
CS/ECE 5780/6780 Handout #8
Spring 2007
Myers

LAB #8: SCI Serial Network Interface

Lab writeup is due to your TA at the beginning of your next scheduled lab. Don’t put this off to
the last minute! There is pre-lab work to complete before the start of the next lab. NO LATE

LAB REPORTS WILL BE ACCEPTED.

1 Objectives

• Design a low-level communication interface between two or more microcomputers.

• Analyze the synchronization problems that occur when two computers are interfaced.

• Investigate low-level methods for error detection.

• Implement half-duplex serial communication.

2 Reading

• Read Chapter 7 on SCI serial interfacing.

3 Background

Figure 1 shows an open-collector half-duplex asynchronous serial channel network. It is half-duplex
because all the TxD and RxD pins are shorted together. Therefore, if two microcomputers attempt
to transmit at the same time there is a possibility of a collision. There are many ways to detect such
collisions. Since the network is half-duplex, the frame goes to all the RxD serial inputs (including
the one transmitting the frame) at the same time. In this lab, you will check the echo of each
transmitted byte to detect collisions.

In this lab, you should use the asynchronous serial interface, SCI, with interrupt synchronization.
The asynchronous serial protocol will be 8 bits, no parity, 1 stop bits, and 9600 baud.

The software for this lab will be divided into two parts. The low-level “device driver” soft-
ware will provide support for initialization, transmitting, and receiving individual bytes across the
network. Both the receive and transmit I/O threads must be interrupt driven. Two FIFO data
structures will link the background threads and foreground thread. Collision detection and report-
ing is built into this layer. At this level, collision is detected at the transmitter when the echoed
data frame received does not match the data frame transmitted. On the receiver end, a collision
may result in a NF, or FE error.

The second part is the main program that test the low-level network. The main program will
construct frames and send them out on the network. It will also receive frames and check if they
are intended for this microcomputer. Each frame will consist of 8-bits. The first four bits (i.e.,
b0 to b3) will be a network address, and the second four bits (i.e., b4 to b7) will be data. Each
microcomputer should have a unique network address. The main loop should construct a frame
addressed to some other microcomputer, transmit the frame, and check for collisions. If collisions
are detected, it should retransmit after waiting some backoff delay to avoid repeated collisions. It
should then check if a frame has arrived and if so, check the frame’s address against its own. If
there is a match, it should output the data onto 4 LEDs connected to an output port. It should
then repeat by constructing a new frame. You may hard code a series of several frames to loop
through. Be creative on setting up your test. Be sure to put some delays into your loop to help
minimize collisions.



Figure 1: Block diagram of an open-collector half-duplex asychronous serial channel network.

4 Prelab

1. Write C code for your low-level device driver software.

2. Write C code for your main program.

5 Lab Tasks

1. Test your code by connecting a serial cable between the DB9 connector on your module to the
serial port connection on a PC. Make sure to remember to short the TxD and RxD signals.
Use hyperterminal to test your network.

2. Connect your microcomputer to another groups microcomputer using a serial cable between
your modules. Be sure to select unique network addresses for each microcomputer. Create a
set of frames in each code that would demonstrate that the microcomputers are communicat-
ing (for example, one could send frames counting up while the other sends frames counting
down).

3. Connect 3 or more microcomputers together and create a real network. Since the module and
project board both have a DB9 serial connector, you can create this network using standard
serial cables connected in a ring-like fashion.

6 Writeup

1. A hardware schematic.

2. A printout of all your C code.


