
ECE/CS 5780/6780: Embedded System Design

Chris J. Myers

Lecture 10: Threads

Chris J. Myers (Lecture 10: Threads) ECE/CS 5780/6780: Embedded System Design 1 / 22

Introduction to Threads

Interrupts create a multithreaded environment with a single foreground
thread (the main program), and multiple background threads (the ISRs).

Projects where modules are loosely coupled, multiple foreground threads
may be necessary.

This chapter presents techniques to implement multiple foreground
threads (the scheduler).

It also presents synchronization tools, semaphores, that allow threads to
interact with each other.

Chris J. Myers (Lecture 10: Threads) ECE/CS 5780/6780: Embedded System Design 2 / 22

Thread Memory

Chris J. Myers (Lecture 10: Threads) ECE/CS 5780/6780: Embedded System Design 3 / 22

Thread States

Chris J. Myers (Lecture 10: Threads) ECE/CS 5780/6780: Embedded System Design 4 / 22

Thread Lists

Chris J. Myers (Lecture 10: Threads) ECE/CS 5780/6780: Embedded System Design 5 / 22

Round-Robin Scheduler

Chris J. Myers (Lecture 10: Threads) ECE/CS 5780/6780: Embedded System Design 6 / 22



Thread Control Block

A thread control block (TCB) stores information private to each thread,
and it must contain:

A pointer so that it can be chained into a linked list.
The value of its stack pointer.
A stack area for local variables and saved registers.

A TCB may also contain:
Thread number, type, or name.
Age, or how long this thread has been active.
Priority.
Resources that this thread has been granted.

Chris J. Myers (Lecture 10: Threads) ECE/CS 5780/6780: Embedded System Design 7 / 22

Thread Registers

Chris J. Myers (Lecture 10: Threads) ECE/CS 5780/6780: Embedded System Design 8 / 22

C for the Threads

int Sub(int j){ int i;
PTM = 1; // PTM=program being executed
i = j+1;
return(i); }

void ProgA(){ int i;
i=5;
while(1) {

PTM = 2;
i = Sub(i); }}

void ProgB(){ int i;
i=6;
while(1) {

PTM = 4;
i = Sub(i); }}

Chris J. Myers (Lecture 10: Threads) ECE/CS 5780/6780: Embedded System Design 10 / 22

Thread Control Block in C

struct TCB
{ struct TCB *Next; /* Link to Next TCB */

unsigned char *SP; /* Stack Pointer when idle */
unsigned short Id; /* output to PortT */
unsigned char MoreStack[49]; /* more stack */
unsigned char CCR; /* Initial CCR */
unsigned char RegB; /* Initial RegB */
unsigned char RegA; /* Initial RegA */
unsigned short RegX; /* Initial RegX */
unsigned short RegY; /* Initial RegY */
void (*PC)(void); /* Initial PC */

};
typedef struct TCB TCBType;
typedef TCBType * TCBPtr;

Chris J. Myers (Lecture 10: Threads) ECE/CS 5780/6780: Embedded System Design 12 / 22

Thread Control Block in C

TCBType sys[3]={
{ &sys[1], /* Pointer to Next */

&sys[0].CCR, /* Initial SP */
1, /* Id */
{ 0},
0x40,0,0,0,0, /* CCR,B,A,X,Y */
ProgA }, /* Initial PC */

{ &sys[2], /* Pointer to Next */
&sys[1].CCR, /* Initial SP */
2, /* Id */
{ 0},
0x40,0,0,0,0, /* CCR,B,A,X,Y */
ProgA }, /* Initial PC */

{ &sys[0], /* Pointer to Next */
&sys[2].CCR, /* Initial SP */
4, /* Id */
{ 0},
0x40,0,0,0,0, /* CCR,B,A,X,Y */
ProgB } }; /* Initial PC */

Chris J. Myers (Lecture 10: Threads) ECE/CS 5780/6780: Embedded System Design 14 / 22

Preemptive Thread Scheduler in C

TCBPtr RunPt; /* Pointer to current thread */
void main(void){
DDRT = 0xFF; /* Output running thread on Port T */
DDRM = 0xFF; /* Output running program on Port M */
RunPt = &sys[0]; /* Specify first thread */

asm sei
TFLG1 = 0x20; /* Clear C5F */
TIE = 0x20; /* Arm C5F */
TSCR1 = 0x80; /* Enable TCNT*/
TSCR2 = 0x01; /* 2MHz TCNT */
TIOS |= 0x20; /* Output compare */
TC5 = TCNT+20000;
PTT = RunPt->Id;

asm ldx RunPt
asm lds 2,x
asm cli
asm rti
} /* Launch First Thread */

Chris J. Myers (Lecture 10: Threads) ECE/CS 5780/6780: Embedded System Design 16 / 22



Preemptive Thread Scheduler in C (cont)

void interrupt 13 ThreadSwitch(){
asm ldx RunPt
asm sts 2,x
RunPt = RunPt->Next;
PTT = RunPt->Id; /* PortH=active thread */

asm ldx RunPt
asm lds 2,x
TC5 = TCNT+20000; /* Thread runs for 10 ms */
TFLG1 = 0x20; } /* ack by clearing C5F */

Chris J. Myers (Lecture 10: Threads) ECE/CS 5780/6780: Embedded System Design 18 / 22

Profile of Three Threads

Chris J. Myers (Lecture 10: Threads) ECE/CS 5780/6780: Embedded System Design 19 / 22

Other Scheduling Algorithms

A non-preemptive (cooperative) scheduler trusts each thread to
voluntarily release control on a periodic basis.

Not appropriate for real-time systems.

A priority scheduler assigns a priority to each thread.

A thread is scheduled only if no higher priority thread is ready.

Priority reduces latency for important tasks.

In a busy system, low-priority threads may starve.

Chris J. Myers (Lecture 10: Threads) ECE/CS 5780/6780: Embedded System Design 20 / 22

Dynamic Allocation of Threads

void create(void (*program)(void), int TheId){
TCBPtr NewPt; // pointer to new thread control block
NewPt = (TCBPtr)malloc(sizeof(TCBType)); // new TCB
if(NewPt==0)return;
NewPt->SP = &(NewPt->CCR); /* Stack Pointer when not running */
NewPt->Id = TheId; /* Visualize active thread */
NewPt->CCR = 0x40; /* Initial CCR, I=0 */
NewPt->RegB = 0; /* Initial RegB */
NewPt->RegA = 0; /* Initial RegA */
NewPt->RegX = 0; /* Initial RegX */
NewPt->RegY = 0; /* Initial RegY */
NewPt->PC=program; /* Initial PC */
if(RunPt){
NewPt->Next = RunPt->Next;
RunPt->Next = NewPt;} /* will run Next */

else
RunPt = NewPt;} /* the first and only thread */

Chris J. Myers (Lecture 10: Threads) ECE/CS 5780/6780: Embedded System Design 22 / 22


