Bicycle Speedometer with LED Design
By

Jake Conway and Adam Helmerich

Introduction

For our project we are designing a speedometer for a bicycle. This project will
then take the speed of the bike using calculations done in the program and then generate a
specific LED pattern that corresponds with the speed the bicycle is traveling.

User Manual
The included two sketches show how our bicycle speedometer with LED design
would fit on a bicycle. The magnets in Fig.1 are used to tell the microcontroller which is

seen in Fig. 2 how fast the bicycle is going.

Magnets

/ Row of LEDs

Fig. 1 — Front Tire of Bicycle (Left Side)
This will then correlate with the microcontroller on how many lights to light up on the
Row of LEDs seen in Fig. 1. The LEDs light up based on the speed of the bicycle. As
seen in Fig. 2 the back of the LED display holds the microcontroller and also the battery
compartment to make the LED display work.

Mherocontroller

D

Battery
Compartment

Fig. 2 — Front Tire of Bicycle (Right Side)
If an LED ever needs replaced a person would need to buy a LED and plug it into the
spot of the bad LED as seen in Fig 3. The flat side of the LED would need to correspond
to the flat side of the socket also seen in Fig. 3.

Flat Side

S
I I
/

Fig. 3 - LED Replacement
If the batteries run out on your bicycle speedometer and LED display you will need to
replace them with a 9V battery. In Fig. 4 the proper placement of the battery to the

connector is shown. After this connection has been made the battery and connector need
to be replaced into the battery compartment also shown in Fig. 4 and in Fig. 2.

Battery Compartinent

To
Microcontroller

+
l

9V Battery

Fig. 4 — Battery Diagram
If the microcontroller would go bad please consult the hardware block diagram to
see how to wire up the individual pieces of the board. If you are not familiar with these
kind of diagrams are think you are incapable of wiring them up yourself please return the
part to the builders and they will wire up your microcontroller to the beginning
specifications.

Internal Operation
Attached on the next page is our software flowchart of how our code calculates

the speed of the bicycle and then turns this into and LED display.

Flowchart of program operation

Entry

l

Init PLL to 24MHz

Y

[TC6 Interrupt Occurs

++COUNTER %
SUBPERIOD
::O

Schedule TC6 interrupt every 3ms
Schedule TC4 interrupt on rising edge of
PT4

True

A 4

4 False

Make PTAD 0-8 digital
outputs

X = DATA[SPEED]

y

CLI to enable interrupts

PTAD =

y

@ﬁnite Loop

X[POSITION++]

D

.
TC4 Interrupt Occurs

v

Getum from Interrupt)

POSITION = 0;
PERIOD = COUNTER

A

SPEED = 1847 / PERIOD
(Gives speed in mph)

SUPPERIOD = PERIOD / 32

y

COUNTER =0

v

Q{etum from Interrupt >

The following is a hardware block diagram of how our project works. From the battery
compartment comes a 9V charge from the battery. This then passes through our voltage
regulator, which then converts the voltage to 5 volts which then powers our
microcontroller. Our microcontroller gets one input into it from the magnetic switch
which is attached the bicycle frame to calculate the speed of the bicycle. This speed is
then calculated using the microcontroller and then sent out to the row of LEDs. The
LEDs will then display a pattern showing how fast the bicycle is going.

Battery
Cormpartment Voltage

Regulator Microcontroller

Magnetic /

Switch

Row of LEDs

Fig. 5 — Hardware Block Diagram
In Appendix A: Schematic Design of Bicycle Speedometer you will find a detailed
version of the hardware block diagram. This will show you the different connections the
microcontroller has with the magnetic switch and the LEDs. Appendix B: Code of
Bicycle Speedometer will contain the code that was used to program the microcontroller
as seen above in Fig. 5.

Testing Procedures and Results

We were going to test our project on a bike to make sure that our switch was
working properly with the program and the LEDs. However after trying to use a
magnetic reed switch we found that this type of switch is unreliable. So we either used a
pushbutton switch to test whether our project was working correctly or we hooked up the
function generator using a square wave to test our project. Either one of these methods
worked and gave us the results we were looking for. The different speeds were evident
when the LEDs were lit up by the changing of the frequency of function generator or by
pushing the pushbutton switch faster. Our project worked to how we wanted it to and
without any problems besides not getting it mounted on a bicycle.

Bill Of Materials
L Microcontroller and Voltage Regulator - $43.00
II. 11 Resistors - $0.40(1), $0.25(1'00+),
1. Magnetic Switch - $1.15(1), $0.75(100+),

" Electronix Express http//www.elexp.com/

V. 9 LEDs - $0.90(1), $0.75(10+),

V. Schmitt Trigger - $0.60(1), $0.50(10+),
VI. Pushbutton Switch - $2.35(1), $2.00(10+),
VII. 2 Capacitors - $0.15(1), $0.08%(100+),
VIII. 9V Connector - $0.25(1), $0.18(100+),
IX. 9V Batter - $2.50(1), $1.70(100+),

For us to make one of our designs our estimated cost would be $62.65. For us to make a
“1000-unit production quantity” the cost would come up to be $57790.00. The bulk
pricing would save us a cost of $4860.00 if we would be each part individually to make
all 1000 units.

? Electronix Express http://www.elexp.com/

I
@]
£
S
o
Q
o
g 5
Phs 2 3
| (Y %\/\,_. 5
A 5
N 8 £
XK \%‘\/\/—4 §
w
S \C%’\/\/—i 93
NN =z
Y S 0]
Y A
AR L
= - D
Oo
-
—d L00N/LLd LONV/200Vd e
SO SO /GO
BT ' = o7T
—ged S00USLd SONV/300Vd [
o roouvmayid £ vONV/FOGYH Pre—]
——d €00VEMd/ELd },‘73 EONV/E0QVd Prpp—o
—grd 200IRMdZId € ZONV/Z0QVd D
= —g>d NYOXH/ON C S¥10%X23d pre—
0 —gd NVOXL/LINd 8 MO33d Prg—
i —52d ovd SS/ENd Pro—
—23d vad - YMOS/Nd Pro—
Q L «—5=d toNvioavd 2 OSW/ENd Drp—
o L d Oovnooavd G ISOW/PWd Pr—
> —g7d ON 8 LOONOMA/bLd Dgr—
—1d oN & 000VOMd/0Ld Ppr—
—1d ON M DYIX/03d Pr—
- —od oN S SIS pg—
—d ON axy/0Sd B—r— -
o —d aovieoaon R OXLISd Prg— Y
H ———d 13534 O aNo pp— ¢ M
g ——d ouli3d XA P 8
DY ; d
0 0 X 7 0
= “ 2 sy o 9
T w w
(&)
o Y g
L 5 E 3
=S u P AAN @
o4 & =
o I 0
c M " 3
P o 03) A % m
O 0 10 [< - g
<o g = g o ; g
% v B\ © 0
4 A = o Y
5 —d 2z)
3% T :
5 3
1 ® -*
- =4 q
w9
T<
~ 0
[a]

o>
[
@
ks
-
@
Q
£
0]
= ~
3 S
[
£ N
(&3 ~
2 o
@ &
o ¥s)
o £
2 g
Q e
<}
3 18 Z
D d
= 15 |3
N A
=
D e @
o 1D S5
a EA 1o
330 g
- |22
a |90
o |0V
e
(e}
©
2 BT |5
= D Qo

<ReJCdde

C
>

RV

Y

PG U MU AU IO U S AEGE Y EILU e) NGO W LNV BT L C D}

hursday November 08 2007/ 12:18 PM AP

;********************************

;* This stationery serves as the framework for a

;* user application (single file, absolute assembly application)
For a more comprehensive program that

demonstrates the more advanced functionality of this

please see the demonstration applications

;
;
;* pro
;
;
;

’

cessor,

PTAD(0-7)
PT(4) Reed Switch input (must be

located in the examples subdirectory of the

LED Outputs

J

*

¥

*

;* Freescale CodeWarrior for the HC12 Program directory
*

*

*

e B Code s Bioycle GogdomereS

R A S S

hardware debugged)

LR SR A SRS AR S EEERER S RS E o I TR T I e g R e I g B I 2 4

'

; export symbols
XDEF Entry
ABSENTRY Entry ;

; include derivative specific macros

.

INCLUDE 'mc9sl2c¢32.inc!

export 'Entry' symbol
for absolute assembly: mark this as application entry point

ORG RaMStart
COUNTER: rmb 2 ;Space for storing counter data between interrupts
PERIOD: rmb 2 ;Space for storing period
SUBPERIOD: rmb 2;Space for storing subperiod
SPEED: rmb 1 ;Space to store the current speed
POSITION:rmb 1 ;Space to store position

ORG ROMStart
DAT4 : fd 1,0,1,0,2,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0
DATS : fdb 3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1
DAT6 : fdb 3,1,3,2,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1
DAT7 : fdb 3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1
DATS8: {db 7,3,7,3.7,3,7,3,7,3,7,3,7,3,7,3,7,3,7,3,7,3,7,3,7,3,7,3,7,3,7,3
DATY : fdb 7,3,7,3.7,3,7,3,7,3,7,3,7,3,7,3,7,3,7,3,7,3,7,3,7,3,7,3,7,3,7,3
patTi10: £fdb 7,3,7,3,7,3,7.,3,7,3,7,3,7,3,7,3,7,3,7,3,7,3,7,3,7,3,7,3,7.3,7,3
paT11: fdb 15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7
paTi2: £db 15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7
pari3: fdb 15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7
DAT14: £db 31,15,31,15,31,15,31,15,31,15,31,15,31,15,31,15,31,15,31,15,31,15,31,15,31,15,31,15,
31,15,31,15
DAT15: £fdb 31,15,31,15,31,15,31,15,31,15,31,15,31,15,31,15,31,15,31,15,31,15,31,15,31,15,31,15,
31,15,31,15
DAT16: fdb 31,15,31,15,31,15,31,15,31,15,31,15,31,15,31,15,31,15,31,15,31,15,31,15,31,15,31,15,
31,15,31,15
DAT17: fdb 63,31,63,31,63,31,63,31,63,31,63,31,63,31,63,31,63,31,63,31,63,31,63,31,63,31,63,31,
63,31,63,31
DAT18: fdb 63,31,63,31,63,31,63,31,63,31,63,31,63,31,63,31,63,31,63,31,63,31,63,31,63,31,63,31,
63,31,63,31
DAT19: fdb 63,31,63,31,63,31,63,31,63,31,63,31,63,31,63,31,63,31,63,31,63,31,63,31,63,31,63,31,
63,31,63,31
DAT20: f£db 127,63,127,63,127,63,127,63,127,63,127,63,127,63,127,63,127,63,127,63,127,63,127,63,

127,63,127,63,127,63,127,63
fdb 127,63,127,63,127,63,127,63,127,63,127,63,127,63,127,63,127,63,127,63,127,63,127,63,

127,63,127,63,127,63,127,63
fdb 127,63,127,63,127,63,127,63,127,63,127,63,127,63,127,63,127,63,127,63,127,63,127,63,

127,63,127,63,127,63,127,63
fdb 127,255,127,255,127,255,127,255,127,255,127,255,127,255,127,255,127,255,127,255, 127,

255,127,255,127,255,127,255,127,255,127,255

DAT21:
DAT22:

JATHI :

intry:
1ds

ldaa
psha
ldaa
psha

#$3£00
#2

#1

jsr init_pll

leas

movhb

movh
movb
bset
1ldd
std
ms)

2,58p

#0, TSCR2

#3580, TSCR1
#540,TI0S

TIE,
#0
TC6H1

;initialize PLL to 24 MHz

i1/

#%01000000

;Set prescaler bits to 5 so TCNT increments every

24MHz = 41 nanoseconds.

;Enable TC6

;Enable Timer TCNT to begin counting
;Make TC6 an Output Compare register

;Loads 0 into register D
;8chedule next output compare interrupt to occur when counter overflows (Every

t ayo.

PO U RO LA I LU YD SIS T G ML UL U UTIUHIY O U SIHPUIL Y HRGHIGL T BT W/ LIV AT . QDI]

hursday, Nqvember 08, 2007 / 12:18 PM

movb

bset
bclr
bset
bclr
movb

movb

#540, TFLGL

TIE, #3510
TIOS, #$10
TCTL3, #502
TCTL3, #501
#5510, TFLGL

;Make sure TC6 interrupt flag is cleared

;Locally Enable TC4 interrupts

;Make TC4 an input capture pin

;Trigger on falling edge for PT4

;Don't trigger on rising edge for PT4
;Make sure TC4 interrupt flag is cleared

#SFF,ATDDIEN;Make PTAD 0-8 digital

movbh #SFF,DDRAD
cli
LOOPER:
bra LOOPER
TOC6ISR:
ldx COUNTER
inx
stx COUNTER
tfr x,d
ldy #0
1dx SUBPERIOD
ediv
cmpb #0
bne NOUPDATE
jsxr UPDATELED
NOUPDATE :
movb #3540, TFLG1
rti
UPDATELED:
ldaa POSITION
ldab SPEED
cmpa #32
bne NOSKIPALL
jmp SKIPALL
NOSKIPALL:
cmpb #4
blt LT4
cmpb #5
blt LTS5
coopb #6
blt LT6
cmpb #7
blt LT7
cmpb #8
blt LT8
cmpb #9
blt LTS
cpb #10
blt LT10
cmpb #11
blt LT11
cmpb #12
blt LT12
cmpb #13
blt LT13
cmpb #14
blt LT14
cmpb #15
blt LT1S
cmpb #16
blt LT16
cmpb #17
blt LT17
cpb #18
blit LT18
cmpb #19
blt LT19
cmpb #20

;Make PTAD 0-8 outputs

;Load Counter

;Increment it by 1

;Store Counter back

;move x to d

;clear vy

;Load subperiod into x

;¥Y:D/X => Y r D

jcompare a to O

;1f COUNTER$SUBPERIOD==0 update the LEDS
;jump to subroutine update LED

;Clear interrupt bit

;Return
;A = position
;b = speed

;if position >= 32 don't update data

;1f speed < 4
;if speed < 5
;if speed < 6
;if speed < 7
;if speed < 8
;if speed < 9
;if speed < 10
;1f speed < 11
;1f speed < 12
;if speed < 13
;1f speed < 14
;1f speed < 15
;1f speed < 16
;1f speed < 17
;if speed < 18

;if speed < 19

rmaye. <

:..——vvu---v---v A O AN MR M W) BN) LA A \J\Jltllluu\l ulllyvluly TRV EEIG L] IO VAL BN AT T SR D k)
hursday, November 08, 2007 / 12:18 PM

blt LT20 ;if speed < 20

copb #21

blt LT21 ;1f speed < 21

cmpb #22

blt LT22 ;if speed < 22

bra LTHI ;else

LT4:

1ldx #DAT4

bra UPDATEDONE
LT5:

1dx #DATS

bra UPDATEDONE
LT6:

1dx #DATé6

bra UPDATEDONE
LT7:

1dx #DAT7

bra UPDATEDONE
LT8:

1dx #DATS

bra UPDATEDONE
LTY9:

1dx #DAT9

bra UPDATEDONE
LT10:

ldx #DAT10

bra UPDATEDONE
LT11:

ldx #DAT11

bra UPDATEDONE
LT12:

1dx #DAT12

bra UPDATEDONE
LT13:

1dx #DAT13

bra UPDATEDONE
LT14:

1dx #DAT14

bra UPDATEDONE
LT15:

1dx #DATI1S

bra UPDATEDONE
LT16:

1dx #DAT16

bra UPDATEDONE
LT17:

1dx #DAT17

bra UPDATEDONE
LT18:

1dx #DAT18

bra UPDATEDONE
LT19:

1dx #DAT19

bra UPDATEDONE
LT20:

1ldx #DAT20

bra UPDATEDONE
ST21:

1dx #DAT21

bra UPDATEDONE
JT22:

1dx #DAT22

bra UPDATEDONE
JTHI :

1dx #DATHI

bra UPDATEDONE

IPDATEDONE :

ldab a,x

stab PTAD

inca ;A++

staa POSITION ;Store back incremented position
KIPALL:

rts

T ayc. v

toaygye. ot

hursday, November 08, 2007 / 12:18 PM T

TOC4ISR:
ldaa #0 ;Load 0 into A
staa POSITION ;Reset Position
1dx COUNTER ;Load Counter
stx PERIOD ;Store D as period

;Calculate speed

ldd #1847 ;Load X with 1847, since 1847/x_ticks = y_mph
ldy #0 ;Make sure y is clear

ediv ;¥Y:D/X => Y r D

tfr y.,d

stab SPEED

;Divide to find interval

ldad COUNTER ;Reload Counter

1dx #32 ;Load number of segments into X
1dy #0 ;Make sure Y is cleared

ediv ;Y:D/X => Y r D

sty SUBPERIOD ;Store Y as SUBPERIOD

ldd #0 ;Load 0 into X

std COUNTER ;Reset Counter

movb #$10,TFLG1l ;Relax the TC4 interrupt flag
rti ;Return

;***
;* init_pll
;* author: J. Conway
last modified: 9/26/07
notes: Initializes the PLL using the top two arguments on the stack as the
multiplier and divider
example: psh multiplier
psh divider
jsr init_pll
ins
- ins
;* WARNING: Temporarily suspends the PLL, will throw off the debugger

A S EEEREEEEES ISR RS EEERER SR EEEE SRS R SRR R R I 2 2 e R R R R
’

BT TR TS
* & % % o ok ok

~v N s

*
*
*
kg
*
*
*
*
*
*
*
*

init_pll:

psha ; Push the A and B registers onto the stack, as we will use them

pshb

leas 4,SP ; Jump over the data we just put on the stack

pulb ; B = divider

pula ; A = multiplier

bclr CLKSEL, $80 ; Disconnect PLL from system

bset PLLCTL, $40 ; Turn on PLL

staa SYNR ; set PLL multiplier

stab REFDV ; set PLL divider

;PLLCLK = OSSCLK* (SYNR+1)/(REFDV+1) = 16MHz * (2+1)/(1+1) = 24 Mhz

nop

nop ; Allows time for CRGFLG to become valid
vt_PLL_LOCK:

brclr CRGFLG, 8,wt_PLL_LOCK ; Wait for PLL to lock

bset CLKSEL, $80 ; Connect PLL into system

leas -6,S8P ; Go back to where we put a and b on the stack

pulb

pula ; Restore registers A and B

rts ; Return

LR EE SRR R ESEEEESEEESESEEEEEE SRR R R R R e R e R R R]

* Interrupt Vectors *

[T R D I T L P N N N N IV T N PEe IR Y]

- P ewne wAnaaa mr e sSri g ewennrnat vaps LA b aye. v
hursday, November 08, 2007/ 12:18 PM
;*“***
ORG $FFFE

DC.W Entry ; Reset Vector

ORG S$SFFE2
fdb TOC6ISR ;Make TC6 interrupt vector point to TC6 interrupt rtn
ORG SFFE6
£db TOC4ISR ;Make TC4 interrupt vector point to TC4 interrupt rtn

ORG S$FFEE

