CS/ECE 5780/6780 Handout #6
Spring 2007
Myers

LAB #6: Threads

Lab writeup is due to your TA at the beginning of your next scheduled lab. Don’t put this off to
the last minute! There is pre-lab work to complete before the start of the next lab. NO LATE
LAB REPORTS WILL BE ACCEPTED.

1 Objectives

e To gain experience with preemptive schedulers and semaphores.

2 Reading

e Read Chapter 5 on threads

3 Tasks

In this lab, you are going to experiment with a thread scheduler and using a semaphore to lock
access to an I/O port. In particular, you are to write a simple thread which counts to $SFFFF. When
it wraps around, it should then try to obtain a semaphore, S. After it obtains the semaphore, the
thread should then write its ID (stored in its thread control block) to an I/O port. You can output
the ID on any I/O port you like but all threads should use the same I/O port. In this handout,
we will call this I/O port, the ID port. After outputing its ID on the ID port, the thread should
wait for a delay. This delay should be implemented with one of the hardware counters rather than
a software counter (for example, you can add $1FFF to TCNT and wait for TCNT to reach this
value). Other threads may be executing as long as they do not wish to access the ID port. After
the delay has completed, the thread should set the ID port back to 0, and it should release the
semaphore, S. It should then loop back and start counting again. In designing this thread, be
aware that it must be reeentrant, since many copies of this thread will be running at the same
time.

Next, you should then implement a thread scheduler, and create thread control blocks for at
least three copies of your simple counting thread. Finally, run your program and watch the ID
port on an oscilloscope and probe kit (available for checkout). This will allow you to see which
thread is in its critical section. Ideally, you would like one thread to always be in its critical section.
Try adding more thread copies and watch the effect. While you can start with the simple thread
scheduler from the book, feel free to be creative to try to optimize performance. For example,
threads which are waiting for their display to time out should release the CPU. Also, blocked
threads should release the CPU. If you are feeling very adventurous, you can try to use blocked
lists, but this is not required.

4 Prelab

1. You should have your simple thread written and running in one of the simulators.

2. You should have at least a basic version of your thread scheduler written though it need not
be thoroughly debugged.



5 Lab Tasks

1. Complete your thread scheduler and watch it execute using an oscilloscope and probe kit
(available for checkout) on the port you selected to output the ID.

2. Attempt to optimize your scheduler to improve the proportion of time that threads are in
their critical section.

6 Writeup

1. A printout of your C code.
2. Annotated scope output for the ID port.

3. Did you have any problems? For example, did you have any problems in how you implemented
your display delay?

4. What percentage of the time do your threads spend in their critical section?

5. What types of things did you try to achieve this level of efficiency?



