
EC430 PIC Embedded Control
Project: “Smart Car”

Kyle Aubrey & Jonathan Coppock
Group #1

Box 1387 & Box 1435

Department of Electrical and Computer
Engineering

Rose-Hulman Institute of Technology

EC430: Microcomputers
Dr. Jianjian Song

February 21, 2000

i

TABLE OF CONTENTS:

INTRODUCTION………………………………………………………………... 1
INTERNAL WORKINGS……………………………………………………….. 1-6

Strategy………………………………………………………………………... 1
Specification…………………………………………………………………... 2
Hardware Schematic…………………………………………………………. 2-3
Software Flowcharts………………………………………………………….. 4-6

USER’S MANUAL……………………………………………………………….. 7
BILL OF MATERIALS………………………………………………………….. 7
RECOMMENDATIONS……………….………………………………………... 8
ACKNOWLEDGMENTS………………………………………………………... 8
APPENDIX………………………………………………………………………... 9-11

1

INTRODUCTION:

The objective of our PIC embedded control project for EC430 was to develop and
implement a “Smart Car”, which would be able to follow a black line on the floor using
an RC car from Radio Shack, a PIC microcontroller, two IR emitter/detectors, and other
various hardware.

The motivation for doing this particular project was a request by Van Cottom of the ECE
department. He requested that our group work on this project, as it is hoped that the
“Smart Car” can be used as a project for Rose-Hulman’s Catapult Program. Van Cottom
funded the cost of parts for this project.

This report will summarize the successful completion of this project. Topics to be
covered include the internal workings, the user’s manual, documented code, flowcharts,
and a bill of materials.

INTERNAL WORKINGS:

Strategy:

The strategy of this project was to use one PIC microcontroller to control operation of the
“Smart Car”. The PIC microcontroller takes in two IR inputs, which allow for
interrupting in the software. Also, the PIC has two outputs, which are used to drive the
motors of the RC car, using variable duty cycle square waves. The outputs of the PIC
cannot go directly to the motors, as they require high current. Consequently, the PIC
outputs are used to switch two MOSFET transistors. Then, the MOSFET’s are connected
to the RC car’s motors.

The car is designed to move forward. The normal forward speed of the car uses a 90%
duty cycle. To turn the car, one of the tracks are slowed down to a 30% duty cycle. For
example, to turn the car left while both tracks are at 90% duty cycle, lower the left track
to a 30% duty cycle. Then, increasing the duty cycle back to 90% will make the car go
straight again. The high and low duty cycles are parameters in the assembly code that
can be easily changed.

The interrupt service routine is called by a change on one of the IR input sensors. The
purpose of the interrupt service routine is to change the duty cycle as necessary. The
duty cycle is implemented by dividing a cycle into 10 segments. Then, a delay can be
created to represent one piece, or 1/10 of a complete cycle. Then, if a 30% duty cycle is
desired, the line is asserted high while three of the delays occur, and returns to low for the
remaining 7 delays, giving one complete cycle with a 30% duty cycle.

2

Specification:

1. The “Smart Car” will follow a line of black tape.

2. The car will have dual motors, one for both left and right tracks.

3. The motors will be speed controlled by high power MOSFET’s using variable duty
cycles.

4. The battery for the car will be a 9.6V NiCad rechargeable battery.

5. A 5V regulator will be used to reduce the 9.6V to the 5V used by the PIC.

6. Two IR emitter/detectors will be used to sense the black line.

7. The IR emitter/detectors will be in the front of the car and approximately 4 inches
apart.

8. If the right IR senses the black tape, the right motor will be issued a lower duty cycle
to slow the right side down until the IR does not sense the tape any more. It will then
be issued the normal higher duty cycle. This also applies to the left side.

Hardware Schematic:

The hardware schematic can be found on the next page. There are a total of five
capacitors, including bypass capacitors for power sources and the capacitors for the
10MHz crystal oscillator. There are also two IR emitters and two IR detectors. The IR
emitters include 150Ω resistors to allow the proper voltage level for operation. The IR
detectors include 10kΩ pull-up resistors. The output of the IR detectors pass through
inverters, before connecting to the PIC. The dual motors of the RC car are powered by
9.6V, and pass through switching MOSFET’s before connecting to the PIC. The
hardware design also includes a voltage regulator to step 9.6V down to 5V.

3

22pF

150Ω
150Ω

IRF540

+9.6V

+5V

IRF540

+9.6V

10.0MHz

22J 22J

+5V

+5V

+5V

+5V

+5V

+5V

CM
.1Z
25V

C

LM7805

+9.6V

+5V

LEFT SIDE RIGHT SIDE

9.6V to 5.0V Regulation

22pF.1uF

10kΩ
10kΩ

Shrink
Wrap

Shrink
Wrap

47uF
10uF

74LS04
Inverters

Floor

IR
Emitter

IR
Detector

Floor

IR
Emitter

IR
Detector

4

Software Flowcharts:

The detailed software flowcharts can be found on the next two pages. The first page
includes the software flowchart for the MAIN program. The second page includes the
software flowchart for the CHANGE_DUTY interrupt service routine, which changes the
duty cycle of either the left or right track’s motor when a change is detected on one of the
IR detector inputs of the PIC.

5

MAIN PROGRAM:
START

Initialize duty cycles

Set TMR0 as timer (TOCS in OPTION_REG)

Set RA0,1 and RB6,7 as outputs
RB4,5 as inputs

Disable Timer 0 interrupt
Enable PORTB change interrupt

Enable GIE interrupt

Clear length placeholder

Set RA0,1 to high

Set TMR0 to raise flag after certain time

Clear timer flag

Increment placeholder

Set RA0 low

Set RA1 low

Check if Timer
0 has set

overflow flag

Placeholder
at 10

Check if
placeholder is met
for right duty cycle

Check if left
placeholder is met

for duty cycle

No

Yes

Yes

No

Yes

Yes

No

No

LEFT_CHK

START

WAIT

RGHT_CHK

MAIN

CDLY
DELAY

6

CHANGE_DUTY:

Save off working register contents,
Save off contents of STATUS register

Store contents of PORTB in b_temp

Lower duty cycle for right motor

Lower duty cycle for left motor

Clear interrupt flag

Return contents of working register and STATUS

END

START

Check if RB4
is clear

Check if RB5
is clear

No

No

Yes

Yes

On rising or fallin g edge of RB4,5

7

USER’S MANUAL:

The “Smart Car” is very simple to use. To start the car, simply switch the power to ON.
The switch can be found under the car, at the back of the car.

Start the car so that it is positioned in the direction of the part of the course that it is going
to begin on. This will give the car the best chance of finding the course and getting off to
a good start.

For best performance, the course should be made of electrical tape that is double-wide.
Also, the floor color should be considerably lighter than the tape, preferably white or a
very light reflective color.

Starting and stopping blocks can be made on the course simply by creating large black
squares that the sensors can both fit inside of. Whenever both of the car’s sensors are
over black, both of the motors are stopped. If the motors are stopped for long enough by
a large enough black square, the car can be completely stopped. Smaller areas of black
can be used as a "speed bump” of sorts. For example wide strips of black can be placed
perpendicular to the course before turns to slow the car down. Also, if a turn is too sharp
for the car, black tape can be concentrated on the inside of the curve to help the car
corner. This works because it slows down one side of the car longer, helping it to corner
more sharply.

BILL OF MATERIALS:

Part Quantity Price/Part X Quantity
RC Car 1 $40.00
9.6V NiCad Battery 1 $25.00
Battery Recharger 1 $7.00
PIC16F84 1 $5.00
10MHz Crystal 1 $2.00
IRF540 MOSFET 2 $3.00
74LS04 Hex Inverter 1 $0.25
150Ω Resistor 2 $0.20
10kΩ Resistor 2 $0.20
0.1µF Capacitor 1 $0.25
22pF Capacitor 2 $0.50
Electrolytic Capacitor 2 $0.50
LM7805 5V Regulator 1 $1.00
IR Emitter/Detector 2 $1.00

TOTAL COST: $85.90

8

RECOMMENDATIONS:

Our group recommends that a similar RC car be used by the Catapult Program.
However, we would not recommend the type of RC car with two rubber tracks. Also, the
gear ratio of our car was geared for high speed, rather than greater torque, but the car we
used like to overshoot curves.

The next car should probably have wheels, rather than tracks. We found that for this
application of the RC car, the tracks provide too much friction. This makes it difficult for
the car to change speeds quickly and to turn accurately.

Also, the next car should also have a gear ratio that provides greater torque and less
speed. Again, this will allow the car to change speed more quickly and smoothly, as well
as allow the car to turn more accurately.

ACKNOWLEDGMENTS:

We would like to thank Van Cottom for allowing us the opportunity to work on this
exciting project. It has been an excellent learning experience in embedded design. We
are also grateful to Van Cottom for providing full financial funding of the parts used in
this design.

Also, we would like to thank Dr. Jianjian Song for his guidance on this project. His
advice and consultation was extremely helpful for successful completion of this project.

9

APPENDIX (Documented Assembly Code):

;**
; SMART CAR --- This program runs on the PICmicro PIC16F84. The PIC
; is used as a double duty cycle controller for a dual
; motor RC car. It begins with a high duty cycle and
; when an interrupt is received from one of the two IR
; sensors on the front of the car, it issues a lower
; duty cycle to that side of the car to cause the car
; to turn. When the interrupt returns to normal the
; duty cycle is returned to high again to allow the
; car to go straight.
;
;**
;
; Filename: SMARTCAR.ASM
; Date: January 27 - February 14, 2000
; File Version: REV. A
;
; Authors: Kyle Aubrey & Jonathan Coppock
; Class: EC430 - MICROCONTROLLERS
;
;
;**
;
; Files required: p16F84.inc
;
;**
; Test Test Meas. Meas.Rgt Meas.Lft Meas. Error
; Duty Freq. HighTime HighTime Duty R/L
; (1) 90% 8.91kHz 98.80uS 102.00uS 88.5/91.4 1.6/ 1.6%
; (2) 60% 8.49kHz 63.20uS 66.40uS 53.0/55.7 11.6/ 7.2%
; (3) 30% 7.35kHz 32.00uS 35.20uS 23.5/25.9 13.6/21.6%
; (4) 10% 7.00kHz 9.20uS 12.40uS 6.4/ 8.6 36.0/14.0%
;
;
;
;
;**

list p=16F84 ; list directive to define processor
#include <p16F84.inc> ; processor specific variable definitions

__CONFIG _CP_OFF & _WDT_OFF & _PWRTE_ON & _XT_OSC

; '__CONFIG' directive is used to embed configuration data within .asm file.
; The labels following the directive are located in the respective .inc file.

;***** DUTY CYLE CONSTANTS***
;Change from .1 to .10 to change duty cycle from 10% to 100% *
;**

CONSTANT high_duty_cycle=.9
CONSTANT low_duty_cycle=.3

;**

;***** VARIABLE DEFINITIONS**
w_temp EQU 0x0C ; variable used for context saving
status_temp EQU 0x0D ; variable used for context saving
b_temp EQU 0x0E ; variable used for saving PORTB
length EQU 0x0F ; variable used as a place holder
duty_ EQU 0x10 ; variable for saving right duty cycle

10

duty_l EQU 0x11 ; variable for saving left duty cycle
;**

ORG 0x000
 goto main ;Skip over ISR

ORG 0x004 ;Interrupt vector location
goto change_duty

;***** INITIALIZATION OF PIC***

main movlw high_duty_cycle
movwf duty_r ;Initialize duty cycles
movwf duty_l

;***** PORT A & B pin and Timer0 setup*********************************
BSF STATUS,RP0
BCF OPTION_REG,T0CS ;Timer transition on Int. clock
BCF TRISA,0 ;set RA0,1 as outputs for two motors
BCF TRISA,1 ;(0->R) (1->L)
BCF TRISB,7 ;set RB7,6 as outputs so they
BCF TRISB,6 ;will not interrupt
BSF TRISB,5
BSF TRISB,4 ;set RB5,4 as inputs for interrupts
BCF STATUS,RP0

;***** set up interrupts***

BCF INTCON,T0IE ;disable Timer0 interrupt
BCF INTCON,RBIF ;clear PORTB change interrupt flag
BSF INTCON,RBIE ;enable PORTB change interrupt
BSF INTCON,GIE ;enable global interrupt

;***** START OF MAIN PROGRAM***

start clrf length ;set length place holder to zero
movlw .3 ;set RA0,1 to high
movwf PORTA

cdly call delay ;call a delay dependant on timer
incf length,f ;after delay, increment place holder one
movlw .10
subwf length,w ;check to see if place holder is at end
btfsc STATUS,Z ;of length of 10
goto start ;if so start over

rght_chk movf duty_r,w ;If not at the end, check to see if duty
subwf length,w ;cycle of the right side has been met, if
btfsc STATUS,C ;so then lower output, else keep high and
call downr ;check left side

left_chk movf duty_l,w ;Check other duty cycle on the left side,
subwf length,w ;if met lower duty cycle on that side, lower
btfsc STATUS,C ;output, else keep high and keep calling
call downl ;delays and checking to see if duty cycles
goto cdly ;have been met.

downr bcf PORTA,0 ;Lower right signal line
return

downl bcf PORTA,1 ;Lower left signal line
return

;***** DELAY LOOP**
delay movlw .254 ;To setup an overall 10uS delay

MOVWF TMR0 ;causing an approx. 10kHz signal
wait BTFSS INTCON,T0IF ;check if Timer0 overflow

GOTO wait

11

BCF INTCON,T0IF ;Clear Timer Flag
return

;**
; Interrupt service routine *
;**
change_duty

movwf w_temp ; save off current W register contents
movf STATUS,w ; move status register into W register
movwf status_temp ; save off contents of STATUS register

MOVF PORTB,w ; Store contents of PORTB in b_temp
MOVWF b_temp

check_1 btfss b_temp,4 ; Check Right Interrupt, if clear (black)
goto du_lowr ; lower duty cycle to slow on right motor,
movlw high_duty_cycle ; else keep normal
movwf duty_r

check_2 btfss b_temp,5 ; Check Left Interrupt, if clear (black)
goto du_lowl ; lower duty cycle to slow on left motor,
movlw high_duty_cycle ; else keep normal
movwf duty_l

BCF INTCON,RBIF ; clear interrupt flag
movf status_temp,w ; retrieve copy of STATUS register
movwf STATUS ; restore pre-isr STATUS register contents
swapf w_temp,f
swapf w_temp,w ; restore pre-isr W register contents
retfie

du_lowr movlw low_duty_cycle ; Lower duty cycle for right motor
movwf duty_r
goto check_2 ; Check other interrupt

du_lowl movlw low_duty_cycle ; Lower duty cycle for left motor
movwf duty_l

BCF INTCON,RBIF ; clear interrupt flag
movf status_temp,w ; retrieve copy of STATUS register
movwf STATUS ; restore pre-isr STATUS register contents
swapf w_temp,f
swapf w_temp,w ; restore pre-isr W register contents
retfie ; return from interrupt

END

