
1 of 6 060602

INTRODUCTION
All 1-Wire® device data sheets describe two sets of commands. The first set referred to as ROM Function
Commands are used for device identification and selection. The second set is often called Memory
Function Commands but may contain other non-memory operations. A ROM Function Command must be
completed each time a device is selected to get it ready for a Memory Function Command. The 1-Wire
APIs created by Dallas Semiconductor utilize these commands to do operations with 1-Wire devices.
Sometimes it is not always obvious what commands are being called. This document will map the
commands presented in the data sheets to the API functions. Where specific API functions are not
available, a technique will be presented to translate the commands using the generic communications API
functions.

See Application Note 155 (http://pdfserv.maxim-ic.com/arpdf/AppNotes/app155.pdf) for a detailed
description of the various APIs including the abbreviations discussed in this document (PD, TMEX,
OWAPI, OWCOM). (Special terms, commands, or codes are shown in italics for clarity.)

ROM Function Commands
The ROM Function Commands are used to either discover the ROM ID or use the ROM ID to select a
device in various modes. The ROM ID is a unique 64-bit number that contains a family code,
serialization field, and a cyclic redundancy check (CRC). The 1-Wire master transmits one of these
functions after it has issued a 1-Wire reset and received a presence.

The Read ROM command reads the ROM ID directly. It can only be used on a 1-Wire network where
there is only one device attached. With networks of more than one device, the ROM ID must be
discovered with the Search ROM command. This search algorithm is discussed in detail in Application
Note 187 (http://pdfserv.maxim-ic.com/arpdf/AppNotes/app187.pdf). The Conditional Search ROM
command works the same as Search ROM except only 1-Wire devices that are in some kind of alarm state
will respond. This is used to discover only devices that need attention.

The Skip ROM command is used to select all devices regardless of its ROM ID. This could be used to
gang program memory devices provided there is sufficient energy. The Overdrive Skip command is
similar but it not only selects all devices it also puts those devices at the Overdrive communication rate.
This is most often used to move all capable 1-Wire devices to Overdrive speed. After the devices are
communicating in Overdrive, the ROM IDs can be discovered using the conventional Search ROM
sequence.

The Match ROM command selects a specific device by broadcasting a selected ROM ID. The Overdrive
Match is similar but it also switches the device to the Overdrive communication speed. The Resume
Command is used to reselect the last device that was selected. This is a shortcut command when
repeatedly accessing the same device.

White Paper 5
 Using 1-Wire APIs for Data Sheet

Commands
www.maxim-ic.com

1-Wire is a registered trademark of Dallas Semiconductor.

http://pdfserv.maxim-ic.com/arpdf/AppNotes/app155.pdf
www.maxim-ic.com
http://pdfserv.maxim-ic.com/arpdf/AppNotes/app187.pdf

WP5

2 of 6

Table 1 maps the APIs to a particular ROM Function Command. Note that since the various 1-Wire APIs
are designed with the idea of multiple 1-Wire devices on a network, the commands that require or are
most useful in a single device network are not supported directly. However any command can be
constructed using the basic communication functions as will be discussed later in Custom Commands.

ROM FUNCTION COMMANDS Table 1
Command PD TMEX
Read ROM No predefined API, see Custom Commands. No predefined API, see Custom Commands.
Match ROM owAccess TMAccess
Search ROM owFirst, owNext TMFirst, TMNext
Conditional
Search ROM

owFirst, owNext TMFirstAlarm, TMNextAlarm

Skip ROM No predefined API, see Custom Commands. No predefined API, see Custom Commands.
Overdrive
Skip*

No predefined API, see Custom Commands. No predefined API, see Custom Commands.

Overdrive
Match*

owOverdriveAccess TMOverAccess

Resume
Command**

No predefined API, see Custom Commands. No predefined API, see Custom Commands.

Command OWAPI OWCOM
Read ROM No predefined API, see Custom Commands. No predefined API, see Custom Commands.
Match ROM (package com.dalsemi.onewire.adapter)

DSPortAdapter.select
DSPortAdapter.select

Search ROM (package com.dalsemi.onewire.adapter)
DSPortAdapter.getFirstDeviceContainer,
DSPortAdapter.getNextDeviceContainer

DSPortAdapter.getFirstDeviceContainer,
DSPortAdapter.getNextDeviceContainer

Conditional
Search ROM

(package com.dalsemi.onewire.adapter)
DSPortAdapter.

setSearchOnlyAlarmingDevices
(then same as Search ROM)

DSPortAdapter.
setSearchOnlyAlarmingDevices

(then same as Search ROM)

Skip ROM No predefined API, see Custom Commands. No predefined API, see Custom Commands.
Overdrive
Skip*

No predefined API, see Custom Commands. No predefined API, see Custom Commands.

Overdrive
Match*

(package com.dalsemi.onewire.container)
OneWireContainer.setSpeed
OneWireContainer.doSpeed

OneWireContainer.setSpeed
OneWireContainer.doSpeed

Resume
Command**

No predefined API, see Custom Commands. No predefined API, see Custom Commands.

*Note: Only applies to 1-Wire devices that support Overdrive communication speed.
**Note: Only applies to 1-Wire devices that support the Resume Command.

WP5

3 of 6

Memory Function Commands
The Memory Function Commands vary slightly from one device type to another. However their primary
objective is the same, which is to read and write the memory areas of the device. To deal with these
diverse command structures, the 1-Wire APIs were constructed to abstract out these differences. For
example, a generic write memory API may use a Write Scratchpad, Read Scratchpad, and Copy
Scatchpad sequence or it may use an EPROM Write Memory sequence. To the API user, it looks the
same.

There are three levels of memory commands in most of the APIs. The first allows reading and writing to
the memory without any structure (raw). The second uses a packet structure called the Universal Data
Packet (UDP). The third type combines multiple UDP structures into a file structure. See Application
Note 114 (http://pdfserv.maxim-ic.com/arpdf/AppNotes/app114.pdf) for a description of the UDP and file
structure. Table 2 maps the APIs to the three types of memory operations.

ABSTRACT MEMORY FUNCTIONS Table 2
Command PD TMEX
Write Raw owWrite TMProgramBlock (EPROM only)

(see Custom Commands)
Read Raw owRead TMProgramBlock (EPROM only)

(see Custom Commands)
Write UDP owWritePagePacket TMWritePacket
Read UDP owReadPagePacket TMReadPacket
Write File owCreateFile

owWriteFile
TMCreateFile
TMWriteFile

Read File owOpenFile
owReadFile

TMOpenFile
TMReadFile

Command OWAPI OWCOM
Write Raw (package com.dalsemi.onewire.container)

MemoryBank.write
MemoryBank.write

Read Raw (package com.dalsemi.onewire.container)
MemoryBank.read

MemoryBank.read

Write UDP (package com.dalsemi.onewire.container)
PagedMemoryBank.writePagePacket

PagedMemoryBank.writePagePacket

Read UDP (package com.dalsemi.onewire.container)
PagedMemoryBank.readPagePacket

PagedMemoryBank.readPagePacket

Write File (package com.dalsemi.onewire.application.file)
OWFileOutputStream.write

OWFileOutputStream.write

Read File (package com.dalsemi.onewire.application.file)
OWFileInputStream.read

OWFileInputStream.read

Some of the commands that are included under Memory Function Commands in data sheets are actually
custom device commands. See the following section for a guide on how to deal with these commands.

http://pdfserv.maxim-ic.com/arpdf/AppNotes/app114.pdf

WP5

4 of 6

Custom Commands
Almost all of the custom commands can be derived by first selecting the device with a Match ROM
equivalent API and then send a bidirectional block of data to the 1-Wire network. The block is
constructed by putting in the write commands that are required into the block and putting in FF (hex)
bytes into the block that are reads from the 1-Wire device. For example, the DS1994 has a memory-
mapped real-time clock (RTC) register that can be accessed with the Read Memory command. Figure 1
below is taken from the DS1994’s data sheet.

DS1994 READ MEMORY FLOW (DATA SHEET) Figure 1
Master TX Memory
Function Command

Master TX
TA1 (T7:T0)

Master TX
TA2 T15:T8)

DS199X Sets Memory
Address=(T15:T0)

Master RX Data Byte
from Memory Address

F0h
Read

Memory?

Y

N

Master TX
Reset?

N

Y

Memory
Address = 21Dh?

Y

N

Increment
Memory
Address

Master TX
Reset?

Y

N

Master RX
“1”s

DS199X TX Presence
Pulse

WP5

5 of 6

As the DS1994 data sheet specifies, the RTC register is five bytes long starting at address 0202(hex). The
memory command flow as seen in Figure 1 starts after the device has been selected with a ROM Function
Command like Match ROM.

Table 3 below lists the eight bytes that make up a block of bidirectional data to be sent to the 1-Wire bus
based on the flow chart. While this data could be sent a byte at a time, it is often more efficient to create a
block and sent it all at once.

READ RTC BLOCK Table 3
Block Offset Byte Value (hex) Description
0 F0 Master TX Read Memory command
1 02 Master TX TA1 (address, least significant byte, T7:T0)
2 02 Master TX TA2 (address, most significant byte, T15:T8)
3 FF Master RX byte 0 of RTC (address 0202h)
4 FF Master RX byte 1 of RTC (address 0203h)
5 FF Master RX byte 2 of RTC (address 0204h)
6 FF Master RX byte 3 of RTC (address 0205h)
7 FF Master RX byte 4 of RTC (address 0206h)

Figure 2 is a ‘C’ example written for the 1-Wire Public Domain (PD) API that uses the block outlined in
Table 3 to read the RTC of the DS1994.

PD EXAMPLE READING RTC Figure 2
unsigned char datablock[] = { 0xF0,0x02,0x02,0xFF,0xFF,0xFF,0xFF,0xFF };
int portnum=0;

// select the current device (Match ROM)
if (owAccess(portnum))
{
 // send the read memory command and address, receive the RTC value
 if (owBlock(portnum, 1, datablock, 8))
 {
 // RTC is now in bytes 3-7 of datablock
 ...
 }
}

WP5

6 of 6

Table 4 shows the bidirectional block commands for each of the APIs. For completeness, the single byte
and bit commands are also included.

GENERIC 1-Wire IO FUNCTIONS Table 4
Command PD TMEX
block (bidirectional) owBlock TMBlockStream
byte (bidirectional) owTouchByte TMTouchByte
bit (bidirectional) owTouchBit TMTouchBit
read byte owReadByte TMTouchByte(data = FF hex)
write byte owWriteByte TMTouchByte(data to write)
reset owTouchReset TMTouchReset

Command OWAPI OWCOM
block (bidirectional) (package com.dalsemi.onewire.adapter)

DSPortAdapter.dataBlock
DSPortAdapter.dataBlock

byte (bidirectional) (package com.dalsemi.onewire.adapter)
DSPortAdapter.dataBlock
(single byte block)

DSPortAdapter.dataBlock
(single byte block)

bit (bidirectional) Not available Not available
read byte (package com.dalsemi.onewire.adapter)

DSPortAdapter.getByte
DSPortAdapter.getByte

write byte (package com.dalsemi.onewire.adapter)
DSPortAdapter.putByte

DSPortAdapter.putByte

1-Wire reset +
presence detect

(package com.dalsemi.onewire.adapter)
DSPortAdapter.reset

DSPortAdapter.reset

By looking at the data sheet for each 1-Wire device type, it is possible to do any of the functions by
constructing the appropriate block and using the generic 1-Wire IO functions. Some of the 1-Wire devices
require special power delivery constraints or program pulses that are addressed by the special API
functions in Table 5.

SPECIAL 1-Wire POWER FUNCTIONS Table 5
Command PD TMEX
EPROM programming
pulse

owProgramPulse TMProgramPulse

Power delivery
(strong pullup) after bit

owReadBitPower (read bit only) TMOneWireLevel (prime for next bit)
TMTouchBit

Power delivery
(strong pullup) after byte

owWriteBytePower (write byte only) TMOneWireLevel (prime for next byte)
TMTouchByte

Command OWAPI OWCOM
EPROM programming
pulse

(package com.dalsemi.onewire.adapter)
DSPortAdapter.startProgramPulse

DSPortAdapter.startProgramPulse

Power delivery
(strong pullup) after bit

(package com.dalsemi.onewire.adapter)
DSPortAdapter.startPowerDelivery

(prime for next bit)
DSPortAdapter.putBit /

DSPortAdapter.getBit

DSPortAdapter.startPowerDelivery
(prime for next bit)

DSPortAdapter.putBit /
DSPortAdapter.getBit

Power delivery
(strong pullup) after byte

(package com.dalsemi.onewire.adapter)
DSPortAdapter.startPowerDelivery

(prime for next byte)
DSPortAdapter.putByte /
DSPortAdapter.getByte

DSPortAdapter.startPowerDelivery
(prime for next byte)

DSPortAdapter.putByte /
DSPortAdapter.getByte

