

APPLICATION NOTES For

Ni-MH BATTERY CHARGER

S3F94xx-SERIES

MICROCONTROLLERS

Revision 0

Important Notice

The information in this publication has been carefully
checked and is believed to be entirely accurate at
the time of publication. Samsung assumes no
responsibility, however, for possible errors or
omissions, or for any consequences resulting from
the use of the information contained herein.

Samsung reserves the right to make changes in its
products or product specifications with the intent to
improve function or design at any time and without
notice and is not required to update this
documentation to reflect such changes.

This publication does not convey to a purchaser of
semiconductor devices described herein any license
under the patent rights of Samsung or others.

Samsung makes no warranty, representation, or
guarantee regarding the suitability of its products for
any particular purpose, nor does Samsung assume
any liability arising out of the application or use of
any product or circuit and specifically disclaims any
and all liability, including without limitation any
consequential or incidental damages.

"Typical" parameters can and do vary in different
applications. All operating parameters, including
"Typicals" must be validated for each customer
application by the customer's technical experts.

Samsung products are not designed, intended, or
authorized for use as components in systems
intended for surgical implant into the body, for other
applications intended to support or sustain life, or for
any other application in which the failure of the
Samsung product could create a situation where
personal injury or death may occur.

Should the Buyer purchase or use a Samsung
product for any such unintended or unauthorized
application, the Buyer shall indemnify and hold
Samsung and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all
claims, costs, damages, expenses, and reasonable
attorney fees arising out of, either directly or
indirectly, any claim of personal injury or death that
may be associated with such unintended or
unauthorized use, even if such claim alleges that
Samsung was negligent regarding the design or
manufacture of said product.

S3F94xx-Series Microcontrollers

Application Notes, Revision 0

Publication Number:

© 2009 Samsung Electronics

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, electric or mechanical, by photocopying, recording, or otherwise, without the prior
written consent of Samsung Electronics.

Samsung Electronics' microcontroller business has been awarded full ISO-14001
certification (BSI Certificate No. FM24653). All semiconductor products are
designed and manufactured in accordance with the highest quality standards and
objectives.

Samsung Electronics Co., Ltd.
San #24 Nongseo-Lee, Kiheung-Eup
Yongin-City Kyungi-Do, Korea
C.P.O. Box #37, Suwon 449-900

TEL: (02) 760-6530, (0331) 209-6530
FAX: (02) 760-6547
Home-Page URL: Http://www.samsungsemi.com/

Printed in the Republic of Korea

S3C94XX-SERIES APPLICATION NOTE iii

Table of Contents

Overview .. 1
Features ... 1

Charging Theory .. 2

Ni-MH Battery ... 2
Charging Method .. 2

Theory of Operation... 2
Charging Curve ... 2
Terminiation Methods .. 3

System Implementation ... 4

S3F94C4 Features.. 4
System Block Diagram & Specification ... 5
HardWare Implementation .. 5

Power Supply ... 5
LEDs and Switches .. 5
Buck Converter .. 5
Measurement Circuit .. 7

Software implementation .. 9
Software Flowchart .. 9
Source Code Files ... 10

Charging test ... 15

Test Environment .. 15
Test Method .. 15
Test Result ... 16

Appendix .. 18

S3F94C4 Features ... 18
Schematic ... 19
Source Code ... 20

Main.c .. 20
Charge.c .. 25
Operation.c .. 27
Monitor.c .. 31
Global_Define.h ... 34

S3C94XX-SERIES APPLICATION NOTE v

List of Figures

Figure Title Page

Number Number

1 Charging Curve of Ni-MH Battery .. 2
2 Diagram of Battery Charger Reference Design ... 4
3 Buck Converter Switch on ... 6
4 Buck Converter Switch off ... 6
5 Voltage Measurement Circuit .. 7
6 Charging Current Measurement Circuit ... 8
7 Temperature Measurement Circuit .. 9
8 Main Function .. 11
9 Fast Charge Process ... 12
10 Sup. Charge Process ... 13
11 Current Regulate Flow in Fast Charge .. 14
12 Test system configuration .. 15
13 Charging Voltage & Current Test Waveform ... 17
14 Pin Assignment Diagram (20-Pin DIP/SOP/SSOP Package) .. 18
15 Schematic of Reference Design .. 19

S3C94XX-SERIES APPLICATION NOTE vii

List of Tables

Table Title Page

Number Number

1 Code File Description... 10

Ni-MH Battery Charger Application Note

1. OVERVIEW

Now many portable electrical systems and products use rechargeable batteries as their power supply.

The customer has many choices of charging methods, i.e, special power management ICs, MCU

controlled, or even logic parts. When one considers safe charging, time-efficiency and low cost factors,

the MCU controlled charging method can be used as a recharge solution within many application

fields.

This battery charger reference design is based on Ni-MH batteries that fully implements the latest

technologies in battery charger designes. The charger can charge battery with full process control:

pre-charge the new battery or low voltage battry before fast charge, fast charge Ni-MH batteries with

600mA charging current, supplementary charge after fast charge, keep trickle charge after charge

finished.

This battery charger reference design used Samsung highly integrated low cost 8-bit microcontroller

S3F94C4, which is ideal for battery charge with timer, PWM, 10-bit ADC. However, it can be

implemented using any Samsung microcontroller with A/D converter and PWM output.

Features:

 Fast Charging Algorithm with four charging stages:

 Pre-charge with low current when battery voltage is low

 Fast charge with voltage and temperature control in constant current

 Supplementary charge after fast charge for fully charge

 Trickle charge to keep battery fully charged.

 Implements the latest technologies in battery charger designes:

 Voltage control: 0 dv or -dv control for fast charge termination

 Temperature control: dT/dt, Tmax control for fast charge termination

 High Accuracy measurement with 10-bit A/D converter

 Advanced features for safety and easy-to-use.

 Automatic detection of shorted or battery inversed input

 Configurable overvoltage, overcurrent and over temperature suspension.

 Modular “C” source code.

 1 bi-color LED (Red/Greed) for on battery to indicate charge status and show error messages.

 Precise power supply soure for MCU system.

Ni-MH Battery Charger Application Note

2. CHARGING THEORY

2.1 NiMH Battery

Nickel Metal Hydride batteries are the most widely used battery type in new lightweight portable

applicaitions(i.e., camera, camcorder, etc.). They have a higher energy density than NiCd. NiMH

batteries are damaged from overcharging. It is therefore important to do accurate measurements to

terminate the charging at exactly the right time(i.e.,fully charge the battery without overcharging). Like

Nicd, NiMH batteries are damaged from being inversed.

NiMH has a self-discharge rate of apporximately 20% / month. NiMH batteries are charged with

constant current.

2.2 Charging Method

2.2.1 Theory of operation

The charging of a battery is made possible by a reversible chemical reaction that restores energy in a

chemical system. Depending on the chemicals used, the battery will have certain characteristics.

When designing a charger, detailed knowledge of these characteristics is required to avoid damage

inflicted by overcharging.

2.2.2 Charging Curve

1.5

Volts (V)

1.4

1.3

1.2

0.8

0.6

A

I (C)

Time (s)0

B

C

D

E

Pre-charging Large constant

current charging

Supplementary

charging

Trickle charging

>1.0

0.3

0.1

0.05

Strength

Temp.

Temp (
0
C)

25

28

30

35

40

45

1000 2000 3000 4000 5000

Figure 1. Charging Curve of Ni-MH Battery

Ni-MH Battery Charger Application Note

If the battery is over-discharged or not used for long time, large current charge can not fully recover

the nenergy capacity, so the battery need to be precharged with small current (about 1/30 ～1/20C).

This stage called pre-charge.

After the voltage of battery rise up, then can enter fast charge stage with large current (about 1C) to

charge the battery, the charging current is depended on the capacity of the battery and the charging

voltage. The charging current always keeps constant.

When match the fast charge temination condition (-△V or 0 △V), the fast charge stage terminated, but

the battery is not fully charged, so need to be supplementary charged with 0.3C current. This stage

called supplementary charge.

When storage battery, the battery will self-discharge at a rate of C/30 to C/50, so after supplementary

charge, the charger will change to trickle charge stage automatically. In trickle charge stage, charger

will keep charging the battery for keep the battery in fully charged status.

2.2.3 Termination Methods

This reference design implements the use of voltage drop (-dV/dt) as primary termination method,

with temperature and absolute voltage as backup. But the hareware supports all of the below

mentioned methods.

Time control:

This is one of the simplest ways to measure when to terminate the charging. Normally used as

backup termination when fast-charging. Also used as primary termination method in normal charging

(14-16h). Applies to all batteries.

Voltage:

Charging is terminated when the voltage rises above a present upper limit. Used in combination with

constant current charging. Used as backup termination.

-dV/dt—voltage Drop:

This termination method utilizes the negative derivative of voltage over time, monitoring the voltage

drop occurring in some battery types if charging is continued after the battery is fully charged.

Commonly used with constant current charging. It‟s the main termination method used in this

reference design.

Temperature:

Absolute temperature can be used as termination method, but is preferred as backup termination

method only. Charging should be terminated if the temperature rises above the operating

termperature limit of Ni-MH batteries. It also used as backup method.

dT/dt – Temperature Rise:

The derivative of temperature over time can be used as termination method when fast charging.

Normally, when the temperature increase 1℃/minute, charging should be terminated as quickly as

possible.

Ni-MH Battery Charger Application Note

3. SYSTEM IMPLEMENTATION

3.1 S3F94C4 Features

This reference design using Samsung S3F94C4 as main microcotorller. S3F94C4 is a 20-pin

microcontroller, with 4-K bytes flash ROM, and 208 Bytes RAM. It has a 8-bit timer, 10-bit resolution

ADC with 9 channels, and 8-bit PWM.

These all features makes S3F94C4 is very suitable for battery charger application: 10-bit ADC for

voltage and current measurement; 8-bit PWM for charing current & voltage control , 8-bit timer for

system time control. Internal RC OSC is help for those application (like battery charger) that do not

need high system frequency.

3.2 System Block Diagram & Specification

S3F94C4

Power Supplier Buck Converter Voltage Monitor
Current

Checking

LED Display

(Green, Red)

B

A

T

T

E

R

y

Current

Voltage

PWM

Temperature

5V

5V
P0.6/PWM

P0.3/ADC3

P2.6/ADC8

P0.1/ADC1
P2.1 & P2.2

VDD

Figure 2. Diagram of Battery Charger Reference Design

 Input to MCU(three ADC input signal)

 Voltage monitor for battery fully charged condition check and battery state check

 Current check for constant charging current control.

 Temperature monitor for battery temperature measurement, charge termination condition

Ni-MH Battery Charger Application Note

check and battery protection.

 Output from MCU:

 PWM output to buck converter circuit for charging current control.

 LED output to show charging status and error message with Green and Red LED.

System specification:

 Input voltage: DC 9.0V

 Input current: 100mA

 Output voltage: DC 1.3V

 Output current: 600mA

3.3 Hardware Implementation

3.3.1 Power Supply:

The input voltage is rectified through DC9V-DC5V and then filtered by capacitor. The rectified input

voltage is supplied to both the buck converter and to LM7805 voltage regulator. The LM7805 delivers

5V for the microcontroller. The red LED marked “power on” indicates power on.

3.3.2 LEDs and Switches:

This reference design using bi-color LED to indicate the stage of the charge process. If there is no

battery insert, the LED is red and blink slowly. If the charging is in processing, the LED is green and

blink with different speed in different charge stage. If the battery is fully charged, the LED is green and

always on. If there is some error detected, the LED is flicking red. So, from the LED displaying, all of

the status of charge process will be acknowledged.

3.3.3 Buck Converter:

The buck charging is usually used in constant current charging. The most economical way to create a

constant charge current is to use a buck converter. A buck converter is a switching regulator that uses

an inductor as energy storage device.

The buck converter circuit is consist of one P-channel MOSFET switching transistor driven by a

bipolar NPN transistor. The switching transistor is connected to an inductor, a diode and a capacitor

(see Figure 3).

The charge switch is controlled by PWM. When the switch is on, current will flow as show in Figure 3.

The capacitor is charged by the Vin through the inductor. When the switch is opened, as show in

Figure 4, the inductor will try to maintain its current flow by inducing a voltage, as the current through

an inductor can‟t change instantaneously. The current then flows through the diode and the inductor

charges the capacitor, then the cycles repeats itself.

Ni-MH Battery Charger Application Note

Inductor

Cap

B
a

tt
e

ry

DiodePWM
Vin Vo

on

PMOS

Figure 3 . Buck Converter Switch on

Inductor

Cap

B
a

tt
e

ry

DiodePWM
Vin Vo

off

PMOS

Figure 4. Buck Converter Switch off

If decreases the duty cycle of PWM by shorten the switch „on‟ time, the average voltage will decrease.

If increases the duty cycle of PWM by longer the switch „on‟ time, the average voltage will increase.

Therefore, controlling the duty cycles allows us to regulate the charging voltage or the charging

current to achieve desired output value. The buck converter is most efficient running on a duty of 50%.

Inductor selection:

L =
(VIN − VSW − VO) × D

r × f × IO

 Where,

L: Conver inductor

VIN: Charger voltage input to switch

VSW: Voltage loss on switch when switch is on

VO: Voltage output

VD: Voltage drop on diode when switch is off

IO: Current output (the current for constant current charge)

f: The frequency of the switch.

D: The duty cycle of the PWM,

D =
VO + VD

VIN − VSW + VD

r: Ripple of current,

r =
∆I

IO

Ni-MH Battery Charger Application Note

As this equation shows, the higher the PWM switching frequency, the smaller the inductor, enabling

lower cost.

Note that the capacitor in this circuit is simply a ripple reducer. In this case, larger is better, as ripple is

inversely proportional to the value of this capacitor.

In this reference design, we assume Vin is 5V, Vsw = 0.3V, Vo = 1.4V, Io = 600 VD is 0.5V, the

frequency of switch is about 156KHz, and the ripple of current is about 10%, so the L will be 171uH, in

this reference design ,we use 220uH inductor as the energy storage device.

Note that if you want to use a higher input voltage, you must use a higher frequency PWM, or you

must use a larger value inductor (at a greater cost), so a suitable input voltage is something that must

be considered.

3.3.4 Measurement Circuit

Battery voltage:

The charging voltage is monitored using an op-amp to measure the voltage difference between the

positive and the negative pole of the battery. The op-amp circuit for measuring the battery voltage is

an ordinary differential op-amp circuit. In order to select a suitable measurement range for the charger,

need to select suitable scale resistors for the voltage measurement. The voltage op-amp circuit of this

reference design is shown in Figure 5. The equation for the output voltage from the op-amp circuit is

shown below. The ADC is capable of measuring the voltage range from 0V to 5V, the output range

from the op-amp has to be within this range:

Vbat =
R13

R12
V+ + V−

 Where,

 Vbat : The output voltage from op-amp to microcontroller

 V+ : The positive pole of the battery

 V−: The negative pole of the battery

 Ra , Rb: The resistors in the resistor network used to set the gain for the op-amp.

Figure 5. Voltage Measurement Circuit

Ni-MH Battery Charger Application Note

Charge current:

The detail circuit of charge current measurement is shown in Figure 6.The charge current is

measured by sensing the voltage over a 0.050ohm shunt-resistor. This voltage is amplified using an

op-amp to improve the accuracy of the measurement before it is fed into the A/D converter.

This voltage is amplified by the factor:

1 +
R22

R21
= 1 +

50000

470
≈ 51

The op-amp output voltage is therefore:

VIbat = 1 +
R22

R21
 Icharge R20 = 2.55 × Icharge

The maximum charging current that can be measured is:

IchargeMax =
Vref

2.55
=

5

2.55
= 1.96 A

Figure 6. Charging Current Measurement Circuit

Temperature:

Temperature is measured by a negative temperature coefficient(NTC) resistor.The NTC is part of a

voltage divider, which is powered by the Vdd for microcontroller. The detail circuit is shown in Figure.

7

The temperature is measured:

Vtemp = VDD ×
R25

(R24 + R25)

The resistor value is changed according to the temperature, so the Vtemp is changed accordingly, so,

can detect the temprature by check the voltage value of Vtemp by A/D convert. But, the relationship

between the temperature and resistor value is not linear, which makes it difficult to calculate the

temperature from the ADC value. In fact, in the real application field,the temperature range of battery

is from 10-45℃, in this temperature range, we can treat it as a linear curve apporximately.

Ni-MH Battery Charger Application Note

Figure 7. Temperature Measurement Circuit

3.4 Software implementation

3.4.1 Software Flowchart:

The full charge state are divided into four stage: pre-charge, fast-charge, supplementary charge and

trickle charge. When a battery is inserted in, which stage is choosed is decided by the battery voltage,

and the following charge stage are processed sequencely.

Charge is started if the battery voltage is within the voltage range. If the battery temprature exceed a

limited value, the charge will not process. Charge is always terminated with an maximum battery

voltage or maximum total-charge time expires.

The normal ways to detect that the battery is fully charged, are the Temperature Rise (dT dt) and the

voltage drop (−dV dt) methods. Therefore, a sample is taken every minute for the temperature and

every 2 seconds of the voltage. The values are compared to the sample taken one minute/second ago.

In case the battery is fully charged, the charge status is auotomatically changed to trickle-charge.

The trickle-charge excutes in a loop when the overall charge time exceeded the large current charge

time limitation, or the voltage or temprature overflow the maximum value.

In this reference design, the charger can charge two battery at the same time. These two battery have

same charge mechanism and can be charged simutanenous, so, in the sofeware, there only one

battery charge process for demonstration, and it can be easily expanded to support charge two

batteries.

Ni-MH Battery Charger Application Note

3.4.2 Source Code Files

The software is written in C langurage. The source code include following files:

Table 1． Code File Description

File Name Description Remark

Main.C The main function of the code, and the system

initialization function.

Global_define.h Global variables declaration; Constant define;

Marco definition

Charge.c The charge function of each charge stage

Charge.h Head file for Charge.c; function declaration.

Operation.c Execution funtion of the four charge stage.

Operation.h Head file for operation.c; function declaration

Monitor.c Battery Voltage, charge current , temperature

measurement function. Mianly are ADC functions

Monitor.h Head file for Monitor.c: function declaration

ioS3F94C4.h Register difinition and interrupt vectors declaration

for S3F94C4.

Main.c:

This module include the main function of the system, the system initialization function and interrupt

handling routines.

In the “Sys_init” routine, all low-level initialization are done. The I/O ports and PWM, timer block are

initialized. In the “System_Clear” routine, the system global variables are clear to there initial value for

charge another battery.

The main function “main” is the basic function of the system, the software flowchart is realized in main

function, and the major part of the main function is a dealy loop keep running in front of the software

platform after chip reset, that check the battery voltage and take execution according to the battery

voltage and charge state.

Global_define.h:

In this module, include the definition of the charge state, constant related to the system parameters,

and the declaration of global variables. This module is included by each module for common definition

and declaration.

ioS3F94C4.h:

This module include the register definintion and interrupt declaration of S3F94C4.

Ni-MH Battery Charger Application Note

Main flow chart

Begin

Vbat > 0V?

System initialization

YVbat < 1.65V ?

No battery On or battery was takeoff

Red LED flash with Slow frequency

Charge State = No Battery

Vbat > 0.8V ?

Pre-Charge

Green LED flash with low frequency

Charge State = Pre-Charge

Y

N

N

Y

Charge State = Sup

Charge ?

Fast Charge

Green LED flash with high frequency

Charge State = Fast Charge

Y

Supplementary Charge

Green LED flash with normal

frequency

Charge State = Sup. Charge

N

Y

N

Stop Charging

Red Led always on

Charge State = Charge

End

N

Y

Y

N

Temp > 45

Within Total

Charge Time?

Battery Voltage

Measurement

Clear System

variables values

Battery Type Wrong

Red LED flash with High frequency

Charge State = Battery wrong

N

Charge State = Fast

Charge or No

Battery?

Y

Charge State =

Trickle Charge ?

Trickle Charge

Green LED flash with low frequency

Charge State = Sup. Charge

Vbat <Vmax ?

N

N

Y

Y

Y

Figure 8. Main Function.

Charge.c:

This module Include the functions for each charge stage. These functions are part of the main loop,

and called by main function.

Ni-MH battery is charged by constant current, in fast charge stage, the charge current is set to about

600mA. The charge is terminated by the Temperature Rise(dT/dt) and the Voltage Drop(-dV/dt)

methods. Maximum charge voltage and maximum charge time are used as backup terminations.

Ni-MH Battery Charger Application Note

Fast charge process:

Fast

Charge

Voltage check

interval

passed?

-dV/dt matched

Calculate Voltage

Average Value

dT/dt overflow?

Fast charge

time within

limits

?

Y

N Temp. check

interval

passed?

Charge State =

Sup. Charge

N

Y

Y

N

Y

Charge State =

Trickle Charge
Charge State =

Fast Charge

Regulator Charge

Current

End one fast

Charge Process

Y

N

N

Y

Figure 9. Fast Charge Process.

In case the battery is fully charged the charge stage is automatically changed to supplementary

charge, causing the program to execute the supplementary charge function.

Supplementary charge is also charge by constant current, and the charge is terminated by

Temperature Drop (dT/dt) or Maximum supplementary charge time. In case of the termination

condition matched, the charge status changed to trickle charge automatically.

Ni-MH Battery Charger Application Note

Supplementary charge process:

Supplementary

Charge

dT/dt overflow?

Sup. charge time within

limits ?

N Temp. check

interval

passed?

Y

Charge State =

Trickle Charge
Charge State =

Sup. Charge

Regulator Charge

Current

End one Sup.

Charge Process

Y

N

N

Y

Figure 10. Sup. Charge Process.

Monitor.c:

This module mainly include the measurement functions of battery voltage, charge current and battery

temperature. And the charge termination condition check functions are also included.

Operation.c:

This module include the charge current regulator of each charge state, mainly the PWM duty width

control accroding the required constant charge current. And the PWM operation functions and the

system message display function are also included in this module. These four stage have similar

control algorithm, so, we take the fast charge as example:

Ni-MH Battery Charger Application Note

Current Regulator Flow:

Fast Charge

current regulate

Current

Measurement

Current > target

current ?

Increase PWM

dutywidth

Decrease PWM

dutywidth

PWM width >

Max. limit ?

PWM width <

Min. limit ?

PWM width = Max

limitation value

PWM width = Min

limitation value

YN

N

Y Y

N

Figure 11. Current Regulate Flow in Fast Charge.

Ni-MH Battery Charger Application Note

4. CHARGE TEST

Test Environment

 Temperature: 25℃

 Battery: 1300mAh Ni-MH battery

 Power Supply: Adapter (output: 9V, max 1.0A)

 Instruments: Agilent 34401A Digit Multimeter *2

Test Method

9V

N

L
AC / DC

5V

regulator

5V

regulator

S3F94C4

PWM

VDD

A

D

C

Vout

Vi_sence

Battery

0.05ohm

Figure 12. Test system configuration.

Detected value:

 Vout = Vbat + Vi_sence

 Iout = Vi_sence / 0.05

As shown in Figure 12, during the charging process, watch the voltage at the test points of Vout and

Vi_sence, using two multimeters to get the charging voltage, then calculate the charging current by

Vi_sence / 0.05.

At the begginning of the charging process, record the data every 60 seconds. When the charging

current and voltage become stable, the test interval becomes longer (every 4 minutes).

Ni-MH Battery Charger Application Note

Test Result

 Fast charging time: 56 minutes

 Constant current of fast charge: 610mA

 Fast charge end voltage: 1.408V

 Supplementary charge current: 120mA

 Supplementary charge end voltage: 1.396V

 End charge voltage:1.396V

These results may vary from battery to battery because of the variation of their physical

characteristics. The original voltage of the battery also has an impact on the results. However, the

specification is easily achieved. The results are shown in following test diagrams.

Ni-MH Battery Charger Application Note

Figure 13. Charging Voltage & Current Test Waveform.

Fast Charge

Fast Charge Sup. Charge

Sup. Charge

Ni-MH Battery Charger Application Note

5. Appendix

S3F94C4 Features:

Memory

 4-Kbyte internal multi-time program Full-Flash

memory

 208-byte general-purpose register area

General I/O

 Three I/O ports (Max 18 pins)

 Bit programmable ports

1-ch Three Modes High-speed PWM

 6-bit base + 2-bit extension

 8-bit base + 6-bit extension

 6-bit base + 6-bit extension

Timer/Counters

 One 8-bit basic timer for watchdog function

 One 8-bit timer/counter with time interval
modes

A/D Converter

 Nine analog input pins (MAX)

 10-bit conversion resolution

Built-in RESET Circuit (LVR)

• Low-Voltage check to make system reset

• VLVR = 1.9/2.3/3.0/3.6/3.9 V (by smart option)

Operating Temperature Range

 – 40C to + 85C

Operating Voltage Range

 1.8 V to 5.5 V @ 1-4M Hz(LVR disable)

 LVR to 5.5V @ 1-4M Hz(LVR enable)

 2.7 V to 5.5V @ 1-10M Hz

Package Types

 S3F94C4:

 – 20-DIP-300A
– 20-SOP-375
– 20-SSOP-225
– 16-DIP-300A
– 16-SOP-225
– 16-TSSOP-BD44

Pin Assignment:

S3F94C4

(20-DIP-300A/

 20-SOP-375 /

20-SSOP-225)

20

19

18

17

16

15

14

13

12

11

1

2

3

4

5

6

7

8

9

10

VDD

P0.0/ADC0/INT0/SCL

P0.1/ADC1/INT1/SDA

P0.2/ADC2

P0.3/ADC3

P0.4/ADC4

P0.5/ADC5

P0.6/ADC6/PWM

P0.7/ADC7

P2.6/ADC8/CLO

VSS

XIN/P1.0

XOUT/P1.1

VPP/nRESET/P1.2

T0/P2.0

P2.1

P2.2

P2.3

P2.4

P2.5

Figure 14. Pin Assignment Diagram (20-Pin DIP/SOP/SSOP Package)

Ni-MH Battery Charger Application Note

Schematic

Figure 15. Schematic of Reference Design

Ni-MH Battery Charger Application Note

Source Code

/**
* @file name Main.c
* @description Main functions for Battery charger code
*
* XTAL = 10MHz
*
* @author Li Baoke(86-571-86726288 EXT.8103, baoke.li@samsung.com)
* @version Preliminary 0.0
* @history History type - NEW/MODify/ADD/DELete
* ---
* |ver type when who what
* |---+---+----------+-------------------------+----------------------
* |0.0 NEW 2008-03-06 Li Baoke Creation
* ---
*
* @see IAR C Compiler Tool
*/
/***
*************************** I N C L U D E S ******************************
***/
#include "Globle_Define.h"
#include "Charge.h"
#include "Operation.h"
#include "Monitor.h"
/***
*************************** S M A R T O P T I O N ********************
***/
/* Smart option 3CH
 Must be initialized to 0x00 */
__root __code const unsigned char SMT1 @ 0x3C = 0x00;
/* Smart option 3DH
 Must be initialized to 0x00 */
__root __code const unsigned char SMT2 @ 0x3D = 0x00;
/* Smart option 3EH
 0xFF -> LVR Enable (default)
 0x7F -> LVR Disable */
__root __code const unsigned char SMT3 @ 0x3E = 0x7F;
/* Smart option 3FH
 0xFF -> Internal RC 3.2MHz (default)
 0xFE -> Internal RC 0.5MHz
 0xFD -> 0.5MHzExternal RC
 0xFC -> External Crystal */
__root __code const unsigned char SMT4 @ 0x3F = 0xFC;
/***
***************************Global Variable definition************************
***/
/*---
* Battery related variables
--/
unsigned char Bat1State = 0; //battery 1 state
/* voltage monitor related */
unsigned int Bat1Volts = 0; //Battery 1 voltage ADC convert result;
unsigned int Bat1VoltsArray[9]={0,0,0,0,0,0,0,0,0}; //voltage sample array,last one is average value.
unsigned int Bat1AvgArray[9] = {0,0,0,0,0,0,0,0,0}; //voltage average array, last one is average value.
/* temperature related */
unsigned int Bat1TempADC = 0; //battery 1 temperature ADC result
unsigned int Bat1Temp = 0; //battery 1 temperature
unsigned int Bat1PreTemp = 0; //battery 1 pre temp data
unsigned int Bat1TempChkIntv = 0; //battery temperature checking interval
/* time control related parameters (time = interval * counter) */
unsigned int Bat1TimeTotalInterval = 0; //battery 1 total charge time interval
unsigned char Bat1TimeTotalCounter = 0; //battery 1 total charge time counter
unsigned int Bat1TimeFastInterval = 0; //battery 1 fast charge time interval
unsigned char Bat1TimeFastCounter = 0; //battery 1 fast charge time counter

Ni-MH Battery Charger Application Note

unsigned int Bat1TimeSupInterval = 0; //battery 1 Sup. charge time interval
unsigned char Bat1TimeSupCounter = 0; //battery 1 Sup. charing time counter
/*Termination condition check related variables*/
unsigned char Bat1VoltChkFlag =0; //voltage checking flag:1-start check; 0- no check
unsigned int Bat1VoltChkIntv = 0; // battery 1 voltage checking interval
unsigned int PreVolts = 0; //voltage check value: pre-tested value
unsigned int PreVolts1 = 0; //voltage check value: pre-tested value 1
unsigned int VoltDropCnt = 0; //counter of voltage drop (Prevoltage - Vcheck >= 1)
unsigned char VoltDropCnt1 = 0; //counter of voltage drop every 1 minute.
unsigned int Bat1AvgMax = 0; //Max value of the average voltage
unsigned int Bat1AvgMin = 790; //Min value of the average voltage
unsigned int VoltAvgDropCnt = 0; //counter of Vave <= Vmax-4
unsigned char VoltAvgDropCnt1 = 0; //counter of Vave <= Vmax-3
unsigned int DvStartTestTime = 0; //-dv check delay time
/*---
* common variables
--/
unsigned char PWMWidth = 80; //Fast charging pwm duty width
unsigned char PWMRunFlag = 0; //PWM run or stop flag:0 == init; 1== strat run; 2== stop run
unsigned int ChargingCurrent = 0; //Charging current convert result.
unsigned char TOMatchCounter = 0; // TO interrupt timing counter
/**
**************************** F U N C T I O N S *************************
**/
/*
** Main function
*/
void main(void)
{
 __enable_interrupt();
 __disable_interrupt(); //Disable globle interrupt
 SP=0xC0; //stack point setting @ 0xC0
 Sys_init(); //System inintialization: board enviroment setting
 __enable_interrupt(); //Enable globle interrupt
 while(1)
 {
 ChargingCurrent = Charging_Current_Monitor();
 ChargingCurrent = Charging_Current_Monitor() + CURRENT_AMP_COMPENSATE;
 /*------- battery take off check--------------*/
 if(((Bat1State == BATTERY_FAST_CHARGING) ||
 (Bat1State == BATTERY_SUP_CHARGING) ||
 (Bat1State == BATTERY_TRICKLE_CHARGING)) &&
 (ChargingCurrent <= CHG_CURRENT_MIN)) //take off in charging process
 {
 Bat1State = BATTERY_CHARGING_END;
 Show_BAT1_State(BATTERY_CHARGING_END); //show message
 System_Clear();
 delay(65500); //wait for capacitor discharge
 delay(65500);
 delay(65500);
 delay(65500);
 delay(65500);
 delay(65500);
 delay(65500);
 Bat1State = NO_BATTERY;
 }

Bat1Volts = BAT1_V_Monitor(); //ADC result = ((2.5Vbat+) + Vbat-))*1024/5
 Bat1Volts += BAT1_V_Monitor();
 Bat1Volts += BAT1_V_Monitor();
 Bat1Volts = Bat1Volts / 3;

if(Bat1Volts >= BAT_DETECTOR_VOLTS)
Bat1Volts -= (ChargingCurrent/CURRENT_AMP_GAIN);

 /*------- battery on check--------------*/
 if(Bat1Volts <= BAT_DETECTOR_VOLTS) //if Vbat <0.1V,no battery insert
 {
 Bat1State = NO_BATTERY;
 Show_BAT1_State(NO_BATTERY); //show message

Ni-MH Battery Charger Application Note

 System_Clear(); // clear global variables to init. values
 }
 /*-------Decide DV check delay time-----*/
 if((Bat1Volts > BAT_DETECTOR_VOLTS) && (Bat1State == NO_BATTERY))
 {
 if(Bat1State > VOLTS_OF_INIT_DLY_1)
 DvStartTestTime = INIT_CHECK_DLY_1;
 if(Bat1State > VOLTS_OF_INIT_DLY_2)
 DvStartTestTime = INIT_CHECK_DLY_2;
 if(Bat1State > VOLTS_OF_INIT_DLY_2)
 DvStartTestTime = INIT_CHECK_DLY_3;

 }

 /*------- battery type check--------------*/
 if(Bat1Volts >= BAT_MAX_VOLTS) //if Vbat > 1.5V, battery tpye wrong or charging finished
 {
 if((Bat1State != BATTERY_TYPE_ERROR) && //Vmax Control: if Vbat > Vmax, enter trickle charge
 (Bat1State != NO_BATTERY))
 {
 Bat1State = BATTERY_TRICKLE_CHARGING;
 } else {
 Bat1State = BATTERY_TYPE_ERROR;
 }
 }
 /*------- battery temperature monitor--------------*/
 Max_Temp_Detect();
 /********** Pre-charge ***************/
 if((Bat1Volts > BAT_DETECTOR_VOLTS) && //if 0.1V < Vbat <0.8V, pre-charging
 (Bat1Volts <= BAT_PREEND_VOLTS) &&
 (Bat1State <= BATTERY_PRE_CHARGING))
 {
 Bat1State = BATTERY_PRE_CHARGING;
 Battery_Pre_Charge();
 }
 /********** Fast charge ***************/
 if(((Bat1Volts > BAT_PREEND_VOLTS) && //if 1.2V < Vbat <1.6V, charging...
 (Bat1Volts <= BAT_MAX_VOLTS)) &&
 (Bat1State <= BATTERY_FAST_CHARGING))
 {
 Fast_Charge();
 }
 /********** supplementary charge ***************/
 if(((Bat1Volts > BAT_PREEND_VOLTS) &&
 (Bat1Volts <= BAT_MAX_VOLTS)) &&
 (Bat1State == BATTERY_SUP_CHARGING))
 {
 Sup_Charge();
 }
 /********** trickle charge ***************/
 if(Bat1State == BATTERY_TRICKLE_CHARGING)
 {
 Bat1State = BATTERY_TRICKLE_CHARGING;
 Battery_TRK_Charge();
 }
 /*------- total charging time check --------------*/
 if((PWMRunFlag == CHARGING_RUN) && (Bat1State != BATTERY_TRICKLE_CHARGING))
 {
 Max_ChargeTime_Detect();
 }
 Show_BAT1_State(Bat1State);
 }
}
/*
** System and peripheral registers initializtion.
*/
void Sys_init(void)
{

Ni-MH Battery Charger Application Note

 /*System Control Registers Initialization*/
 BTCON = 0xA3; //disbale WacthDog, clear basic timer couter
 CLKCON = 0x0C; //enable IRQ wake up; Fcpu = Fosc/1
 /*I/O Ports Control Registers Initialization*/
 P0CONH = 0xDB; //11011011b
 //P0.7 ADC input --- battery 2 temperature monitor;
 //P0.6 PWM --- Bulk circuit control signal; set as output in init stage.
 //P0.5 Output --- Battery 1 charing control;
 //P0.4 ADC input --- Battery 2 voltage monitor;
 P0CONL = 0xEE; // 11101110b
 //P0.3 ADC input --- battery 1 voltage monitor;
 //P0.2 Output --- Battery 2 charging control;
 //P0.1 ADC input --- Battery 1 temperature monitor;
 //P0.0 Oupput --- Battery 1 Discharging control;
 P0PND = 0x00; //no external interrupt --- disable external interrput
 P0 = 0x00; //Port 0 no output;
 P1CON = 0x0A; //00001010b
 // P1.1-0 set to output to prevent current consumption
 P1 = 0x00; //Port1 not used.
 P2CONH = 0x32; //00110010b
 //P2.6 ADC input --- Charing current moniotr;
 //P2.5 Input --- Function selection signal 2
 //P2.4 Output --- Green Led for battery 2
 P2CONL = 0xA8; //10101000b
 //P2.3 Output --- Red Led for battery 2
 //P2.2 output --- Green Led for battery 1
 //P2.1 output --- Red Led for battery 1
 //P2.0 input --- Function selection signal 1
 P2 = 0x00; // P2.4-.1 output low (LED trun off).
 /* Peripheral Control Registers Initialization */
 T0CON = 0x02; //00000010b
 //Clock = fosc/4096
 //clear counter;enable interrupt; clear pending bit;
 T0DATA = 122; //inteval: 122 cycles. 50ms@10MHz system clock.
 PWMCON = 0xD0; //PWM initialize: 11010000b
 //Clock = fosc/1;
 //Stop run at first;
 //disable interrupt; clear pending bit;
 PWMDATA = 0x00; //base mode
 ADCON = 0x94; //ADC module initialize: 10010100
 //channel select: connect to GND
 //clock = fosc/4 = 2.5MHz@ fosc = 10MHz
 //Stop convert
 /* Global Variable initialize */
 Bat1State = NO_BATTERY; //default: no battery after start run...
}
void System_Clear()
{
 unsigned char i;
 PWMCON &= 0xFB;
 //set P0.6 as output :
 P0CONH &= 0xCF; //&11101111B (bit5 = 0)
 P0CONH |= 0x20; //|00100000B (bit4 = 1)
 P0_bit.b6 = 0; //output low to stop charging Bat1TimeTotalInterval = 0;
 Bat1TimeTotalCounter = 0;
 Bat1TimeFastInterval = 0;
 Bat1TimeFastCounter = 0;
 Bat1TimeSupInterval = 0;
 Bat1TimeSupCounter = 0;
 Bat1VoltChkIntv = 0;
 Bat1VoltChkFlag = 0;
 for(i=0; i<8;i++)
 Bat1VoltsArray[i] = 0;
 for(i=0; i<8;i++)
 Bat1AvgArray[i] = 0;
 PreVolts = 0;
 PreVolts1 = 0;

Ni-MH Battery Charger Application Note

 VoltDropCnt = 0;
 VoltDropCnt1 = 0;
 Bat1AvgMax = 0;
 Bat1AvgMin = 790;
 VoltAvgDropCnt = 0;
 VoltAvgDropCnt1 = 0;
 DvStartTestTime = 0;

 Bat1TempADC = 0;
 Bat1Temp = 0;
 Bat1PreTemp = 0;
 Bat1TempChkIntv = 0;

 PWMWidth = 0;
 PWMRunFlag = 0;
 ChargingCurrent = 0;
}
/*
** Delay function
*/
void delay(unsigned int nLoop_CNT)
{
 int i;
 for(i=0;i<=nLoop_CNT;i++)
 __no_operation();
}
/**
****************************Interrupt service routine************************
**/
/*
** Interrupt service routine (software polling sequence decide interrupt priority.)
*/
#pragma vector=__P00_vector
__interrupt void ISR_Processing(void)
{
 if(T0CON_bit.PND == 1)
 {
 TOMatchCounter ++; //match interval: 50ms
 if((PWMRunFlag ==CHARGING_RUN) && (Bat1State != BATTERY_TRICKLE_CHARGING))
 {
 Bat1TimeTotalInterval++;
 }
 if((PWMRunFlag ==CHARGING_RUN) && (Bat1State == BATTERY_FAST_CHARGING))
 {
 Bat1TimeFastInterval++;
 //Bat1TempChkIntv++;
 if(Bat1VoltChkFlag == 1)
 {
 Bat1VoltChkIntv++;
 }
 }
 if((PWMRunFlag ==CHARGING_RUN) && (Bat1State == BATTERY_SUP_CHARGING))
 {
 Bat1TimeSupInterval++;
 //Bat1TempChkIntv++;
 }
 }
 PWMCON_bit.PND = 0;
 T0CON_bit.PND = 0; //clear timer0 pending bit.
 P0PND_bit.INT0_PND = 0; // Clear pending bit
}

Ni-MH Battery Charger Application Note

/**
* @file name Charge.c
* @description charge function for fast charge and supplementary charge
* @author Li Baoke(86-571-86726288 EXT.8103, baoke.li@samsung.com)
* @version Preliminary 0.0
* @history |---
* |ver type when who what
* |---+---+----------+-------------------------+----------------------
* |0.0 NEW 2008-03-06 Li Baoke Creation
*/
#include "Globle_Define.h"
#include "Charge.h"
#include "Monitor.h"
#include "Operation.h"
/*Fast charge process*/
void Fast_Charge(void)
{
 unsigned char i;
 /**********calculate the average voltage***************/
 if(Bat1VoltsArray[0] == 0) //in the inita state,set the first as Bat1Volts
 {
 for(i=0; i<8;i++)
 Bat1VoltsArray[i] = Bat1Volts;
 }
 for(i = 8; i>0; i--) //array data rotate right one.
 Bat1VoltsArray[i] = Bat1VoltsArray[i-1];
 Bat1VoltsArray[0] = Bat1Volts; //set the first the data as the newest voltage sample value
 Bat1VoltsArray[8] = 0; //the last one set as 0
 for(i = 0; i<8; i++) //get sum of the 8 data.
 Bat1VoltsArray[8] += Bat1VoltsArray[i];
 Bat1VoltsArray[8] = Bat1VoltsArray[8] / 8; //the last one is the average of the 8 sample values.
 /**********0dv and -dv control***************/
 if ((Bat1Volts >= START_CHECKING_VOLTAGE) || //0 dv and -dv control: when Vbat > 1.3V,
 (Bat1TimeTotalInterval >= DV_STARTTEST_TIME_LMT)) //start charing time limit
 {
 Bat1VoltChkFlag = 1;
 }
 if (Bat1VoltChkIntv >= VOLT_CHK_INTV) // 0 dv and -dv control:
 {
 if(Bat1AvgArray[0] == 0)
 {
 for(i=0; i<9;i++)
 Bat1AvgArray[i] = Bat1VoltsArray[8];
 }
 for(i = 8; i>0; i--) //array data rotate right one.
 Bat1AvgArray[i] = Bat1AvgArray[i-1];
 Bat1AvgArray[0] = Bat1VoltsArray[8]; //set the first data as the newest sample value
 Bat1AvgArray[8] = 0; //the last one set as 0
 for(i = 0; i<8; i++) //get sum of the 8 data.
 Bat1AvgArray[8] += Bat1AvgArray[i];
 Bat1AvgArray[8] = Bat1AvgArray[8] / 8; //the last one is the average of the 8 sample.
 if(Bat1AvgArray[8] > Bat1AvgMax)
 {
 Bat1AvgMax = Bat1AvgArray[8];
 }else if(Bat1AvgArray[8] <= Bat1AvgMin)
 {
 Bat1AvgMin = Bat1AvgArray[8];
 }
 if(Bat1AvgMax >= (Bat1AvgArray[8] + 4))
 {
 VoltAvgDropCnt ++;
 }
 if(Bat1AvgMax >= (Bat1AvgArray[8] + 3))
 {
 VoltAvgDropCnt1 ++;
 }
 if(PreVolts == 0)

Ni-MH Battery Charger Application Note

 {
 PreVolts = Bat1AvgArray[8];
 }
 if(PreVolts > (Bat1AvgArray[8]))
 {
 VoltDropCnt ++;
 }
 if((Bat1TimeFastInterval % 1200) == 0)
 {
 if(PreVolts1 == 0)
 {
 PreVolts1 = Bat1AvgArray[8];
 }
 if(PreVolts1 > (Bat1AvgArray[8] +1))
 {
 VoltDropCnt1 ++;
 }
 PreVolts1 = Bat1AvgArray[8];
 }
 PreVolts = Bat1AvgArray[8];
 Bat1VoltChkIntv = 0; // recounter
 }
 if((VoltAvgDropCnt >= 10) || (VoltDropCnt >= 10) || (VoltAvgDropCnt1 >= 50) ||(VoltDropCnt1 >= 1))
 {
 Bat1State = BATTERY_SUP_CHARGING;
 VoltDropCnt = 0;
 }
 /* dT/dt check */
 DT_Dt_Detect();

 if(Bat1TimeFastInterval >= MAX_FAST_INTEVEL)
 {
 Bat1TimeFastInterval = 0;
 Bat1TimeFastCounter ++;
 }
 if((Bat1TimeFastCounter >= MAX_FAST_COUNTER) || //fast charging time control
 (Bat1State == BATTERY_SUP_CHARGING))
 {
 Bat1State = BATTERY_SUP_CHARGING; //exceed fast charge limit,then enter supplymentary charge
 } else {
 Battery_Fast_Charge();
 if (Bat1State == NO_BATTERY)
 delay(2000);
 Bat1State = BATTERY_FAST_CHARGING;
 }
}
/*
**Supplementary charge process
*/
void Sup_Charge(void)
{
 /* dT/dt check */
 DT_Dt_Detect();

 if(Bat1TimeSupInterval >= MAX_SUP_INTEVEL)
 {
 Bat1TimeSupInterval = 0;
 Bat1TimeSupCounter ++;
 }
 if ((Bat1TimeSupCounter >= MAX_SUP_COUNTER)) //Supplementary charging time control
 {
 Bat1State = BATTERY_TRICKLE_CHARGING;
 } else {
 Bat1State = BATTERY_SUP_CHARGING;
 Battery_Sup_Charge();
 }
}

Ni-MH Battery Charger Application Note

/*
* @file name operation.c
* @description Battery charger operation of each mode
* @author Li Baoke(86-571-86726288 EXT.8103, baoke.li@samsung.com)
* @version Preliminary 0.0
* @history History type - NEW/MODify/ADD/DELete
* |---
* |ver type when who what
* |---+---+----------+-------------------------+----------------------
* |0.0 NEW 2008-03-06 Li Baoke Creation
*/
#include "Globle_Define.h"
#include "Operation.h"
/**
****************************Charge operation functions********************
**/
/*
** Pre charing function
 */
void Battery_Pre_Charge(void)
{
 if (ChargingCurrent <= PRE_CHG_CURRENT_LMT)
 {
 PWMWidth++;
 if (PWMWidth >= PRE_PWM_MAX)
 PWMWidth = PRE_PWM_MAX;
 PWM_Operation(PWMWidth);
 }else {
 PWMWidth--;
 if (PWMWidth <= PRE_PWM_MIN)
 PWMWidth = PRE_PWM_MIN;
 PWM_Operation(PWMWidth);
 }
}
/*
** fast charing function
 */
void Battery_Fast_Charge(void)
{
 if (ChargingCurrent <= FAST_CHG_CURRENT_LMT)
 {
 PWMWidth++;
 if (PWMWidth >= FAST_PWM_MAX)
 PWMWidth = FAST_PWM_MAX;
 PWM_Operation(PWMWidth);
 }else {
 PWMWidth--;
 if (PWMWidth <= FAST_PWM_MIN)
 PWMWidth = FAST_PWM_MIN;
 PWM_Operation(PWMWidth);
 }
}
/*
** supplymentary charging function
 */
void Battery_Sup_Charge(void)
{
 if (ChargingCurrent <= SUP_CHG_CURRENT_LMT)
 {
 PWMWidth++;
 if (PWMWidth >= SUP_PWM_MAX)
 PWMWidth = SUP_PWM_MAX;
 PWM_Operation(PWMWidth);
 }else {
 PWMWidth--;
 if (PWMWidth <= SUP_PWM_MIN)
 PWMWidth = SUP_PWM_MIN;

Ni-MH Battery Charger Application Note

 PWM_Operation(PWMWidth);
 }
}
/*
** trickle charing function
 */
void Battery_TRK_Charge(void)
{
 if (ChargingCurrent <= TRK_CHG_CURRENT_LMT)
 {
 PWMWidth++;
 if (PWMWidth >= TRK_PWM_MAX)
 PWMWidth = TRK_PWM_MAX;
 PWM_Operation(PWMWidth);
 }else {
 PWMWidth--;
 if (PWMWidth <= TRK_PWM_MIN)
 PWMWidth = TRK_PWM_MIN;
 PWM_Operation(PWMWidth);
 }
}
/**
**************************** PWM operation functions**************************
**/
void PWM_Duty_Set(unsigned char dutywidth) //set PWM dutywidth
{
 PWMDATA = dutywidth <<2; //set PWMDATA.5-2 = dutywidth
}
void PWM_Exten_Set(unsigned char ext) //set PWM extension bit
{
 PWMDATA |= ext; //set PWMDATA.1-0
}
void PWM_Start_Run(void) //PWM start counter
{
 PWMCON |= 0x04;
}
void PWM_Stop_counter(void) //PWM stop counter
{
 PWMCON &= 0xFB; // &11111011B (bit2 = 0);
}
void PWM_Enable_Interrupt(void) //PWM interrpt enable
{
 PWMCON |= 0x02;
}
void PWM_Clock_Select_64(void)
{
 PWMCON &= 0x3F; // &00111111B (bit7.-6 = 00)
}
void PWM_Clock_Select_8(void)
{
 PWMCON &= 0x7F; // &01111111B (bit7 = 0)
 PWMCON |= 0x40; // |01000000B (bit6 = 1)
}
void PWM_Clock_Select_2(void)
{
 PWMCON &= 0xBF; // &10111111B (bit6 = 0)
 PWMCON |= 0x80; // |10000000B (bit7 = 1)
}
void PWM_Clock_Select_1(void)
{
 PWMCON |= 0xC0; // |11000000B (bit6 = 1)
}
void PWM_Operation(unsigned char width)
{
 unsigned char Temp, Temp2;
 //set P0.6 as PWM output:
 P0CONH &= 0xDF; //&11011111B (bit5 = 0)

Ni-MH Battery Charger Application Note

 P0CONH |= 0x10; //|00010000B (bit4 = 1)
 Temp = width / 4;
 Temp2 = (Temp & 0x3F)<<2;
 //PWM_Duty_Set(Temp);
 Temp = width % 4;
 Temp2 = Temp2 | (Temp & 0x03);
 //PWM_Exten_Set(Temp);
 PWMDATA = Temp2;
 PWMRunFlag = CHARGING_RUN; //PWM state: run
 PWM_Start_Run();
}
void PWM_Stop(void)
{
 PWM_Stop_counter();
 //set P0.6 as output :
 P0CONH &= 0xCF; //&11101111B (bit5 = 0)
 P0CONH |= 0x20; //|00100000B (bit4 = 1)
 P0_bit.b6 = 0; //output low to stop charging
 PWMRunFlag = 2; //PWM state: stop run

}
/**
**************************** battery state Display ************************
**/
void Show_BAT1_State(unsigned char State_Flag) //battery 1 state show
{
 if(Bat1State == NO_BATTERY) //no battery , Red LED blink
 {
 P2_bit.b2 = 0; //Led_Green_1 turn off,
 if(TOMatchCounter == 30)
 {
 TOMatchCounter = 0;
 P2_bit.b1 = ~P2_bit.b1; //Led_Red_1 blinking slowly
 }
 }else if(Bat1State == BATTERY_TYPE_ERROR) //battery type wrong , Red LED blink
 {
 P2_bit.b2 = 0; //Led_Green_1 turn off,
 if(TOMatchCounter == 4)
 {
 TOMatchCounter = 0;
 P2_bit.b1 = ~P2_bit.b1; //Led_Red_1 blinking quickly
 }
 }else if(Bat1State == BATTERY_PRE_CHARGING) //battery precharg, Green LED blink
 {
 P2_bit.b1 = 0; //LED_Red_1 turn off
 if(TOMatchCounter == 18)
 {
 TOMatchCounter = 0;
 P2_bit.b2 = ~P2_bit.b2; //Led_Green_1 blinking slowly
 }
 }else if(Bat1State == BATTERY_FAST_CHARGING) //battery fast charging , Green LED blink
 {
 P2_bit.b1 = 0; //LED_Red_1 turn off
 if(TOMatchCounter == 2)
 {
 TOMatchCounter = 0;
 P2_bit.b2 = ~P2_bit.b2; //Led_Green_1 blinking quickly
 }
 }else if (Bat1State == BATTERY_SUP_CHARGING) //battery supplementary charging,Green LED blink
 {
 P2_bit.b1 = 0; //LED_Red_1 turn off
 if(TOMatchCounter == 10)
 {
 TOMatchCounter = 0;
 P2_bit.b2 = ~P2_bit.b2; //Led_Green_1 blinking normally
 }
 }else if (Bat1State == BATTERY_TRICKLE_CHARGING) //battery trickle charging

Ni-MH Battery Charger Application Note

 {
 P2_bit.b1 = 0; //LED_Red_1 turn off
 if(TOMatchCounter == 26)
 {
 TOMatchCounter = 0;
 P2_bit.b2 = ~P2_bit.b2; //Led_Green_1 blinking very slowly
 }
 }else if (Bat1State == BATTERY_CHARGING_END) //battery charging end. Red LED blink (same with no battery)
 {
 P2_bit.b2 = 0; //Led_Green_1 turn off,
 if(TOMatchCounter == 30)
 {
 TOMatchCounter = 0;
 P2_bit.b1 = ~P2_bit.b1; //Led_Red_1 blinking slowly
 }
 }
}

Ni-MH Battery Charger Application Note

/*
* @file name Monitor.c
* @description measurement functions and system abormal state protect
* @author Li Baoke(86-571-86726288 EXT.8103, baoke.li@samsung.com)
* @version Preliminary 0.0
* @history History type - NEW/MODify/ADD/DELete
* |---
* |ver type when who what
* |---+---+----------+-------------------------+----------------------
* |0.0 NEW 2008-03-06 Li Baoke Creation
*/

/***
*************************** I N C L U D E S ******************************
***/
#include "Globle_Define.h"
#include "monitor.h"
#include "Operation.h"
/**
**************************** parameter measurement *******************
**/
/* battery 1 voltage convert (amplifier output) */
unsigned int BAT1_V_Monitor(void)
{
 unsigned int ADC_Result = 0; //store convert result
 __disable_interrupt(); //disable interrupt
 ADCON = 0x34; //00110100b
 //ADC channel 3(P0.3, A_BAT1)
 ADC_Start_Convert(); //Start convert
 while(ADCON_bit.EOC == 0);
 ADC_Result = ADDATAH; //load ADDATAH
 ADC_Result = ((ADC_Result<<2) & 0x03FC) | (ADDATAL & 0x03); //get convert result
 __enable_interrupt(); //enable interrupt

 return ADC_Result;
}
/* charging current convert (amplifier output) */
unsigned int Charging_Current_Monitor(void)
{
 unsigned int ADC_Result = 0; //store convert result
 __disable_interrupt(); //disable interrupt
 ADCON = 0x84; //10000100b
 //ADC channel 8(P2.6, charging current)

 ADC_Start_Convert(); //Start convert

 while(ADCON_bit.EOC == 0)
 {
 __no_operation();
 }
 ADC_Result = ADDATAH; //load ADDATAH
 ADC_Result = ((ADC_Result<<2) & 0x03FC) | (ADDATAL & 0x03); //get convert result
 __enable_interrupt(); //enable interrupt

 return ADC_Result;
}
/* battery 2 voltage convert (amplifier output) */
unsigned int BAT2_V_Monitor(void)
{
 unsigned int ADC_Result = 0; //store convert result
 __disable_interrupt(); //disable interrupt
 ADCON = 0x44; //01000100b
 //ADC channel 4(P0.4, A_BAT2)
 ADC_Start_Convert(); //Start convert
 while(ADCON_bit.EOC == 0);

 ADC_Result = ADDATAH; //load ADDATAH

Ni-MH Battery Charger Application Note

 ADC_Result = ((ADC_Result<<2) & 0x03FC) | (ADDATAL & 0x03); //get convert result
 __enable_interrupt(); //enable interrupt

 return ADC_Result;
}
/* battery 1 temp. convert (amplifier output) */
unsigned int BAT1_Temp_Monitor(void)
{
 unsigned int ADC_Result = 0; //store convert result
 __disable_interrupt(); //disable interrupt
 ADCON = 0x14; //01000100b
 //ADC channel 1(P0.1, A_Temp_BT1)
 ADC_Start_Convert(); //Start convert
 while(ADCON_bit.EOC == 0);

 ADC_Result = ADDATAH; //load ADDATAH
 ADC_Result = ((ADC_Result<<2) & 0x03FC) | (ADDATAL & 0x03); //get convert result
 __enable_interrupt(); //enable interrupt

 return ADC_Result;
}
/* battery 2 temp. convert (amplifier output) */
unsigned int BAT2_Temp_Monitor(void)
{
 unsigned int ADC_Result = 0; //store convert result
 __disable_interrupt(); //disable interrupt
 ADCON = 0x74; //01110100b
 //ADC channel 1(P0.1, A_Temp_BT1)
 ADC_Start_Convert(); //Start convert
 while(ADCON_bit.EOC == 0);

 ADC_Result = ADDATAH; //load ADDATAH
 ADC_Result = ((ADC_Result<<2) & 0x03FC) | (ADDATAL & 0x03); //get convert result
 __enable_interrupt(); //enable interrupt

 return ADC_Result;
}
/**
**************************** charge condition detector*******************
**/
void Max_Temp_Detect()
{
 Bat1TempADC = BAT1_Temp_Monitor(); //get temp signal convert result
 Bat1Temp = (43676 - (60 * Bat1TempADC)) / (1024 - Bat1TempADC); //temp calculate forum
 if (Bat1Temp >= 35) //temperature control: if Temp > 45C, stop fast or
supplementary charing and enter trickle charging
 {
 Bat1State = BATTERY_TRICKLE_CHARGING;
 }
}
void DT_Dt_Detect()
{
 if(Bat1TempChkIntv >= 2400) //dT / dt : temperature control:
 {
 if(Bat1Temp > (Bat1PreTemp +1))
 {
 Bat1State = BATTERY_TRICKLE_CHARGING;
 }
 Bat1TempChkIntv = 0;
 Bat1PreTemp = Bat1Temp;
 }
}
void Max_ChargeTime_Detect()
{
 if(Bat1TimeTotalInterval >= MAX_TOTOL_INTEVEL)
 {
 Bat1TimeTotalInterval = 0;

Ni-MH Battery Charger Application Note

 Bat1TimeTotalCounter ++;
 }
 if(Bat1TimeTotalCounter >= MAX_TOTOL_COUNTER)
 {
 Bat1State = BATTERY_TRICKLE_CHARGING; //if exceed charge timing limitation, enter trickle charge
 }
}
/**
**************************** ADC operation ***************************
**/
void ADC_Start_Convert(void)
{
 ADCON |= 0x01; // |00000001B (bit0 = 1)
}

Ni-MH Battery Charger Application Note

/**
* @file name Global_Define.h
* @description global variables and definitions.
* @author Li Baoke(86-571-86726288 EXT.8103, baoke.li@samsung.com)
* @version Preliminary 0.0
* @history History type - NEW/MODify/ADD/DELete
* |---
* |ver type when who what
* |---+---+----------+-------------------------+----------------------
* |0.0 NEW 2008-03-06 Li Baoke Creation
* ---
*/
#ifndef __GLOBLE_DEFINE_H
#define __GLOBLE_DEFINE_H
/* Header file including union declaration of registers. */
#include "ioS3C9454.h"
/* This header file contains some intrinsic functions. */
#include "intrinsics.h"
/***
*************************** D E C L A R A T I O N ***********************
***/
void Sys_init();
void System_Clear();
void delay(unsigned int nLoop_CNT);
/***
***************************Charge Status define *******************************
***/
#define NO_BATTERY 0 //no battery insert or battery inversed
#define BATTERY_TYPE_ERROR 1 //battery type not correct
#define BATTERY_PRE_CHARGING 2 //battery in pre-charging
#define BATTERY_FAST_CHARGING 3 //battery in fast charging
#define BATTERY_SUP_CHARGING 4 //battery charging finished
#define BATTERY_TRICKLE_CHARGING 5 //battery charging finished
#define BATTERY_CHARGING_END 6 //battery charging finished
/***
***************************System paremeter define ****************************
***/
/*---
* ADC convert parameters
---/
#define CURRENT_AMP_GAIN 46 //current monitor amplifier gain.
#define CURRENT_AMP_COMPENSATE 14 //compensate for current ADC convert result.
/*---
* charging state change condition
*--
* voltage = ((2.5Vbat+) + Vbat-))*1024/5
* voltage < 50: no battery or battery was inversed
* 615 < voltage < 790: fast charging / supplementary charging /trickle charing
* voltage > 790: battery type wrong or charing finished.
* charing current < 15: no battery or battery was token off
*/
#define BAT_DETECTOR_VOLTS 50 //when battery voltage bigger than this value, means battery on.
#define BAT_PREEND_VOLTS 615 //when battery voltage bigger than this value, stop pre-charging.
#define BAT_MAX_VOLTS 790 //if voltage bigger than this, stop charing
#define CHG_CURRENT_MIN 15 //if current less than this,means no battery or battery was toke off
#define START_CHECKING_VOLTAGE 790 //-dv/0dv start checking voltage
#define DV_STARTTEST_TIME_LMT 20000 //-dv/0dv start checking time limit
#define VOLTS_OF_INIT_DLY_1 630 //voltage value 1
#define INIT_CHECK_DLY_1 20000 //if voltage < 630, then delay time will be longer
#define VOLTS_OF_INIT_DLY_2 660 //voltage value 2
#define INIT_CHECK_DLY_2 10000 //if voltage < 660, then delay time will be short
#define VOLTS_OF_INIT_DLY_3 700 //voltage value 1
#define INIT_CHECK_DLY_3 0 //if voltage > 700, then no delay.
/*---
* charging time control constents
--/
#define CHARGING_RUN 1 //charging runing

Ni-MH Battery Charger Application Note

#define MAX_TOTOL_INTEVEL 60000 //total charging time max interval
#define MAX_TOTOL_COUNTER 6 //max total charging time counter
#define MAX_FAST_INTEVEL 12000 //Fast charging time max interval
#define MAX_FAST_COUNTER 6 //max Fast charging time counter
#define MAX_SUP_INTEVEL 60000 //Sup. charging time max interval
#define MAX_SUP_COUNTER 2 //max Sup. charging time counter
#define VOLT_CHK_INTV 40 // -dv/0dv checking interval
/*---
* charging PWM width control constents
--/
#define PRE_PWM_MIN 40 //pre-charge mimimun duty width
#define PRE_PWM_MAX 60 //pre-charge maximum duty width
#define PRE_CHG_CURRENT_LMT 30 //pre-charge constant current

#define FAST_PWM_MIN 100 //Fast-charge mimimun duty width
#define FAST_PWM_MAX 220 //Fast-charge maximum duty width
#define FAST_CHG_CURRENT_LMT 340 //Fast-charge constant current

#define SUP_PWM_MIN 60 //Sup.-charge mimimun duty width
#define SUP_PWM_MAX 100 //Sup.-charge maximum duty width
#define SUP_CHG_CURRENT_LMT 110 //Sup.-charge constant current

#define TRK_PWM_MIN 24 //Trickle-charge mimimun duty width
#define TRK_PWM_MAX 60 //Trickle-charge maximum duty width
#define TRK_CHG_CURRENT_LMT 40 //Trickle-charge constant current
/***
***************************Global Variable definition***************************
***/
/*------------------- Battery related variables --------*/
extern unsigned char Bat1State; //battery 1 state
/* voltage monitor related */
extern unsigned int Bat1Volts; //Battery 1 voltage ADC convert result;
extern unsigned int Bat1VoltsArray[9]; //voltage sample array, the last one [8] is average value.
extern unsigned int Bat1AvgArray[9]; //voltage average array, last one is average value.
/* temperature related */
extern unsigned int Bat1TempADC; //battery 1 temperature ADC result
extern unsigned int Bat1Temp; //battery 1 temperature
extern unsigned int Bat1PreTemp; //battery 1 pre temp data
extern unsigned int Bat1TempChkIntv; //battery temperature checking interval
/* time control related parameters (time = interval * counter) */
extern unsigned int Bat1TimeTotalInterval; //battery 1 total charing time interval
extern unsigned char Bat1TimeTotalCounter; //battery 1 total charing time counter
extern unsigned int Bat1TimeFastInterval; //battery 1 fast charing time interval
extern unsigned char Bat1TimeFastCounter; //battery 1 fast charing time counter
extern unsigned int Bat1TimeSupInterval; //battery 1 Sup.charing time interval
extern unsigned char Bat1TimeSupCounter; //battery 1 Sup. charing time counter
/*Termination condition check related variables*/
extern unsigned char Bat1VoltChkFlag; //voltage checking flag:1-start check; 0- no check
extern unsigned int Bat1VoltChkIntv; // battery 1 voltage checking interval
extern unsigned int PreVolts; //voltage check value: pre-tested value
extern unsigned int PreVolts1; //voltage check value: pre-tested value 1
extern unsigned int VoltDropCnt; //counter of voltage drop (Prevoltage - Vcheck >= 1)
extern unsigned char VoltDropCnt1; //counter of voltage drop every 1 minute.
extern unsigned int Bat1AvgMax; //Max value of the average voltage
extern unsigned int Bat1AvgMin; //Min value of the average voltage
extern unsigned int VoltAvgDropCnt; //counter of Vave <= Vmax-4
extern unsigned char VoltAvgDropCnt1; //counter of Vave <= Vmax-3
extern unsigned int DvStartTestTime; //-dv check delay time
/*---
* common variables
--/
extern unsigned char PWMWidth; //Fast charging pwm duty width
extern unsigned char PWMRunFlag; //PWM run or stop flag:0 == init; 1== strat run; 2== stop run
extern unsigned int ChargingCurrent; //Charging current convert result.
extern unsigned char TOMatchCounter; // TO interrupt timing counter
#endif /* __GLOBLE_DEFINE_H */

	Battery Charge Application Note
	TOC
	List of Figures
	List of Tables
	1-OverView
	2-Charging Theory
	3-System Implementation
	4-Charging Test
	5-Appendix

