Introduction

@ Success of an embedded system project depends on both hardware and

ECE/CS 5780/6780: Embedded System Design software.
@ Real-time embedded systems are usually not very large, but are often

quite complex.

Chris J. Myers @ Needed software skills include: modular design, layered architecture,

Lecture 4: Software Design abstraction, and verification.

@ Writing good software is an art that must be developed and cannot be
added on at the end of a project.

@ Good software with average hardware will always outperform average
software with good hardware.
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Golden Rule of Software Development Software Maintenance

Write software for others as you wish they would write for you.

@ Quantitative performance measurements:
@ Dynamic efficiency - number of CPU cycles required. @ Maintenance is the most important phase of development.
o Static efficiency - number of memory bytes required. @ Includes fixing bugs, adding features, optimization, porting to new

@ Are given design constraints satisfied? hardware, configuring for new situations.
@ Qualitative performance measurements:

@ Easy to debug (fix mistakes) . L .
@ Easy to verify (prove correctness) @ Most important documentation is in the code itself.

@ Documentation should assist software maintenance.

@ Easy to maintain (add features)
@ Sacrificing clarity in favor of execution speed often results in software that
runs fast but doesn’t work and can’t be changed.
@ You are a good programmer if (1) you can understand your own code 12
months later and (2) others can change your code.

Chris J. Myers (Lecture 4: Software Design) ECE/CS 5780/6780: Embedded System Design 3/98 Chris J. Myers (Lecture 4: Software Design) ECE/CS 5780/6780: Embedded System Design 4/98

@ Comments that simply restate the operation do not add to the overall
understanding.
BAD  X=X+4; [* add 4 to X */
Flag=0; /* set Flag=0 */ . ) .
GO X:X9r4; I* 4is adged to correct for the @ Begins and ends with a line of *s

offset (nV) in the transducer */ @ States the purpose of the function
Flag=0; /* nmeans no key has been typed */

@ When variable defined, should explain how used.

int SetPoint; /* Desired tenperature, 16-bit signed
value with resolution of 0.5C,
a range of -55C to +125C,
a val ue of 25 neans 12.5C */
@ When constant defined, should explain what it means.

V=999; /* 999nV is the naxi num possible voltage */

@ Gives the I/O parameters, what they mean, and how they are passed
@ Different phases of code delineated by a line of -'s

Chris J. Myers (Lecture 4: Software Design) ECE/CS 5780/6780: Embedded System Design Chris J. Myers (Lecture 4: Software Design) ECE/CS 5780/6780: Embedded System Design




Client and Colleague Comments More on Client Comments

@ Purpose of the module
@ Input parameters
@ How passed (call by value, call by reference)

@ When a subroutine is defined, two types of comments needed: @ Appropriate range
@ Client comments explain how the function is to be used, how to pass @ Format (8 bit/16 bit, signed/unsigned, etc.)
parameters, and what errors and results are possible. (in header or start of @ Output parameters

subroutine)
@ Colleague comments explain how the function works (within the body of
the function).

@ How passed (return by value, return by reference)
@ Format (8 bit/16 bit, signed/unsigned, etc.)

Example inputs and outputs if appropriate
Error conditions
Example calling sequence

¢ ¢ ¢ ¢

Local variables and their significance
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Self-Documenting Code Use of #def i ne

/1 An inappropriate use of #define.
#define size 10

short data[size];

void initialize(void){ short j

@ Software written in a simple and obvious way such that its purpose and . . .
for(j=0;j<10;]j++)

function are self-apparent.

- . data[j]=0;
@ Use descriptive names for var, const, and functions. }:
@ Formulate and organize into well-defined subproblems. /1 An appropriate use of #define.
@ Liberal use of #def i ne and equ statements. #define size 10

short data[size];
void initialize(void){ short j
for(j=0;j<size;j++)
data[j]=0;
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Naming Convention Naming Convention Examples

@ Names should have meaning.
Type Example

@ Avoid ambiguities. constants PORTA
@ Give hints about the type. local variables maxTemperature
@ Use the same name to refer to the same type of object. private global variables  MaxTemperature
@ Use a prefix to identify public objects. pu.bhc global. variables DAC_MaxVoItage

] ) private function ClearTime
@ Use upper and lower case to specify the scope of an object. public function Timer_ClearTime
@ Use capitalization to delimit words.
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Abstraction 6812 Timer Details

@ TCNT is a 16-bit unsigned counter that increments at a rate determined by

@ Software abstraction is when we define a complex problem with a set of PR2, PR1, and PRO in the TSCR? register.
basic abstract principles. PR2 PR1 PRO Divideby TCNT Period TCNT Frequency
@ Advantages of abstraction: 0 0 0 1 250ns 4 MHz
@ Faster to develop because some building blocks exist, 0 0 1 2 500ns 2 MHz
o Easier to debug (prove correct) because it separates conceptual issues 0 1 0 4 1ps 1 MHz
from implementation, and 0 1 1 8 2Us 500 kHz
@ Easier to change. 1 0 0 16 4us 250 kHz
@ Finite state machine (FSM) is a good abstraction. 1 0 1 32 8Us 125 kHz
@ Consists of inputs, outputs, states, and state transitions. 1 1 0 64 16ps 62.5 kHz
. _ . 1 1 1 128 32 31.25kH
@ FSM software implementation is easy to understand, debug, and modify. HS z

@ When TCNT overflows, TOF flag in the TFL& register is set.
@ Overflow causes an interrupt if the TO bit in TSCR2 is set.
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Time Delay Traffic Light Interface

void Tinmer_Init(void){

TSCR1 = 0x80; // enable TCNT North
- . PA | |- ort

TSCR2 = 0x04; // 1lus TCNT 6811/6812

} PAO<—|

voi d Timer_Wait(unsigned short cycles){ —

unsi gned short startTime = TCNT; PB5 > (® |
whi | e((TCNT-startTime) <= cycles){} PB4 \9, East

} PB3 - G)

/1 10000us equal s 10ms PB2 S—

voi d Ti mer_Wai t 10ns(unsi gned short del ay){ PB1 ||

unsi gned short i; PBO + 44
for(i=0; i<delay; i++){

Ti mer_Wi t(10000); // wait 10ms
}

}
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Traffic Light Interface C Implementation of a Moore FSM

const struct State {
; . unsi gned char Qut;
Nextif input1s 01 or |1 0,01 unsi gned short Ti re;
0, 01 ) const struct State *Next[4];};
00, 10

10 |] = typedef const struct State STyp;
Output #define goN  &FSM 0]

#define waitN &SM 1]

#define goE  &FSM 2]

#define waitE &SM 3]

STyp FSM 4] ={
{0x21, 3000, { goN, wai t N, goN, wai t N} },
{0x22, 500, {goE, goE, goE, goE}},
{0x0C, 3000, { goE, goE, wai t E, wai t E} },
{0x14, 500, {goN, goN, goN, goN} }};

Wail time

Chris J. Myers (Lecture 4: Software Design) ECE/CS 5780/6780: Embedded System Design Chris J. Myers (Lecture 4: Software Design) ECE/CS 5780/6780: Embedded System Design



C Implementation of a Moore FSM (cont) Assembly Implementation of a Moore FSM

org $4000 ; Put in ROM
voi d main(voi d){ QUT  equ O ;offset for output
STyp *Pt; [/ state pointer WAIT equl ;offset for time
unsi gned char Input; NEXT equ 3 ;offset for next state
Tinmer _Init(); goN fcb $21 ;North green, East red
DDRB = OxFF; fdb 3000 ; 30sec
DDRA &= ~0x03; fdb goN waitN, goN waitN
Pt = goN wai tN fcb $22 ;North yellow, East red
whi l e(1){ fdb 500 ;5sec
PORTB = Pt->Qut; fdb goE, goE, goE, goE
Ti mer _Wai t 10ms( Pt - >Ti ne) ; goE  fch $0C ;North red, East green
I nput = PORTA&0x03; fdb 3000 ;30 sec
Pt = Pt->Next[Input]; fdb goE, goE, wai t E, wai t E
} wai tE fch $14 ;North red, East yellow
} fdb 500 ;5sec
fdb goN, goN, goN, goN
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Assembly Implementation of a Moore FSM (cont) Assembly Implementation of a Moore FSM (cont)

FSM [ dab QUT, x
stab PORTB ; Qut put
[dy WAIT,x ; Time del ay
Main | ds #$4000 ;stack init bsr  Tinmer Wit 10ms

bsr Tiner_Init ;enable TCNT |dab PORTA  :Read input
nmovb #$FF, DDRB ; PB5-0 are |ights andb #$03 just bits 1,0
nmovb #$00, DDRA ; PA1-0 are sensors I'slb :2 bytes/ address
ldx #goN ; State pointer abx add 0,2, 4,6

[dx NEXT, x Next state

bra FSM

org S$FFFE

fdb Min ;reset vector
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Robot Interface Mealy FSM for a Robot Controller

Tired/SitDown Tired/LieDown
6811/6812 ::i{') i e Cutlous/None Tired/None
f\n‘nmh.mnnu OK/None UiNows
PB3 OK/Non
PR2 e “:tandmg
PBI
PBO

Anxious/SitUp
Curious/SitUp

Anxious/StandUp
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C Implementation of a Mealy FSM C Implementation of a Mealy FSM

/1 outputs defined as functions
const struct State{
void (*CndPt)[ 4] (void); /'l outputs
const struct State *Next[4]; // Next
¥
typedef const struct State StateType;
#define Standing &f snf0]
#define Sitting &fsni1]
#define Sl eeping &f snf2]
voi d None(voi d){};
voi d SitDown(void){
PORTB=0x08; PORTB=0;} // pulse on PB3
voi d StandUp(void){
PORTB=0x04; PORTB=0;} // pulse on PB2
voi d Li eDown(voi d){
PORTB=0x02; PORTB=0;} // pulse on PBl
void SitUp(void) {
PORTB=0x01; PORTB=0;} // pul se on PBO
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StateType FSM 3] ={

{{&N\one, &Si t Down, &\one, &\one}, // Standi ng
{Standing, Sitting, Standing, Standing}},
{{&None, &Li eDown, &N\one, &St andUp},// Sitting
{Sitting, Sleeping, Sitting, Standing }},
{{&None, &N\one, &Si t Up, &Si t Up}, // Sl eeping
{Sl eeping, Sleeping, Sitting, Sitting}}};

voi d mai n(voi d){

StatePtr *Pt; // Current State
unsi gned char |nput;
DDRB = OxFF; /] Qutput to robot
DDRA &= ~0x03;  // Input from sensor
Pt = Standing; // Initial State
whi | e(1){
I nput = PORTA&0x03; /'l 1nput=0-3

(*Pt->CndPt[Input])(); // function
Pt = Pt->Next[Input]; // next state
1
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Modular Software Development

@ Modular programming breaks software problems in distinct and
independent modules.
@ Modular software development provides:
@ Functional abstraction to allow software reuse.
o Complexity abstraction (i.e., divide and conquer).
@ Portability.
@ A program module is a self-contained software task with clear entry and
exit points.
@ Can be a collection of subroutines or functions that in their entirety
perform a well-defined set of tasks.
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Global Variables

Global variable is information shared by more than one module.
Use globals to pass data between main thread and interrupt thread.
There information is permanent and not deallocated.

Can use absolute addressing to access their information.

¢ & ¢ ¢ ¢

1/0 ports and control registers are considered global variables.

Software Modules

Entry
point

Operations

Calls to other modules
Decision structures
Looping structures e

Exit
point
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Local Variables

@ Local variable is temporary information used by only one module.
@ Typically allocated, used, and deallocated.
@ Information is not permanent.

@ Stored on stack or in registers because:

@ Dynamic allocation/release allows for memory reuse.

@ Limited scope provides data protection.

@ Since interrupt saves registers and uses own stack, code is reentrant.
@ Code is relocatable.

@ Number of variables only limited by stack size.
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;unsi gned short cal c(void){ unsigned short sumn;

;o sum= 0;

; for(n=100; n>0; n--){ Emply stack Stack with 3 elements
; SUMESUMN;

»o )

;return sum 6811 SP——

*****bi ndl ng phase***********
sum set 0 16-bit nunber
n set 2 16-bit nunber
. 6811 SP——>
¥*xxxxxallocation phase ***** ;
calc pshx ;save old Reg X 6812 Sp——-
pshx ;allocate n
pshx ;allocate sum
tsx ;stack frame pointer
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Stack After t SX Instruction Two Local 16-bit Variables: Approach One (cont)

; ********access phase *kkkkkkk
ldd #0
Stack before Stack afler tsy ISLS Zig‘ox » Sume0
std n,x ; n=100
oy | loop Idd n,x ; RegD=n
631151 ™ 6811 X~ addd sumx ; RegD=sumen
6812 SP——> Top Top lsgg sumx ; sumEsumen
n, X ;n=n-1
Next 6812X="| Next fubd 1
std n,x
bne 1 oop
, ******deal | ocati on phase ***
pul x ; DI FFERENT THAN BOOK
pul x ; DI FFERENT THAN BOOK
pul x ;restore old X
rts ; RegD=sum ; 6812 only
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Two Local 16-bit Variables: Approach Two Two Local 16-bit Variables: Approach Two (cont)

********access phase kkhkkkkkkkk
movw #0, sum x ; sun¥0
movw #100, n, x ; n=100

*)\'***bi nd| ng phase************ |00p |dd n,X ,RegD:I
sum set -4 16-bit nunber addd sumx ; RegD=sumn
n set -2 16-bit number std sumx :SumESUMHN
¥rxxxxxgl|ocation phase ****** ldd n,x ‘n=n-1
cal ¢ pshx ;save old Reg X subd #1
t sx ;stack frame pointer std n,x
leas -4,sp ;allocate n,sum bne | oop

**x**xdeal | ocation phase *****
txs ; deal | ocation
pul x crestore old X
rts ; RegD=sum
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Entry point Input parameter
movb ss,1,-sp ;push paraneter onto stack " fmde silohmencc,
jsr sqrt ;call sqrt subroutine Y i e i e o iie
. cnt et -
I nS 316 t 4 ;16 bit 16%s
) s
stab tt ;save result
Stack after Stack after Stack after Stack after Local variables
movb ss,1,-sp jsr sgrt pshy leas -4,sp 167s
tsy feitog, tettal iEveas
Sp—> 516 next 1daa ;Regh=t
cnt
l addd =16,y 6*s
Loty tRegx~ (Lrte16+s) /T
spP—=[  OWd Y —[ Ol St i -2
Y/_RB‘QY_ RegY ;Zzi o iRegBe= ((t*t+16+s) /t) /2
SP—>| Return Return Return S
address address address _ bne mext
SpP—s Ss S8 S8 S8 s
Exit point Output parameter
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Example Module in C Returning Multiple Parameters in Assembly 1

Input parameter

Entry point
l——.unsigned int sqrt (unsigned int 5) { unsigned int t,oldt; nodul e; | daa #1
// calculates t=sqrt(s), 16 bit binary fixed point A= 1/16 | dab #2
t=0; // based on the secant method
PP ' ldx #3
1f (s>0} { .
t=32; // initial guess 2.0 Local variables ldy #4
do{ rts ;returns 4 paraneters in 4 registers
oldt=t; // calculation from the last iteration ********CBJ | ng sequence******
t={(t*t+16*s)/t)/2;} // t is closer to the answer isr nmodul e
while(t!=oldt) ;) // converges in 4 or 5 iterations |
return t;} * Reg A B, X Y have four results
L]

Output parameler Exit point
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Returning Multiple Parameters in Assembly 2 More Issues in Modular Software
datal equ 2
data2 equ 3 @ All exit points in an assembly routine must balance the stack and return
modul e movb #1, datal, sp ; 1st parameter onto stack parameters in the same way.
modul e mt)Vb #2,data2,sp ;2nd parameter onto stack @ Performing unnecessary 1/O in a subroutine makes it harder to reuse at a
rts

) later time.
*xxxxxxcal ling sequence******

. @ 1/O devices must be considered global, and the number of modules that
leas -2,sp ;allocate space for results

can access them should be restricted.

jsr modul e
pula ;1st parameter from stack @ Information hiding means to separate mechanism from policies (i.e.,
staa first hiding the inner workings from the user).

pula ;2nd paraneter from stack
staa second
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Dividing a Software Task into Modules

@ Coupling is influence one module’s behavior has on another, and is
typically caused by shared variables.
@ When dividing into modules have these goals:
@ Make the software project easier to understand.
@ Increase the number of modules.
o Decrease the interdependency (minimize coupling).
@ Develop and connect modules in a hierarchical manner.

@ Top-down - “Write no software until every detail is specified.”
@ Bottom-up - “one brick at a time.”
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Simple Calling Graph

void main (void)
SCI_Init();
for(;:) {
S8CI_OutUDec (n); n++;

{unsigned short n;

SCI Module

void SCI_QutUDec(
unsigned short n){
if(n >= 10){
SCI_OutUDec(n/10);
n = n¥10;

//19200 bps
void SCI_Init (void){
SCIBDH = 0;

SCIEDL =
SCICR1 = 0;
SCICR2 =

SCI_OutChar(n+'0*);

void SCI_OutChar (char data){
while((SCISR1 & TDRE) == 0){};
SCIDRL = data;

Y

\
SCI Hardware
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Rules for Modular Software in Assembly

The single entry point is at the top.

The single exit point is at the bottom.
Write structured programs.

The registers must be saved.

Use high-level languages when possible.

¢ ¢ ¢ ¢ ¢ ¢

Minimize conditional branching.
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Layered Software Systems

@ Software undergoes many changes as better hardware or algorithms
become available.

@ Layered software facilitates these changes.
@ The top layer is the main program.

@ The lowest layer, the hardware abstraction layer, includes all modules that
access the 1/0 hardware.

@ Each layer can only call modules in its layer or lower.

@ A gate (also known as an application program interface (API)) is used to
call from a higher-to a lower layer.

@ The main advantage is that one layer can be replaced without affecting
the other layers.
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Layered Approach for a Parallel Port Layered Software Rules

High-level
routines

| Printer hardware ‘
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[~

A module may make simple call to modules in same layer.

[~

A module may call a lower-level module only using gate.

®

A module may not directly access any function or variable in another layer
(w/o going through a gate).

A module may not call a higher-level routine.

A module may not modify the vector address of another level's handler(s).
(Optional) A module may not call farther than one level.

(Optional) All I/O hardware access is in lowest level.

¢ & ¢ ¢ ¢

(Optional) All user interface I/O is in highest level unless it is the purpose
of the module to do such I/O.
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Basic Concepts of Device Drivers

@ A device driver consists of software routines that provide the functionality
of an I/0 device.

@ Includes interface routines and low-level routines for configuring the
device and performing actual 1/O.

@ Separation of policy and mechanism is very important.

@ Interface may include routines to open, read, and write files, but should
not care what device the files reside on.

@ Require a good hardware abstraction layer (HAL).

Low-Level Device Drivers

@ Low-level device drivers normally found in basic I/O system (BIOS) ROM
and have direct access to hardware.
@ Good low-level device drivers allow:
@ New hardware to be installed.
@ New algorithms to be implemented.
@ Synchronization with gadfly, interrupts, or DMA.

@ Error detection and recovery methods.
@ Enhancements like automatic data compression.

@ Higher-level features to be built on top of the low level

@ Operating system features like blocking semaphores.
@ Additional features like function keys.
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Device Driver Software

@ Data structures: global (private)
bool OpenFlag //True if SCI has been initialized.
@ Initialization routines (public, called by client once)
void SCl _Init(unsigned short baudRate); //Initialize SC
@ Regular I/O calls (public, called by client to perform 1/0O)
char SCI _InChar(void); //Wit for new SCl input character
char SCI _Qut Char(void); //Transnmit character out SCl port

@ Support software (private)
voi d SCl Handl er (void) //SCl interrupt handler

67/98

Thread
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Encapsulated Objects Using Standard C

@ Choose function names to reflect the module in which they are defined.
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@ Example:
LCD dear() (C)
LCD. cl ear() (C++)
@ Only put public function declarations in header files.
@ Example (Ti ner. H):
voi d Tiner_lnit(void);
voi d Timer_Wit10ns(unsigned short del ay);
Since the function wai t (unsi gned short cycl es) is notin the header
file, it is a private function.
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Interrupts and Threads

Foreground thread ~ Background thread - Background thread
ain program Key handler 'l"l'qlfhandlsr
1t

17
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@ A program segment is reentrant if it can be concurrently executed by two
(or more) threads.
@ A recursive program is one that calls itself.
@ When we draw a calling graph, a circle is formed.
@ Recursive subroutines must be reentrant.
@ Often easy to prove correct and use less permanent memory, but use
more stack space and are slower.
voi d Qut UDec(unsigned int nunber){
if (nunber>=10){
Qut UDec( nunber/ 10);
Qut UDec( nunber %40); }

el se
Qut Char (nunber+' 0"); }
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Debugging Theory Debugging Instruments

@ The debugging process is defined as testing, stabilizing, localizing, and
correcting errors.

@ Research in program monitoring and debugging has not kept pace with
developments in other areas of software.

@ In embedded systems, debugging is further complicated by concurrency
and real-time requirements.

@ Although monitoring and debugging tools exist, many still use manual
methods such as print statements.

@ Print statements are highly intrusive especially in a real-time system
because they can take too much time.
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Functional (Static) Debugging Instrumentation Dump Wlthout Filtering

@ Functional debugging is verification of /0O parameters.

@ Inputs are supplied, system is run, outputs are checked.
@ There exist many functional debugging methods:

@ Single stepping or tracing.

@ Breakpoints without filtering.

@ Conditional breakpoints.

@ Instrumentation: print statements.

@ Instrumentation: dump into array without filtering.

@ Instrumentation: dump into array with filtering.

@ Monitor using fast displays.
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R/W Address Data Intepretation

R 8000 B6 Idaa $1003

6811
processor

R 8001 10
Logic analyzer
? R 8002 03
- R 1003 55
Memory R 8003 B7 staa $1004
Address/data bus R 8004 10
R 8005 04
W 1004 55

Registers 1/0 Ports °;

A =$55  PortH = $83 2

B Portd = §00 2

bs = §55 2

Y - .

s Socket —ame
Embedded system with 2 Embedded system with

microcomputer and /O emulator and 1O

Address contents interpretation
$8000  $B6  1daa $1003
$E001  $10
$E002  $03

ROM socket
SE003  SB7  gtaa $1004
SR04 §10
$E005  $04
\_ Address/data bus
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@ A debugging instrument is code that is added to a program for the
purpose of debugging.

@ A print statement is a common example.

@ When adding print statements, use one of the following:

@ Place all print statements in a unique column.

Define instruments with specific pattern in their name.
Define all instruments to test a run-time global flag.
Use conditional compilation (assembly) to turn on/off.

¢ ¢ ¢
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/1 global variables in RAM
#define size 20
unsi gned char buffer[size][2];
unsi gned int cnt=0;
/1 dunp happy and sad
voi d Save(void){
i f(cnt<size){

buffer[cnt][0] = happy;

buffer[cnt][1] = sad;

cnt ++;
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Instrumentation Dump With Filter An LED Monitor

/1 dunp happy and sad
voi d Save(void){
f (sad>100) {

i f(cnt<size){
buffer[cnt][0] = happy;
buffer[cnt][1] = sad; }
cnt ++;

voi d Toggl e(voi d){
PORTB "= 0x40; // flip LED
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Performance (Dynamic) Debugging Instrumentation Output Port

@ Performance debugging is verification of timing behavior.
@ System is run and dynamic behaviors of /0 checked.
@ Count bus cycles using the assembly listing. Set bset PORTB, #$40
@ Instrumentation: measuring with a counter. rts
before rmb 2 : TCNT val ue before the call Cr belr PORTB, #3540
el asped rnmb 2 ;# of cycles to execute sqrt rts
mvw TCNT, bef ore
b s e o st oop o1t
]ins 9 ' 9 jsr Calculate ; function under test
stab  tt :save result jsr dr
| dd TCNT ; TCNT val ue after the call bra 1oop
subd bef ore
std el asped ;execute time in cycles
@ Instrumentation: output port.
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Performance (Dynamic) Debugging Empirical Measurement of Dynamic Efficiency

; Assenbly listing from TExaS of the sqrt subroutine.

$F019 org * ;reset cycle counter

$F019 35 [ 21( 0)sqrt pshy

$FO1A B776 [ 1( 2 tsy

$F01C 1BIC [ 21( 3) leas -4,sp ;allocate t,oldt,s16

$FOLE C7 [ 1( 5 clrb

$FOLF A644 [ 31( 6) | daa s8,y .

$F021 2723 [3( 9  beq done unsi gned short before, el asped;
$F023 0610 [ 1( 12 I'dab #16 . . .

$F025 12 (3139 mil (16%s voi d main(voi d){

$F026 6C5C [ 2( 16) std 516,y 1516=16*s .

$F028 18085F20 [ 4(18)  movb #32,t,y  :t=2.0, initial guess $5=100;

$F02C 18085E03 [ 41( 22 novb #3, cnt,y _ .

$F030 AGSF [ 3]( 26)next Idaa t,y  Reghct bef or e=TCNT;

$F032 180E [ 2( 29) tab ; RegB=t _ .

$F034 B705 [ 1(31)  tir ax - RegXet tt=sqgrt(ss);

$F036 12 [ 31( 32) i ; RegD=t *t _ .
$F037 E35C [ 3](35)  addd si6,y | RegD=t *1 +16*s el asped=TCNT- bef or e;
$F039 1810 [12]( 38) idiv i RegX=(1*1 +16%s) / t

$FO03B B754 [ 1( 50 tir x,d }

$FO3D 49 [ 1]( 51) I'srd s RegB=((t*t+16*s)/t)/2

$FO3E €900 [ 1( 52 adch #0

$F040 6B5F [ 2( 53) stab t,y

$F042 635E [ 3]( 55) dec cnt,y

$F044 26EA [ 3]( 58) bne next

$F046 B767 [ 1]( 61)done tys

$F048 31 [ 3]( 62) pul'y

$F049 3D [ 51( 65) rts

$FO4A 183E [16]( 70) stop
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Another Empirical Measurement of Dynamic Efficiency

voi d mai n(voi d){

DDRB=0xFF; // PB7 is connected to a scope
$s=100;
whi | e(1){
PORTB | = 0x80; // set PB7 high
tt=sqrt(ss);
PORTB &= ~0x80; // clear PB7 |ow
!
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A Time/Position Profile Dumping into a Data Array A Time/Position Profile Using Two Output Bits

unsi gned short tine[100];
unsi gned short place[ 100];
unsi gned short n;
voi d profile(unsigned short p){
tinme[n]=TCNT; // record current tine
pl ace[ n] =p;
nt+; }
unsi gned short sqrt(unsigned short s){ unsigned short t,oldt;
profile(0);
t=0;
if(s>0) {
profile(l);
t=32;
do{
profile(2);
oldt=t; // calculation fromthe last iteration
t=((t*t+16*s)/t)/2;} // t is closer to the answer
while(t!=oldt);} /1 converges in 4 or 5 iterations
profile(3);
return t;}

/'l based on the secant nethod

/] initial guess 2.0
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The Power of 10: Rules for Developing Safety-Critical Code

Gerald Holzmann / NASA/ JPL Laboratory for Reliable Software

© Do not use goto, setjmp, longjmp, direct or indirect recursion.
Give all loops a fixed upper bound.

Do not use dynamic memory allocation after initialization.

No function should be larger than can fit on a sheet of paper.
There should be at least two assertions per function.
Declare all data objects at smallest possible level of scope.

000600

Each calling function must check return value of nonvoid functions, and
each called function should check validity of all parameters.

@ Use of preprocessor should be restricted to inclusion of header files and
simple macro definitions.

© No more than one level of pointer dereferencing and shouldn’t be hidden.
@ All code must compile with no warnings.
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Profiling

@ Profiling collects time history of strategic variables.
@ Use a software dump to study execution pattern.
@ Use an output port.
@ When multiple threads are running can use these techniques to
determine the thread activity.
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unsigned int sqgrt(unsigned int s){ unsigned int t,oldt;
PORTB=0;

t =0; /] based on the secant nethod
if(s>0) {
PORTB=1,
t=32; [l initial guess 2.0
do{
PORTB=2;

oldt=t; // calculation fromthe last iteration
t=((t*t+16*s)/t)/2;} /] t is closer to the answer
while(t!=oldt);} /'l converges in 4 or 5 iterations
PORTB=3;
returnt;}
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