
ECE/CS 5780/6780: Embedded System Design

Chris J. Myers

Lecture 4: Software Design

Chris J. Myers (Lecture 4: Software Design) ECE/CS 5780/6780: Embedded System Design 1 / 98

Introduction

Success of an embedded system project depends on both hardware and
software.

Real-time embedded systems are usually not very large, but are often
quite complex.

Needed software skills include: modular design, layered architecture,
abstraction, and verification.

Writing good software is an art that must be developed and cannot be
added on at the end of a project.

Good software with average hardware will always outperform average
software with good hardware.

Chris J. Myers (Lecture 4: Software Design) ECE/CS 5780/6780: Embedded System Design 2 / 98

Golden Rule of Software Development

Write software for others as you wish they would write for you.

Quantitative performance measurements:
Dynamic efficiency - number of CPU cycles required.
Static efficiency - number of memory bytes required.
Are given design constraints satisfied?

Qualitative performance measurements:
Easy to debug (fix mistakes)
Easy to verify (prove correctness)
Easy to maintain (add features)

Sacrificing clarity in favor of execution speed often results in software that
runs fast but doesn’t work and can’t be changed.

You are a good programmer if (1) you can understand your own code 12
months later and (2) others can change your code.

Chris J. Myers (Lecture 4: Software Design) ECE/CS 5780/6780: Embedded System Design 3 / 98

Software Maintenance

Maintenance is the most important phase of development.

Includes fixing bugs, adding features, optimization, porting to new
hardware, configuring for new situations.

Documentation should assist software maintenance.

Most important documentation is in the code itself.

Chris J. Myers (Lecture 4: Software Design) ECE/CS 5780/6780: Embedded System Design 4 / 98

Good Comments

Comments that simply restate the operation do not add to the overall
understanding.

BAD X=X+4; /* add 4 to X */
Flag=0; /* set Flag=0 */

GOOD X=X+4; /* 4 is added to correct for the
offset (mV) in the transducer */

Flag=0; /* means no key has been typed */
When variable defined, should explain how used.

int SetPoint; /* Desired temperature, 16-bit signed
value with resolution of 0.5C,
a range of -55C to +125C,
a value of 25 means 12.5C */

When constant defined, should explain what it means.
V=999; /* 999mV is the maximum possible voltage */

Chris J. Myers (Lecture 4: Software Design) ECE/CS 5780/6780: Embedded System Design 5 / 98

Assembly Language Style Issues

Begins and ends with a line of *s

States the purpose of the function

Gives the I/O parameters, what they mean, and how they are passed

Different phases of code delineated by a line of -’s

Chris J. Myers (Lecture 4: Software Design) ECE/CS 5780/6780: Embedded System Design 6 / 98

Client and Colleague Comments

When a subroutine is defined, two types of comments needed:
Client comments explain how the function is to be used, how to pass
parameters, and what errors and results are possible. (in header or start of
subroutine)
Colleague comments explain how the function works (within the body of
the function).

Chris J. Myers (Lecture 4: Software Design) ECE/CS 5780/6780: Embedded System Design 7 / 98

More on Client Comments

Purpose of the module

Input parameters
How passed (call by value, call by reference)
Appropriate range
Format (8 bit/16 bit, signed/unsigned, etc.)

Output parameters
How passed (return by value, return by reference)
Format (8 bit/16 bit, signed/unsigned, etc.)

Example inputs and outputs if appropriate

Error conditions

Example calling sequence

Local variables and their significance

Chris J. Myers (Lecture 4: Software Design) ECE/CS 5780/6780: Embedded System Design 8 / 98

Self-Documenting Code

Software written in a simple and obvious way such that its purpose and
function are self-apparent.

Use descriptive names for var, const, and functions.

Formulate and organize into well-defined subproblems.

Liberal use of #define and equ statements.

Chris J. Myers (Lecture 4: Software Design) ECE/CS 5780/6780: Embedded System Design 9 / 98

Use of #define

// An inappropriate use of #define.
#define size 10
short data[size];
void initialize(void){ short j

for(j=0;j<10;j++)
data[j]=0;

};
// An appropriate use of #define.
#define size 10
short data[size];
void initialize(void){ short j

for(j=0;j<size;j++)
data[j]=0;

};

Chris J. Myers (Lecture 4: Software Design) ECE/CS 5780/6780: Embedded System Design 11 / 98

Naming Convention

Names should have meaning.

Avoid ambiguities.

Give hints about the type.

Use the same name to refer to the same type of object.

Use a prefix to identify public objects.

Use upper and lower case to specify the scope of an object.

Use capitalization to delimit words.

Chris J. Myers (Lecture 4: Software Design) ECE/CS 5780/6780: Embedded System Design 12 / 98

Naming Convention Examples

Type Example
constants PORTA
local variables maxTemperature
private global variables MaxTemperature
public global variables DAC_MaxVoltage
private function ClearTime
public function Timer_ClearTime

Chris J. Myers (Lecture 4: Software Design) ECE/CS 5780/6780: Embedded System Design 13 / 98

Abstraction

Software abstraction is when we define a complex problem with a set of
basic abstract principles.

Advantages of abstraction:
Faster to develop because some building blocks exist,
Easier to debug (prove correct) because it separates conceptual issues
from implementation, and
Easier to change.

Finite state machine (FSM) is a good abstraction.

Consists of inputs, outputs, states, and state transitions.

FSM software implementation is easy to understand, debug, and modify.

Chris J. Myers (Lecture 4: Software Design) ECE/CS 5780/6780: Embedded System Design 14 / 98

6812 Timer Details

TCNT is a 16-bit unsigned counter that increments at a rate determined by
PR2, PR1, and PR0 in the TSCR2 register.

PR2 PR1 PR0 Divide by TCNT Period TCNT Frequency
0 0 0 1 250ns 4 MHz
0 0 1 2 500ns 2 MHz
0 1 0 4 1µs 1 MHz
0 1 1 8 2µs 500 kHz
1 0 0 16 4µs 250 kHz
1 0 1 32 8µs 125 kHz
1 1 0 64 16µs 62.5 kHz
1 1 1 128 32µs 31.25 kHz

When TCNT overflows, TOF flag in the TFLG2 register is set.

Overflow causes an interrupt if the TOI bit in TSCR2 is set.

Chris J. Myers (Lecture 4: Software Design) ECE/CS 5780/6780: Embedded System Design 15 / 98

Time Delay

void Timer_Init(void){
TSCR1 = 0x80; // enable TCNT
TSCR2 = 0x04; // 1us TCNT

}
void Timer_Wait(unsigned short cycles){
unsigned short startTime = TCNT;
while((TCNT-startTime) <= cycles){}

}
// 10000us equals 10ms
void Timer_Wait10ms(unsigned short delay){
unsigned short i;
for(i=0; i<delay; i++){

Timer_Wait(10000); // wait 10ms
}

}

Chris J. Myers (Lecture 4: Software Design) ECE/CS 5780/6780: Embedded System Design 17 / 98

Traffic Light Interface

Chris J. Myers (Lecture 4: Software Design) ECE/CS 5780/6780: Embedded System Design 18 / 98

Traffic Light Interface

Chris J. Myers (Lecture 4: Software Design) ECE/CS 5780/6780: Embedded System Design 19 / 98

C Implementation of a Moore FSM

const struct State {
unsigned char Out;
unsigned short Time;
const struct State *Next[4];};

typedef const struct State STyp;
#define goN &FSM[0]
#define waitN &FSM[1]
#define goE &FSM[2]
#define waitE &FSM[3]
STyp FSM[4]={
{0x21,3000,{goN,waitN,goN,waitN}},
{0x22, 500,{goE,goE,goE,goE}},
{0x0C,3000,{goE,goE,waitE,waitE}},
{0x14, 500,{goN,goN,goN,goN}}};

Chris J. Myers (Lecture 4: Software Design) ECE/CS 5780/6780: Embedded System Design 21 / 98

C Implementation of a Moore FSM (cont)

void main(void){
STyp *Pt; // state pointer
unsigned char Input;
Timer_Init();
DDRB = 0xFF;
DDRA &= ~0x03;
Pt = goN;
while(1){

PORTB = Pt->Out;
Timer_Wait10ms(Pt->Time);
Input = PORTA&0x03;
Pt = Pt->Next[Input];

}
}

Chris J. Myers (Lecture 4: Software Design) ECE/CS 5780/6780: Embedded System Design 23 / 98

Assembly Implementation of a Moore FSM

org $4000 ; Put in ROM
OUT equ 0 ;offset for output
WAIT equ 1 ;offset for time
NEXT equ 3 ;offset for next state
goN fcb $21 ;North green, East red

fdb 3000 ;30sec
fdb goN,waitN,goN,waitN

waitN fcb $22 ;North yellow, East red
fdb 500 ;5sec
fdb goE,goE,goE,goE

goE fcb $0C ;North red, East green
fdb 3000 ;30 sec
fdb goE,goE,waitE,waitE

waitE fcb $14 ;North red, East yellow
fdb 500 ;5sec
fdb goN,goN,goN,goN

Chris J. Myers (Lecture 4: Software Design) ECE/CS 5780/6780: Embedded System Design 25 / 98

Assembly Implementation of a Moore FSM (cont)

Main lds #$4000 ;stack init
bsr Timer_Init ;enable TCNT
movb #$FF,DDRB ;PB5-0 are lights
movb #$00,DDRA ;PA1-0 are sensors
ldx #goN ;State pointer

Chris J. Myers (Lecture 4: Software Design) ECE/CS 5780/6780: Embedded System Design 27 / 98

Assembly Implementation of a Moore FSM (cont)

FSM ldab OUT,x
stab PORTB ;Output
ldy WAIT,x ;Time delay
bsr Timer_Wait10ms
ldab PORTA ;Read input
andb #$03 ;just bits 1,0
lslb ;2 bytes/address
abx ;add 0,2,4,6
ldx NEXT,x ;Next state
bra FSM
org $FFFE
fdb Main ;reset vector

Chris J. Myers (Lecture 4: Software Design) ECE/CS 5780/6780: Embedded System Design 29 / 98

Robot Interface

Chris J. Myers (Lecture 4: Software Design) ECE/CS 5780/6780: Embedded System Design 30 / 98

Mealy FSM for a Robot Controller

Chris J. Myers (Lecture 4: Software Design) ECE/CS 5780/6780: Embedded System Design 31 / 98

C Implementation of a Mealy FSM

// outputs defined as functions
const struct State{
void (*CmdPt)[4](void); // outputs
const struct State *Next[4]; // Next

};
typedef const struct State StateType;
#define Standing &fsm[0]
#define Sitting &fsm[1]
#define Sleeping &fsm[2]
void None(void){};
void SitDown(void){
PORTB=0x08; PORTB=0;} // pulse on PB3

void StandUp(void){
PORTB=0x04; PORTB=0;} // pulse on PB2

void LieDown(void){
PORTB=0x02; PORTB=0;} // pulse on PB1

void SitUp(void) {
PORTB=0x01; PORTB=0;} // pulse on PB0

Chris J. Myers (Lecture 4: Software Design) ECE/CS 5780/6780: Embedded System Design 33 / 98

C Implementation of a Mealy FSM

StateType FSM[3]={
{{&None,&SitDown,&None,&None}, //Standing
{Standing,Sitting,Standing,Standing}},

{{&None,&LieDown,&None,&StandUp},//Sitting
{Sitting,Sleeping,Sitting,Standing }},

{{&None,&None,&SitUp,&SitUp}, //Sleeping
{Sleeping,Sleeping,Sitting,Sitting}}};

void main(void){
StatePtr *Pt; // Current State
unsigned char Input;
DDRB = 0xFF; // Output to robot
DDRA &= ~0x03; // Input from sensor
Pt = Standing; // Initial State
while(1){
Input = PORTA&0x03; // Input=0-3
(*Pt->CmdPt[Input])(); // function
Pt = Pt->Next[Input]; // next state

}}

Chris J. Myers (Lecture 4: Software Design) ECE/CS 5780/6780: Embedded System Design 35 / 98

Modular Software Development

Modular programming breaks software problems in distinct and
independent modules.

Modular software development provides:
Functional abstraction to allow software reuse.
Complexity abstraction (i.e., divide and conquer).
Portability.

A program module is a self-contained software task with clear entry and
exit points.

Can be a collection of subroutines or functions that in their entirety
perform a well-defined set of tasks.

Chris J. Myers (Lecture 4: Software Design) ECE/CS 5780/6780: Embedded System Design 36 / 98

Software Modules

Chris J. Myers (Lecture 4: Software Design) ECE/CS 5780/6780: Embedded System Design 37 / 98

Global Variables

Global variable is information shared by more than one module.

Use globals to pass data between main thread and interrupt thread.

There information is permanent and not deallocated.

Can use absolute addressing to access their information.

I/O ports and control registers are considered global variables.

Chris J. Myers (Lecture 4: Software Design) ECE/CS 5780/6780: Embedded System Design 38 / 98

Local Variables

Local variable is temporary information used by only one module.

Typically allocated, used, and deallocated.

Information is not permanent.

Stored on stack or in registers because:
Dynamic allocation/release allows for memory reuse.
Limited scope provides data protection.
Since interrupt saves registers and uses own stack, code is reentrant.
Code is relocatable.
Number of variables only limited by stack size.

Chris J. Myers (Lecture 4: Software Design) ECE/CS 5780/6780: Embedded System Design 39 / 98

Two Local 16-bit Variables: Approach One

;unsigned short calc(void){ unsigned short sum,n;
; sum = 0;
; for(n=100;n>0;n--){
; sum=sum+n;
; }
; return sum;
;}
; *****binding phase***********
sum set 0 16-bit number
n set 2 16-bit number
; *******allocation phase *****
calc pshx ;save old Reg X

pshx ;allocate n
pshx ;allocate sum
tsx ;stack frame pointer

Chris J. Myers (Lecture 4: Software Design) ECE/CS 5780/6780: Embedded System Design 41 / 98

Stack

Chris J. Myers (Lecture 4: Software Design) ECE/CS 5780/6780: Embedded System Design 42 / 98

Stack After tsx Instruction

Chris J. Myers (Lecture 4: Software Design) ECE/CS 5780/6780: Embedded System Design 43 / 98

Two Local 16-bit Variables: Approach One (cont)

; ********access phase ********
ldd #0
std sum,x ;sum=0
ldd #100
std n,x ;n=100

loop ldd n,x ;RegD=n
addd sum,x ;RegD=sum+n
std sum,x ;sum=sum+n
ldd n,x ;n=n-1
subd #1
std n,x
bne loop

; ******deallocation phase ***
pulx ;DIFFERENT THAN BOOK
pulx ;DIFFERENT THAN BOOK
pulx ;restore old X
rts ;RegD=sum ; 6812 only

Chris J. Myers (Lecture 4: Software Design) ECE/CS 5780/6780: Embedded System Design 45 / 98

Two Local 16-bit Variables: Approach Two

; *****binding phase************
sum set -4 16-bit number
n set -2 16-bit number
; *******allocation phase ******
calc pshx ;save old Reg X

tsx ;stack frame pointer
leas -4,sp ;allocate n,sum

Chris J. Myers (Lecture 4: Software Design) ECE/CS 5780/6780: Embedded System Design 47 / 98

Two Local 16-bit Variables: Approach Two (cont)

; ********access phase *********
movw #0,sum,x ;sum=0
movw #100,n,x ;n=100

loop ldd n,x ;RegD=I
addd sum,x ;RegD=sum+n
std sum,x ;sum=sum+n
ldd n,x ;n=n-1
subd #1
std n,x
bne loop

; *****deallocation phase *****
txs ;deallocation
pulx ;restore old X
rts ;RegD=sum

Chris J. Myers (Lecture 4: Software Design) ECE/CS 5780/6780: Embedded System Design 49 / 98

Stack Contents

movb ss,1,-sp ;push parameter onto stack
jsr sqrt ;call sqrt subroutine
ins
stab tt ;save result

Chris J. Myers (Lecture 4: Software Design) ECE/CS 5780/6780: Embedded System Design 51 / 98

Example Module in Assembly

Chris J. Myers (Lecture 4: Software Design) ECE/CS 5780/6780: Embedded System Design 52 / 98

Example Module in C

Chris J. Myers (Lecture 4: Software Design) ECE/CS 5780/6780: Embedded System Design 53 / 98

Returning Multiple Parameters in Assembly 1

module: ldaa #1
ldab #2
ldx #3
ldy #4
rts ;returns 4 parameters in 4 registers

********calling sequence******
jsr module

* Reg A,B,X,Y have four results

Chris J. Myers (Lecture 4: Software Design) ECE/CS 5780/6780: Embedded System Design 55 / 98

Returning Multiple Parameters in Assembly 2

data1 equ 2
data2 equ 3
module movb #1,data1,sp ;1st parameter onto stack
module movb #2,data2,sp ;2nd parameter onto stack

rts
*******calling sequence******

leas -2,sp ;allocate space for results
jsr module
pula ;1st parameter from stack
staa first
pula ;2nd parameter from stack
staa second

Chris J. Myers (Lecture 4: Software Design) ECE/CS 5780/6780: Embedded System Design 57 / 98

More Issues in Modular Software

All exit points in an assembly routine must balance the stack and return
parameters in the same way.

Performing unnecessary I/O in a subroutine makes it harder to reuse at a
later time.

I/O devices must be considered global, and the number of modules that
can access them should be restricted.

Information hiding means to separate mechanism from policies (i.e.,
hiding the inner workings from the user).

Chris J. Myers (Lecture 4: Software Design) ECE/CS 5780/6780: Embedded System Design 58 / 98

Dividing a Software Task into Modules

Coupling is influence one module’s behavior has on another, and is
typically caused by shared variables.

When dividing into modules have these goals:
Make the software project easier to understand.
Increase the number of modules.
Decrease the interdependency (minimize coupling).

Develop and connect modules in a hierarchical manner.
Top-down - “Write no software until every detail is specified.”
Bottom-up - “one brick at a time.”

Chris J. Myers (Lecture 4: Software Design) ECE/CS 5780/6780: Embedded System Design 59 / 98

Simple Calling Graph

Chris J. Myers (Lecture 4: Software Design) ECE/CS 5780/6780: Embedded System Design 60 / 98

Rules for Modular Software in Assembly

The single entry point is at the top.

The single exit point is at the bottom.

Write structured programs.

The registers must be saved.

Use high-level languages when possible.

Minimize conditional branching.

Chris J. Myers (Lecture 4: Software Design) ECE/CS 5780/6780: Embedded System Design 61 / 98

Layered Software Systems

Software undergoes many changes as better hardware or algorithms
become available.

Layered software facilitates these changes.

The top layer is the main program.

The lowest layer, the hardware abstraction layer, includes all modules that
access the I/O hardware.

Each layer can only call modules in its layer or lower.

A gate (also known as an application program interface (API)) is used to
call from a higher-to a lower layer.

The main advantage is that one layer can be replaced without affecting
the other layers.

Chris J. Myers (Lecture 4: Software Design) ECE/CS 5780/6780: Embedded System Design 62 / 98

Layered Approach for a Parallel Port

Chris J. Myers (Lecture 4: Software Design) ECE/CS 5780/6780: Embedded System Design 63 / 98

Layered Software Rules

A module may make simple call to modules in same layer.

A module may call a lower-level module only using gate.

A module may not directly access any function or variable in another layer
(w/o going through a gate).

A module may not call a higher-level routine.

A module may not modify the vector address of another level’s handler(s).

(Optional) A module may not call farther than one level.

(Optional) All I/O hardware access is in lowest level.

(Optional) All user interface I/O is in highest level unless it is the purpose
of the module to do such I/O.

Chris J. Myers (Lecture 4: Software Design) ECE/CS 5780/6780: Embedded System Design 64 / 98

Basic Concepts of Device Drivers

A device driver consists of software routines that provide the functionality
of an I/O device.

Includes interface routines and low-level routines for configuring the
device and performing actual I/O.

Separation of policy and mechanism is very important.

Interface may include routines to open, read, and write files, but should
not care what device the files reside on.

Require a good hardware abstraction layer (HAL).

Chris J. Myers (Lecture 4: Software Design) ECE/CS 5780/6780: Embedded System Design 65 / 98

Low-Level Device Drivers

Low-level device drivers normally found in basic I/O system (BIOS) ROM
and have direct access to hardware.

Good low-level device drivers allow:
New hardware to be installed.
New algorithms to be implemented.

Synchronization with gadfly, interrupts, or DMA.
Error detection and recovery methods.
Enhancements like automatic data compression.

Higher-level features to be built on top of the low level
Operating system features like blocking semaphores.
Additional features like function keys.

Chris J. Myers (Lecture 4: Software Design) ECE/CS 5780/6780: Embedded System Design 66 / 98

Device Driver Software

Data structures: global (private)
bool OpenFlag //True if SCI has been initialized.

Initialization routines (public, called by client once)
void SCI_Init(unsigned short baudRate); //Initialize SCI

Regular I/O calls (public, called by client to perform I/O)
char SCI_InChar(void); //Wait for new SCI input character
char SCI_OutChar(void); //Transmit character out SCI port

Support software (private)
void SCIHandler(void) //SCI interrupt handler

Chris J. Myers (Lecture 4: Software Design) ECE/CS 5780/6780: Embedded System Design 67 / 98

Encapsulated Objects Using Standard C

Choose function names to reflect the module in which they are defined.

Example:
LCD_Clear() (C)
LCD.clear() (C++)

Only put public function declarations in header files.

Example (Timer.H):
void Timer_Init(void);
void Timer_Wait10ms(unsigned short delay);
Since the function wait(unsigned short cycles) is not in the header
file, it is a private function.

Chris J. Myers (Lecture 4: Software Design) ECE/CS 5780/6780: Embedded System Design 68 / 98

Threads

Chris J. Myers (Lecture 4: Software Design) ECE/CS 5780/6780: Embedded System Design 69 / 98

Interrupts and Threads

Chris J. Myers (Lecture 4: Software Design) ECE/CS 5780/6780: Embedded System Design 70 / 98

Recursion

A program segment is reentrant if it can be concurrently executed by two
(or more) threads.

A recursive program is one that calls itself.

When we draw a calling graph, a circle is formed.

Recursive subroutines must be reentrant.

Often easy to prove correct and use less permanent memory, but use
more stack space and are slower.

void OutUDec(unsigned int number){
if (number>=10){

OutUDec(number/10);
OutUDec(number%10); }

else
OutChar(number+’0’); }

Chris J. Myers (Lecture 4: Software Design) ECE/CS 5780/6780: Embedded System Design 72 / 98

Debugging Tools

Chris J. Myers (Lecture 4: Software Design) ECE/CS 5780/6780: Embedded System Design 73 / 98

Debugging Theory

The debugging process is defined as testing, stabilizing, localizing, and
correcting errors.

Research in program monitoring and debugging has not kept pace with
developments in other areas of software.

In embedded systems, debugging is further complicated by concurrency
and real-time requirements.

Although monitoring and debugging tools exist, many still use manual
methods such as print statements.

Print statements are highly intrusive especially in a real-time system
because they can take too much time.

Chris J. Myers (Lecture 4: Software Design) ECE/CS 5780/6780: Embedded System Design 74 / 98

Debugging Instruments

A debugging instrument is code that is added to a program for the
purpose of debugging.

A print statement is a common example.

When adding print statements, use one of the following:
Place all print statements in a unique column.
Define instruments with specific pattern in their name.
Define all instruments to test a run-time global flag.
Use conditional compilation (assembly) to turn on/off.

Chris J. Myers (Lecture 4: Software Design) ECE/CS 5780/6780: Embedded System Design 75 / 98

Functional (Static) Debugging

Functional debugging is verification of I/O parameters.

Inputs are supplied, system is run, outputs are checked.

There exist many functional debugging methods:
Single stepping or tracing.
Breakpoints without filtering.
Conditional breakpoints.
Instrumentation: print statements.
Instrumentation: dump into array without filtering.
Instrumentation: dump into array with filtering.
Monitor using fast displays.

Chris J. Myers (Lecture 4: Software Design) ECE/CS 5780/6780: Embedded System Design 76 / 98

Instrumentation Dump Without Filtering

// global variables in RAM
#define size 20
unsigned char buffer[size][2];
unsigned int cnt=0;
// dump happy and sad
void Save(void){
if(cnt<size){

buffer[cnt][0] = happy;
buffer[cnt][1] = sad;
cnt++;

}
}

Chris J. Myers (Lecture 4: Software Design) ECE/CS 5780/6780: Embedded System Design 78 / 98

Instrumentation Dump With Filter

// dump happy and sad
void Save(void){
if(sad>100){

if(cnt<size){
buffer[cnt][0] = happy;
buffer[cnt][1] = sad;
cnt++;

}
}

}

Chris J. Myers (Lecture 4: Software Design) ECE/CS 5780/6780: Embedded System Design 80 / 98

An LED Monitor

void Toggle(void){
PORTB ^= 0x40; // flip LED

}

Chris J. Myers (Lecture 4: Software Design) ECE/CS 5780/6780: Embedded System Design 82 / 98

Performance (Dynamic) Debugging

Performance debugging is verification of timing behavior.

System is run and dynamic behaviors of I/O checked.
Count bus cycles using the assembly listing.
Instrumentation: measuring with a counter.

before rmb 2 ;TCNT value before the call
elasped rmb 2 ;# of cycles to execute sqrt
movw TCNT,before
movb ss,1,-sp ;push parameter on stack
jsr sqrt ;call sqrt module
ins
stab tt ;save result
ldd TCNT ;TCNT value after the call
subd before
std elasped ;execute time in cycles

Instrumentation: output port.

Chris J. Myers (Lecture 4: Software Design) ECE/CS 5780/6780: Embedded System Design 84 / 98

Instrumentation Output Port

Set bset PORTB,#$40
rts

Clr bclr PORTB,#$40
rts

loop jsr Set
jsr Calculate ; function under test
jsr Clr
bra loop

Chris J. Myers (Lecture 4: Software Design) ECE/CS 5780/6780: Embedded System Design 86 / 98

Performance (Dynamic) Debugging

; Assembly listing from TExaS of the sqrt subroutine.
$F019 org * ;reset cycle counter
$F019 35 [2](0)sqrt pshy
$F01A B776 [1](2) tsy
$F01C 1B9C [2](3) leas -4,sp ;allocate t,oldt,s16
$F01E C7 [1](5) clrb
$F01F A644 [3](6) ldaa s8,y
$F021 2723 [3](9) beq done
$F023 C610 [1](12) ldab #16
$F025 12 [3](13) mul ;16*s
$F026 6C5C [2](16) std s16,y ;s16=16*s
$F028 18085F20 [4](18) movb #32,t,y ;t=2.0, initial guess
$F02C 18085E03 [4](22) movb #3,cnt,y
$F030 A65F [3](26)next ldaa t,y ;RegA=t
$F032 180E [2](29) tab ;RegB=t
$F034 B705 [1](31) tfr a,x ;RegX=t
$F036 12 [3](32) mul ;RegD=t*t
$F037 E35C [3](35) addd s16,y ;RegD=t*t+16*s
$F039 1810 [12](38) idiv ;RegX=(t*t+16*s)/t
$F03B B754 [1](50) tfr x,d
$F03D 49 [1](51) lsrd ;RegB=((t*t+16*s)/t)/2
$F03E C900 [1](52) adcb #0
$F040 6B5F [2](53) stab t,y
$F042 635E [3](55) dec cnt,y
$F044 26EA [3](58) bne next
$F046 B767 [1](61)done tys
$F048 31 [3](62) puly
$F049 3D [5](65) rts
$F04A 183E [16](70) stop

Chris J. Myers (Lecture 4: Software Design) ECE/CS 5780/6780: Embedded System Design 88 / 98

Empirical Measurement of Dynamic Efficiency

unsigned short before,elasped;
void main(void){

ss=100;
before=TCNT;
tt=sqrt(ss);
elasped=TCNT-before;

}

Chris J. Myers (Lecture 4: Software Design) ECE/CS 5780/6780: Embedded System Design 90 / 98

Another Empirical Measurement of Dynamic Efficiency

void main(void){
DDRB=0xFF; // PB7 is connected to a scope
ss=100;
while(1){
PORTB |= 0x80; // set PB7 high
tt=sqrt(ss);
PORTB &= ~0x80; // clear PB7 low

}
}

Chris J. Myers (Lecture 4: Software Design) ECE/CS 5780/6780: Embedded System Design 92 / 98

Profiling

Profiling collects time history of strategic variables.
Use a software dump to study execution pattern.
Use an output port.

When multiple threads are running can use these techniques to
determine the thread activity.

Chris J. Myers (Lecture 4: Software Design) ECE/CS 5780/6780: Embedded System Design 93 / 98

A Time/Position Profile Dumping into a Data Array

unsigned short time[100];
unsigned short place[100];
unsigned short n;
void profile(unsigned short p){
time[n]=TCNT; // record current time
place[n]=p;
n++; }

unsigned short sqrt(unsigned short s){ unsigned short t,oldt;
profile(0);
t=0; // based on the secant method
if(s>0) {

profile(1);
t=32; // initial guess 2.0
do{

profile(2);
oldt=t; // calculation from the last iteration
t=((t*t+16*s)/t)/2;} // t is closer to the answer

while(t!=oldt);} // converges in 4 or 5 iterations
profile(3);
return t;}

Chris J. Myers (Lecture 4: Software Design) ECE/CS 5780/6780: Embedded System Design 95 / 98

A Time/Position Profile Using Two Output Bits

unsigned int sqrt(unsigned int s){ unsigned int t,oldt;
PORTB=0;
t=0; // based on the secant method
if(s>0) {

PORTB=1;
t=32; // initial guess 2.0
do{

PORTB=2;
oldt=t; // calculation from the last iteration
t=((t*t+16*s)/t)/2;} // t is closer to the answer

while(t!=oldt);} // converges in 4 or 5 iterations
PORTB=3;
return t;}

Chris J. Myers (Lecture 4: Software Design) ECE/CS 5780/6780: Embedded System Design 97 / 98

The Power of 10: Rules for Developing Safety-Critical Code
Gerald Holzmann / NASA/ JPL Laboratory for Reliable Software

1 Do not use goto, setjmp, longjmp, direct or indirect recursion.

2 Give all loops a fixed upper bound.

3 Do not use dynamic memory allocation after initialization.

4 No function should be larger than can fit on a sheet of paper.

5 There should be at least two assertions per function.

6 Declare all data objects at smallest possible level of scope.

7 Each calling function must check return value of nonvoid functions, and
each called function should check validity of all parameters.

8 Use of preprocessor should be restricted to inclusion of header files and
simple macro definitions.

9 No more than one level of pointer dereferencing and shouldn’t be hidden.

10 All code must compile with no warnings.

Chris J. Myers (Lecture 4: Software Design) ECE/CS 5780/6780: Embedded System Design 98 / 98

