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Introduction to Threads

Interrupts create a multithreaded environment with a single foreground
thread (the main program), and multiple background threads (the ISRs).

Projects where modules are loosely coupled, multiple foreground threads
may be necessary.

This chapter presents techniques to implement multiple foreground
threads (the scheduler).

It also presents synchronization tools, semaphores, that allow threads to
interact with each other.
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Thread Memory
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Thread States
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Thread Lists
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Round-Robin Scheduler
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Thread Control Block

A thread control block (TCB) stores information private to each thread,
and it must contain:

A pointer so that it can be chained into a linked list.
The value of its stack pointer.
A stack area for local variables and saved registers.

A TCB may also contain:
Thread number, type, or name.
Age, or how long this thread has been active.
Priority.
Resources that this thread has been granted.
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Thread Registers
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C for the Threads

int Sub(int j){ int i;
PTM = 1; // PTM=program being executed
i = j+1;
return(i); }

void ProgA(){ int i;
i=5;
while(1) {

PTM = 2;
i = Sub(i); }}

void ProgB(){ int i;
i=6;
while(1) {

PTM = 4;
i = Sub(i); }}
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Thread Control Block in C

struct TCB
{ struct TCB *Next; /* Link to Next TCB */

unsigned char *SP; /* Stack Pointer when idle */
unsigned short Id; /* output to PortT */
unsigned char MoreStack[49]; /* more stack */
unsigned char CCR; /* Initial CCR */
unsigned char RegB; /* Initial RegB */
unsigned char RegA; /* Initial RegA */
unsigned short RegX; /* Initial RegX */
unsigned short RegY; /* Initial RegY */
void (*PC)(void); /* Initial PC */

};
typedef struct TCB TCBType;
typedef TCBType * TCBPtr;
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Thread Control Block in C

TCBType sys[3]={
{ &sys[1], /* Pointer to Next */

&sys[0].CCR, /* Initial SP */
1, /* Id */
{ 0},
0x40,0,0,0,0, /* CCR,B,A,X,Y */
ProgA }, /* Initial PC */

{ &sys[2], /* Pointer to Next */
&sys[1].CCR, /* Initial SP */
2, /* Id */
{ 0},
0x40,0,0,0,0, /* CCR,B,A,X,Y */
ProgA }, /* Initial PC */

{ &sys[0], /* Pointer to Next */
&sys[2].CCR, /* Initial SP */
4, /* Id */
{ 0},
0x40,0,0,0,0, /* CCR,B,A,X,Y */
ProgB } }; /* Initial PC */
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Preemptive Thread Scheduler in C

TCBPtr RunPt; /* Pointer to current thread */
void main(void){
DDRT = 0xFF; /* Output running thread on Port T */
DDRM = 0xFF; /* Output running program on Port M */
RunPt = &sys[0]; /* Specify first thread */

asm sei
TFLG1 = 0x20; /* Clear C5F */
TIE = 0x20; /* Arm C5F */
TSCR1 = 0x80; /* Enable TCNT*/
TSCR2 = 0x01; /* 2MHz TCNT */
TIOS |= 0x20; /* Output compare */
TC5 = TCNT+20000;
PTT = RunPt->Id;

asm ldx RunPt
asm lds 2,x
asm cli
asm rti
} /* Launch First Thread */

Chris J. Myers (Lecture 10: Threads) ECE/CS 5780/6780: Embedded System Design 16 / 22



Preemptive Thread Scheduler in C (cont)

void interrupt 13 ThreadSwitch(){
asm ldx RunPt
asm sts 2,x
RunPt = RunPt->Next;
PTT = RunPt->Id; /* PortH=active thread */

asm ldx RunPt
asm lds 2,x
TC5 = TCNT+20000; /* Thread runs for 10 ms */
TFLG1 = 0x20; } /* ack by clearing C5F */
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Profile of Three Threads
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Other Scheduling Algorithms

A non-preemptive (cooperative) scheduler trusts each thread to
voluntarily release control on a periodic basis.

Not appropriate for real-time systems.

A priority scheduler assigns a priority to each thread.

A thread is scheduled only if no higher priority thread is ready.

Priority reduces latency for important tasks.

In a busy system, low-priority threads may starve.
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Dynamic Allocation of Threads

void create(void (*program)(void), int TheId){
TCBPtr NewPt; // pointer to new thread control block
NewPt = (TCBPtr)malloc(sizeof(TCBType)); // new TCB
if(NewPt==0)return;
NewPt->SP = &(NewPt->CCR); /* Stack Pointer when not running */
NewPt->Id = TheId; /* Visualize active thread */
NewPt->CCR = 0x40; /* Initial CCR, I=0 */
NewPt->RegB = 0; /* Initial RegB */
NewPt->RegA = 0; /* Initial RegA */
NewPt->RegX = 0; /* Initial RegX */
NewPt->RegY = 0; /* Initial RegY */
NewPt->PC=program; /* Initial PC */
if(RunPt){
NewPt->Next = RunPt->Next;
RunPt->Next = NewPt;} /* will run Next */

else
RunPt = NewPt;} /* the first and only thread */
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