

Simon embedded
Ece331-Embedded system design

Final Project
May 22, 2002

Jason Wentland
Jeremy Williams

Table of Contents

Introduction ...1

Objectives and Specifications ...1

Strategy and Implementation ..1

Testing Procedure and Results...3

Bill of Materials..3

Users Manual..3

Conclusions and Recommendations...4

References and Acknowledgements...4

Appendix A – Software Flowchart ...5

Appendix B – Documented Source Code ...6

Appendix C – Hardware Schematic ..12

 1

Introduction
For our final project for Embedded System Design, we chose to develop a game,
similar to the electronic Simon game. This game is a sequence memory game.
In a nutshell, the computer makes one of four lights light up in a random
sequence. The player then repeats the sequence back to the computer via each
light’s corresponding button. The sequence starts with a length of one and with
each round, increases by one. The player tries to see how many rounds they can
go before they can no longer repeat the sequence successfully back to the
computer.

Objectives and Specifications
Our main objective was to complete a simple version of this memory game,
which includes random number generation to develop the sequence, four lights
to show the sequence, and four buttons for the player to repeat the sequence
back to the computer.

Time permitting, we also wanted to add a few extra features, including simple
sound to the game that will play tones along with each light that is lit, as well as
short sound sequences when the player repeats each sequence successfully, or
gets the sequence wrong. Another additional feature that we envisioned was
multi player support.

In our final production of our project, we have included the basic features, as well
as simple sounds. A different tone is played for each button the player presses,
and an end-of-game sound is played when the game is over.

Strategy and Implementation
Our project is centralized around the Microchip PIC16F84 microprocessor. This
processor allows us several I/O ports, interrupts, and timing. Most of the project
development was in the software, which we programmed using C.

We began the project by researching interrupts and I/O on the PIC
microprocessor. Interrupts are used by our project to generate random numbers,
detect button presses, and provide timing for the lighting and sounds.

The random number generation uses a background timer and the PortB change
interrupt. When the player pushes a button, the PortB change interrupt occurs.
In the interrupt service routine for this interrupt, the last two bits of the current
value of the timer are stored, thus providing a random number (0-3) for the next
light to flash in the sequence. This provides completely unique game play every
time the user starts a game.

 2

The game is controlled by a simple state machine. The game starts in a wait-
state, waiting for the user to push a button to start the game. Once the user
starts the game the display state is entered, displaying the current sequence of
LED’s stored in RAM. After this, the user wait state is entered, waiting for the
user to start repeating the sequence displayed on a set of buttons, one button
corresponding to one LED. If, in this state, the user does not push a button
within a specified time-out, the timer interrupt occurs and the game will end.
Once the user pushes a button, the game moves into the verification state,
checking to see if the button pushed matches the next number in the sequence.
If yes, the game moves back to the user wait state, checking for the next number
in the sequence. If the user has successfully reached the end of the sequence, a
new random number is added to the end of the sequence currently stored in
RAM and returns to the display state. If the user gets the next number incorrect,
the game moves to the game over state, flashing the LED’s and playing the
game over sound.

The code was developed in a modular fashion, allowing easy modification.
The modules include the main state machine, which was described above, the
addToSequence algorithm, the getFromSequence algorithm, and the sound
method.

The addToSequence and getFromSequence algorithms are a key part of the
game’s operation. They provide the method of adding a random number to the
currently stored sequence and retrieving previously stored numbers. The
number stored in our sequence can be a 0, 1, 2, or 3, each requiring 2 bits to
store. Since there are 8-bits in a byte we can store 4 numbers per byte,
providing we have a way to access our memory at the bit-level. However,
because of the lack of bit-indexed addressing in the PIC, we had to develop an
algorithm that modifies byte-indexed addressing to the bit level. The algorithms
work by using an 8-bit address. The 6 most significant bits address at the byte
level, specifying which byte the current number we are trying to retrieve is
located in. The last 2 bits address the actual number in the byte. Thus we use 2
bits to index each number stored in the byte. These algorithms save
considerable amounts of memory, allowing a much longer number sequence to
be stored in RAM. If we only used byte-indexed addressing, one number per
byte, we could only store about 40-60 numbers. These algorithms provide 4-
times that amount.

The sound method allows for the playing of sounds of varying frequencies
throughout our project. It is a simple method, producing a square-wave with a
user-defined period, for a set amount of time. This method uses for-loops to
cycle between high and low.

For a more detailed breakdown of the project, please see the Appendix for a
software flowchart, commented c-code, and a hardware schematic.

 3

Testing Procedure and Results
Following our modular design strategy, we tested each module as it was
developed. For the first test we developed the state machine and tested its
operation, using sequences already pre-defined in memory. Next we added in
our add and get algorithms, testing random sequence generation and retrieval.
Finally, we added in the sound methods, testing sounds at various frequencies.

We chose to do all the testing on the actual circuit. We chose this because of the
simplicity of our circuit and the difficulty of the software debugger in handing
multiple triggers, interrupts, and delays.

In our testing we were able to successfully verify each module of our code as
working.

Bill of Materials
The following is the approximate costs of the materials that were used to make
this project. Many of the items were either already owned by us, or were
provided by the RHIT ECE lab free of charge.

Cost Cost to us Provide by Part

$7.00 $7.00 RHIT ECE Stockroom PIC Microcontroller
$1.00 $0.00 Already owned by us 4 colored LEDs
$0.50 $0.00 Already owned by us Various resistors
$2.00 $0.00 Discarded part we found 4 connected pushbuttons

from old calculator
$5.00 $0.00 Already owned by us Breadboard
$0.50 $0.00 RHIT ECE Lab Wire
$4.00 $0.00 Already owned by us 4 AA batteries

$20.00 $7.00 Total

Users Manual
Game play is simple and fun!

First flip the power switch on. All four LED’s will flash together, indicating the
game is ready to play. Push any one of the four buttons and the game will begin.
At the beginning of the game, one of the LED’s will light, showing you the first
number in the sequence. After this LED lights, push the button corresponding to
this LED. The game will then repeat this sequence, displaying one more number
each time. All you have to do is remember the order of the LED flashes and

 4

repeat them back to the computer. Be quick about it though! You will lose if you
take too long or if you get any number in the sequence incorrect. If you lose, the
game will flash all the LED’s and a sound will indicate the game is over. To start
a new game, simply turn the power switch off and back on. The game is now
ready to start again.

Conclusions and Recommendations
We really enjoyed working on this project. Because of the simplicity of this
project, we recommend it be used as an introduction to microcontrollers. The
hardware is easy to assemble and the code is straightforward enough for a
simple mind to understand.

To expand on the project we would like to see a multi-player option, more
sounds, and a difficulty setting option.

References and Acknowledgements
Our source of information on programming the PIC came from the “Reference
Materials on PIC16F84 Microcontroller” reference guide provided to us in
ECE331 by our professor, Jianjian Song.

 5

Appendix A – Software Flowchart

State 0

If(count == flashdelay){
 Invert LEDs;
 Count = 0; }

State 1
Turn off RB Interupt;
If(count == flashdelay){
 Count = 0;
 Position++;
 getFromSequence;
 If(Position == Round)
 addToSequence;
 If(Position > Round)

 State++;

State 2

Turn on RB Interupt;
Clear LED’s;
If(count == delaytime){
 Count = 0;
 Turn off RB Interupt;
 State = 4;}

State 4

If(count == flashdelay){
 Count = 0;
 Invert output ports;}

TMR0
Interrupt

TMR0 Interrupt Routine

Count++;

RB Interrupt Routine

State++;
Randnum = TMR0;
Keypressed = RB register;

Global Variables

Int State;
Int Count;
char Round;
Int Randnum;
Int Keypressed;

TMR0
Interrupt

TMR0
Interrupt

TMR0
Interrupt

RB
Interrupt

State 3

Turn off RB Interupt;
If(keypressed == next in seq){
 Position++;
 State = 2;
 If (position > round) {
 Reset counters;
 State = 1; }
}
Else {
 State = 4; }

If
state=4

If
state=2

If
state=4

RB
Interrupt

Reset

 6

Appendix B – Documented Source Code

/**
 * Simon-Electronic Sequence Memory Game
 * Developed by:
 * Jason Wentland and Jeremy Williams
 * Rose-Hulman Institute of Technology
 * ECE331-Embedded System Design
 * May 22, 2002
 ***/

#include <pic.h>

__CONFIG(FOSC1|CP);

#define WAITTIME 255 //the allotted time to press a button
#define FLASHDELAY 80 //the time used for producing flashing LEDs

char randnum = 0; //global variable to hold the current random number
char state = 0; //global variable that denotes the state of the prog
char count = 0; //global variable used to count Timer0 interupts for delays
char keypressed = 0; //global variable used to save the state of input ports
char sequence[20]; //global variable used to save the sequence

void interrupt interruptRoutine(void);
void addToSequence(char newnumber, char location);
char getFromSequence(char location);
void sound(unsigned int duration, int pitch);
void sound1(unsigned int duration, int pitch);

/**
 * Main program routine
 ***/
void main(void)
{
 char position = 0;
 char round = 0;
 //int i,j;

 RP0 = 1; //switch to bank 1
 TRISA = 0b11110000; //set pins on PORT A
 TRISB = 0b11110000; //set pins on PORT B
 T0CS = 0; //set clock interupt to use internal clock
 PSA = 0; //assign prescaler to Timer0
 PS2 = 1; //Set prescaler bits
 PS1 = 1; //...
 PS0 = 1; //...

 RP0 = 0; //switch back to bank 0
 RBIF = 0; //Clear RB port change interrupt flag
 RBIE = 0; //RB port change interrupt
 T0IF = 0; //Clear Timer0 interupt flag
 T0IE = 1; //Timer0 interupt

 7

 GIE = 1; //turn on global interrupt flag

 PORTA = 0b00001111; //turn on all LEDs initially to signal new game

 //state machine
 while(1)
 {
 while(state == 0) //wait to start state
 {
 RBIF = 0; //clear RB interrupt flag
 RBIE = 1; //allow RB interrupt
 if(count == FLASHDELAY/2)
 {
 RA0 = RA0 + 1; //toggle the four output LEDs
 RA1 = RA1 + 1; //...
 RA2 = RA2 + 1; //...
 RA3 = RA3 + 1; //...
 count = 0;
 TMR0 = 0;
 }
 RBIE = 0; //disable RB interrupt
 }

 while(state == 1) //sequence replay state
 {
 //PORTB = state; //for debugging purposes
 //RB0 = RB0 + 1;

 RBIE = 0; //turn off RB interrupt

 if(position == round)
 {
 addToSequence(randnum, round);//set new number
 }

 if(count < FLASHDELAY-20) //display next number
 PORTA = 0b1 << getFromSequence(position);
 else
 PORTA = 0;

 //check if waited enough, move to next number
 if(count == FLASHDELAY)
 {
 count = 0; //clear count
 TMR0 = 0; //reset timer0

 position++;

 if(position > round)
 {
 keypressed = 0; //clear keypress
 state++; //increment to move to next state
 position = 0; //reset position index
 }

 8

 }
 }

 while(state == 2) //player repeat sequence state
 {
 RBIF = 0; //clear RB interrupt flag
 RBIE = 1; //enable RB interrupt

 PORTA = keypressed; //display pressed key on LEDs

 if(count == WAITTIME) //if player takes too long
 { //move to game over state
 count = 0;
 TMR0 = 0;
 RBIE = 0;
 state = 4;
 }
 RBIE = 0;
 }

 while(state == 3) //key press verification state
 {
 RBIE = 0; //disable RB interrupt

 //check if keypressed = nextnumber
 if(keypressed == (0b1 << getFromSequence(position)))
 {
 count = 0;
 position++; //move position to next
 state = 2; //back to player repeat
 if(position > round) //back to sequence replay
 { // if finished sequence
 round++;
 state = 1;
 position = 0;
 keypressed = 0;
 PORTA = 0;
 }
 }
 else //pushed wrong button
 {
 state = 4; //go to game over state
 }
 }

 while(state == 4) //game over state
 {
 if(RA0) //toggle between sounds in game over state
 sound(64000, 400);
 else
 sound(64000, 600);

 //if(count == FLASHDELAY/2)
 //{
 count = 0;
 TMR0 = 0;

 9

 RA0 = RA0 + 1; //toggle the four output LEDs
 RA1 = RA1 + 1; //...
 RA2 = RA2 + 1; //...
 RA3 = RA3 + 1; //...
 //}
 }
 }

}

/**
 *Interrupt service routine function for handling interrupts
 ***/
void interrupt interruptRoutine(void)
{
 char tempkey;

 tempkey = PORTB; //grab portb right away and save it in case of rb interrupt

 if(T0IF == 1) //handle timer interrupt
 {
 count++;
 }
 else if(RBIF == 1) //handle RB input interrupt
 {
 RBIE = 0; //turn off RB interrupt to prevent interrupt between states
 if((tempkey & 0b11110000) != 0b11110000)
 {
 keypressed = (0b11111111-tempkey) >> 4;

 sound1(24000, 100+50*keypressed);

 randnum = TMR0 & 0b00000011;
 state++;
 }

 }

 RP0 = 0;
 T0IF = 0; //clear timer0 interrupt flag
 RBIF = 0; //clear RB port change interrupt flag
}

/**
 *Function to add number to sequence.
 ***/
void addToSequence(char newnumber, char location)
{
 char bitnumber;
 char bytenumber;
 char temp1;
 char temp2;

 bitnumber = (location & 0b11) << 1;

 10

 bytenumber = (location >> 2); //location>>2 == location/4 but faster, unless the compiler is
smart, but i dont know
 bytenumber = bytenumber & 0b00111111;

 //get the byte at bytenumber,
 //mask out the two bits we want to overwrite/where we want to place newnumber,
 //add our newnumber shifted to the right place, and put the byte back.
 //2*bitnumber because newnumber is 2 bits, so there are 4 locations per byte

 temp1 = 0b11111111 - (0b11 << bitnumber);
 temp2 = (sequence[bytenumber]) & temp1;
 temp1 = newnumber << bitnumber;
 sequence[bytenumber] = temp2 + temp1;
}

/**
 *Function to get a number from the sequence
 ***/
char getFromSequence(char location)
{
 char bitnumber;
 char bytenumber;
 char temp1;
 char temp2;

 bitnumber = (location & 0b11) << 1;
 bytenumber = (location >> 2);
 bytenumber = bytenumber & 0b00111111;

 //get the byte at bytnumber,
 //mask out everything but the 2 bits we want,
 //shift the bits right to make them the LSBs, and return it.

 temp1 = 0b11 << bitnumber;
 temp2 = sequence[bytenumber] & temp1;
 temp1 = temp2 >> bitnumber;

 return temp1;
}

/**
 *Routine to generate sound (used by interrupt routine)
 ***/
void sound1(unsigned int duration, int pitch)
{
 int i,j;
 for(i = 0; i < (duration/pitch); i++)
 {
 for(j = 0; j < pitch; j++)
 RB0 = RB0+1;
 }
}

/**
 *Routine to generate sound (same as previous, but used by all other routines)
 * (needed because you cant use a function in both interrupt routine and elsewhere)

 11

 ***/
void sound(unsigned int duration, int pitch)
{
 int i,j;
 for(i = 0; i < (duration/pitch); i++)
 {
 for(j = 0; j < pitch; j++)
 RB0 = RB0+1;
 }
}

 12

Appendix C – Hardware Schematic

2kΩ

+6v

+6v

PIC
16F84

P17

P18

P1

P2

P10

P11

P12

P13

P15

P16

13.5 MHz
Sound
To PC

P6

