PAGE
3

Name:__

Box:___________

Test 1 EC331 Embedded Systems (100 Point Maximum) Fall 2009 (KEH)
Closed notes, open Huang Textbook Only - 100 points max. 60 minutes
"Fill in the Blank"/"Multiple Choice" Questions

This is an objective test. You must have exactly the correct answer to each question for credit. (No partial credit given) All questions on this test apply to the 9S12C128 microcontroller.

1. (32 points – 1 point per blank) Fill in the chart below, indicating how many bytes must be READ from memory and how many bytes must be WRITTEN to memory by each instruction AFTER THE INSTRUCTION HAS BEEN FETCHED.

Assembly Code

Bytes Read From Memory # Bytes Written to Memory

LDX #$2A

 0

0

LDX $2A

 2

0

ADDA $4000

 1

0

STD
$12,X

 0
2

RTI
 9
0

a.
INC 50,X

b.
ADDA #$84

c.
JSR $4060,X

d.
JSR [$4060,X]

e.
MOVW A,X, 2,-Y

f.
MOVW #1234, 2,Y-

g.
INC [50,X]

h.
MUL

i.
PULX

j.
LSR
[6,SP]

k.
LDY $1234, X

l.
LEAY $1234, X

m. TARG: BRSET A,X,$20,TARG

n.
BSET $0400,$F0

o. BCLR $0400,Y,$F0

p.
SWI

2. (20 points – 0.5 point per blank) Assuming the instructions below are executed in sequence, fill in the blanks below:

(A)
LDAA #$79

ADDA #$89

After this ADDA instruction executes, the condition code (CCR) flags are:

H = ___ N = ____ Z = ____ V = ____ C = _____

Register A contains $__________

(B)
DAA

After this DAA instruction executes, Register A contains $_______

and now the Carry condition code flag must be C = _____

(C)
LDAA #$D5

ADDA #$B7

After this ADDA instruction executes, the condition code (CCR) flags are:

H = ___ N = ____ Z = ____ V = ____ C = _____

Register A contains $__________
(D)
LDAA #$92

SUBA #$6B

After this SUBA instruction executes, the condition code (CCR) flags are:

N = ____ Z = ____ V = ____ C = _____

Register A contains $__________

(E)
LDAA #$3E

SUBA #$ED

After this SUBA instruction executes, the condition code (CCR) flags are:

N = ____ Z = ____ V = ____ C = _____

Register A contains $__________

(F)
LDD #$DEAD

SUBD #$BEEF

After the SUBD instruction executes, the condition code (CCR) flags are:

N = ____ Z = ____ V = ____ C = _____

Register D contains $__________

(G) LDAA #$AD
 CMPA #$35

After the CMPA instruction executes, the condition code (CCR) flags are:

N = ____ Z = ____ V = ____ C = _____

Register A contains $__________

(H) LDX #$1234

LEAX $4321,X

TFR X, D

ADDD #%0010100100000101
After the ADDD instruction executes, the condition code (CCR) flags are:

N = ____ Z = ____ V = ____ C = _____

Register D contains $__________ Register X contains $___________

3. (30 Points – 30/17 pts per blank) Given the following address map in an 9S12C128-based system, fill in the blanks:
Address Contents
A. The following two instructions are executed:

 $0020 $DE

LDX $0024

 $0021 $02

LDD 1,-X

 $0022 $34

 $0023 $02 Now A = $________ B = $________ X = $__________________

 $0024 $02

 $0025 $35
B. The following two instructions are executed

 $0041 $12

LDAA $02E0
 $0042 $34

LDY #$0236

 $0043 $20

LDX A,Y
 $0044 $00

 $0045 $12

Now X = $______________ and Y = $______________
 $0205 $10

 $0206 $24

 $0234 $00

 $0235 $23

 $0236 $00

$0237 $21
$0238
 $05

$0239 $39

 $02DE $35
C. The following instructions are

 $02E0 $01

LDX #36

LDY -2,X

Now X = $_______________ and Y = $_______________
 $02E1 $A5
LDY $0024

LDAA -1,Y

LDAB [-1,Y]

 $02E2 $36

LEAX -1,Y
 $02E3 $FE
Now D = $______________ and X = $________________

 $1004 $89
 $1005 $FE

 $1024
 $45

 $1025 $67

 $3437 $20

 $3438 $00
D. The following sequence of instructions are

 $3439 $20 executed:

 $343A $02

LDS #$1000

LDY $1024
PSHY
PULA
 $343B $78

PULB
 $3734 $37

PSHY

PSHB
 $3735 $02

PULY
 Now Y = $_____________ S = $_____________ D = $______________ ($0FFF) = $______ ($0FFE) = $_______
E. Assume the memory map above, and that he following program fragment is executed from location START:

START:

LDAA #4

CLRB

LDX #$0239
LOOP1:
ADDB 1,X-

DBNE A,LOOP1

STAB $0400

LOOP2:

BRA LOOP2
After the STAB instruction is executed, what is in A and X, and what is stored at location $0400 ?

 A = $_______
X = $_________________
($0400) = $_________

4. (18 points --- 1.5 pts per missing program blank.) Subroutine “String_Compare”
Subroutine “String_Compare” compares the first N elements of two null-terminated ASCII strings, where N is the length of the shorter of the two strings. (A null-terminated string must end in the value $00.) The calling sequence follows:
(1) Push the starting address of “null-terminated” ASCII String1 on the stack.
(2) Push the starting address of “null-terminated” ASCII String2 on the stack.
(3) Push the address of a RAM word which, upon return from the subroutine, will hold the address of the element in String1 where the two strings disagree, or it will hold a value of 0 if the first N characters of the two strings are identical.
The input arguments must be cleaned off of the stack after returning to the main program. Subroutine StringCompare must NOT disturb the values in the registers D, X, and Y back in the calling program. Note: the stack map entries will not be graded, but you will get no credit for the entire problem if the stack map is not filled in!) Begin by filling in a map of the stack after the PSHY executes in subroutine String_Compare. See the right side of the page below. Then fill in the twelve blanks in the calling program “String_Compare_Test” and the subroutine “String_Compare” that appear below.

XDEF String_Compare_Test

ABSENTRY String_Compare_Test

ORG $400

Mismatch_Address: DS.W 1

 ORG $4000

STRING1:
DC.B "This is a test to compare two strings", 0

STRING2:
DC.B "This is a test to compare 2 strings",0 ;***After running, Mismatch_Address contains $401A***
String_Compare_Test:

; Put Your Stack Map here:

LDS #$1000

;(Not all the blanks will be filled in.)

 LDX #STRING1

; Addr Contents

 PSHX

;$1000

LDX #STRING2

;$0FFF

PSHX

;$0FFE

LDX #Mismatch_Address

;$0FFD

PSHX

;$0FFC

BSR String_Compare

;$0FFB

LEAS ________

;Blank 1

;$0FFA

STOP_HERE:
BRA STOP_HERE

;$0FF9

;$0FF8

String_Compare: PSHD

;$0FF7

PSHX

;$0FF6

PSHY

;$0FF5

LDX ________,SP

;Blank 2

;$0FF4

LDY ________,SP

;Blank 3

;$0FF3

NextChar:
TST 0,X

;$0FF2

BEQ ______________

;Blank 4

;$0FF1

;Blank 5

;$0FF0

BEQ NoMismatchFound

;$0FEF

LDAA ______,X+

;Blank 6

LDAB ______,Y+

;Blank 7

CBA

BNE ______________________ ;Blank 8

 BRA NextChar

NoMismatchFound: LDX #0

STX ______________________
;Blank 9

BRA DONE

MismatchFound: DEX

 STX _____________________
;Blank 10

DONE:

PULY

__________________________ ;Blank 11

PULD

;Blank 12

 ORG $FFFE

 DC.W String_Compare_Test

