

Operating Modes	Address Map for MC9S12C32
 The 6812 can operate in 1 of 8 modes, but only 3 are important: Single-chip mode uses internal memory for program and data. Expanded narrow mode allows for use of external 8-bit memory, where portA is A15-8/D15-8/D7-0 and PortB is A7-A0. Expanded wide mode allows for use of external 16-bit memory, where portA is A15-8/D15-8 and PortB is A7-A0/D7-0. NOTE: Our microcontroller can only operate in single-chip mode. 	Address (hex) Size Device Contents \$0000 to \$03FF 1K I/O \$3800 to \$3FFF 2K RAM Variables and stack \$4000 to \$7FFF 16K EEPROM Program and constants \$C000 to \$FFFF 16K EEPROM Program and constants
External I/O Ports	MC9S12C32 Block Diagram
Port48-pinShared FunctionsPort APA0Address/Data BusPort BPB4Address/Data BusPort EPE7, PE4, PE1, PE0System Integration ModulePort J-Key wakeupPort MPM5-PM0SPI, CANPort PPP5Key wakeup, PWMPort SPS1-PS0SCIPort TPT7-PT0Timer, PWMPort ADPAD7-PAD0Analog-to-Digital Converter	+5 Visit Visit RAM AD Visit Visi
Operating Frequency	Registers
<pre>• This program changes the operating frequency from 4 MHz to 24 MHz. void PLL_Init(void){ SYNR = 0x02; REFDV = 0x00; // PLLCLK = 2*OSCCLK*(SYNR+1)/(REFDV+1) CLKSEL = 0x00; PLLCTL = 0xD1; while((CRGFLG&0x08) == 0){ // Wait for PLLCLK to stabilize. } CLKSEL_PLLSEL = 1; // Switch to PLL clock }</pre>	7 0 S'X'H'I'N'Z'V'C CC 8-bit condition code 15 8 Register A Register B D Two 8-bit accumulators X 16-bit index register Y 16-bit index register SP 16-bit stack pointer Y 16-bit program counter

Condition Code Register	Digital Representations of Numbers
CC S X H I N Z V C Carry/borrow or unsigned overflow Signed overflow Zero Negative IRQ interrupt mask Half carry from bit 3 XIRQ interrupt mask Stop disable	 Numbers are represented as a binary sequence of 0's and 1's. Each 8-bit byte is stored at a different address. A byte can be represented using two hexadecimal digits. %10110101 = \$B5 (0xB5 in C) b7 b6 b5 b4 b3 b2 b1 b0 N = 128 ⋅ b7 + 64 ⋅ b6 + 32 ⋅ b5 + 16 ⋅ b4 + 8 ⋅ b3 + 4 ⋅ b2 + 2 ⋅ b1 + b0 (unsigned) N = -128 ⋅ b7 + 64 ⋅ b6 + 32 ⋅ b5 + 16 ⋅ b4 + 8 ⋅ b3 + 4 ⋅ b2 + 2 ⋅ b1 + b0 (signed) Only the programmer can keep track if a number is signed or unsigned. While addition and subtraction use same hardware, separate hardware is required for multiply, divide, and shift right. A byte can also represent a character using the 7-bit ASCII code.
Chris J. Myers (Lecture 1: 68HC12) ECE/CS 5780/6780: Embedded System Design 14 / 62	Chris J. Myers (Lecture 1: 68HC12) ECE/CS 5780/6780: Embedded System Design 15 / 62
16-Bit Words (Double Bytes)	Fixed-Point Numbers
b15 b14 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0 • Endian comparison for the 16-bit number \$03E8: Address Contents Address Contents \$0050 \$03 \$0050 \$E8 \$0051 \$E8 \$0051 \$03 Big Endian Little Endian	 In embedded systems, <i>fixed-point</i> is often preferred over floating point since it is simpler, more memory efficient, and often all that is required. fixed-point number = <i>I</i> · Δ where <i>I</i> is a <i>Variable integer</i> and Δ is a <i>Fixed constant</i>. If Δ = 10ⁿ, then called <i>decimal fixed-point</i>. If Δ = 2ⁿ, then called <i>binary fixed-point</i>. The value of Δ cannot be changed during program execution, and it likely only appears as a comment in the code.
Chris J. Myers (Lecture 1: 68HC12) ECE/CS 5780/6780: Embedded System Design 16 / 62	Chris J. Myers (Lecture 1: 68HC12) ECE/CS 5780/6780: Embedded System Design 17 / 62
Precision, Resolution, and Range	Overflow and Drop-Out
 <i>Precision</i> is the total number of distinguishable values. <i>Resolution</i> is the smallest difference that can be represented. <i>Range</i> is the minimum and maximum values. Example: A 10-bit ADC with a range of 0 to +5V, has a precision of 2¹⁰ = 1024 values, and a resolution of 5V/1024 or about 5mV. This could be accurately stored in a 16-bit fixed-point number with Δ = 0.001V. 	 Overflow occurs when result of calculation is outside of the range. Drop-out occurs when an intermediate result cannot be represented. Example: M = (53 * N)/100 versus M = 53 * (N/100) Promotion to higher precision avoids overflow. Dividing last avoids drop-out.
Exercising the second	In the part of the second strain of the second stra

Fixed-Point Arithmetic	Notation
 Let x = l ⋅ Δ, y = J ⋅ Δ, z = K ⋅ Δ. z = x + y K = l + J (addition) z = x - y K = l - J (subtraction) z = x ⋅ y K = (l ⋅ J)/Δ (multiplication) z = x/y K = (l ⋅ Δ)/J (division) If Δ is different, then must first convert one of the two numbers to use the Δ of the other. If Δ is different, binary fixed-point is more convenient as conversion can be done with shifting rather than multiplication/division. 	 w is 8-bit signed (-128 to +127) or unsigned (0 to 255) n is 8-bit signed (-128 to +127) u is 8-bit unsigned (0 to 255) W is 16-bit signed (-32787 to +32767) or unsigned (0 to 65535) N is 16-bit signed (-32787 to +32767) U is 16-bit unsigned (0 to 65535) = [addr] specifies an 8-bit read from address = addr specifies a 16-bit read from address (big endian) =< addr > specifies an 8-bit write to address addr = specifies a 16-bit write to address (big endian) < addr >= specifies a 32-bit write to address (big endian)
Chris J. Myers (Lecture 1: 68HC12) ECE/CS 5780/6780: Embedded System Design 20 / 62	Chris J. Myers (Lecture 1: 68HC12) ECE/CS 5780/6780: Embedded System Design 21 / 62
Assembly Language	Simple Addressing Modes
 Assembly language instructions have four fields: Label Opcode Operand(s) Comment here Idaa \$0000 RegA = [\$0000] staa \$3800 [\$3800] = RegA Idx \$3802 RegX = {\$3802} stx \$3804 {\$3804} = RegX Assembly instructions are translated into machine code: Object code Instruction Comment \$96 \$00 Idaa \$0000 RegA = [\$0000] 	 Inherent addressing mode (INH) Immediate addressing mode (IMM) Direct page addressing mode (DIR) Extended addressing mode (EXT) PC relative addressing mode (REL)
Chris J. Myers (Lecture 1: 68HC12) ECE/CS 5780/6780: Embedded System Design 22 / 62	Chris J. Myers (Lecture 1: 68HC12) ECE/CS 5760/6780: Embedded System Design 23 / 62
Inherent Addressing Mode	Immediate Addressing Mode
• Uses no operand field. Obj code Op Comment \$3F swi Software interrupt \$87 clra RegA = 0 \$32 pula RegA = [RegSP]; RegSP=RegSP+1	 Uses a fixed constant. Data is included in the machine code. Obj code Op Operand Comment \$8624 ldaa #36 RegA = 36 EEPROM
Chris J. Myers (Lecture 1: 68HC12) ECE/CS 5780/6780: Embedded System Design 24 / 62	Chris J. Myers (Lecture 1: 68HC12) ECE/CS 5780/6780: Embedded System Design 25 / 62

Assembly Software for the LED Output System	C Software for the LED Output System
org \$4000 ; ROM Main ldaa #\$0F ; make PT3-0 staa DDRT ; outputs Ctrl ldaa #5 staa PTT ; set 0101 ldaa #6 staa PTT ; set 0110 ldaa #10 staa PTT ; set 1010 ldaa #9 staa PTT ; set 1001 bra Ctrl org \$FFFE fdb Main ; Reset vector	<pre>void main(void){// make PT3-0 DDRT = 0x0F; // outputs while(1){ PTT = 5; // 0101 PTT = 6; // 0110 PTT = 10; // 1010 PTT = 9; // 1001 } }</pre>
TExaS Simulation of LED Output System	Oscilloscope Waveforms for LED Output System
Window Git Versisson Media Alton 19 Window Git Versisson Media Alton 19	PC1 P