
 1
Name:__ Box:___________

Test 1 EC331 Embedded Systems (100 Point Maximum) Fall 2009 (KEH)

Closed notes, open Huang Textbook Only - 100 points max. 60 minutes
"Fill in the Blank"/"Multiple Choice" Questions

This is an objective test. You must have exactly the correct answer to each question for credit. (No partial credit given) All
questions on this test apply to the 9S12C128 microcontroller.

1. (32 points – 1 point per blank) Fill in the chart below, indicating how many bytes must be READ from memory and how

many bytes must be WRITTEN to memory by each instruction AFTER THE INSTRUCTION HAS BEEN FETCHED.

 Assembly Code # Bytes Read From Memory # Bytes Written to Memory
 LDX #$2A 0 0
 LDX $2A 2 0
 ADDA $4000 1 0
 STD $12,X 0 2
 RTI 9 0

a. INC 50,X _____ _____

b. ADDA #$84 _____ _____

c. JSR $4060,X _____ _____

d. JSR [$4060,X] _____ _____

e. MOVW A,X, 2,-Y _____ _____

f. MOVW #1234, 2,Y- _____ _____

g. INC [50,X] _____ _____

h. MUL _____ _____

i. PULX _____ _____

j. LSR [6,SP] _____ _____

k. LDY $1234, X _____ _____

l. LEAY $1234, X _____ _____

m. TARG: BRSET A,X,$20,TARG _____ _____

n. BSET $0400,$F0 _____ _____

o. BCLR $0400,Y,$F0 _____ _____

p. SWI _____ _____

 2

2. (20 points – 0.5 point per blank) Assuming the instructions below are executed in sequence, fill in the blanks below:

(A) LDAA #$79
 ADDA #$89 After this ADDA instruction executes, the condition code (CCR) flags are:

 H = ___ N = ____ Z = ____ V = ____ C = _____

 Register A contains $__________
(B) DAA
 After this DAA instruction executes, Register A contains $_______

 and now the Carry condition code flag must be C = _____
(C) LDAA #$D5
 ADDA #$B7 After this ADDA instruction executes, the condition code (CCR) flags are:

H = ___ N = ____ Z = ____ V = ____ C = _____

 Register A contains $__________

(D) LDAA #$92
 SUBA #$6B After this SUBA instruction executes, the condition code (CCR) flags are:

N = ____ Z = ____ V = ____ C = _____

 Register A contains $__________
(E) LDAA #$3E
 SUBA #$ED After this SUBA instruction executes, the condition code (CCR) flags are:

N = ____ Z = ____ V = ____ C = _____

Register A contains $__________

(F) LDD #$DEAD
 SUBD #$BEEF After the SUBD instruction executes, the condition code (CCR) flags are:

N = ____ Z = ____ V = ____ C = _____

 Register D contains $__________

(G) LDAA #$AD
 CMPA #$35 After the CMPA instruction executes, the condition code (CCR) flags are:

N = ____ Z = ____ V = ____ C = _____

 Register A contains $__________

(H) LDX #$1234

 LEAX $4321,X
 TFR X, D
 ADDD #%0010100100000101 After the ADDD instruction executes, the condition code (CCR) flags are:
 N = ____ Z = ____ V = ____ C = _____

 Register D contains $__________ Register X contains $___________

 3

3. (30 Points – 30/17 pts per blank) Given the following address map in an 9S12C128-based system, fill in the blanks:
Address Contents A. The following two instructions are executed:
 $0020 $DE LDX $0024
 $0021 $02 LDD 1,-X
 $0022 $34
 $0023 $02 Now A = $________ B = $________ X = $__________________
 $0024 $02
 $0025 $35 B. The following two instructions are executed
 $0041 $12 LDAA $02E0
 $0042 $34 LDY #$0236
 $0043 $20 LDX A,Y
 $0044 $00
 $0045 $12 Now X = $______________ and Y = $______________
 $0205 $10
 $0206 $24
 $0234 $00
 $0235 $23
 $0236 $00

$0237 $21
$0238 $05
$0239 $39

 $02DE $35 C. The following instructions are
 $02E0 $01 LDX #36
 LDY -2,X
 Now X = $_______________ and Y = $_______________
 $02E1 $A5 LDY $0024
 LDAA -1,Y
 LDAB [-1,Y]
 $02E2 $36 LEAX -1,Y
 $02E3 $FE Now D = $______________ and X = $________________
 $1004 $89
 $1005 $FE
 $1024 $45
 $1025 $67
 $3437 $20
 $3438 $00 D. The following sequence of instructions are
 $3439 $20 executed:
 $343A $02 LDS #$1000

LDY $1024
PSHY
PULA

 $343B $78 PULB
 $3734 $37 PSHY
 PSHB
 $3735 $02 PULY
 Now Y = $_____________ S = $_____________ D = $______________ ($0FFF) = $______ ($0FFE) = $_______

E. Assume the memory map above, and that he following program fragment is executed from location START:
START: LDAA #4
 CLRB
 LDX #$0239
LOOP1: ADDB 1,X-
 DBNE A,LOOP1
 STAB $0400
LOOP2: BRA LOOP2

After the STAB instruction is executed, what is in A and X, and what is stored at location $0400 ?

 A = $_______ X = $_________________ ($0400) = $_________

 4

4. (18 points --- 1.5 pts per missing program blank.) Subroutine “String_Compare”
Subroutine “String_Compare” compares the first N elements of two null-terminated ASCII strings, where N is the length of the
shorter of the two strings. (A null-terminated string must end in the value $00.) The calling sequence follows:
(1) Push the starting address of “null-terminated” ASCII String1 on the stack.
(2) Push the starting address of “null-terminated” ASCII String2 on the stack.
(3) Push the address of a RAM word which, upon return from the subroutine, will hold the address of the element in String1
where the two strings disagree, or it will hold a value of 0 if the first N characters of the two strings are identical.
The input arguments must be cleaned off of the stack after returning to the main program. Subroutine StringCompare must NOT
disturb the values in the registers D, X, and Y back in the calling program. Note: the stack map entries will not be graded, but
you will get no credit for the entire problem if the stack map is not filled in!) Begin by filling in a map of the stack after the
PSHY executes in subroutine String_Compare. See the right side of the page below. Then fill in the twelve blanks in the
calling program “String_Compare_Test” and the subroutine “String_Compare” that appear below.
 XDEF String_Compare_Test
 ABSENTRY String_Compare_Test
 ORG $400
Mismatch_Address: DS.W 1
 ORG $4000
STRING1: DC.B "This is a test to compare two strings", 0
STRING2: DC.B "This is a test to compare 2 strings",0 ;***After running, Mismatch_Address contains $401A***
String_Compare_Test: ; Put Your Stack Map here:
 LDS #$1000 ;(Not all the blanks will be filled in.)
 LDX #STRING1 ; Addr Contents
 PSHX ;$1000 ---
 LDX #STRING2 ;$0FFF _________
 PSHX ;$0FFE _________
 LDX #Mismatch_Address ;$0FFD _________
 PSHX ;$0FFC _________
 BSR String_Compare ;$0FFB _________
 LEAS ________ ;Blank 1 ;$0FFA _________
STOP_HERE: BRA STOP_HERE ;$0FF9 _________
 ;$0FF8 _________
String_Compare: PSHD ;$0FF7 _________
 PSHX ;$0FF6 _________
 PSHY ;$0FF5 _________
 LDX ________,SP ;Blank 2 ;$0FF4 _________
 LDY ________,SP ;Blank 3 ;$0FF3 _________
NextChar: TST 0,X ;$0FF2 _________
 BEQ ______________ ;Blank 4 ;$0FF1 _________
 ___________________ ;Blank 5 ;$0FF0 _________
 BEQ NoMismatchFound ;$0FEF _________
 LDAA ______,X+ ;Blank 6
 LDAB ______,Y+ ;Blank 7
 CBA
 BNE ______________________ ;Blank 8
 BRA NextChar
NoMismatchFound: LDX #0
 STX ______________________ ;Blank 9
 BRA DONE
MismatchFound: DEX
 STX _____________________ ;Blank 10
DONE:
 PULY
 __________________________ ;Blank 11
 PULD
 __________________________ ;Blank 12
 ORG $FFFE
 DC.W String_Compare_Test

