ECE/CS 5780/6780: Embedded System Design

Chris J. Myers

Lecture 10: Threads

Chris J. Myers (Lecture 10: Threads)

ECE/CS 5780/6780: Embedded System Design

1/22

Introduction to Threads

@ Interrupts create a multithreaded environment with a single foreground
thread (the main program), and multiple background threads (the ISRs).

@ Projects where modules are loosely coupled, multiple foreground threads
may be necessary.

@ This chapter presents techniques to implement multiple foreground
threads (the scheduler).

@ It also presents synchronization tools, semaphores, that allow threads to
interact with each other.

Chris J. Myers (Lecture 10: Threads) ECE/CS 5780/6780: Embedded System Design

Thread Memory

Thread Thread2 Thread3
Stack Stack

> d
Thread] Thread2 Thread3

ECE/CS 5780/6780: Embedded System Design

Chris J. Myers (Lecture 10: Threads)

3/22

Thread States

Create thread

Resource available

Time slice over,

08 grants ;
control 08 takes control
away
Thread needs resource
Kill thread «=—

Chris J. Myers (Lecture 10: Threads) ECE/CS 5780/6780: Embedded System Design 4122

Thread Lists Round-Robin Scheduler

L

Threadl Thread5 Thread?
BlockOnPrinerpt—| LNt =Nl
Thread6
BlockOnEmptyPt = Next > Next |= Null
Thread4 Thread3

BlockOnFullPt = Null

Chris J. Myers (Lecture 10: Threads)

(RunPt)
‘ Next > Next —> Next
Threadl | = | = l =
is running Thread] Thread2 Thread3
RunPt
lchl — | Next = Ichl
Thread2 .)
, 3 Thread! Thread2 Thread3
is running
RunPt
\
. | Next = | Next = | Next
Thread3
is running Threadl Thread2 Threadd

ECE/CS 5780/6780: Embedded System Design

Chris J. Myers (Lecture 10: Threads)

ECE/CS 5780/6780: Embedded System Design

Thread Control Block Thread Registers

TCB of a running (hread TCB of a thread not running
@ A thread control block (TCB) stores information private to each thread, TCB link — TCB link -
and it must contain: = Stack pointer Stack pointer
@ A pointer so that it can be chained into a linked list. (CC,B.A - P =
@ The value of its stack pointer. X Y PC]d ld
@ A stack area for local variables and saved registers. v Stack area Stack arca
@ A TCB may also contain: l
@ Thread number, type, or name.
@ Age, or how long this thread has been active. k s
@ Priority. Ly CC.B.A
@ Resources that this thread has been granted. : i
Local variables f.Y.]PC "
Return pointers Ll
Return pointers
Chris J. Myers (Lecture 10: Threads) ECE/CS 5780/6780: Embedded System Design Chris J. Myers (Lecture 10: Threads) ECE/CS 5780/6780: Embedded System Design
C for the Threads Thread Control Block in C
int Sub(int j){ int i; struct TCB
PTM = 1; // PTMeprogram bei ng execut ed { struct TCB *Next; /* Link to Next TCB */
o=+ unsi gned char *SP; /* Stack Pointer when idle */
return(i); } unsi gned short 1d; /* output to PortT */
void ProgA(){ int i; unsi gned char MoreStack[49]; /* nore stack */
i =5; unsi gned char CCR [* Initial CCR */
while(1) { unsi gned char RegB; /* Initial RegB */
PTM = 2; unsi gned char RegA; /* Initial RegA */
i = Sub(i); }} unsi gned short RegX;, /* Initial RegX */
void ProgB(){ int i; unsi gned short RegY; /* Initial RegY */
i =6; void (*PC)(void); [* Initial PC*/
while(1) { ¥
PTM = 4; typedef struct TCB TCBType;
i = Sub(i); }} typedef TCBType * TCBPtr;
Chris J. Myers (Lecture 10: Threads) ECE/CS 5780/6780: Embedded System Design 10/22 Chris J. Myers (Lecture 10: Threads) ECE/CS 5780/6780: Embedded System Design 12/22
Thread Control Block in C Preemptive Thread Scheduler in C
TCBType sys[3] ={ TCBPtr RunPt; [* Pointer to current thread */
{ &sys[1], /* Pointer to Next */ voi d mai n(voi d){
&sys[0]. CCR, /* Initial SP */ DDRT = OxFF; /* Qutput running thread on Port T */
1, [1d =/ DDRM = OxFF; /* Qutput running programon Port M */
{0, RunPt = &sys[0]; /* Specify first thread */
0x40,0,0,0,0, /* CCR,B,A XY */ asm sei
ProgA }, [* Initial PC*/ - . * *
{ &sys[2], [* Pointer to Next */ 1:::563 (; 2320 ;* l(;lrearCSSE/ /
&sys[1].CCR /* Initial SP */ = 0x20, m
2, 5 1d TSCRL = 0x80; /* Enabl e TCNT*/
{ 0}, TSCR2 = 0x01,; [* 2MHz TONT */
0x40,0,0,0,0, /* OCR B,AXY */ TIGS | = 0x20; /* Qutput conpare */
ProgA }, /* Initial PC*/ TC5 = TCNT+20000;
{ &sys[0], /* Pointer to Next */ PTT = RunPt->|d;
&sys[2] . CCR, /* Initial SP */ asm | dx RunPt
4, I*1d =l asm lds 2,x
{0}, . . asm cli
(F)’x40,Bo, 0, 9, 0, /i |C'CR1 Bi A,Pé, 1/, / asm rti
rogB } b nitia } /* Launch First Thread */

Chris J. Myers (Lecture 10: Threads) ECE/CS 5780/6780: Embedded System Design 4 Chris J. Myers (Lecture 10: Threads) ECE/CS 5780/6780: Embedded System Design

Preemptive Thread Scheduler in C (cont) Profile of Three Threads

10 ms 10 ms 10 ms
void interrupt 13 ThreadSw tch(){ 5 [L__ Thread
asm | dx RUnPt PB2 Thread2
asmsts 2,x PBI Thread]
RunPt = RunPt - >Next ;
PTT = RunPt->ld; /* PortH=active thread */ PBO Thread0
asm | dx RunPt
asm lds 2,x PC2 i ProgB
TC5 = TCNT+20000; /* Thread runs for 10 ns */ =

TFLGL = 0x20; } /* ack by clearing C5F */ pel — TUUUUUL U ProgA
pco — T UUUUUUTL AUUTANANIULN Sub

Chris J. Myers (Lecture 10: Threads) ECE/CS 5780/6780: Embedded System Design Chris J Myers (Lecture 10: Threads) ECE/CS 5780/6780: Embedded System Design

Other Scheduling Algorithms Dynamic Allocation of Threads

void create(void (*program(void), int Theld){
TCBPtr NewPt; /1 pointer to new thread control block
NewPt = (TCBPtr)malloc(sizeof (TCBType)); // new TCB
@ A non-preemptive (cooperative) scheduler trusts each thread to i f(NewPt ==0) return; _ _
voluntarily release control on a periodic basis. NewPt->SP = &(NewPt->CCR); /* Stack Pointer when not running */
. . NewPt - >l d = Thel d; /* Visualize active thread */
@ Not appropriate for real-time systems. NewPt - >CCR = 0x40: /* Initial CCR 1=0 */
@ A priority scheduler assigns a priority to each thread. NewPt - >RegB = 0; /* Initial RegB */
. NewPt - >RegA = 0; /* Initial RegA */
@ Athread is scheduled only if no higher priority thread is ready. NewPt - >RegX = 0: /* Initial RegX */
@ Priority reduces latency for important tasks. NewPt - >RegY = 0; /* Initial RegY */
@ In a busy system, low-priority threads may starve. NewPt - >PC=pr ogr am [* Initial PC*/
i f (RunPt){
NewPt - >Next = RunPt - >Next ;
RunPt - >Next = NewPt;} /* will run Next */
el se
RunPt = Newft;} /* the first and only thread */

Chris J. Myers (Lecture 10: Threads) ECE/CS 5780/6780: Embedded System Design 20/22 Chris J. Myers (Lecture 10: Threads) ECE/CS 5780/6780: Embedded System Design 22/22

