ECE/CS 5780/6780: Embedded System Design

Chris J. Myers

Lecture 1: 68HC12

History of the Microprocessor

@ In 1968, Bob Noyce and Gordon Moore left Fairchild Semiconductor and
formed Integrated Electronics (Intel).

@ Atlntel in 1971, Federico Faggin, Ted Hoff, and Stan Mazor invented the
first single chip microprocessor, the 4004, a 4-bit microprocessor.

@ In 1974, the 8008 and 8080, 8-bit microprocessors, were designed at
Intel using NMOS technology.

@ In 1974, Motorola also released the MC6800, an 8-bit microprocessor.

@ One major difference was that Intel’s microprocessors used isolated 1/0
while Motorola’s used memory-mapped 1/O.
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@ During early 1980s, microcontrollers began to be designed.

©

While microprocessors were optimized for speed and memory size, the
microcontrollers were optimized for power and physical size.

Intel produced the 8051 microcontroller.
Motorola produced the 6805, 6808, 6811, and 6812.
In 1999, Motorola shipped its 2 billionth MC68HCO05 microcontroller.

In 2004, Motorola spun off its microcontroller division as Freescale
Semiconductor.

¢ ¢ ¢ ¢
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6811/6812 Architecture MC9S12C32 Block Diagram

@ Instruction sets lend themselves to C compiler implementations.

@ Use either two separate 8-bit accumulators (A,B) or one combined 16-bit
accumulator (D).

@ Have two 16-bit index registers (X,Y).
@ Have powerful bit-manipulation instructions.

@ Support 16-bit add/subtract, 16 x 16 integer divide, 16 x 16 fractional
divide, and 8 x 8 unsigned multiply.

@ 6812 also supports 16 x 16 unsigned/signed multiply, 32 x 16
unsigned/signed divide, and 32+ (16 x 16) multiply and accumulate.

@ 6812 assembly language is a superset of 6811, but they are not machine
code compatible and have a different I/O interface.

@ Also, their stack pointer operates slightly differently.
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Operating Modes Address Map for MC9S12C32

@ The 6812 can operate in 1 of 8 modes, but only 3 are important: . )
@ Single-chip mode uses internal memory for program and data. Address (hex) Size Device Contents
@ Expanded narrow mode allows for use of external 8-bit memory, where $0000 to $03FF 1K /0
PortA is A15-8/D15-8/D7-0 and PortB is A7-AQ. $3800 to $3FFF 2K RAM Variables and stack
@ Expanded wide mode allows for use of external 16-bit memory, where $4000 to $7FFF 16K EEPROM Program and constants
PortA is A15-8/D15-8 and PortB is A7-A0/D7-0. $C000 to $FFFF 16K EEPROM Program and constants
@ NOTE: Our microcontroller can only operate in single-chip mode.
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External I/O Ports MC9S12C32 Block Diagram
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Operating Frequency Reglsters

7 ()

@ This program changes the operating frequency from 4 MHz to 24 MHz. - —~ -
SXHINZVCH CC 8-bit condition code

void PLL_I nit (voi d){ R T b T
SYNR = 0X02; | | Register A | | Registet B , | D Two 8-bit accumulators
REFDV = 0x00; /1 PLLCLK = 2*OSCCLK* ( SYNR+1)/ ( REFDV+1) e P
CLKSEL = 0x00; | (ORI T TS VN NN TN WO e A RN TV e W | X 16-bit index rcgi.\tcr
PLLCTL = OXD].; ™ T T TrIrr{r£arrrrTrrT A i
whi | e( (CRGFLGR0x08) == 0){ // it for PLLOLK to stabilize. Livovvvevvnsnys | Y 16bitindexregister

} ITIITFIIIIII\IIT

CLKSEL_PLLSEL = 1; // Switch to PLL cl ock ciaiu i iuy ]| SP16-bit stack pointer

0 o e e G A N E o A E b | PC 16-bit program counter
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Condition Code Register Digital Representations of Numbers

ce [s[x[a[ 1[N Z]V]<
3 -

Carry/borrow or unsigned overflow

Signed overflow
Zero
Negative

IRQ interrupt mask

Half carry from bit 3
XIRQ interrupt mask
Stop disable
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@ Numbers are represented as a binary sequence of 0's and 1's.
@ Each 8-bit byte is stored at a different address.
@ A byte can be represented using two hexadecimal digits.

%10110101 = $B5 (0xB5inC)

llﬂ th LhSJ b4 [ b3 ‘ b2 I bl l h()‘

N 128 -b7 +64-bg+32-bs+16-bs+8-bz+4-by+2- by + bg (unsigned)
N = —128-b;+64-bg+32-bs+16-bs+8-b3z+4-by,+2-bs +bg (signed)

@ Only the programmer can keep track if a number is signed or unsigned.

@ While addition and subtraction use same hardware, separate hardware is
required for multiply, divide, and shift right.

@ A byte can also represent a character using the 7-bit ASCII code.
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16-Bit Words (Double Bytes) Fixed-Point Numbers

‘hl."ﬂ b8|b?|b6‘b5‘h4‘b3‘b2‘hl‘bU

hl4‘bli‘hl2

bll ‘blﬂ[ b9

@ Endian comparison for the 16-bit number $03ES8:

Address Contents Address Contents

$0050 | $03 $0050 | SE8

$0051 SES8 $0051 503

Big Endian Little Endian

@ Freescale microcomputers use the big endian approach.

Chris J. Myers (Lecture 1: 68HC12) ECE/CS 5780/6780: Embedded System Design

16/62

@ In embedded systems, fixed-point is often preferred over floating point
since it is simpler, more memory efficient, and often all that is required.

fixed-point number = 1-A

where | is a Variable integer and A is a Fixed constant.
@ If A= 10", then called decimal fixed-point.
@ If A =2", then called binary fixed-point.

@ The value of A cannot be changed during program execution, and it likely
only appears as a comment in the code.
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Precision, Resolution, and Range Overflow and Drop-Out

Precision is the total number of distinguishable values.
Resolution is the smallest difference that can be represented.
Range is the minimum and maximum values.

¢ & ¢ ¢

Example: A 10-bit ADC with a range of 0 to +5V, has a precision of
210 — 1024 values, and a resolution of 5V/1024 or about 5mV.

@ This could be accurately stored in a 16-bit fixed-point number with
A =0.001V.
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©

Overflow occurs when result of calculation is outside of the range.

©

Drop-out occurs when an intermediate result cannot be represented.

©

Example:

M = (53%N)/100 versus M =53x(N/100)

©

Promotion to higher precision avoids overflow.

]
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Dividing last avoids drop-out.
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@ W is 8-bit signed (-128 to +127) or unsigned (0 to 255)
o Letx=1-Ay=J-Az=K-A @ nis 8-bit signed (-128 to +127)
@ u is 8-bit unsigned (0 to 255
z=x+y K=I+J (addition) gned ( )
) @ W is 16-hit signed (-32787 to +32767) or unsigned (0 to 65535)
z=x—-y K=I1-J (subtraction) ) o
L @ N is 16-bit signed (-32787 to +32767)
z=x-y K=(1-J)/A (multiplication)
. @ U is 16-bit unsigned (0 to 65535)
z=x/y K=(-A4)/3 (division)
@ = [addr] specifies an 8-bit read from address
@ If Ais different, then must first convert one of the two numbers to use the @ = addr specifies a 16-bit read from address (big endian)
A of the other. @ =< addr > specifies a 32-bit read from address (big endian)
@ If Ais different, binary fixed-point is more convenient as conversion can o [addr] = specifies an 8-bit write to address
be done with shifting rather than multiplication/division. . L ) .
@ addr = specifies a 16-bit write to address (big endian)
@ < addr >= specifies a 32-bit write to address (big endian)
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Assembly Language Simple Addressing Modes

@ Assembly language instructions have four fields:

Label Opcode Operand(s) Comment

here | daa $0000 RegA = [ $0000] @ Inherent addressing mode (INH)
staa $3800 [$3800] = RegA @ Immediate addressing mode (IMM)
| dx $3802 RegX = {$3802} @ Direct page addressing mode (DIR)
stx $3804 {$3804} = RegX @ Extended addressing mode (EXT)
@ PC relative addressing mode (REL)

@ Assembly instructions are translated into machine code:

Object code Instruction Comment
$96 $00 | daa $0000 RegA = [$0000]
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Inherent Addressing Mode Immediate Addressing Mode

@ Uses a fixed constant.
@ Data is included in the machine code.

@ Uses no operand field. Objcode Op Operand Comment
. $8624 | daa #36 RegA = 36
Objcode Op Comment
$3F swi  Software interrupt —
$87 clra RegA=0 S r
$32 pula RegA = [RegSP]; RegSP=RegSP+1 A[553 gggg; 222 }maa o
$F803

@ What is the difference between | daa #36 and | daa #$24?
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Direct Page Addressing Mode Extended Addressing Mode

@ Uses an 8-bit address to access from addresses 0 to $00FF. @ Uses a 16-bit address to access all memory and 1/O devices.
@ This is RAM in 6811 and I/O in 6812. Obj code Op Operand Comment
Objcode Op Operand Comment $B60801 |daa $0801 RegA = [$0801]
$9624 | daa 36 RegA = [ $0036] 10] EEPROM
50800 S$FB00
) - 50801 [ 562 $FB01 | $B6
/0 EEPROM Alg62 50802 $FB02 [$08 }Ldaa 50801
$0035 SFB800 SF803 | 501
$0036 [§57 $F801 [$96
A[S5T9—55037] ;P‘SOZ $24 ]ldaa <
$F803

@ < forces direct addressing and > forces extended addressing.
@ What is the difference between | daa $0801 and | daa <$0801?

@ What is the difference between | daa $12 and | dx $12? @ What is the difference between | daa $01 and | daa >$01?
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PC Relative Addressing Mode Top-Down Design Process

@ Used for branch and branch-to-subroutine instructions. * Specifications

= Constraints y
* Block diagrams

@ Stores 8-bit signed relative offset from current PC rather than absolute
* Data flow graphs

address to branch to. New requirements

New constraints

rr = (destination address) — (location of branch) — (size of the branch)
@ Assume branch located at $F880. Not done
Objcode Op Operand Comment Done « Call graphs

$20BE bra $F840 $F840 — $F880 — 2 = —$42 = $BE
$2046 bra $F8C8 $F8C8 — $F880 — 2 = $46

= Data structures
* /O interfaces

* Hardware
* Software
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Analysis Phase High-Level Design Phase

Discover the requirements and constraints for our proposed system.
Requirements are general parameters that the system must satisfy.
Specification are detailed parameters.

Constraints are limitations under which the system must operate. @ Build a conceptional model of the hardware and software system.

Issues that should be considered are: @ Design broken into modules or subcomponents.
@ Safety.

Accuracy, precision, resolution.
Response time, bandwidth. @ Develop a data flow graph for the system.

¢ ¢ ¢ ¢ ¢

@ Estimate cost, schedule, and expected performance.

o

o

@ Maintainability, testability, compatibility.

@ Mean time between failure.

@ Size, weight, power.

@ Nonrecurring engineering cost (NRE cost), unit cost.
@ Time-to-prototype, time-to-market

@ Human factors
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Data Flow Graph for a Motor Controller

Engineering Design Phase
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Call Graph for a Motor Controller

@ Construct a preliminary design.

@ This should include the hierarchical structure, basic I/O signals, shared
data structures, and overall software scheme.

@ Build mock-ups of mechanical parts and user software interface.
@ Call graphs can be used to show how software and hardware interact.
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Implementation Phase

33/62
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Testing Phase

@ During this phase, we evaluate the performance.
@ First, debug and validate the basic functions of the system.

@ Next, evaluate and optimize various performance parameters such as
execution speed, accuracy, and stability.
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@ During this phase, the design is actually built.

@ Implementation of subcomponents may actually be started during the
earlier phases.

@ Debugging embedded systems can be very difficult.
@ Therefore, extensive use of hardware/software simulation is essential.
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@ During this phase, we:
@ Correct mistakes,
Add new features,
Optimize execution speed or program size,
Port to new computers or operating systems, and
Reconfigure the system to solve a similar problem.

¢ ¢ ¢ ¢

@ Must be able to deal with changes in requirements or constraints.
@ Not actually another phase, but more loops through the entire cycle.
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Maintenance Phase
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Bottom-Up Design Process Our First Design Problem: Specifications and Constraints
+ Specifications
-('umlrmnls Dane

= Block diagrams
* Data flow graphs

@ Specifications:
@ Design an embedded system that flashes LEDs in a 0101, 0110, 1010,
1001 binary repeating pattern.
@ Use four 2.2V 10mA red LEDs.
@ Use a +5V power supply.
No @ Constraints:
@ Use a 6812,
@ Minimize cost.
@ Use standard 5% resistors.

Done

= Call graphs

* Data structures
* 1/0) interfaces

* Hardware
* Software

Idea
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Data Flow Graph and Call Graph for LED Output System Hardware Circuit for LED Output System
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Software Design for LED Output System I/O Port Definitions
Flowchart 1 Flowchart 2 Flowchart 3
Initialize Direction to s M ; Assenbl y defl ni tl ons fOr an | /O port
‘ port output ‘ DDRE:=$0F PTT equ $0240
| —1 — 1 PTIT equ $0241
o | Lo ] | [rowe-s DORT equ $0242
nutm 71 Il Cdefinitions for an /0O port.
’ o I ‘P”'"C:“ #define PTT *(unsigned char volatile *)(0x0240)

l | #define PTIT *(unsigned char volatile *)(0x0241)

' Gotps ‘ — #define DDRT *(unsigned char volatile *)(0x0242)
! !
’ 0";"“' ‘ PORTC =9
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Assembly Software for the LED Output System C Software for the LED Output System

org  $4000 ; ROM
Main | daa #$0F ; make PT3-0
staa DDRT ;outputs voi d main(void){// make PT3-0
Ctrl ldaa #5 DDRT = OxOF;, // outputs
staa PTT ;set 0101 whi I e(1){
| daa #6 PTT = 5; /1 0101
staa PTT ;set 0110 PTT = 6; /1 0110
| daa #10 PTT = 10; /1 1010
staa PTT ;set 1010 PTT = 9; /1 1001
| daa #9 }
staa PTT ;set 1001 }
bra Crl
org $FFFE
fdb Main ;Reset vector
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