
 1

ECE331 Microcomputers (KEH) November 10, 2009
Test #2 – 100 Points Takehome Test

Due by 5 PM, Monday November 16, 2009, Under my office door
Open Textbook, Homework, Quizzes, Labs, FreeScale .PDF Manuals, and Course Notes

Dept. of Electrical and Computer Engineering
Rose-Hulman Institute of Technology

Name: ___ CM Box:_________

Required Signature: My signature below certifies that I have not received help from any person. I have not given help to
any person on this exam in any shape, form, or fashion. I have not used any resources except for those listed above.

Signature:___ Date: _____________

1) (20 Points, 1 point per blank)

Interrupt-driven White Noise Generator Implemented in C
The hardwired circuit shown below in Figure P1 is a 31-bit right-shift register consisting of D flip-flops
FF0 – FF30, whose input is formed by EXCLUSIVE OR-ing the outputs of FF2 and FF30. This
sequence generator produces a “maximum length” pseudorandom binary sequence (PRBS) that will not
repeat until 231-1 = 2,147,483,647 (that is over 2 Billion!) clock pulses have elapsed. The system output
may be taken from the output of any flip-flop in the shift register. The (normally closed) PRESET
pushbutton is used to start the shift register in the state of all 1’s, since the state of all 0’s is the one state
that is not allowed in a maximal length pseudorandom binary sequence generator (since it locks the
generator into a sequence that is all 0’s), and so we must not let this circuit start in the all 0’s state. When
clocked at 20 kHz, the sequence will take (231-1)/20000/60/60 = 29.8 hours to repeat itself! Thus the
binary output is a rather random sequence of 0’s and 1’s! If this circuit drives a loudspeaker, it will
produce white noise that might be used as a sleep aid.

 Figure P1. Pseudorandom Binary Sequence Generator – Hardware Implementation

Below is a C-language program written to run on our FreeScale CSMB9S12C128, and it emulates this
hardwired white noise generator in software as an interrupt routine. The calling program first calls the C
routine TO24MHZ() that initializes the PLL to change the bus clock from 2 MHz to 24 MHz. It then
calls PRBS_INIT() that sets up the TC0 output compare channel to interrupt at a rate of 20 kHz, and it
also initializes the flip-flops to all 1’s, which is the function performed by the switch PRESETSW in the

FF30

(31 D FlipFlops Total)

FF30

12

3

5
4

QD

CLK

PRE
CLR

+5 V

FF2

FF0

12

3

5
4

QD

CLK

PRE
CLR

20 kHz
Clock
Oscillator

FF1

12

3

5
4

QD

CLK

PRE
CLR

- - - - - -

PRESET SW

1
2

3

PRBS Sequence Generator (Length = 2^31 - 1) Must be started by hitting preset button since initial state may NOT be 0.

FF2

12

3

5
4

QD

CLK

PRE
CLR

R1

10 kohm

 2

diagram of Fig. P1. Each TC0 output compare interrupt corresponds to a single 20 kHz clock pulse in
the hardwired system above. The main program also enables interrupts before it falls into an idle loop.
The interrupt routine PRBS_TC0_ISR emulates the 31 flip-flop circuit that is shown in Fig. P1. Note
that this software emulation should behave exactly like the hardware system in Fig. P1.

The long unsigned integer variable “shiftreg” in the program below is used to implement the 31-bit shift
register in Fig. P1. Flip-flop FF0 corresponds to Bit #0 (the LSB) of “shiftreg”, and FF30 corresponds to
Bit #30 of “shiftreg”. Note that the MSB (Bit #31) of the shift register “shiftreg” is not used.

The system output is taken from FF30, and this output is driven onto output pin PT0. Recall from Lab 5
that if the piezoelectric buzzer (loudspeaker) “BZ” jumper is installed on the Project Board, this buzzer is
connected to PT0 on the CSMB9S12C128 board, and when this program is run, we will hear the
broadband white noise as a steady “hiss”.

Fill in the 20 missing blanks in this C-language program.

#include <hidef.h> /* common defines and macros */
#include <MC9S12C128.h> /* derivative information */

void PRBS_INIT(void);
void TO24MHZ(void);
interrupt void PRBS_TC0_ISR(void);
long unsigned int shiftreg;
void main(void) {
 TO24MHZ();
 PRBS_INIT();
 EnableInterrupts;
 for(;;) {} /* wait forever */
}

void PRBS_INIT(void)
 { DDRT_DDRT0 = ______; //Blank 1
 TSCR1_TEN= _________; //Blank 2
 TSCR2 = 0b001;
 TC0 = TCNT+ _________; //Blank 3. We desire a 20 kHz interrupt rate
 TFLG1 = _________; //Blank 4
 TIOS = _________; //Blank 5
 TIE = _________; //Blank 6

 shiftreg = 0x7FFFFFFF; //Preset all 31 FFs to 1
 }

void TO24MHZ(void)
{
 CLKSEL = CLKSEL & ___________; // Blank 7. Disengage PLL from system
 PLLCTL = PLLCTL | ___________; // Blank 8. Turn on PLL
 SYNR = _____________; // Blank 9
 REFDV = ____________; // Blank 10. Set for 24 MHz Bus Clock

 3

 while (!(CRGFLG ________)); // Blank 11. Wait till PLL Locks
 CLKSEL = CLKSEL | ____________; // Blank 12. Engage PLL into system

}

interrupt void PRBS_TC0_ISR(void)
 {
 char FF0, FF2, FF30;
 TFLG1 = ___________________; //Blank 13
 TC0 = TC0 + ________________; //Blank 14
 shiftreg = shiftreg<<___________; //Blank 15
 FF2 = (shiftreg>>________) & 1; //Blank 16
 FF30 = (shiftreg>> _______) & 1; //Blank 17
 FF0 = FF2 ______ FF30; //Blank 18
 shiftreg = shiftreg + _________________; //Blank 19
 PTT_PTT0 = ______________________; //Blank 20
 }

2) (20 points, 1 point per blank) Assembly Language Program: Interrupt-Driven Optical Theremin
An optical Theremin is to be built using the CSMB9S12C128 board. This device plays continuously
variable musical tones whose frequency is regulated by waving your hand over it. At first this might
appear magical to an observer! But in reality, the frequency is varied using a variable voltage that is
derived by connecting a light-variable resistor (CdS cell) in series with a 4.7 kΩ fixed resistor. The CdS
cell is connected between Vcc = +5 V and the microcontroller’s analog input voltage pin AN0 = PTAD0.
The fixed 4.7 kΩ resistor is connected between the AN0 pin and ground, thus forming a variable voltage
divider. Assume that the resistance of the CdS cell varies between 400 Ω (full light hitting it) and 10 kΩ
(very little light hitting it). As the hand waves over the CdS cell, interrupting the amount of light that
gets to the CdS cell, the resistance can be varied over this range, and thus you can determine the
corresponding AN0 voltage range. (You may safely assume that the input resistance of the AN0 input
pin is much, much greater than 10 kΩ.)

Fill in the the blanks in the following code to make the piezobuzzer (connected to pin PT0) generate an
audio tone that varies between 110 Hz, which is two octaves below middle A on the piano (CdS cell
resistance = 10 kΩ), and 440 Hz, which is middle A on the piano (CdS cell resistance = 400 Ω). PT0 is
to be set up to automatically toggle each time an output compare event occurs on timer channel TC0.

; export symbols
 XDEF Theremin ; export 'Entry' symbol
 ABSENTRY Theremin ; for absolute assembly
 INCLUDE 'MC9S12C128.inc'
 ORG $4000
const32:
 dc.l ___________________ ; BLANK 0

; dc.l allocates a 32-bit "long word" constant into 4 bytes of flash mem.
 ; You must figure out what this constant is in order to properly convert
 ; the A/D converted sample into the desired timer delay value necessary
 ; to obtain the specified frequency behavior (440 Hz for no light, and

 4

; 110 Hz for full light) of the Theremin.

Theremin: lds #$1000 ; initialize the stack pointer
 movb #________________,TSCR2 ; BLANK 1. Remember, our bus clock is 2 MHz
 movb #________________,TSCR1 ; BLANK 2. Start TCNT counting
 bset ________________,1 ; BLANK 3. Make TC0 output compare
 bset __________________,1 ; BLANK 4. Make TC0 interrupt on compare
 movb #________________,TCTL2 ; BLANK 5. Make PT0 toggle on o.c. event
 bclr DDRAD,1
 bclr ___________________,1 ;BLANK 6. Make AN0 an analog input
 bset ___________________ ;BLANK 7. Power up A/D
 ldx #$ffff
wt_for_ATD_power_up:
 _______________________ ;BLANK 8.
 bne wt_for_ATD_power_up ;Wait for A/D to power up
 movb #%00001000,ATDCTL3
 movb #%00000001,ATDCTL4

movb #%____________________________ ;BLANK 9. Start conversion on AN0, Right
;justify results in result register.

wt_done: brclr ____________________________ ;BLANK 10. Wait till conversion done.
 ldd _________________________________ ;BLANK 11. Put 10-bit result in Accum D
 ldy #5532
 ____________________________________ ;BLANK 12
 subd const32+2
 tfr d,x
 tfr y,d
 bcc _________________________________ ;BLANK 13
 subd #1 ;Implements 32-bit subtraction
skip_adjust:
 subd const32
 tfr d,y
 tfr x,d
 ldx #1000
 ____________________________________ ;BLANK 14
 tfr y,d
 addd TCNT
 std _________________________________ ;BLANK 15 Schedule first o.c. interrupt
 movb _______________________________ ;BLANK 16 Clear interrupt flag
 cli
idle_loop: bra idle_loop

tc0isr: movb ______________________________ ;Not graded
wt_done1: brclr ____________________________ ;Not graded
 ldd ATDDR0
 ldy #5532
 ____________________________________ ;Not graded
 subd const32+2
 tfr d,x

 5

 tfr y,d
 bcc _________________________________ ;Not graded
 subd #1
skip_adjust1:
 subd const32
 tfr d,y
 tfr x,d
 ldx #1000
 ____________________________________ ;Not graded
 tfr y,d
 addd TC0
 ____________________________________ ;BLANK 17
 movb #1,____________________________ ;BLANK 18
 rti

 ORG $FFFE
 DC.W Theremin ; Reset Vector
 ORG ______________________________ ;BLANK 19
 DC.W tc0isr

3) (12 points) LCD Display Multiplexing

a) A custom LCD display for a new product has 300 segments that must be individually controlled
(turned on or off). If we choose to use 1:4 multiplexing on this display, implying 4 back plane
signals are needed, what is the total number of wires (back plane wires plus front plane wires) that
must be connected to this display?

 Total # Wires = ____________

b) Repeat Part A for 1:7 multiplexing.

 Total # Wires = ____________

c) For the case of 1:7 LCD multiplexing, there are 7 backplane signals, BP1, BP2, BP3, BP4, BP5, BP6,

and BP7. Assume that Vcc = 5 V, so the waveform voltage levels are 5 V, 3.333 V, 1.666 V, and 0
V. Sketch one frame of the BP2 backplane signal and also one frame of the BP3 backplane signal.

 6

d) Sketch one frame of a single front plane signal, FP1, where the segments that pass over BP3, BP5,
and BP6 are to be ON, and the remaining four segments are to be OFF.

e) Sketch one frame of the voltage waveform Vseg31, which represents the voltage across the “turned
ON” segment that lies between FP1 and BP3. (Vseg31 = BP3 voltage – FP1 voltage). Use the FP1
voltage waveform from Part d above.

f) Sketch one frame of the voltage across the “turned OFF” segment that lies between FP1 and BP2,
Vseg21. (Vseg21 = BP2 voltage – FP1 voltage) . Use the FP1 voltage waveform from Part d above

g) Find the RMS value of the Vseg31 waveform of Part e, which corresponds to the waveform of a
turned ON segment, and also the RMS value of the Vseg21 voltage waveform of Part f, which
corresponds to a turned OFF segment. For credit on this problem, you must show the steps in your
calculation (not just write down numbers) in the space below.
Recall that in the class notes, it was shown (in Figure 7.21) that for the case of 1:4 multiplexing, the
RMS voltage across a segment that is ON is Vrmson = 2.899 V,rms; and the RMS voltage across a

 7

segment that is OFF is Vrmsoff = 1.67 V, rms.

RMS value of Vseg31 = __________ V,rms RMS value of Vseg21 = _________ V,rms

h) Based upon comparing the results for 1:4 and 1:7 multiplexing,

 (a) which multiplexing method requires fewer connections? ___________________

 (b) which multiplexing method yields higher contrast? ___________________

4) (5 pts) An NPN power BJT with a β = 100, a forward BE junction voltage drop of 0.7V, and a Vce(sat) =
0V is used to switch ON and OFF a 3 Ω, 12 V (48 Watt) resistive load using a circuit similar to the
upper-left circuit of Slide #57. (Assume the power supply connected to the load is now 12 V.)

a) Draw this circuit in the space below, and then determine the maximum permissible value of Rb that

will still keep the BJT saturated while the load is ON. Note that with the BJT saturated, the
switching BJT consumes essentially NO power (PBJT = Ic*Vce = 4*0 = 0W), and the load receives
the full PLOAD = IL*VL = 4*12 = 48 W from the dc power supply.

 Rb(MAX) = _____________

b) How much current must the open-collector driving gate be able to sink while the load is turned off?
(Assume that the value of Rb is the value calculated above in Part a, and that the output voltage of the
open-collector driving gate is 0.3 V when sinking this current.)

 IoutSINK = _________

 8

c) If Rb = 500 Ω, and the open-collector driving gate is switched to its HIGH (floating) state, find the
power that is delivered to the (3 Ω, 12 V, “48 Watt”) load
(Hint: Because Rb = 500 Ω violates the calculation in Problem 4(a), you will find that the power
delivered to the load will far less than the desired 48 Watts!
Also find the power that is dissipated (as heat) in the BJT switching transistor. (Hint: you may ignore
the small amount of power consumed in the base-emitter junction of the BJT, and so assume that PBJT
= Vce * Ic.

Because Rb = 500 Ω violates the calculation in Problem 4(a), the power consumed (as heat) in the
switching transistor will be unacceptably large, and it may even burn out the switching transistor!
Also, the power delivered to the 48 W load is unacceptably small!)

 P3Ω LOAD = ______________

 PBJT = ______________

5) (4 points) Imagine that the 3 Ω resistive load of Problem 3 is replaced by an inductive load that may be
modeled as a 1.0 H inductance in series with a 3 Ω resistance.

a. Sketch the modified switching circuit in the space below. This circuit consists of the open-
collector driving gate, the 12 V dc power supply, Rb (assume Rb has a value that is less than
the maximum value calculated in Problem 4(a)), the switching BJT, and the load (1 H
inductor in series with a 3 Ω resistor).

b. Assume that the open-collector driving gate output voltage has been LOW for a long time,
and then it suddenly is raised to its HIGH (floating) state. How long after that will it take for
the load current to reach 90% of its final value (3.6 Amperes)? Let us regard this as the load
“turn-on” time. (Hint: Study Lecture 11, Slides 71-78)

 Load Turn-On Time = _____________

 9

6) (6 pts) Now imagine that the driving gate output voltage of the circuit in Problem 5 is suddenly changed
from HIGH to LOW. Hint: See Lecture 11, Slides 71-78

a) Using vL = LdiL/dt to explain why the switching BJT could burn out.

b) Redraw the switching circuit showing how a single fast-acting diode may be added to this circuit to
solve the problem of Part (a).

c) For the circuit of Part (b), determine how long it will take for the load current to decay from its full
value down to 10% of this value (0.4 A) when the driving gate output voltage is suddenly changed
from HIGH to LOW . You might regard this as the “load turn-off time”. Assume the ON resistance
of the diode is negligible. Hint: See Lecture 11, Slides 71-78

 Load Turn-Off Time = _____________

d) How could you make this load turn off time shorter? Redraw the circuit showing how one additional
resistor “Rspeedup” might be added, so the load will turn off faster, without affecting the load current
of the load turn-on time. If Rspeedup = 10 ohms in this example, calculate the new load turn-off
time.

 New Load Turn-Off Time = _____________

 10

7) (6 pts) Using only TWO rising-edge sensitive D flip-flops (with D, CLK, CLR, Q and Q\ pins) and

assorted inverters and other logic gates, design a circuit that will produce the 2x resolution CW output
waveforms shown in Fig. 6 from the A and B input waveforms. (See arrow below that points to the two
“CW” waveforms that you are to design your circuit to produce.) YOU NEED NOT DESIGN THE
CCW output detection circuit. Be sure to label your circuit’s A and B inputs as well as your circuit’s
CW output.

 Desired output waveform

 11

8) Stepping Motor (6 points)
Referring to the stepping motor circuit diagram shown in the course notes (Slide #68), imagine that the
two bottom rows of 7407/7406 inverters are removed, leaving us with just one row of 2N6427 power
Darlington BJT transistors. Then imagine that a microcontroller has PA3 (Port A, Pin 3) connected to
the base of the left-most power Darlington, PA2 to the next one, PA1 to the next, and finally PA0 to the
right-most power Darlington.

a) List the sequence of eight 4-bit numbers that would have to be output on the low 4 bits of PORT A

(in the order PA3:PA2:PA1:PA0) in order to make the magnetic field vector developed by the
stepping motor stator coils step in the clockwise (CW) direction, with 8 steps per revolution (45
degrees per step). Let your first number correspond to the magnetic field pointing directly up. (Hint:
you may turn on either 1 or 2 coils at a time.)

________, _______, _______, ________, _________, ______, ______, _______

b) Assuming a permanent magnet rotor with 9 permanent magnet poles (instead of the rotor with 3
permanent magnet poles considered on Slide #70 in the lecture notes), determine the number of steps
per revolution of the shaft using the 8-value sequence of Part A.

Do this by drawing, in the space provided below, the 9-pole rotor (showing only the 9 equal-
angularly spaced south poles) with one of the 9 poles aligned with the initial B field. Then, when the
B field steps 45 degrees to its next position, determine which south pole is closest to the new position
of the B field, and hence is pulled into alignment.

Determine the angle through which the shaft rotates, and determine its direction of rotation (CW or
CCW). Also determine the total number of steps per one 360 degree revolution of the shaft.

 Drawing of 9-pole Permanent Magnet with one pole aligned with initial B field.

Degrees of Shaft Angle Rotation Per Step = ____________

Step Direction = ______________

Number of steps per one 360 degree revolution of the shaft = __________

 12

9) (1 pt) What is the best name for the four 1N4001 power diodes in this stepping motor circuit?
(circle one)
1. transient voltage suppression diodes 2. turn-on speedup diodes 3. turn-off speedup diodes
4. load current limiter diodes

a. (1 pt) What is the best name for the 22-ohm resistor in this stepping motor circuit? (circle one)
1. turn-on speedup resistor 2. turn-off speedup resistor 3. load current limiter
4. voltage transient suppression resistor

10) (2 pt) A magnetic reed switch will be most sensitive to an applied magnetic field (B) that is
 oriented in a direction that is
 1. perpendicular to the reeds 2. parallel to the reeds 3. at a 45 degree angle to the reeds

11) (2 pt) What is the purpose of the diodes in the 8 x 8 scanned keyswitch matrix discussed in the
 course notes?
 1. short-circuit protection 2. over-voltage protection 3. speed up key scanning process

12) (9 pts) Imagine that a “poor man’s A/D” circuit implemented in the C language is used to sense the value
of a variable resistor Rx by connecting Rx between PT0 and Vcc = 5.0 V and a 0.33 µF capacitor
between PT0 and ground. Assume that PT0 (when configured as an input) has an input logic high
threshold of 3.00 V. If PT0 (when configured as an output) is driven low (to 0 V) for several seconds,
and then suddenly released (allowed to float), the time elapsed before a logic 1 level is read by the
microcontroller is measured.

a) Find the value of Rx if the time elapsed before a logic 1 is read is found to be 5 ms?

b) Find the value of Rx if the time elapsed before a logic 1 is read is found to be 10 ms?

c) What is the lowest value of Rx that can be measured using this scheme if PT0 cannot sink more than
25 mA when driving its output to a logic 0 level (which we will assume is precisely 0 V).

d) How should the LSB of the PERT register be set in order to obtain the most accurate measurement of
Rx? Explain your reasoning.

 13

e) How would you set the LSB’s of the Port T Data Register and the Port T Data Direction Register in
order to drive PT0 to 0 V?

f) How would you set the LSB’s of the Port T Data Register and the PORT T Data Direction Register in
order to release (float) PT0?

13) (7 pts) UPC-A Bar Code (Used on groceries, pharmaceuticals, electronic items, but NOT on books!)

a. Using the UPC-A encoding table found in the notes, determine the six encoded UPC digits in

the left half of the bar code. Recall that Black = 1, White = 0; there are 3 SYNC patterns: 101
at each end, and 01010 in the middle. (Hint: first make sure you can successfully decode the
six left digits in the example UPC code in the notes, or on any grocery product in your home.)

b. Recalling that the UPC-A encoding table found in the notes must have its black and white
regions exchanged for the right half of the UPC code, determine the six encoded UPC digits
in the right half of the bar code. (Hint: first make sure you can successfully decode the six
right digits in the example UPC code given in the notes.)

c. The last (rightmost) digit you found in Part (b) is the UPC-A checksum digit. In the space
below, show the step-by-step calculation of this checksum digit from the other preceding 11
digits. Your results must match the 12th digit you decoded above.

