutine Reentrant by Disabling Interrupts	Disabling Interrupts in C
<pre>Status rmb 1 0 means empty, -1 otherwise Message rmb 1 data to be communicated * Input param: Reg B contains an 8 bit message * Output param: Reg CC (C bit) is 1 for OK, 0 for busy error Send clc Initialize carry=0 tpa save current interrupt state psha sei disable interrupts when vulnerable tst Status check if mailbox is empty bmi Busy full, so return with C=0 staa Message store dec Status signify it is now contains a message pula oraa #1 OK, so return with C=1 psha Busy pula restore interrupt status tap rts</pre>	<pre>int Empty; /* -1 means empty, 0 means it contains something * int Message; /* data to be communicated */ int SEND(int data){ int OK; char SaveSP; asm tpa asm staa SaveSP asm sei</pre>
Chris J. Myers (Lecture 7: Interrupts) ECE/CS 5780/6780: Embedded System Design 32 / 38	Chris J. Myers (Lecture 7: Interrupts) ECE/CS 5780/6780: Embedded System Design 34 / 38

A Binary Semaphore	Reentrant or Not?
<pre>* Global parameter: Semi4 is the mem loc to test and set * If the location is zero, it will set it (make it -1) * and return Reg CC (Z bit) is 1 for OK * If location is nonzero, return Reg CC (Z bit) = 0 Semi4 fcb 0 Semaphore is initially free Tas tst Semi4 check if already set bne Out busy, operation failed, return Z=0 dec Semi4 signify it is now busy bita #0 operation successful, return Z=1 Out rts</pre>	 Must be able to recognize potential sources of bugs due to nonreentrant code in high-level languagues. Is the following atomic? time++; Yes, if the compiler generates: inc time No, if the compiler generates: ldd time addd #1 std time
Chris J. Myers (Lecture 7: Interrupts) ECE/CS 5780/6780: Embedded System Design 36	38 Chris J. Myers (Lecture 7: Interrupts) ECE/CS 5780/6780: Embedded System Design 38 / 38