
ECE/CS 5780/6780: Embedded System Design

Chris J. Myers

Lecture 1: 68HC12

Chris J. Myers (Lecture 1: 68HC12) ECE/CS 5780/6780: Embedded System Design 1 / 62

History of the Microprocessor

In 1968, Bob Noyce and Gordon Moore left Fairchild Semiconductor and
formed Integrated Electronics (Intel).

At Intel in 1971, Federico Faggin, Ted Hoff, and Stan Mazor invented the
first single chip microprocessor, the 4004, a 4-bit microprocessor.

In 1974, the 8008 and 8080, 8-bit microprocessors, were designed at
Intel using NMOS technology.

In 1974, Motorola also released the MC6800, an 8-bit microprocessor.

One major difference was that Intel’s microprocessors used isolated I/O
while Motorola’s used memory-mapped I/O.

Chris J. Myers (Lecture 1: 68HC12) ECE/CS 5780/6780: Embedded System Design 2 / 62

First Microprocessors

http://www.cpu-world.com

Chris J. Myers (Lecture 1: 68HC12) ECE/CS 5780/6780: Embedded System Design 3 / 62

Microcontrollers

During early 1980s, microcontrollers began to be designed.

While microprocessors were optimized for speed and memory size, the
microcontrollers were optimized for power and physical size.

Intel produced the 8051 microcontroller.

Motorola produced the 6805, 6808, 6811, and 6812.

In 1999, Motorola shipped its 2 billionth MC68HC05 microcontroller.

In 2004, Motorola spun off its microcontroller division as Freescale
Semiconductor.

Chris J. Myers (Lecture 1: 68HC12) ECE/CS 5780/6780: Embedded System Design 4 / 62

6811/6812 Architecture

Instruction sets lend themselves to C compiler implementations.

Use either two separate 8-bit accumulators (A,B) or one combined 16-bit
accumulator (D).

Have two 16-bit index registers (X,Y).

Have powerful bit-manipulation instructions.

Support 16-bit add/subtract, 16 × 16 integer divide, 16 × 16 fractional
divide, and 8 × 8 unsigned multiply.

6812 also supports 16 × 16 unsigned/signed multiply, 32 × 16
unsigned/signed divide, and 32+(16×16) multiply and accumulate.

6812 assembly language is a superset of 6811, but they are not machine
code compatible and have a different I/O interface.

Also, their stack pointer operates slightly differently.

Chris J. Myers (Lecture 1: 68HC12) ECE/CS 5780/6780: Embedded System Design 5 / 62

MC9S12C32 Block Diagram

Chris J. Myers (Lecture 1: 68HC12) ECE/CS 5780/6780: Embedded System Design 6 / 62

Operating Modes

The 6812 can operate in 1 of 8 modes, but only 3 are important:
Single-chip mode uses internal memory for program and data.
Expanded narrow mode allows for use of external 8-bit memory, where
PortA is A15-8/D15-8/D7-0 and PortB is A7-A0.
Expanded wide mode allows for use of external 16-bit memory, where
PortA is A15-8/D15-8 and PortB is A7-A0/D7-0.

NOTE: Our microcontroller can only operate in single-chip mode.

Chris J. Myers (Lecture 1: 68HC12) ECE/CS 5780/6780: Embedded System Design 7 / 62

Address Map for MC9S12C32

Address (hex) Size Device Contents
$0000 to $03FF 1K I/O
$3800 to $3FFF 2K RAM Variables and stack
$4000 to $7FFF 16K EEPROM Program and constants
$C000 to $FFFF 16K EEPROM Program and constants

Chris J. Myers (Lecture 1: 68HC12) ECE/CS 5780/6780: Embedded System Design 8 / 62

External I/O Ports

Port 48-pin Shared Functions
Port A PA0 Address/Data Bus
Port B PB4 Address/Data Bus
Port E PE7, PE4, PE1, PE0 System Integration Module
Port J − Key wakeup
Port M PM5-PM0 SPI, CAN
Port P PP5 Key wakeup, PWM
Port S PS1-PS0 SCI
Port T PT7-PT0 Timer, PWM

Port AD PAD7-PAD0 Analog-to-Digital Converter

Chris J. Myers (Lecture 1: 68HC12) ECE/CS 5780/6780: Embedded System Design 9 / 62

MC9S12C32 Block Diagram

Chris J. Myers (Lecture 1: 68HC12) ECE/CS 5780/6780: Embedded System Design 10 / 62

Operating Frequency

This program changes the operating frequency from 4 MHz to 24 MHz.

void PLL_Init(void){
SYNR = 0x02;
REFDV = 0x00; // PLLCLK = 2*OSCCLK*(SYNR+1)/(REFDV+1)
CLKSEL = 0x00;
PLLCTL = 0xD1;
while((CRGFLG&0x08) == 0){ // Wait for PLLCLK to stabilize.
}
CLKSEL_PLLSEL = 1; // Switch to PLL clock

}

Chris J. Myers (Lecture 1: 68HC12) ECE/CS 5780/6780: Embedded System Design 12 / 62

Registers

Chris J. Myers (Lecture 1: 68HC12) ECE/CS 5780/6780: Embedded System Design 13 / 62

Condition Code Register

Chris J. Myers (Lecture 1: 68HC12) ECE/CS 5780/6780: Embedded System Design 14 / 62

Digital Representations of Numbers

Numbers are represented as a binary sequence of 0’s and 1’s.

Each 8-bit byte is stored at a different address.

A byte can be represented using two hexadecimal digits.

%10110101 = $B5 (0xB5 in C)

N = 128 ·b7 +64 ·b6 +32 ·b5 +16 ·b4 +8 ·b3 +4 ·b2 +2 ·b1 +b0 (unsigned)

N = −128 ·b7 +64 ·b6 +32 ·b5 +16 ·b4 +8 ·b3 +4 ·b2 +2 ·b1 +b0 (signed)

Only the programmer can keep track if a number is signed or unsigned.

While addition and subtraction use same hardware, separate hardware is
required for multiply, divide, and shift right.

A byte can also represent a character using the 7-bit ASCII code.

Chris J. Myers (Lecture 1: 68HC12) ECE/CS 5780/6780: Embedded System Design 15 / 62

16-Bit Words (Double Bytes)

Endian comparison for the 16-bit number $03E8:

Freescale microcomputers use the big endian approach.

Chris J. Myers (Lecture 1: 68HC12) ECE/CS 5780/6780: Embedded System Design 16 / 62

Fixed-Point Numbers

In embedded systems, fixed-point is often preferred over floating point
since it is simpler, more memory efficient, and often all that is required.

fixed-point number ≡ I ·∆

where I is a Variable integer and ∆ is a Fixed constant.

If ∆ = 10n, then called decimal fixed-point.

If ∆ = 2n, then called binary fixed-point.

The value of ∆ cannot be changed during program execution, and it likely
only appears as a comment in the code.

Chris J. Myers (Lecture 1: 68HC12) ECE/CS 5780/6780: Embedded System Design 17 / 62

Precision, Resolution, and Range

Precision is the total number of distinguishable values.

Resolution is the smallest difference that can be represented.

Range is the minimum and maximum values.

Example: A 10-bit ADC with a range of 0 to +5V, has a precision of
210 = 1024 values, and a resolution of 5V/1024 or about 5mV.

This could be accurately stored in a 16-bit fixed-point number with
∆ = 0.001V.

Chris J. Myers (Lecture 1: 68HC12) ECE/CS 5780/6780: Embedded System Design 18 / 62

Overflow and Drop-Out

Overflow occurs when result of calculation is outside of the range.

Drop-out occurs when an intermediate result cannot be represented.

Example:

M = (53∗N)/100 versus M = 53∗ (N/100)

Promotion to higher precision avoids overflow.

Dividing last avoids drop-out.

Chris J. Myers (Lecture 1: 68HC12) ECE/CS 5780/6780: Embedded System Design 19 / 62

Fixed-Point Arithmetic

Let x = I ·∆, y = J ·∆, z = K ·∆.

z = x + y K = I + J (addition)

z = x − y K = I− J (subtraction)

z = x · y K = (I · J)/∆ (multiplication)

z = x/y K = (I ·∆)/J (division)

If ∆ is different, then must first convert one of the two numbers to use the
∆ of the other.

If ∆ is different, binary fixed-point is more convenient as conversion can
be done with shifting rather than multiplication/division.

Chris J. Myers (Lecture 1: 68HC12) ECE/CS 5780/6780: Embedded System Design 20 / 62

Notation

w is 8-bit signed (-128 to +127) or unsigned (0 to 255)

n is 8-bit signed (-128 to +127)

u is 8-bit unsigned (0 to 255)

W is 16-bit signed (-32787 to +32767) or unsigned (0 to 65535)

N is 16-bit signed (-32787 to +32767)

U is 16-bit unsigned (0 to 65535)

= [addr] specifies an 8-bit read from address

= addr specifies a 16-bit read from address (big endian)

=< addr > specifies a 32-bit read from address (big endian)

[addr] = specifies an 8-bit write to address

addr = specifies a 16-bit write to address (big endian)

< addr >= specifies a 32-bit write to address (big endian)

Chris J. Myers (Lecture 1: 68HC12) ECE/CS 5780/6780: Embedded System Design 21 / 62

Assembly Language

Assembly language instructions have four fields:

Label Opcode Operand(s) Comment
here ldaa $0000 RegA = [$0000]

staa $3800 [$3800] = RegA
ldx $3802 RegX = {$3802}
stx $3804 {$3804} = RegX

Assembly instructions are translated into machine code:

Object code Instruction Comment
$96 $00 ldaa $0000 RegA = [$0000]

Chris J. Myers (Lecture 1: 68HC12) ECE/CS 5780/6780: Embedded System Design 22 / 62

Simple Addressing Modes

Inherent addressing mode (INH)

Immediate addressing mode (IMM)

Direct page addressing mode (DIR)

Extended addressing mode (EXT)

PC relative addressing mode (REL)

Chris J. Myers (Lecture 1: 68HC12) ECE/CS 5780/6780: Embedded System Design 23 / 62

Inherent Addressing Mode

Uses no operand field.

Obj code Op Comment
$3F swi Software interrupt
$87 clra RegA = 0
$32 pula RegA = [RegSP]; RegSP=RegSP+1

Chris J. Myers (Lecture 1: 68HC12) ECE/CS 5780/6780: Embedded System Design 24 / 62

Immediate Addressing Mode

Uses a fixed constant.

Data is included in the machine code.

Obj code Op Operand Comment
$8624 ldaa #36 RegA = 36

What is the difference between ldaa #36 and ldaa #$24?

Chris J. Myers (Lecture 1: 68HC12) ECE/CS 5780/6780: Embedded System Design 25 / 62

Direct Page Addressing Mode

Uses an 8-bit address to access from addresses 0 to $00FF.

This is RAM in 6811 and I/O in 6812.

Obj code Op Operand Comment
$9624 ldaa 36 RegA = [$0036]

What is the difference between ldaa $12 and ldx $12?

Chris J. Myers (Lecture 1: 68HC12) ECE/CS 5780/6780: Embedded System Design 26 / 62

Extended Addressing Mode

Uses a 16-bit address to access all memory and I/O devices.

Obj code Op Operand Comment
$B60801 ldaa $0801 RegA = [$0801]

< forces direct addressing and > forces extended addressing.

What is the difference between ldaa $0801 and ldaa <$0801?

What is the difference between ldaa $01 and ldaa >$01?

Chris J. Myers (Lecture 1: 68HC12) ECE/CS 5780/6780: Embedded System Design 27 / 62

PC Relative Addressing Mode

Used for branch and branch-to-subroutine instructions.

Stores 8-bit signed relative offset from current PC rather than absolute
address to branch to.

rr = (destination address)− (location of branch)− (size of the branch)

Assume branch located at $F880.

Obj code Op Operand Comment
$20BE bra $F840 $F840 − $F880 − 2 = −$42 = $BE
$2046 bra $F8C8 $F8C8 − $F880 − 2 = $46

Chris J. Myers (Lecture 1: 68HC12) ECE/CS 5780/6780: Embedded System Design 28 / 62

Top-Down Design Process

Chris J. Myers (Lecture 1: 68HC12) ECE/CS 5780/6780: Embedded System Design 29 / 62

Analysis Phase

Discover the requirements and constraints for our proposed system.

Requirements are general parameters that the system must satisfy.

Specification are detailed parameters.

Constraints are limitations under which the system must operate.

Issues that should be considered are:
Safety.
Accuracy, precision, resolution.
Response time, bandwidth.
Maintainability, testability, compatibility.
Mean time between failure.
Size, weight, power.
Nonrecurring engineering cost (NRE cost), unit cost.
Time-to-prototype, time-to-market
Human factors

Chris J. Myers (Lecture 1: 68HC12) ECE/CS 5780/6780: Embedded System Design 30 / 62

High-Level Design Phase

Build a conceptional model of the hardware and software system.

Design broken into modules or subcomponents.

Estimate cost, schedule, and expected performance.

Develop a data flow graph for the system.

Chris J. Myers (Lecture 1: 68HC12) ECE/CS 5780/6780: Embedded System Design 31 / 62

Data Flow Graph for a Motor Controller

Chris J. Myers (Lecture 1: 68HC12) ECE/CS 5780/6780: Embedded System Design 32 / 62

Engineering Design Phase

Construct a preliminary design.

This should include the hierarchical structure, basic I/O signals, shared
data structures, and overall software scheme.

Build mock-ups of mechanical parts and user software interface.

Call graphs can be used to show how software and hardware interact.

Chris J. Myers (Lecture 1: 68HC12) ECE/CS 5780/6780: Embedded System Design 33 / 62

Call Graph for a Motor Controller

Chris J. Myers (Lecture 1: 68HC12) ECE/CS 5780/6780: Embedded System Design 34 / 62

Implementation Phase

During this phase, the design is actually built.

Implementation of subcomponents may actually be started during the
earlier phases.

Debugging embedded systems can be very difficult.

Therefore, extensive use of hardware/software simulation is essential.

Chris J. Myers (Lecture 1: 68HC12) ECE/CS 5780/6780: Embedded System Design 35 / 62

Testing Phase

During this phase, we evaluate the performance.

First, debug and validate the basic functions of the system.

Next, evaluate and optimize various performance parameters such as
execution speed, accuracy, and stability.

Chris J. Myers (Lecture 1: 68HC12) ECE/CS 5780/6780: Embedded System Design 36 / 62

Maintenance Phase

During this phase, we:
Correct mistakes,
Add new features,
Optimize execution speed or program size,
Port to new computers or operating systems, and
Reconfigure the system to solve a similar problem.

Must be able to deal with changes in requirements or constraints.

Not actually another phase, but more loops through the entire cycle.

Chris J. Myers (Lecture 1: 68HC12) ECE/CS 5780/6780: Embedded System Design 37 / 62

Bottom-Up Design Process

Chris J. Myers (Lecture 1: 68HC12) ECE/CS 5780/6780: Embedded System Design 38 / 62

Our First Design Problem: Specifications and Constraints

Specifications:
Design an embedded system that flashes LEDs in a 0101, 0110, 1010,
1001 binary repeating pattern.
Use four 2.2V 10mA red LEDs.
Use a +5V power supply.

Constraints:
Use a 6812.
Minimize cost.
Use standard 5% resistors.

Chris J. Myers (Lecture 1: 68HC12) ECE/CS 5780/6780: Embedded System Design 39 / 62

Data Flow Graph and Call Graph for LED Output System

Chris J. Myers (Lecture 1: 68HC12) ECE/CS 5780/6780: Embedded System Design 40 / 62

Hardware Circuit for LED Output System

Chris J. Myers (Lecture 1: 68HC12) ECE/CS 5780/6780: Embedded System Design 41 / 62

Software Design for LED Output System

Chris J. Myers (Lecture 1: 68HC12) ECE/CS 5780/6780: Embedded System Design 42 / 62

I/O Port Definitions

; Assembly definitions for an I/O port
PTT equ $0240
PTIT equ $0241
DDRT equ $0242

// C definitions for an I/O port.
#define PTT *(unsigned char volatile *)(0x0240)
#define PTIT *(unsigned char volatile *)(0x0241)
#define DDRT *(unsigned char volatile *)(0x0242)

Chris J. Myers (Lecture 1: 68HC12) ECE/CS 5780/6780: Embedded System Design 44 / 62

Assembly Software for the LED Output System

org $4000 ;ROM
Main ldaa #$0F ;make PT3-0

staa DDRT ;outputs
Ctrl ldaa #5

staa PTT ;set 0101
ldaa #6
staa PTT ;set 0110
ldaa #10
staa PTT ;set 1010
ldaa #9
staa PTT ;set 1001
bra Ctrl
org $FFFE
fdb Main ;Reset vector

Chris J. Myers (Lecture 1: 68HC12) ECE/CS 5780/6780: Embedded System Design 46 / 62

C Software for the LED Output System

void main(void){// make PT3-0
DDRT = 0x0F; // outputs
while(1){

PTT = 5; // 0101
PTT = 6; // 0110
PTT = 10; // 1010
PTT = 9; // 1001

}
}

Chris J. Myers (Lecture 1: 68HC12) ECE/CS 5780/6780: Embedded System Design 48 / 62

TExaS Simulation of LED Output System

Chris J. Myers (Lecture 1: 68HC12) ECE/CS 5780/6780: Embedded System Design 49 / 62

Oscilloscope Waveforms for LED Output System

Chris J. Myers (Lecture 1: 68HC12) ECE/CS 5780/6780: Embedded System Design 50 / 62

