ECE331 Lab #2: -- Double Click Detector in C

By Jianjian Song and Keith Hoover

Department of Electrical and Computer Engineering

Rose-Hulman Institute of Technology

Updated March 12, 2008 (KEH)
1 Objectives

(1) Understand C program development procedure for the 9S12C32 microprocessor using Metrowerks CodeWarrior

(2) Learn embedded C programming by studying the C-language versions of the assembly-language programming examples from Lab 1, the “LED Flashlight” and the “Coin Tosser”.
(3) Understand how the C compiler works by observing how each line of C code is turned into one or more lines of assembly code.

(4) Write your own embedded C program for implementing a double/single click detector.

2 Deliverable

A written memo-style lab report that focuses on your design of the double/single click detector. Be sure to describe how you tested your double click detector, and the results of your tests. Your memo must refer to several attachments, which include (1) ORCAD drafted schematic diagram of interface circuitry (2) Flow diagram of the double/single click detector program. (2) Adequately commented C source file. (3) Resulting absolute listing file produced by the Metrowerks C compiler and linker, which shows the underlying assembly instructions behind each of the lines of C code.
3 Reference materials and required equipment

3.1 References

1. MC9S12C32 Module User’s Manual and Schematic Diagram (M68MOD912C32.pdf

and M68MODKIT912C32UM.pdf)

2. MC9S12C Family Device User Guide (9S12C128DGV1.pdf)

3. HCS12 Microcontrollers Reference Manual (S12CPUV2.pdf)

4. HC12 CPU Awareness and True Time Simulator Manual (Manual True Time
 Simulator HC12.pdf)
5. Additional MC9S12C32 Reference Manuals (9S12C32_ZIP.zip)
3.2 Equipment
Same equipment as for Lab 1.
3.3 Source Code
Source code for the C-language LED flashing program (flash.c) and for coin-tossing program (cointoss.c) are available from the class folder found at
 afs.rose-hulman.edu/class/ee/hoover/ece331/331_Lab2.

4 First C-language programming example: flashlight program revisited
Study the C-language source code for the flashlight program shown in Figure 2, assuming the hardware configuration of Figure 1. You may find the summary of looping and branching constructs in the C language to be helpful, which is included as Appendix A. For more complete information on the C language, see Chapter 5 of our textbook.
You may download this example code from the Lab 2 class folder, or enter it yourself.

Note the use of the #define “preprocessor” directives to assign meaningful I/O address names (PTAD) and DDRAD) to their corresponding numerical values (0x270 and 0x272). These numerical address values have been “typecast” as pointers to unsigned character (8-bit integer) values, as shown below:

#define PTAD (*(unsigned char *) 0x270) /* Define PORT AD data register address*/

#define DDRAD (*(unsigned char *) 0x272) /*PORT AD data direction register address */
4.1 Steps to compile and run flashlight program

Working as you did in the previous lab, your first task is to create a project for the program. Do this by following the steps presented below:
 Figure 1. Flashlight Interface to 9S12C32 module (Same as in Lab 1)
[image: image1.emf]R3

10k

Red +5V DC Power Bus (Top of Breadboard)

LM7805

3

2

1

Input

GND

Output

RST SW

Data

Input

SW

D1

Pwr LED

CSM12C32 J1 Connector

1

2

3

4

5

6

7

8

9

10

11

12

13

15

17

19

21

23

25

27

29

30

31

32

28

26

24

22

20

18

16

14

33

35

37

39

34

36

38

40

Vx

PE1/IRQ

GND

RESET

PS1/TXD

MODC/BKGD

PS0/RXD

NC

PP5/KWP5

NC

PE0/XIRQ

NC

PT0/PW0/IOC0

PT1/PW0/IOC1

PM4/MOSI

PM2/MISO

PM5/SCK

PM3/SS

PE4/ELCK

PE7/XCLKS

PAD02/AN02

PT2/PW2/IOC2

PAD03/AN03

PT3/PW3/IOC3

PM0/RXCAN

PM1/TXCAN

PA0

PB4

PAD01/AN01

PAD00/NA00

NC

NC

PAD04/AN04

PAD05/AN05

PAD06/AN06

PAD07/AN07

PT4/PW4/IOC4

PT5/IOC5

PT6/IOC6

PT7/IOC7

D2

Data LED

+

7-15VDC

DC Adaptor

R1

10k

R5

1k

R4

2k

SW1

Vcc = 5 V

C1

0.1 UF

R2

510

Blue 0V DC Ground Bus (Bottom of Breadboard)

R3

10k

Red +5V DC Power Bus (Top of Breadboard)

LM7805

3

2

1

Input

GND

Output

RST SW

Data

Input

SW

D1

Pwr LED

CSM12C32 J1 Connector

1

2

3

4

5

6

7

8

9

10

11

12

131517192123252729

30

31

322826242220181614

33353739

34363840

Vx

PE1/IRQ

GND

RESET

PS1/TXD

MODC/BKGD

PS0/RXD

NC

PP5/KWP5

NC

PE0/XIRQ

NC

PT0/PW0/IOC0PT1/PW0/IOC1PM4/MOSIPM2/MISOPM5/SCKPM3/SSPE4/ELCKPE7/XCLKSPAD02/AN02

PT2/PW2/IOC2

PAD03/AN03

PT3/PW3/IOC3

PM0/RXCAN

PM1/TXCAN

PA0PB4

PAD01/AN01PAD00/NA00

NCNC

PAD04/AN04PAD05/AN05PAD06/AN06PAD07/AN07

PT4/PW4/IOC4

PT5/IOC5PT6/IOC6PT7/IOC7

D2

Data LED

+

7-15VDC

DC Adaptor

R1

10k

R5

1k

R4

2kSW1

Vcc = 5 V

C1

0.1 UF

R2

510

Blue 0V DC Ground Bus (Bottom of Breadboard)

 Figure 2. C-language version of flashlight program
//**

// ECE331 Lab 2 Flashlight.c demo program

// C-language implementation of flashlight program (KEH, August 2004)

// Hardware interface: SW on input pin PAD6 (HIGH level when not pressed)

// LED on output pin PT1 (Turn on with HIGH level)

//**

#define PTAD (*(unsigned char *) 0x270)

/* Define the relevant register addresses */

#define DDRAD (*(unsigned char *) 0x272)

#define PTT (*(unsigned char *) 0x240)

#define DDRT (*(unsigned char *) 0x242)

#define ATDDIEN (*(unsigned char *) 0x8D)

#pragma LINK_INFO DERIVATIVE "mc9s12c32"
/* Tell linker to allocate the program into the

RAM and (Flash) ROM address spaces

that conform to those available on the

9S12C32 microcontroller. */
void main(void)

{
 DDRT = 0b00000010;

// LED on PT1 */

 ATDDIEN = 0b01000000;

// Make PAD6 a digital I/O pin

 DDRAD = 0b00000000;

 // Make PAD6 an input (Switch on this pin) */

 for(;;)

 {

 PTT = PTT & 0b11111101;

 // Turn OFF LED

 while ((PTAD & 0b01000000) == 0b01000000);
// Hang here while SW not pressed (HIGH).
 PTT = PTT | 0b00000010;

// Turn on LED .

 while ((PTAD & 0b01000000) == 0);

 // Hang here while SW pressed (LOW)
 }

}
4.1.1 Launch Code Warrior

Click on Start – Freescale CodeWarrior – CW for HC12 V4.6 – CodeWarrior IDE in order to launch CodeWarrior.

4.1.2 Create New Project

Create a new project by clicking on File – New – HC(S)12 New Project Wizard. In the dialog box for Project Name, type LAB2_FLASHLIGHT, click on the Set button to select the desired directory where your project will reside, and then select OK. By the way, I strongly suggest that you create separate subfolders for each new project, since there are many files in each project.

A. Click on MC9S12C32, and select Next.

B. Check the “C” language option. The other options should not be checked. Select Next.

C. Click “No” to Select Processor Expert? Select Next.

D. Click “No” to PC Lint. Select Next.
E. Click “ANSI startup code”. Select Next.

F. Click “None” for Floating Point. Select Next.

G. Click “Small” for Memory Model. Select Next.

H. Check “Motorola Serial Monitor Hardware Debugging”, “P&E Multilink/Cyclone Pro” and also “Metrowerks Full Chip Simulator”. Select Finish.

This completes the creation of the new project. To resume work on this project at a later time, you would click File – Open – LAB2_FLASHLIGHT.mcp. This will reopen this project for further work.

4.1.3 Entering the flashlight C-language source program

Note the project file name appears in the upper left corner of the screen. Just below this is the “project view” that lists the files in the project. Expand the “Sources” category (which contains the source code files) by single-left clicking on the [+}, and then double-left click on the only source code file, “main.c”. This should open up a source code editing window labelled main.c. Expand this window so it fills the screen. The initial “main.c” program serves as a starting template (or “project stationary”, using the Metrowerks terminology) for the creation of a “C-language” program. The initial source code template file “main.c” is shown in Figure 3.

 Figure 3. Initial template file for main.c generated by CodeWarrior

#include <hidef.h> /* common defines and macros */

#include <mc9s12c32.h> /* derivative information */

#pragma LINK_INFO DERIVATIVE "mc9s12c32"

void main(void)

{

/* put your own code here */

EnableInterrupts;

for(;;) {} /* wait forever */

}
Replace the contents of this main.c template file with the flashlight program shown in Figure 2.

4.1.4 Building the project and the main.c.lst file
The project can be built as in the first lab, by clicking on the Make button, which will cause the C compiler to compile each line of C code into one or more assembly language instructions, and then the assembler will assemble these instructions into machine language, and finally the linker allocates the code and data portions of the program into the correct areas of memory. Once the project has been successfully built, you can see how the various lines of C code have been interpreted by the compiler into underlying assembly (machine) language instructions that the microcontroller hardware can understand. Do this by highlighting the “main.c” program in the project view (click on this program if it is not highlighted), and then click on Project – Disassemble. The main.c.o.lst file that is shown in Figure 4 should appear. This file shows each line (C-language instruction) of C source code in the main.c program of Figure 2 followed by the underlying assembly language instructions that the C compiler has generated in order to carry out that C-language instruction!

Note that this list file represents the compiler output before the linker has done its job, so it has been assembled as if it were to be run at the fictitious program memory location 0. That is why the first instruction in the program “CLI” begins at location 0 in Figure 4. However, the 9S12C32 microcontroller has no program (Flash ROM) memory at location 0, and furthermore locations 0 - $3FF are reserved for I/O registers on this microcontroller.
Also note that this project file contains another standard C program file called Startup.c (you can see it by expanding the Startup Code category in the project view.) Startup.c is a standard file that accompanies the C compiler. It contains some standard initialization code that depends upon the target microcontroller that must be executed on the microcontroller to initialize it before it begins executing the actual user C program. This file has been separately compiled into machine language, and so it also has been assembled to begin running at the fictitious starting location 0. To see that this is true, highlight Startup.c and then click on Project – Disassemble.
The linker has the job of relocating the compiled machine language program code from both the main.c and Startup.c programs so that the two programs are placed immediately adjacent to each other, one after the other (linked together), in the user Flash ROM program memory, with the starting address of the Startup.c program shifted from address 0 up to a convenient starting location in Flash ROM.
Figure 4. Portion of main.c.o.lst file corresponding to the flashlight program of Figure 2.
 7: #define PTAD (*(unsigned char *) 0x270) /* Define register addresses */

 8: #define DDRAD (*(unsigned char *) 0x272)

 9: #define PTT (*(unsigned char *) 0x240)

 10: #define DDRT (*(unsigned char *) 0x242)

 11: #define ATDDIEN (*(unsigned char *) 0x8D)

 12: #pragma LINK_INFO DERIVATIVE "mc9s12c32"

 17: DDRT = 0b00000010; // LED on PT1 */

 0000 cc4002 [2] LDD #16386

 0003 7b0242 [3] STAB 578

 18: ATDDIEN = 0b01000000; // Make PAD6 a digital I/O pin

 0006 5a8d [2] STAA 141

 19: DDRAD = 0b00000000; // Make PAD6 an input (Switch on this pin) */

 0008 790272 [3] CLR 626

 20: for(;;)

 21: {

 22: PTT = PTT & 0b11111101; // Turn OFF LED

 000b 1d024002 [4] BCLR 576,#2

 23: while ((PTAD & 0b01000000) == 0b01000000);
// Hang here while SW not pressed (HIGH).

 000f 1e027040fb [5] BRSET 624,#64,*+0 ;abs = 000f

 24: PTT = PTT | 0b00000010; // Turn on LED .

 0014 1c024002 [4] BSET 576,#2

 25: while ((PTAD & 0b01000000) == 0); // Hang here while SW pressed (LOW)

 0018 1f027040fb [5] BRCLR 624,#64,*+0 ;abs = 0018

 001d 20ec [3] BRA *-18 ;abs = 000b

Note, for example, how the “DDRT = 0b00000010;” instruction at Line #17 in Figure 4 was assembled by the C compiler into two assembly-language (machine) instructions: “LDD #$4002” followed by “STAB 578”, where 578 is the decimal equivalent of 0x242, which is the correct address of the DDRT register.
Next note that the “while ((PTAD & 0b01000000) == 0b01000000);” instruction at Line #23 in Figure 4 was assembled by the C compiler into just one assembly-language (machine) instruction: “BRSET 624,#64,*+0”. As you can see by consulting the HCS12 Microcontrollers Reference Manual (S12CPUV2.pdf), the BRSET (branch on set) instruction has three arguments separated by two commas. This instruction reads the byte at the address indicated in the first argument, which in this case is address 624 = 0x0270 = PTAD. Next it checks the data it read at the bit position(s) that are set to “1” in the “immediate mask pattern” found in the second argument, which in this case is #64 = #0b01000000. So in this case, Bit #6 of PTAD is checked. If Bit #6 is a 1, then the branch is taken to the location indicated in the 3rd argument, which in this case is indicated by “*+0”. The asterisk “*” is called the “assembly location counter”, and so it represents the address of the first byte of the current instruction being assembled. Thus this instruction will branch back to itself if Bit #6 is a 1! This is certainly the tightest of all possible loops! If Bit #6 is not a 1, then the branch is not taken, and so the next instruction is executed,
Finally note how the infinite loop “for(;;) {…….}” was implemented by the single assembly language instruction at the end of the program “BRA *-18”. This “branch always” instruction will always (unconditionally) branch back 18 bytes from the beginning of the current instruction. If start at the BRA instruction OP CODE address and count backwards 18 instruction bytes, you will see that , when BRA *-18 instruction is executed (at the bottom of the infinite loop), it will cause the program execution to branch back to the top of the main(;;) infinite loop, at the “BCLR 576” instruction.
Please look through the rest of Figure 4, making sure that you understand how each C language instruction has been translated by the C compiler into one or more underlying machine language instructions.

4.1.5 Running the Flashlight Program
Now select the “P&E Multilink Cyclone Pro”, hit the RESET button on the 9S12C32 module, and click on the green “Debug” button. Next click on the Run button in the debugger, and the flashlight program should begin running. Note as you operate the pushbutton switch, the LED changes accordingly. Try setting a breakpoint in the program, say at the “PTT = PTT | 0b00000010;” instruction, then reset the program and hit the Run button. The program should run at speed until the breakpoint is hit. Note that you will have to depress the pushbutton before the breakpoint will be hit.
5 Second C-language programming example: Coin-tosser program revisited
The coin-tosser program has been rewritten in C, and it is presented in Figure 6. Its flowchart, which is very similar to the coin-tosser flowchart in Lab 1, appears in Figure 5. Note in Figure 6 that this program uses the preprocessor directive “#include <mc9s12c32.h>” to include the 9S12C32 microcontroller’s register definitions, so the I/O registers need not be separately defined as they were in the flashlight program of Fig. 2. Make sure that you understand how the flowchart of Figure 5 has been implemented in the C-language program of Figure 6.
 Figure 5. Coin-Tosser Flowchart

Figure 6. C-language version of coin tosser program corresponding to the flowchart of Fig. 5.
/* C-language version of coin tosser example

 Hardware interface: PM0 = Pushbutton SW (Click to toss coin)

PM1 = Head/Tail Outcome LED

PTT = 8 LEDs displaying # tails

PTAD= 8 LEDs displaying # heads */

#include <mc9s12c32.h> /* derivative information */

#pragma LINK_INFO DERIVATIVE "mc9s12c32"

void delay20ms(void);

void main(void)

{

 unsigned char coin,nr_heads, nr_tails;

 DDRT = 0xff;

 //Make all the pins of PTT and PTAD outputs.
 ATDDIEN = 0xff;

 DDRAD = 0xff;

 DDRM = 0x02;

 //Make Port M PT0 = input (Pushbutton SW)

//and PT1 = output (Heads/Tails outcome LED).
 PERM = 0x3E;

//Disable internal pullup on pusbutton SW input PM0
 nr_heads = 0;

//Initialize nr_heads and nr_tails to zero.

 nr_tails = 0;

 PTT = 0;

 //Set all output pins to zero.

 PTAD = 0;

 PTM = 0;

 for(;;)

 {

 coin = 0;

//Variable "coin" indicates outcome. Heads: coin = 1, Tails: coin = 0.
 do

 {

 coin = coin ^ 1;

//Toggle LSB of coin variable (Note “^” signifies exclusive OR operation)
 } while ((PTM & 1) == 1);
 //repeatedly until the pushbutton SW is pressed.

 delay20ms();

//Delay 20 ms to debounce SW press.

 while ((PTM & 1) == 0);

//Wait here until SW released

 delay20ms();

//Delay 20 ms to debounce SW release.

 if ((coin & 1) == 1)

 {

 nr_heads++;

//If heads outcome,

 PTM = PTM | 0b00000010;

//increment nr_heads, PM1 = 1 (LED on)

 PTAD = nr_heads;

//and update nr_heads on PTT output port.

 }

 else

 {

 nr_tails++;

//If tails outcome,

 PTM = PTM & 0b11111101;

//increment nr_tails, PM1 = 0 (LED off)

 PTT = nr_tails;

//and update nr_tails on PTAD output port.

 }

}

void delay20ms(void)

//This function delays 20 ms using a software delay loop.
{

 unsigned int i;

 for(i=0;i<40000;i++);

//Count i from 0 to 40000 to waste about 20 ms.
}

Make a new project and use this file for the main.c function. Verify that the program works by running the program using the in-circuit debugger.

Note that if you choose to single step through this program, you will have to take about 14 initial steps through the startup.c code before you begin stepping through the main.c program. Note that, before you press the pushbutton, the program will soon be hung in the coin toggling inner loop. If you are watching the program variables in the debugger that appear to the left in Data:2 window, you may be surprised to see that the value of the “coin” variable is NOT toggling as it should be. What is going on? The answer can be found if you look at Accumulator B in the register window as you step around this first inner loop. You will see that the LSB of register B is indeed as we expect the coin variable to be doing. The C compiler has “optimized” our code by letting the coin variable be (temporarily) in Accumulator B. This accumulator can be accessed faster than an external memory location (coin). If you set a breakpoint further down in the program, such as at the “if ((coin & 1) == 1)” statement, and then reset and run the program down to this breakpoint, you will see that the value of the coin variable has been updated, since Accumulator B is eventually needed for another function. Likewise, you will see that if you step into the delay20ms() function, that the local counting integer “i” that has been defined within the delay routine does not appear to be incrementing as expected as you step around the delay loop, but once again, if you look at the register window, you will find that Register X is being used as this integer counting variable.

The lesson to be learned here is to check the register windows (A, B, X or Y) when a variable (memory location) is not changing as expected during single-step debugging.
6 Write a Double-Click/Single-Click Detecting Program.

Once you have thoroughly gone through the previous sections and checked out and fully understood the flashlight and the coin-toss programs, you are now ready to write your own C program.
Your assignment is to design a “double click” detecting system that may be used to allow a single pushbutton switch to perform two different control functions, such as on a “mouse” computer peripheral pointing device. You may find the summary of looping and branching constructs in the C language to be helpful, which is included as Appendix A.

First interface a second buffered LED to the 9S12C32 module (on PM2), so now your hardware interface consists of a pushbutton switch (on PM0) and two buffered LEDs (on PM1 and PM2).
You must write a C program that operates in the following way: Both LEDs should be initially turned off, with the program waiting for the button to be pushed. If the pushbutton is clicked (by “click”, I mean it is pressed down, and then released in rapid succession, just as you would click a mouse button) and then, within (about) a one-second time interval, it is again rapidly clicked a second time, LED2 (the double-click LED) should be made to light for 1 second and then turn off. If the pushbutton is rapidly clicked (turned ON and then OFF) and this process is NOT repeated within 1 second after the initial click, then LED1 (the single-click LED) should flash on for 1 second and then turn off.
You will have to experiment with the number of delay loop iterations needed to approximate a 1-second delay time. If you declare a counting (index) variable as an unsigned 16-bit integer data type: “unsigned int”, the variable can range between 0 and 216-1 = 65535. Counting a variable over this range in a simple for loop, for(i=0;i<65535;i++); delays about 30 ms, when the 9S12C32 is clocked at 8 MHz, as it is on our modules. So counting an unsigned int variable will not give you enough delay time. If you declare a counting variable as an unsigned 32-bit integer data type: “unsigned long int”, it will be able to range from 0 up to a value of 232-1 = 4,294,967,295. Counting a variable up to this highest possible 32-bit integer value results in a delay of approximately one-half hour, so the use of this 32-bit integer data type should be more than sufficient for realizing the 1-second delay needed in this double-click embedded design application.

Demonstrate your working double-click detector system to your lab instructor and obtain his signature on your program listing that you turn in as part of your lab report. Your report (described above under “deliverables”) and your demonstration are due at the beginning of next week’s lab period.

Appendix A. Summary of Flow Control Statements in a C-Language Program

In the C language, program flow is controlled by means of loops (while loop, for loop, and do-while loop), and branching (if-else statement and the switch statement). The syntax of each of these flow control mechanisms is described in detail below, along with simple illustrative examples of how they are used. In the general syntax descriptions below, the “statement;” could either be a simple single C instruction, or it could be a compound statement that consists of any number of C instructions bracketed by a pair of curly braces.
A. Loops

1. while Loop

Syntax:

while (expression)

statement;

Example 1: Example of while loop with a simple statement

while (i++ < 20)

q = 2 * q;

Example 2: Example of a while loop with a compound statement (enclosed by curly braces)

while ((PTM & 4) = = 4)

// Repeatedly execute all of the instructions below

// while the switch on input pin PT2 = 1.

{

count_var++;

PTM = PTM & 0b11110111;
//Set output pin PT3 = 0;

delay20ms();

}

2. for Loop

Syntax:

for (initialize; test; update)

statement;

Example:

 DDRT = 0;

/* Make Port T all outputs */

for (n = 0; n < 10; n++)

{

PTT = n;

/* Make Port T values count in binary from 0 to 9 */

 delay_ms(100); /* with a 100 ms delay in between counts. */

}
3. do - while Loop

Syntax:

do

statement;

while (expression);

Example (Calculate10 factorial = 10*9*8*7*6*5*4*3*2*1)

 j = 1; i = 1;

do

j = j * i;

while (i++ <= 10);

B. Branching
1. if - else Statement

Syntax of "if statement" without "else clause"):

if (expression)

statement;

Syntax of "if statement" with "else clause":

if (expression)

statement;

else

statement;

Example:

if (amt > 400)

rate = 56;

else

rate = 62;

2. switch Statement

Syntax:

switch (expression)

{

case label1 : statement(s);

case label2 : statement(s);

.

default : statement(s);

}

The expression must evaluate to an integer, and the labels should be integer constants (including char) or integer constant expressions.

Example:

switch(choice)

{

case 'a' : act++; /*Execute "act++;" if choice = ASCII

 code of letter a.*/

break;

/* this statement "breaks out" of the

present "switch() control structure. */

case 'b' : bct++;

break;

case 'c' : cct++;

default : otherct++;

break;

}

Note that if we leave out the “break” statements, all of the cases that appear underneath the one that was specified will be executed, which is often not desired.

Increment nr_heads, and Turn ON LED

PTAD=nr_heads

Increment nr_tails, and

Turn OFF LED

PTT=nr_tails

Yes

No

SW Down?

Toggle LSB of coin

Yes

No

 Heads? coin = 1?

coin = 0

Wait 20 ms for switch release bouncing to die out

Yes

nr_heads = 0; nr_tails=0; Set all outputs = 0.

SW Up?

No

Make PTT and PAD outputs and make PM0 input and PM1 output

Wait 20 ms for SW contact bouncing to die out

 Coin Toss Program

Timer device test
Page 4 of 13
03/12/08
4
ECE331 Lab #2 Handout
Fall 2007 (KEH)
Page 1 of 14

