HC(S)12 Assembler
Manual

freescalp’"‘

Revised: 9 February 2006 aaieon ductor

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. CodeWarrior is a trademark or reg-
istered trademark of Freescale Semiconductor, Inc. in the United States and/or other countries. All other product or ser-
vice names are the property of their respective owners.

Copyright © 2006 by Freescale Semiconductor, Inc. All rights reserved.

Information in this document is provided solely to enable system and software implementers to use Freescale Semicon-
ductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any inte-
grated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale
Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any partic-
ular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product
or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental dam-
ages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and
do vary in different applications and actual performance may vary over time. All operating parameters, including “Typ-
icals”, must be validated for each customer application by customer's technical experts. Freescale Semiconductor does
not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not de-
signed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semi-
conductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold
Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

How to Contact Us

Corporate Headquarters Freescale Semiconductor, Inc.
7700 West Parmer Lane
Austin, TX 78729

U.S.A.

World Wide Web http://www. freescale.com/codewarrior

Technical Support http://www. freescale.com/support

http://www.freescale.com/codewarrior
http://www.freescale.com/support

Table of Contents

| Using the HC(S)12 Assembler

Highlights 15
Structure of thisdocument i 15
1 Working with the Assembler 17
Programming Overview i 17
Projectdirectory i 18
External Editor 18
Using CodeWarrior to manage an assembly language project.............. 19
The New Project Wizard. oo, 19
Analysis of groups and files in the project window 31
CodeWarrior Groupsottt 32
Writing your assembly source files. L L L. 33
Analyzing the project fileso v vttt e 33
Assembling your source files L L L i 35
Assembling with CodeWarrior 35
Assembling with the Assembler 37
Linking the application. i 50
Linking with CodeWarrior.ttt e 50
Linking withthe LINKErottt et et 54
Directly generatingan ABSfile il 60
Using CodeWarrior to generate an ABSfile. 60
Using the Assembler for absolute assembly............................ 65
2 Assembler Graphical User Interface 73
Starting the Assembler 73
Assembler mainwindow L L L L 74
Window title 75
(0] 11(S 11 A VP 75
Toolbar 77

HC(S)12 Assembler Manual 3

Table of Contents

Status bar 78
Assemblermenubar 78
Filemenu........ 78
Assembler menu 80
VIEW MENU. . . ottt e e e e e e e e 80
Editor Settings dialog boX. 81
Global Editor (shared by all tools and projects) 81
Local Editor (shared by all tools), 82
Editor started with the commandline 83
Editor started withDDE 85
CodeWarrior with COM e 86
MoOdIfierso 86
Save Configuration dialogbox 87
Environment Configuration dialogbox. 88
Option Settings dialog box i 89
Message Settings dialogboxX........ i 89
Changing the class associated with amessage 91
About... dialog boX 92
Specifying the inputfile 92
Use the command line in the toolbar to assemble 92
Use the File > Assemble...entry 93
UseDragandDrop i 93
Message/Error feedback 93
Use information from the assembler window 94
Use auser-defined editor. oo, 94

3 Environment 97
Current dir€CtOrYo oottt e 98
Environment Macros o.v vttt e 99
Global initialization file - mcutools.ini (PConly)................. 99
Local configuration file (usually projectini) 100
Paths . ..o 101
Line continuation.t 102
ABSPATH: Absolute filepath. 104
ASMOPTIONS: Default assembler options 105

4 HC(S)12 Assembler Manual

Table of Contents

COPYRIGHT: Copyright entry in objectfile....................... 106
DEFAULTDIR: Default current directory. 107
ENVIRONMENT: Environment file specification. 108
ERRORFILE: Filename specificationerror 109
GENPATH: Search path forinputfile.......................... ... 112
INCLUDETIME: Creation time in the objectfile 113
OBJPATH: Objectfilepath. i 114
SRECORD: S-Record typeooiininii i 115
TEXTPATH: Textfilepath i 116
TMP: Temporary dit€ctoryottt 117
USERNAME: User Name in objectfile........................... 118
4 Files 119
Inputfiles 119
Source fileso 119
Include files. 119
Outputfiles e 119
Objectfilesot 120
Absolute files. 120
S-Record Files. 120
Listing filesot 121
Debug listing files. i 121
Error listing file.o 121
File Processingottt 122
5 Assembler Options 123
Types of assembler Options.t 123
Assembler Optiondetails i 125
Using special modifiers. i 125
List of assembler options 128
Detailed listing of all assembler options. 131
-C=SAvocet: Switch Semi-Compatibility with Avocet
Assembler ON 132
-Ci: Switch case sensitivity on label names OFF 133
-CMacAngBrack: Angle brackets for grouping Macro Arguments 135

HC(S)12 Assembler Manual 5

Table of Contents

-CMacBrackets: Square brackets for macro arguments grouping. 136
-Compat: Compatibilitymodes 137
-CpDirect: Define DIRECT register value 140
-Cpu (-CpuCPU12, -CpuHCS12, -CpuHCS12X): Derivative 143
-D:Define Label 146
-Env: Set environment variable. o oL 148
-F (-Fh, -F2o0, -FA2o0, -F2, -FA2): Output-file format 149
-H:ShortHelpo 151
includefilepatho o 152
-L: Generate a listing file. i L. 153
-Lasmc: Configure listing file 156
-Lasms: Configure the address size in the listing file 159
-Le: NoMacrocallin listing file.o o oot 161
-Ld: No macro definition in listing file 164
-Le: No Macro expansion in listing file. 167
-Li: Not included file in listing file 170
-Lic: License information 172
-LicA: License information about every feature in directory 173
-LicBorrow: Borrow license feature 174
-LicWait: Wait until floating license is available from floating

License Server 176
-M (-Ms, -Mb, -Ml): Memory Model 177
-MacroNest: Configure maximum macronesting. 178
-MCUasm: Switch compatibility with MCUasm ON................. 179
-N: Display notify box. oo 180
-NoBeep: Nobeepincaseof anerror............... 181
-NoDebuglnfo: No debug information for ELF/DWARF files. 182
-NoEnv: Do not use environmentcooouvinnenn ... 183
-ObjN: Object filename specification 184
-Prod: Specify projectfileatstartup 186
-Struct: Support for structured types 187
-V: Prints the Assembler version. 188
-View: Application standard occurrence 189
-W1: No information messages.covunenenenennenennen... 191
-W2: No information and warning messages 192

6 HC(S)12 Assembler Manual

Table of Contents

-WErrFile: Create "err.log" errorfile 193
-Wmsg8x3: Cut filenames in Microsoft formatto 8.3 194
-WmsgCE: RGB color for error messagesc.c.oouvunen... 196
-WmsgCF: RGB color for fatal messages. 197
-WmsgCI: RGB color for information messages 198
-WmsgCU: RGB color for user messages.ooeueuennen... 199
-WmsgCW: RGB color for warning messages. 200
-WmsgFb (-WmsgFbv, -WmsgFbm): Set message file
formatforbatchmode 201
-WmsgFi (-WmsgFiv, -WmsgFim): Set message file
format for interactivemode L il 204
-WmsgFob: Message format forbatchmode 206
-WmsgFoi: Message format for interactive mode. 208
-WmsgFonf: Message format for no file information. 210
-WmsgFonp: Message format for no position information. 212
-WmsgNe: Number of error messages, 214
-WmsgNi: Number of Information messages. 215
-WmsgNu: Disable user messagescoouiunon... 216
-WmsgNw: Number of Warning messages. 218
-WmsgSd: Setting a messagetodisable 219
-WmsgSe: Setting a message toError. L. 220
-WmsgSi: Setting a message to Information. 221
-WmsgSw: Setting a Message toWarning 222
-WOutFile: Create error listing file. 223
-WStdout: Write to standard output 224
6 Sections 225
Section attributes. 225
Code SECHIONS. . . .ottt et e 225
Constant SECHONS. . . . oo ottt ettt e 225
Data sSectionsottt 226
SECHION LY PS. « v v ettt et e e 226
ADbSOIULE SECHIONS.ottt 226
Relocatable sections i 228
Relocatable vs. absolute sectionsc..o i 231

HC(S)12 Assembler Manual 7

Table of Contents

ModUlarity oot e 231
Multiple developers.t e 231
Early development. i 232
Enhanced portability i 232
Tracking overlaps 232
Reusability.o 232

7 Assembler Syntax 233
Commentline i 233
Source iNe.ot 233
Label fieldo 234
Operation field. 234
Operand field: Addressingmodes 246
Commentfield........ 259
SymbolS. . .. 260
User-defined symbols 260
External symbols. 261
Undefined symbols i 261
Reserved symbols. 262
CONSLANES . . . ottt e 262
INteger CONSLaNtSttt e 262
String CONSLANSottt et et e 263
Floating-Point constants it innenan.. 263
OPCIALOLS .+« v ettt et et e e e e e e e 263
Addition and subtraction operators (binary) 263
Multiplication, division and modulo operators (binary) 264
Sign Operators (UNATY) . « . o .v vttt e ettt e e e 265
Shift operators (binary) 265
Bitwise operators (binary) i 266
Bitwise operators (UNAry)cueeeumenenennenenenennenennn 267
Logical operators (Unary)ouuiuiunenenannnnenan.. 267
Relational operators (binary).......... i i 268
HIGH operator.ot e e e 269
PAGE operator.t 270
Force operator (Unary).o.iuiinininnni .. 270

8 HC(S)12 Assembler Manual

Table of Contents

Operator precedence oottt e e 271
EXPression.t 272
ADbSOIULE EXPIESSION . ..ottt 273
Simple relocatable eXpression. 274
Unary operationresult. i 274
Binary operationsresult L 275
Translation limits e 276
8 Assembler Directives 277
DIrective OVEIVIEW . . . oottt e e e 277
Section-Definition directives. i 277
Constant-Definition directives 277
Data-Allocation dir€Ctives.o v vttt 278
Symbol-Linkage directives i 278
Assembly-Control directives., 278
Listing-File Control directives 279
Macro Control direCtives.ttt e 280
Conditional Assembly directivesc.c. i, 280
Detailed descriptions of all assembler directives 281
ABSENTRY - Application entry point.c.ovon... 282
ALIGN - Align Location Counter.veuervenenennen... 284
BASE - Setnumberbase. 285
CLIST - List conditional assembly 286
DC-Define Constantouiuniiiiiinniinennenn.. 288
DCB - Define Constant Block. i 290
DS -Define Space. 292
ELSE - Conditional assembly 294
END-Endassembly.......... i 296
ENDFOR - End of FORblock oot 297
ENDIF - End conditional assembly 298
ENDM - End macro definition 299
EQU - Equate symbol value 300
EVEN - Force word alignment v, 301
FAIL - Generate Error message.t .. 303
FOR - Repeat assembly block. 307

HC(S)12 Assembler Manual 9

Table of Contents

IF - Conditional assembly i, 309
IFcc - Conditional assembly 311
INCLUDE - Include text from another file. 313
LIST - Enable Listingottt 314

LLEN-SetLineLength. 316
LONGEVEN - Forcing Long-Word alignment. 318
MACRO - Begin macro definition 319
MEXIT - Terminate Macro Expansion 320
MLIST - List macro eXpansionsueuerennenenenennenen.. 322
NOLIST - Disable Listingo vttt et 325
NOPAGE - Disable Paging 327
OFFSET - Create absolute symbols 328
ORG - SetLocation Counter.couuiuiininininnenn.. 330
PAGE - Insert Page break 332
PLEN - SetPageLength 334
RADS0 - Rad50-encoded string constants 335
SECTION - Declare Relocatable Section 338
SET-SetSymbol Value 340
SPC-Insert Blank Lines.............. 341
TABS -SetTabLength 342
TITLE - Provide Listing Title 343
XDEF - External Symbol Definition. 344
XREF - External Symbol Reference 345

XREFB - External Reference for Symbols located on the Direct Page .. .346

9 Macros 347
MaCIO OVEIVIEW. . o .ottt ettt e e et e e 347

Defining amacro.ttt 347

Calling MACTOS. . . . oottt ettt e e 348

MaACTO PATAMGLETS . . . ¢ . et vttt et et e e et e e 348

Macro argument Sroupingo .ottt et 349

Labels inside macros.ttt 350

MaACTO @XPANSION . . ottt ettt et e e e e 352

NeSted MACTOS . . . v vttt e e e e e e e e e 352

10 HC(S)12 Assembler Manual

Table of Contents

10 Assembler Listing File 355
Pageheader. i 355

Source liStingo 356

ADS. 356

Rl . 357

LoC. o 358

ODbj. COde . . .ottt 359

Source line. o 360

11 Mixed C and Assembler Applications 361
Memory models 361

Parameter passingscheme 362

Return Value o 363

Accessing assembly variables in an ANSI-C sourcefile 363

Accessing ANSI-C variables in an assembly source file 364

Invoking an assembly function in an ANSI-C source file 365
ExampleofaCfile........ i 366

Support for structured types 368

Structured type definition L 368

Types allowed for structured type fields 369

Variable definition. L 370

Variable declaration. 370

Accessing a structured variable. L L L L 371

Structured type: Limitations i 373

12 Make Applications 375
Assembly applications 375

Directly generating an absolute file 375

Mixed C and assembly applications 375

Memory maps and segmentationi ... 376

13 How to ... 377
How to work with absolute sections. 377

Defining absolute sections in an assembly source file 377

HC(S)12 Assembler Manual 11

Table of Contents

Linking an application containing absolute sections. 379
How to work with relocatable sections 380
Defining relocatable sections ina sourcefile 380
Linking an application containing relocatable sections. 381
How to initialize the Vectortable 383
Initializing the Vector table in the linker PRM file 383
Initializing the Vector table in a source file using a relocatable section . . .385
Initializing the Vector table in a source file using an absolute section388
Splitting an application into different modules. 390
Example of an assembly file (Testl.asm) 390
Corresponding include file (Testl.inc) 391
Example of an assembly File (Test2.asm). 391
Using the direct addressing mode to access symbols 392
Using the direct addressing mode to access external symbols 393
Using the direct addressing mode to access exported symbols. 393
Defining symbols in the direct page 394
Using the force operator i 394
Using SHORT SECHONS . .. ot v vttt et e 395

Il Appendices

A Global Configuration File Entries 399
[Installation] SECHON oottt e e 400
Path ... 400
GIOUP. .« et 400
[OptionS] SECHOM. . . o\ vttt e e e e 401
DefaultDiro 401
[XXX_Assembler] Sectioncoiutiiniiii e, 402
SaveOnEXIt . ..ot 402
SAVEAPPEATANCEottt e 402
SaveEditor 403
SAVEOPHONS. & ¢ . vt ettt e e 403
RecentProject0, RecentProjectl, 403

12 HC(S)12 Assembler Manual

Table of Contents

[Editor] SECtiOn.ot v e 405
Editor_ Name e e 405
Editor_ExXe. . ..o e 405
Editor_Opts . . . oot 406

Example 407

B Local Configuration File Entries 409

[Editor] Section.i ittt e 409
Editor Name 410
Editor EXe.o 411
Editor_Optsot e 412

[XXX_Assembler] SECtion.v vttt e 413
RecentCommandLineX, X=integer 414
CurrentCommandLine. 415
StatusbarEnabled. 416
ToolbarEnabled 417
WindowPos 418
WindowFont 419
TipFilePos 420
ShowTipOfDay 421
OPLONS . ettt et e e e 422
EditorType.o 423
EditorCommandLine. 424
EditorDDECHentNamevtti et eeeineennn 425
EditorDDETopicNameot .. 426
EditorDDEServiceName.ttt 427
Example.o 428

C MASM Compatibility 429

CommentLine i e 429

Constants (INtEZErs)ottt e e 429

OPEIatOrS. . . oottt 430
DIreCtIVES . oottt 430

HC(S)12 Assembler Manual 13

Table of Contents

D MCUasm Compatibility 433
Labels ..o 433

SET dir€CtiVe. . . o e e e e 433

ODbsolete dIr€CHIVES . . o oottt et e e e e 434

E Semi-Avocet Compatibility 435
DIIECHIVES e e 435

Section Definition 437

MaCTO PAraMELeTS . . . ot ettt e e et e e e 439

Support for Structured Assembly i 439
SWITCHDIOCK e 439

FOR BIOCK. . ..o i 440

Index 443

14 HC(S)12 Assembler Manual

Using the HC(S)12
Assembler

This document explains how to effectively use the HC(S)12 Macro Assembler.

Highlights

The major features of the HC(S)12 Assembler are:
* Graphical User Interface
¢ On-line Help
* 32-bit Application

¢ Conforms to the Freescale Assembly Language Input Standard

Structure of this document

This section has the following chapters:

* “Working with the Assembler” on page 17: A tutorial for creating assembly-

language projects using the CodeWarrior Development Suite or the standalone Build
Tools. Both relocatable and absolute assembly projects are created. Also a
description of the Assembler’s environment that creates and edits assembly source
code and assembles the source code into object code which could be further
processed by the Linker.

3

* “Assembler Graphical User Interface” on page 73: A description of the Macro
Assembler’s Graphical User Interface (GUI)

* “Environment” on page 97: A detailed description of the Environment variables used
by the Macro Assembler

HC(S)12 Assembler Manual 15

Structure of this document

3

‘Files” on page 119: A description of the input and output file the Assembles uses or
generates.

3

‘Assembler Options” on page 123: A detailed description of the full set of assembler
options

3

‘Sections” on page 225: A description of the attributes and types of sections

“Assembler Syntax” on page 233: A detailed description of the input syntax used in
assembly input files.

3

‘Assembler Directives” on page 277: A list of every directive that the Assembler
supports

“Macros” on page 347: A description of how to use macros with the Assembler

“Assembler Listing File” on page 355: A description of the assembler output files

“Mixed C and Assembler Applications” on page 361: A description of the important
issues to be considered when mixing both assembly and C source files in the same
project

“Make Applications” on page 375: A description of special issues for the linker

“How to ...” on page 377: Examples of assembly source code, linker PRM, and
assembler output listings.

In addition to the chapters in this section, there are the following chapters of Appendices

3

* “Global Configuration File Entries” on page 399: Description of the sections and

entries that can appear in the global configuration file - mcutools. ini

3

‘Local Configuration File Entries” on page 409: Description of the sections and
entries that can appear in the local configuration file - project.ini

“MASM Compatibility” on page 429: Description of extensions for compatibility
with the MASM Assembler

3

‘MCUasm Compatibility” on page 433: Description of extensions for compatibility
with the MCUasm Assembler

“Semi-Avocet Compatibility” on page 435

16

HC(S)12 Assembler Manual

1
Working with the Assembler

This chapter is primarily a tutorial for creating and managing HC(S)12 assembly projects
with the CodeWarrior Development Studio. In addition, there are instructions to utilize the
Assembler and Smart Linker Build Tools in the CodeWarrior Development Studio for
assembling and linking assembly projects.

This chapter covers the following topics:

3

¢ “Programming Overview” on page 17

¢ “Using CodeWarrior to manage an assembly language project” on page 19

3

* “Analysis of groups and files in the project window” on page 31

e “Writing your assembly source files” on page 33

3

* “Analyzing the project files” on page 33

e “Assembling your source files” on page 35

* “Linking the application” on page 50
¢ “Directly generating an ABS file” on page 60

3

* “Using the Assembler for absolute assembly’” on page 65

Programming Overview

In general terms, an embedded systems developer programs small but powerful
microprocessors to perform specific tasks. These software programs for controlling the
hardware is often referred to as firmware. One such end use for firmware might be
controlling small stepper motors in an automobile seat which “remember” their settings
for different drivers or passengers.

The developer instructs what the hardware should do with one or more programming
languages, which have evolved over time. The three principal languages in use to program
embedded microprocessors are C and its variants, various forms of C++, and assembly
languages which are specially tailored to types of microcontrollers. C and C++ have been
fairly standardized through years of use, whereas assembly languages vary widely and are
usually designed by semiconductor manufacturers for specific families or subfamilies of
their embedded microprocessors.

Assembly language instructions are considered as being at a lower level (closer to the
hardware) than the essentially standardized C instructions. Programming in C may require
some additional assembly instructions to be generated over and beyond what an
experienced developer could do in straight assembly language to accomplish the same
result. As a result, assembly language routines are usually faster to execute than their C
counterparts, but may require much more programming effort. Therefore, assembly-
language programming is usually considered only for those critical applications which

HC(S)12 Assembler Manual 17

Working with the Assembler
Programming Overview

take advantage of its higher speed. In addition, each chip series usually has its own
specialized assembly language which is only applicable for that family (or subfamily) of
CPU derivatives.

Higher-level languages like C use compilers to translate the syntax used by the
programmer to the machine-language of the microprocessor, whereas assembly language
uses assemblers. It is also possible to mix assembly and C source code in a single project.
See the Mixed C and Assembler Applications on page 361 chapter.

This manual covers the Assembler designed for the Freescale 16-bit HC(S)12 series of
microcontrollers. There is a companion manual for this series that covers the HC(S)12
Compiler.

The HC(S)12 Assembler can be used as a transparent, integral part of the CodeWarrior
Development Studio. This is the recommended way to get your project up and running in
minimal time. Alternatively, the Assembler can also be configured and used as a
standalone macro assembler as one of the Build Tool Utilities included with CodeWarrior
such as a Linker, Compiler, ROM Burner, Simulator or Debugger, etc.

The typical configuration of an Assembler (or any of the other Build Tool Utilities) is its
association with a Project directory on page 18 and an External Editor on page 18. The
CodeWarrior Development Studio uses a project directory for storing the files it creates
and coordinates the various Build Tools. The Assembler is but one of these tools that the
CodeWarrior IDE coordinates. The tools used most frequently within CodeWarrior are its
integrated Editor, Compiler, Assembler, Linker, the Simulator/Debugger, and Processor
Expert. Most of these “Build Tools” are located in the prog subfolder of the CodeWarrior
installation. The others are directly integrated into the CodeWarrior IDE.

The textual statements and instructions of the assembly-language syntax are written using
editors. CodeWarrior has its own editor, although almost any external text editor can be
used for writing assembly code programs. If you have a favorite editor, chances are that it
could be configured so as to provide both error and positive feedback from either
CodeWarrior or the standalone Assembler (or other Build Tools).

Project directory

A project directory contains all of the environment files that you need to configure your
development environment.

In the process of designing a project, you can either start from scratch by designing your
own source-code, configuration (* . ini), and various layout files for your project for use
with standalone project-building tools. This was how embedded microprocessor projects
were developed in the recent past. On the other hand, you can have the CodeWarrior IDE
coordinate the Build Tools and transparently manage the entire project. This is
recommended because it is far easier and faster than employing standalone tools.
However, you can still utilize any of the separate Build Tools in the CodeWarrior
Development Studio suite.

External Editor

CodeWarrior reduces programming effort because its internal editor is configured with the
Assembler to enable both positive and error feedback. You can use the Configuration
dialog box of the standalone Assembler or other standalone Build Tools in the
CodeWarrior Development Studio to configure or select your editor. Please refer to the

Editor Settings dialog box on page 81 section of this manual.

18

HC(S)12 Assembler Manual

Working with the Assembler
Using CodeWarrior to manage an assembly language project

Using CodeWarrior to manage an assembly
language project

CodeWarrior has an integrated New Project Wizard to easily configure and manage the
creation of your project. The Wizard will get your project up and running in short order by
following a short series of steps to create and coordinate the project and generate the files
that are located in the project directory.

This section will create a basic CodeWarrior project that uses HC(S)12 assembly source
code exclusively - no C source code. A sample program is included for a project created
using the Wizard. For example, the program included for an assembly project calculates
the next number in a mathematical Fibonacci series. It is much easier to analyze any
program if you already have some familiarity with solving the result in advance.
Therefore, the following paragraph describes a Fibonacci series.

In case you did not know, a Fibonacci series is a mathematical infinite series that is very
easy to visualize (Listing 1.1 on page 19):

Listing 1.1 Fibonacci series

o, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,..toinfinity-->
[start] 1st 2nd 6th Fibonacci term

It is simple to calculate the next number in this series. The first calculated result is actually
the third number in the series because the first two numbers make up the starting point:

0 and 1. The next term in a Fibonacci series is the sum of the preceding two terms. The
first sum is then: 0 + 1 = 1. The second sumis 1 + 1 =2. The sixth sumis 5 + 8 =13. And
so on to infinity.

Let’s now rapidly create a project with CodeWarrior and analyze the assembly source and
the Linker’s parameter files to calculate a Fibonacci series for a particular 16-bit
microprocessor in the Freescale HC(S)12 family - in this case, the MC9S12C32.

The New Project Wizard
Start the HC(S)12 CodeWarrior IDE application. Its path is:
<CodeWarrior installation folder>\bin\IDE.exe

After CodeWarrior opens, close the Tip of the Day dialog box (if it opens when
CodeWarrior opens) and select from the File menu: File > New... . The New dialog box
appears (Figure 1.1 on page 20).

HC(S)12 Assembler Manual 19

Working with the Assembler
Using CodeWarrior to manage an assembly language project

Figure 1.1 New dialog box

New

Project |File | Object]

B Empty Project
'd8 HC(S)12 New Project Wizard
B HCS12 Stationery

Create New Project...

Project name:

Relocatable Assembly

Save in: IB Projects

(£ Absolute

(£ Absolute Assembler
) Model T

() Sources

() Test

File name: IReIocatabIe Assembly

Save as type: IProject Files (*.mcp)

[v Creats Folder

LI Cancel |

Cancel |

From the default Project sheet, select HC(S)12 New Project Wizard. Enter a name for your
project in the Project Name: text box. If you want a different path for your project than the
default path displayed in the Location: text box, either enter the new path in the text box or
press the Set button and browse to the new location. Check the Create Folder check box,
unless you already have an existing project directory. Press Save and OK to close the
dialog boxes. The New Project Wizard - Page 1 dialog box appears (Figure 1.2 on

page 21).

20

HC(S)12 Assembler Manual

Working with the Assembler
Using CodeWarrior to manage an assembly language project

Figure 1.2 New Project Wizard - Page 1 dialog box

New Project Wizard - Page 1 g|

Welcome to the projectwizard.

This wizard will guide you through the creation of a
CodeWarrior project.

By asking a series of questions, such as processor
derivative, programming language, and several
other options, itwill help you create a project with your
desired settings.

= freescale

| MNext > | Cancel

Press Next >. The New Project Wizard - Page 2 dialog box appears (Figure 1.3 on
page 22).

HC(S)12 Assembler Manual 21

Working with the Assembler

Using CodeWarrior to manage an assembly language project

Figure 1.3 New Project Wizard - Page 2 dialog box

New Project Wizard - Page 2

Selectthe derivative you would like to use

X

Derivatives
MC9512C128
MC9512C64
MC9512C96
MC9512D32
MC9512D64
MC9512DB128A
MC9512DB128B
MC9512DG128B
MC9512DG256B
MC9512DJ128B
MC9512D]256B
- MC9512DJ64
-, MC9512DP256B
- freesca’e, MC9512DP512

MC9512DT128B

[ES

w

< Back

| MNext = | Cancel |

Select the CPU derivative you want for your project. In this case, the MC9S12C32 is
selected. Press Next >. The New Project Wizard - Page 3 dialog box appears (Figure

1.4 on page 23).

22

HC(S)12 Assembler Manual

Working with the Assembler
Using CodeWarrior to manage an assembly language project

Figure 1.4 New Project Wizard - Page 3 dialog box

New Project Wizard - Page 3 &|

Please choose the set of languages to be supported
initially. You can make multiple selections.

M Assembly

If only Assembly is selected, you can later
choose to use either absolute/single file
assembly application orrelocatable assembly.

> freescale

< Back | MNext = | Cancel

This is an assembly project, so HC(S)12 Assembly is the language. Check Assembly and
be sure than C and C++ are unchecked. Press Next >. The New Project Wizard - Page 4
dialog box appears (Figure 1.5 on page 24).

HC(S)12 Assembler Manual 23

Working with the Assembler
Using CodeWarrior to manage an assembly language project

Figure 1.5 New Project Wizard - Page 4 dialog box

X

New Project Wizard - Page 4

Which kind of assembly would you like?

" Absolute Assembly
® Relocatable Assembly

Relocatable Assembly supports to splitup the
application into multiple assembly source files.
The source files are linked together using the
linker.

>3 freescale

< Back | MNext = | Cancel

Select Relocatable Assembly. Although this project will only use one * . asm assembly
source code file, it is more flexible to use relocatable assembly in case the project expands
to include additional assembly source files. Because this project will use only one * . asm
file, the other option - Absolute Assembly - will be covered later in this chapter. The New
Project Wizard - Page 5 dialog box appears (Figure 1.6 on page 25).

NOTE If an assembly project has two or more assembly source (* . asm) files, the
Relocatable Assembly option must be selected.

24 HC(S)12 Assembler Manual

Working with the Assembler
Using CodeWarrior to manage an assembly language project

Figure 1.6 New Project Wizard - Page 5 dialog box

New Project Wizard - Page 5 &|

Please choose the connections you want You can
select multiple connections.

[1P&E Hardware Debugging

[130fTec Microsystems Hardware Debugging
[JAbatron Hardware Debugging

[IFreescale Serial Monitor Hardware Debugging

Full Chip Simulation with simulation
of on-chip peripherals. Later onin the debugger
ou can switch to hardware debugging.

>3 freescale

< Back | Finish | Cancel

The default - Full Chip Simulator - is selected. Press Finish >. The Wizard now creates
the project (Figure 1.7 on page 26).

HC(S)12 Assembler Manual 25

Working with the Assembler
Using CodeWarrior to manage an assembly language project

Figure 1.7 The CodeWarrior project is being created...

fEasEocxha A AR s HENR
==l

Relocatable Assembly. mcp I

|'0 Relocatable Asse... j!ﬁ: ¥ By e

Files | Link Order | Targets |

A Filg

A

You can (but do it later) safely close the CodeWarrior IDE at any time after this point, and
your project will be automatically configured in its previously-saved status when you
work on the project later.

Using the New Project Wizard, an HC(S)12 project is set up in a matter of a minute or

two. You can add additional components to your project afterwards. A number of files and
folders are automatically generated in the root folder that was used in the project-naming
process. This folder is referred to in this manual as the project directory. The CodeWarrior

project window appears (Figure 1.8 on page 27).

26 HC(S)12 Assembler Manual

Working with the Assembler

Using CodeWarrior to manage an assembly language project

Figure 1.8 CodeWarrior project window

Fle Edit View Search Project Processor Expert Window Help

faslovx<hB A A EEh s HER

Relocatable Assembly mcp I

==l

Files | Link Order | Targets I

|'0 Simulator j By &% »

¥ | File

| Code | Data ¥

B readmebd
B tips o
¥ #-() Sources
¥ ®{APrm
= Linker Map
= Libraries
#{1Debugger Project File
#{Debugger Crd Files

nia
nia

P e e e R e e

nfa
nfa

coooo o

13files
< | 1}

=

[ENERENENENERENEY

I

I«

[~

B

If you expand the six “folder* icons, actually groups of files, by clicking in the
CodeWarrior project window, you could view the files that CodeWarrior generated. In
general, any folders or files in the project window with red check marks will remain so
checked until the files are successfully assembled, compiled, or linked (Figure 1.9 on

page 28).

HC(S)12 Assembler Manual

27

Working with the Assembler
Using CodeWarrior to manage an assembly language project

Figure 1.9 Project window showing the files that CodeWarrior created

File Edit View Search Project Processor Expert

Window Help

fadEocx<haA A mSR s HER

= x|

Relocatable Assembly. mcp I

|-0 Simulator
Files |Link Orderl Targetsl

By B H

¥ | File | Code | Data (¥ | =

B readme.td nfa nfa ==~

B tips i nfa nfa =T
=43 Sources 0 0+ =
@ main.asm 1] 0+ =
¥ EE3Pm] n o=
« @ bumerkbhl nfa nfa =
L4 - Simulatar_linker.prm nia nja =
A Linker Map 1] n =
@ Simulator.map nfa nfa =
=3 Libraries 1] n =
@ mecis12c3zine 1] n =
EEADehugger Project File 1] n =
Ml Simulatar.ini nfa nfa =
EEADebugger Cmd Files 1] n =
EHEA Simulator 0 0 =
] Simulator_Startup.cmd nia nja =
B Sirmulator_Resetomd nia nja =
B Sirmulator_Preload.cmd nia nja =
B Sirmulator_Postload.cmd nia nja =
B Sirmulator_SetCPU.cmd nfa nfa =

13files 0 0 A

You could use the Windows Explorer to examine the actual folders and files that
CodeWarrior generated for your project and displays in the project window above, as in
Figure 1.10 on page 29. The name and location for the project directory are what you
selected when creating the project with the Wizard.

28

HC(S)12 Assembler Manual

Working with the Assembler
Using CodeWarrior to manage an assembly language project

Figure 1.10 Project directory in Windows Explorer

B E-\Projects\Relocatable Assembly

File Edit View Favorites Tools Help
Folders %
E % Drive E (E:)
I3 Downloads
IC3) Freescale
[3) Gimp
I=5) OpenOffice
2 |C3) Projects
|33 Absolute
IC3) Absolute Assembler
() Model T
B cccooie e,
31 bin
I3 cmd
2 prm
2 |3 Relocatable_Assembly_Data
| Simulator v
< Bl

| >

Name
C2bin
Chemd
Dprm
[ChRelocatable_Assembly_Data
[ChSources
ASM_layout.hwd
Default.mem
£ readme.txt
Relocatable Assembly.mcp
|#] Simulator.ini
E) tips.txt

< >

The project directory holds a total of five subfolders and 16 files at this point. The major
file for any CodeWarrior project is its <project_name>.mcp file. This is the file to

reopen your project.

Return back to the CodeWarrior project window. Double-click on the main.asm file in
the Sources group. The editor in CodeWarrior opens the main . asm file (Figure 1.11 on

page 30).

HC(S)12 Assembler Manual

29

Working with the Assembler
Using CodeWarrior to manage an assembly language project

Figure 1.11 main.asm file in the project window

E main.asm _r_ ||D|R|
b~ {} M.~ [v d' v Path: E:\Projects\Relocatable A \main.asm &

R R R R L R R R R e ST T P | |
i

;:* This stationery serves as the framework for a *
;* user gpplication. For a more comprehensive program that

*

. i
;* demonstrates the more advanced functionality of this

*

*

*

processcr, pleasse ses the demonstration applications
located in the examples subdirectory of CodeWarrior for
the HC1lZ Program directory.

H
R A A A A A A A A AN A AN A AN AN NI AN NI NN TN TN AN NN
H

*
*
*
*

; export symbols
RDEF Entry, main
; We use 'Entry' as an export symbol. This
; allows us to reference 'Entry' =ither in
; the Linker *.prm file or from C/C++ later om.

EREF _ SEG_END SSTACK ;: symbol defined by the
; Linker for the end of
: the stack

; include deriwvative specific macros
INCLUDE 'me28l2c32.inc’

; variable/data section
M¥_EXTENDED_RAM: SECTICHN

; Insert your data definition here.
Counter ds.w 1

FiboRes ds.w 1

Line 7 Cal 31| 4 |

» [Z

You can use this default main . asm file as a base to later rewrite your own assembly
source program. Otherwise, you can import other assembly-code files into the project and
instead delete the default main.asm file from the project. For this project, the

main.asm file contains the sample Fibonacci program.

As a precaution, you can determine if the project is configured correctly and the source
code is free of syntactical errors. It is not necessary that you do so, but you should make
(build) the default project that CodeWarrior just created. Either press the Make button
from the toolbar, or from the Project menu, select (Project > Make). All of the red check
marks will disappear after a successful building of the project (Figure 1.11).

30

HC(S)12 Assembler Manual

Working with the Assembler
Analysis of groups and files in the project window

Figure 1.12 Project window after a successful build

Relocatable Assembly.mcp \

"ﬁ Simulator v‘i ¥ @ Y
Files } Link Order] Targets]

¥ File Code | Dats | # =
B readme.t«t nfa nfa =

B tips bt nfa nfa =T
=13 Sources 44 4+ =
B [nain asml 44 4+ =
=3 Prm 0 n =
~@ bumerbhl nfa nfa =
| Simulator_linker.prm nfa nfa o
=HALinker Map 0 n =
~@ Simulatarmap nfa nfa =
=1ALikraries 1] n o=
@ meds12c3tine il n o=
=13 Dehugger Praject File 0 n =
8 Sirmulator.ini nfa nfa =
=13 Debugger Cmd Files =
=123 Simulatar 0 n =
ﬂ Simulator_Startup.cmd nfa nfa o
@ Simulator_Resetomd nfa nfa o
B Simulator_Preload.cmd nfa nfa o
ﬂ Simulator_Postioad.cmd nfa nfa o
“f Simulator_SetCPU cmd nfa nfa =

13files 44 4

Notice that in the Code and Data columns in the project window show that the code size is
44 bytes and the data size is 4 bytes after assembling the main. asm file. If you checked
the project directory after the first successful build (make) of the project with the
Windows Explorer, you would see that another subfolder and five additional files were
created. The new subfolder - ObjectCode - holds an object file for every assembly or
C/C++ source code file. In this case, the main.asm. o file was generated.

Analysis of groups and files in the project
window

There are six default groups for this holding this project’s files. It really does not matter in
which group a file resides as long as that file is somewhere in the project window. A file
does not even have to be in any group. The groups do not correspond to any physical
folder in the project directory. They are simply present in the project window for

HC(S)12 Assembler Manual 31

Working with the Assembler
Analysis of groups and files in the project window

conveniently grouping files anyway you choose. You can add, rename, or delete files or
groups, or you can move files or groups anywhere in the project window.

CodeWarrior groups

These groups and their usual functions are:

.

Sources

This group contains the assembly source code files.
Prm

This group holds the burner file and the Linker prm file.
Linker Map

This group has the Linker Map file.

Library

This group holds an include file. This project has an include file for the particular
CPU derivative. In this case, the MC9512C32. inc file is for the MC9S12C32
derivative.

Debugger Project File
This group holds the project. ini file for configuring the debugger.
Debugger Cmd Files

A group with five debugger command files are located here.

NOTE The default configuration of the project by the Wizard does not generate an

TIP

assembler output listing file for any * . asm file. However, you can afterwards
select the Generate a listing file in the assembler options for the Assembler to
generate a format-configurable listing file for the assembly source code and
include files. Assembler listing files (with * . 1st file extensions) are usually
located in the bin subfolder in the project directory when * . asm files are
assembled with this option set.

To set up your project for generating assembler output listing files, select:

File > <Target Name> Settings... > Target > Assembler for HC12 > Options >
Output. Check Generate a listing file. If you want to format the listing files from
the default format, check Configure listing file and make the desired formatting
options. You can also add these listing files to the project window for easier
viewing instead of having to continually hunt for them.

32

HC(S)12 Assembler Manual

Working with the Assembler
Writing your assembly source files

Writing your assembly source files

Once your project is configured, you can start writing your application’s assembly source
code and the Linker’s PRM file.

NOTE You can write an assembly application using one or several assembly units.
Each assembly unit performs one particular task. An assembly unit is
comprised of an assembly source file and, perhaps, some additional include
files. Variables are exported from or imported to the different assembly units
so that a variable defined in an assembly unit can be used in another assembly
unit. You create the application by linking all of the assembly units.

The usual procedure for writing an assembly source-code file is to use the editor that is
integrated into CodeWarrior. You can begin a new file by pressing the New Text File icon
on the Toolbar to open a new file, write your assembly-source code, and later save it with
a * . asm file extension using the Save icon on the Toolbar to name and store it wherever
you want it placed - usually in the Sources folder.

After the assembly-code file is written, it is added to the project using the Project menu. If
the source file is still open in the project window, select the Sources group icon in the
project window, single-click on the file that you are writing, and then select

Project > Add <filename> to Project. The newly created file is then added to the Sources
group in the project. If you do not first select the destination group’s icon (for example,
Sources) in the project window, the file will most likely be added to the bottom of the files
and groups in the project window, which is OK. You can drag and drop the icon for any
file wherever and whenever you want in the project window.

Analyzing the project files

We will analyze the default main . asm file that was generated when the project was
created with the New Project Wizard. Listing 1.2 on page 33 is the default main.asmfile
that is located in the Sources folder created by the New Project Wizard.

Listing 1.2 main.asm file

PR I I S I I I S I S R R I I S I I R R I I S I I R I I S O I S
7

* This stationery serves as the framework for a *
* user application. For a more comprehensive program that *
* demonstrates the more advanced functionality of this *
;* processor, please see the demonstration applications *
* located in the examples subdirectory of CodeWarrior for *
* the HC12 Program directory. *

* *

Rk S kR S R R R I b i b e R R R R Sk R R R R R Sk b R S R Rk ko R R

; export symbols
XDEF Entry, main
; We use 'Entry' as an export symbol. This

HC(S)12 Assembler Manual 33

Working with the Assembler
Analyzing the project files

7

; allows us to reference

XREF ___SEG_END_SSTACK

include derivative specific macros
INCLUDE 'mc9sl12c32.inc'

; variable/data section
MY_EXTENDED_RAM: SECTION

7

Insert your data definition here.

Counter ds.w 1
FiboRes ds.w 1

My
ma
En

En

Co

7

code section

Code: SECTION

in:

try:
LDS #__ SEG_END_SSTACK
CLI

dlessLoop:
LDX #1

unterLoop:

STX Counter

BSR CalcFibo
STD FiboRes

LDX Counter

INX

CPX #24

BNE CounterLoop
BRA EndlessLoop

'Entry' either in
; the Linker *.prm file or from C/C++ later on.

7
7

7

symbol defined by the
Linker for the end of
the stack

initialize the stack pointer
enable interrupts

X contains counter

update global.

store result

Larger values cause overflow.

restart

Function to calculate Fibonacci numbers. Argument is in X.

CalcFibo:
LDY #3500 ; second last
LDD #501 ; last
; loop once more (if X was 1, were done already)
DBEQ X,FiboDone
FiboLoop: ; overwrite second last with new value
34 HC(S)12 Assembler Manual

Working with the Assembler
Assembling your source files

LEAY D,Y
; exchange them -> order is correct again
EXG D,Y

DBNE X, FiboLoop
FiboDone:
RTS ; Result is in D.

When writing your assembly source code, pay special attention to the following:

* Make sure that symbols outside of the current source file (in another source file or in
the linker configuration file) that are referenced from the current source file are
externally visible. Notice that we have inserted the “XDEF Entry, main”
assembly directive where appropriate in the example.

* In order to make debugging from the application easier, we strongly recommend that
you define separate sections for code, constant data (defined with DC) and variables
(defined with DS). This will mean that the symbols located in the variable or constant
data sections can be displayed in the data window component when using the
Simulator/Debugger.

* Make sure to initialize the stack pointer when using BSR or JSR instructions in your
application. The stack can be initialized in the assembly source code and allocated to
RAM memory in the Linker parameter file, if a * . prm file is used.

NOTE The default assembly project using the New Project Wizard with CodeWarrior
initializes the stack pointer automatically with a symbol defined by the Linker
for the end of the stack “___SEG_END_SSTACK”".

NOTE An Absolute Assembly project does not require a Linker PRM file as the
memory allocation is configured in the projects’s * . asm file instead.

Assembling your source files

Once an assembly source file is available, you can assemble it. You can either utilize
CodeWarrior to assemble the * . asm files or alternatively you can use the standalone
assembler that is located among the other Build Tools in the prog subfolder of the
<CodeWarrior installation> folder.

Assembling with CodeWarrior

CodeWarrior simplifies the assembly of your assembly source code. You can assemble the
source code files into its output object (* . o) files (without linking them) by:

HC(S)12 Assembler Manual 35

Working with the Assembler
Assembling your source files

« selecting one or more * . asm files in the project window and then select Compile
from the Project menu (Project > Compile). Only * . asm files that were preselected
will generate updated * . o object files.

« select Project > Bring Up To Date. It is not necessary to preselect any assembly
source files when using this command.

The object files are generated and placed into the ObjectCode subfolder in the project
directory.

NOTE

The target name can be changed to whatever you choose in the Target Settings
(preference) panels. Select Edit > <target_name> Settings... > Target >
Target Settings and enter the revised target name into the Target Name: text
box. The default <target_name> is Simulator.

Or, you can assemble all the * . asm files and link the resulting object files (and any
appropriate library files) to generate the executable <target_name> . abs file by
invoking either Make or Debug from the Project menu (Project > Make or Project >
Debug). This results in the generation of the <target_name> . abs file in the bin
subfolder of the project directory.

Two other files generated by CodeWarrior after linking (Make) or Debug are:

¢ <target_name>.map

This Linker map file lists the names, load addresses, and lengths of all segments in
your program. In addition, it lists the names and load addresses of any groups in the
program, the start address, and messages about any errors the Linker encounters.

e <target_name>.abs.sl9

This is an S-Record File that can be used for programming a ROM memory.

TIP

TIP

The remaining file in the default bin subfolder is the main . dbg file that was
generated back when the main . asm file was successfully assembled. This
debugging file was generated because a bullet was present in the debugging
column in the project window.

You can enter (or deselect by subsequently toggling) a debugging bullet by
clicking at the intersection of the main.asm file (or whatever other source code
file selected for debugging) and the debugging column in the project window.
Whenever the Debugger or Simulator does not show a desired file in its Source
window, check first to see if the debugging bullet is present or not in the project
window. The bullet must be present for debugging purposes.

The New Project Wizard does not generate default assembler-output listing files.
If you want such listing files generated, you have to select this option:

Edit > <target_name> Settings > Target > Assembler for HC12 > Options. Select
the Output tab in the HC12 Assembler Option Settings dialog box. Check
Generate a listing file and Do not print included files in list file. (You can uncheck

36

HC(S)12 Assembler Manual

Working with the Assembler
Assembling your source files

Do not print included files in list file if you choose, but be advised that the include
files for CPU derivatives are usually quite lengthy.) Now a * . 1st file will be
generated or updated in the bin subfolder of the project directory whenever a

* . asm file is assembled.

TIP You can also add the * . 1st files to the project window for easier viewing. This
way you do not have to continually hunt for them with your editor.

Assembling with the Assembler

It is also possible to use the HC(S)12 Assembler as a standalone assembler. (If you already
have an assembled source file and prefer not to use the Assembler but do want to use the
Linker, you can skip this section and proceed to “Linking the application” on page 50.)

This tutorial does not create another project with the Build Tools, but instead makes use of
a project already created by the CodeWarrior New Project Wizard. CodeWarrior can
create, configure, and manage a project much easier and quicker than using the Build
Tools. However, the Build Tools could also create and configure an entire project from
scratch.

A Build Tool such as the Assembler uses a project directory file for configuring and
locating its generated files. The folder that is set up for this purpose is referred to by a
Build Tool as the “current directory.”

Start the Assembler. You can do this by opening the ahc12 . exe file in the prog folder
in the HC12 CodeWarrior installation. The Assembler opens (Figure 1.13 on page 38).

HC(S)12 Assembler Manual 37

Working with the Assembler
Assembling your source files

Figure 1.13 HC12 Assembler opens...

@ Did you know... i

The about box displays the version numbers of the toal your
are using. Thiswersion numbers may be useful in case ofa
suppart recuest.

[v Show Tips on StartlUp Mext Tip I Close | |,

Ready 05:12:32

Read any of the Tips if you choose to and then press Close to close the Tip of the Day
dialog box.

Configuring the Assembler

A Build Tool, such as the Assembler, requires information from configuration files. There
are two types of configuration data:

¢ Global

This data is common to all Build Tools and projects. There may be common data for
each Build Tool (Assembler, Compiler, Linker, ...) such as listing the most recent
projects, etc. All tools may store some global data in the mcutools. ini file. The
tool first searches for this file in the directory of the tool itself (path of the
executable). If there is no mcutools. ini file in this directory, the tool looks for
anmcutools. ini file located in the MS WINDOWS installation directory (e.g.
C: \WINDOWS). See Listing 1.3 on page 39.

38

HC(S)12 Assembler Manual

Working with the Assembler
Assembling your source files

Listing 1.3 Typical locations for a global configuration file

\CW installation directory\prog\mcutools.ini - #1 priority
C:\mcutools.ini - used if there is no mcutools.ini file above

For information about entries for the global configuration file, see
Global Configuration File Entries on page 399 in the Appendices.

e Local

This file could be used by any Build Tool for a particular project. For information
about entries for the local configuration file, see Local Configuration File Entries on
page 409 in the Appendices.
After opening the assembler, you would load the configuration file for your project if it
already had one. In this case, you will create a new configuration file and save it so that

whenever the project is reopened, its previously saved configuration state will be used.
From the File menu, select New / Default Configuration. The HC12 Assembler Default

Configuration dialog box appears (Figure 1.14 on page 39)
Figure 1.14 HC12 Assembler Default Configuration dialog box

i:'HC12 Assembler Default Configuration

Fle Assembler \iew Help

DSE 2N R P =10
Pl
w

c Jim] b

Ready 05:18:51

Now let’s save this configuration in a newly created folder that will become the project
directory. From the File menu, select Save Configuration. A Saving Configuration as...

HC(S)12 Assembler Manual 39

Working with the Assembler
Assembling your source files

dialog box appears. Navigate to the folder of your choice and create and name a folder and
filename for the configuration file (Figure 1.15 on page 40).

Figure 1.15 Loading configuration dialog box

Saving Configuration as...

Savein: |l'f)F’rojects ﬂ P ek v

I Absolute

CModel T

I3 Relocatable Assembly
[Test

Save as type: |Pr0jectﬁ|es (*.ini;*.pjt) ﬂ Cancel

File name: |pr0jectini

Press Open. The current directory for the HC(S)12 Assembler changes to your project
directory (Figure 1.16 on page 40).

Figure 1.16 Assembler’s current directory switches to your project directory...

i:-!HC12 Assembler Default Configuration |:||Eg|
Fie Assembler View Help

DSHE 2| R

Changed current directory to E:\Projects\Fibonacci

Al) 2
Ready 05:31:05

If you were to examine the project directory with the Windows Explorer at this point, it
would only contain the <project_name>.ini configuration file that you just created. Any
options added to or deleted from your project by any Build Tool would be placed into or
deleted from this configuration file in the appropriate section for each Build Tool.

40 HC(S)12 Assembler Manual

Working with the Assembler
Assembling your source files

You now set the object-file format that you intend to use (HIWARE or
ELF/DWAREF). Select the menu entry Assembler > Options. The Assembler displays the
HC12 Assembler Option Settings dialog box (Figure 1.17 on page 41).

Figure 1.17 HC12 Assembler Option Settings dialog box
HC12 Assembler Option Settings 8|

Output l Input] Language] Host] Code Generation] Messages] Various]

Chject File Farmat
WGenerate a listing file
[CIConfigure Listing File
[IConfigure the address size in the Listing
Do not print macro call in list file

[1Da not print macro definition in list file

100 not print macro expansion in list file
WDo not printincluded files in listfile
[(10bject file name specification (enter [<file>])

2 FOTIEr

ELF/DWARF 2.0 Object File Format -

-F2-L="%(TEXTPATH)\%n.Ist-Li

0K | Cancel Help

In the Output panel, select the check boxes labeled Generate a listing file and Object File
Format. For the Object File Format, select the ELF/DWARF 2.0 Object File Format in the
pull-down menu. The listing file would be much shorter if the Do not print included files
in list file check box is checked, so you may want to select that option also. Press OK to
close the HC12 Assembler Option Settings dialog box.

Save the changes to the configuration by:
* selecting File > Save Configuration (Ctrl + S) or

* pressing the Save button on the toolbar.

HC(S)12 Assembler Manual 4

Working with the Assembler
Assembling your source files

Input Files

Now that the project’s configuration is set, you can assemble an assembly-code file.
However, the project does not contain any source-code files at this point. You could create
assembly * . asm and include * . inc files from scratch for this project. However, for
simplicity’s sake, you can copy and paste the Sources folder from the previous
CodeWarrior project into the project directory (Figure 1.18 on page 42).

Figure 1.18 Project files

fadir E:\Projects\Fibonacci\Sources

File Edit View Favorites Tools Help -,'
Folders X Name
= % Drive E (E:) ~ % main.asm
(£ Downloads

() Freescale

I3 Gimp 0
(3 Openoffice
=) Projects

IC) Absolute

2 |=5) Fibonacci

S sources| T

Now there are two files in the project:
e the project.ini configuration file and
* main.asmin the Sources folder:

The contents of the main.asm file are displayed in Listing 1.4 on page 42.

Listing 1.4 main.asm file

PEEE R Rk b Ik I R R I b I R I S R R R R e R e S R R R A R R I R R R e
7

;* This stationery serves as the framework for a *
* user application. For a more comprehensive program that *
* demonstrates the more advanced functionality of this *
;* processor, please see the demonstration applications *
;* located in the examples subdirectory of CodeWarrior for *
* *
* *

7

7

7

the HC12 Program directory.

Rk S kI b S R R S S R R I R R kI R R R R I Rk ok kI

; export symbols
XDEF Entry, main

42 HC(S)12 Assembler Manual

Working with the Assembler
Assembling your source files

; We use 'Entry'
; allows us to reference
; the Linker *.prm file or

XREF ___SEG_END_SSTACK

; include derivative specific macros

INCLUDE 'mc9sl12c¢32.inc'

; variable/data section
MY_ EXTENDED_RAM: SECTION
; Insert your data definition here.

Counter
FiboRes

ds.w 1
ds.w 1

; code section

MyCode: SECTION
main:
Entry:
LDS #__SEG_END_SSTACK
CLI
EndlessLoop:
LDX #1
CounterLoop:
STX Counter
BSR CalcFibo
STD FiboRes
LDX Counter
INX
CPX #24
BNE CounterLoop
BRA EndlessLoop

as an export symbol.
'Entry’

7

This

either in

from C/C++ later on.

; symbol defined by the

; Linker for the end of
; the stack

initialize the stack pointer
enable interrupts

X contains counter

update global.

store result

Larger values cause overflow.

restart

Assembling the Assembly source-code files

Let’s assemble the main . asm file. From the File menu, select Assemble. The Select File
to Assemble dialog box appears (Figure 1.19 on page 44).

HC(S)12 Assembler Manual

43

Working with the Assembler
Assembling your source files

Figure 1.19 Select File to Assemble dialog box

Select File to Assemble

Look in: |@ Sources ﬂ & 5 B

[Main.asm

File name: |main.asm
Files of type: |assemb|ersource files (*.asm) hd Cancel

Browse to the Sources folder in the project directory and select the main. asmfile.
Press Open and the main . asm file should start assembling (Figure 1.20 on page 44).

Figure 1.20 Results of assembling the main.asm file...

i) HC12 Assembler E:\Projects\Fibonacci\project.ini _ ||D|R|
File Assembler View Help

™ R Yl \Projects\Fibonacei\Sourcesimain. asmiig HE =2 =

Top: E:\Projects\Fibonacci\Sources\main.asm

Could not open the file "me9%312c32.inc’
»» in "E:\Projects\Fibonacci\Sources\nain.asm", line 21, col 0, pos 990
INCLUDE 'mc9s312c32.ine’

EERCE R2309: File not found

HCl2 Assembler: *** 1 error{s), 0 warning(s), 0 information message(3) *

#*%% gommand line: 'E:‘\Projects‘\Fibonacci‘\Sources‘\main.asm' *#*#*

HC12 Lssembler: *** Error cccurred while processing! ##%%* L
b

< | B

Processing failed! 06:02:28

44 HC(S)12 Assembler Manual

Working with the Assembler
Assembling your source files

The project window provides positive information about the assembly process or
generates error messages if the assembly was unsuccessful. In this case an error message
is generated. - the A2309 File not found message. If you right-click on the text about the
error message, a context menu appears (Figure 1.21 on page 45).

Figure 1.21 Context menu

2 HC12 Assembler E:\Projects\Fibonacci\project.ini
File Assembler View Help

= = NI YAl F-\Projects\Fibonacci\Sources\main.asmijha = =

Top: E:\Projects\Fikcnacci\Sources\main.asm
Could not copen the file 'mc9s312c32.inc’

»» in "E:“\Projects\FibonacciSources\main.asm", line 21, col 0, pos 990
INCLUCE 'mc9slic32.inc'

ERROR L2309: Fif~—-sSnmmd

HC12 Rssembler: Main Help o+

st Help on "Fie not found™
HC12 Assembler:

Cpen fie "E:\Projects\Fibonacci\Sources\main.asm”
Copy "ERROR A2309: File not found"

=l

<8 L2
Calls context help 06:03:36

Select Help on “file not found” and Help for the A2309 error message appears
(Figure 1.22 on page 46).

HC(S)12 Assembler Manual 45

Working with the Assembler
Assembling your source files

Figure 1.22 A2309 error message help

E" Freescale HC12 Assembler Messages

- @ fa) B

Hide Locate Faorward Stop Refresh Home Print Qptions

|

Il A2309: File not found

[ERROR]

Description

The assembler cannot find the file, which name is specified in
the include directive.

Tips

o If the file exist, check if the directory where it is located
is specified in the GENPATH environment variable.

o First check if your project directory is correct. A file
"default.env" should be located there, where the
environment variables are stored. 8 |

o The macro assembler looks for the included files in the
working directory and then in the directory enumerated
in the GENPATH environment variable.

o If the file do not exist, create it or remove the include

directive. 3

You know that the file exists because it is included in the Sources folder that you
imported into the project directory. The help message for the A2309 error states that the
Assembler looks for this “missing” include file first in the current directory and then in the
directory specified by the GENPATH environment variable. This implies that the
GENPATH environment variable should specify the location of the derivative.inc
include file.

NOTE If you read the main.asm file, you could have anticipated this on account of
this statement on line 21: INCLUDE 'mc9s12¢32.inc'.

To fix this, select File > Configuration. The Configuration dialog box appears
(Figure 1.23 on page 47).

46

HC(S)12 Assembler Manual

Working with the Assembler
Assembling your source files

Figure 1.23 Browsing for the Sources folder

Configuration

Fild
_E Editor Settings | Save Configuration Environment
General Path
;’l Object Path Browse for Folder
c Text Path
Absolute Path Select a directory:
T Header File Path
. Various Environment Varig & (CodeWarrior_Bamples) [l
I3 (Helper Apps) E
> - bin
-3 Help i
I =+ lib W
EY :
= =CD hel2e
Add Change | [3
E —I el - hel2_lib_Data
B g=]include |
-2 lib
=) old
-7 xnater. Ll
i_ i | l!
l 0K] [Cancel] |
P 0K
L) - T
Ready 06:22:54 A

Select the Environment tab and then General Path. Press the “...” button and navigate in
the Browse for Folder dialog box for the folder that contains the missing file - the
include subfolder in the CodeWarrior installation’s 1ib folder. Press OK to close the
Browse for Folder dialog box. The Configuration dialog box is now again active
(Figure 1.24 on page 48).

HC(S)12 Assembler Manual 47

Working with the Assembler
Assembling your source files

Figure 1.24 Adding a GENPATH

Configuration

X

EditorSettingsl Save Configuration Environment]

Header File Path
WVarious Environment Variables

|C:‘LF’rogram Files\Freescale\CW for HC12 \lib\hc

C:\Program Files\Freescale\CW for HC12\lib\he12c\incl

oK | Cancel Help

Press the Add button, and the path to the mc9s12c32. inc file

“{Compiler Nib\hc12c\include” now appears in the lower panel. Press OK. An asterisk
now appears in the Title bar, so save the change to the configuration by pressing the Save
button or by selecting File > Save Configuration. The asterisk disappears when the file is
saved.

TIP You can clear the messages in the Assembler window at any time by selecting
View > Log > Clear Log.

Now that you have supplied the path to the derivative. inc file, let’s attempt again to
assemble the main. asm file.

Select File > Assemble and again navigate to the main. asmfile and press Open.

After the GENPATH is set up for the include file, you can try to assemble the main.asm
file again (Figure 1.25 on page 49).

48

HC(S)12 Assembler Manual

Working with the Assembler
Assembling your source files

Figure 1.25 Successful assembly - main.o object file created

+HC12 Assembler E:\Projects\Fibonacci\project.ini * '__||g|g|
File Assembler View Help
- " B Yl IF\Projects\Fibonacci\Sources\main.asm v || & ~ ==

E:\Projects\Fibonacci\Sources\main.asm
Command Line: "-F2 -L=%(IEXTPATH)“\%n.lst -Li E:‘\Projects‘\Fibonacci‘\Sources‘\main.asm’

Top: E:\Projecta\Fibonacci\Sources\main.asm

"C:\Program Files‘\Freescale\CW for HC12'\lib\hclZchinclude\mc93l2c32.inc™
writing debug listing to E:\Projects‘\Fibonacci‘main.dbg

Output file: "E:\Projecta\Fibonacci\main.o"

Code Size: 44

writing listing to E:\Projects\Fibonacci\main.lst

HC12 Assembler: *** 0 error(s), 0 warning(s), 0 information message(s) *#*%*
HC12 RAssembler: *** Processing ok **+*

Processing ok 06:50:24

The Macro Assembler indicates successful assembling and indicated that the Code Size is
44 bytes. The message “*** 0 error (s),” indicates that the main.asm file
assembled without errors. Do not forget to save the configuration one additional time.

The Macro Assembler generated a main . dbg file (for use with the simulator/debugger),
amain.o object file (for further processing with the Linker), and amain. 1st output
listing file in the project directory. The binary object file has the same name as the input
module, but with the ‘*.0” extension - main. o. The debug file has the same name as the
input module, but with the ‘* . dbg’ extension - main . dbg. The assembly output file is
similarly named - main.1lst. The ERR.TXT file was generated as a result of the first
failed attempt to assemble the main.asm file without the correct path to the *.inc file
(Figure 1.26 on page 50).

HC(S)12 Assembler Manual 49

Working with the Assembler
Linking the application

Figure 1.26 Project directory after a successful assembly

M E:\Projects\Fibonacci E|E|B|
: :}I’

Fie Edit View Favorites Tools Help
Folders X Name
E < Drive E (E:) ~ %"E’E‘ﬁiﬁr
|3 Downloads -
& main.dbg
o Fr_eescale I
= Gimp #] project.ini
(£33 Openoffice] main.lst
2 [Projects
|3 Absolute
=l | Fbonacc
|3 Sources v ¢ >

The haphazard running of this project was intentionally designed to fail in order to
illustrate what would occur if the path of any include file is not properly configured. Be
aware that include files may be included by either * .asmor * . inc files. In addition,
remember that the 11ib folder in the CodeWarrior installation contains several derivative-
specific include and prm files available for inclusion into your projects.

So in the future, read through the * . asm files before assembling and set up whatever
paths are required for any include (* . inc) files. If there were more than one * . asm file
in the project, you could select any or all of them, and the selected * . asm files would be
assembled simultaneously.

Linking the application

Once the object files are available you can link your application. The linker organizes the
code and data sections into ROM and RAM memory areas according to the project’s
linker parameter (PRM) file. The Linker’s input files are object-code files from the
assembler or compiler, library files, and the Linker PRM file.

Linking with CodeWarrior

If you are using CodeWarrior to manage your project, a pre-configured PRM file for a
particular derivative is already set up (Listing 1.5 on page 50).

Listing 1.5 Linker PRM file for the MC9S12C32 derivative

/* This is a linker parameter file for the MC9S12C32 */
NAMES END /* CodeWarrior will pass all the needed files to the
linker by command line. But you may add your own files here too. */

SEGMENTS /* All RAM/ROM areas of the device are listed. Used in

50 HC(S)12 Assembler Manual

Working with the Assembler
Linking the application

PLACEMENT below. */
RAM = READ_WRITE 0x0800 TO OxOFFF;
/* unbanked FLASH ROM */
ROM_4000 = READ_ONLY 0x4000 TO Ox7FFF;
ROM_CO000 = READ_ONLY O0xC000 TO OXFEFF;
/* banked FLASH ROM */
/* PAGE_3E = READ_ONLY O0x3E8000 TO Ox3EBFFF; not used: equivalent
to ROM_4000 */
/* PAGE_3F = READ_ONLY O0x3F8000 TO O0x3FBFFF; not used: equivalent
to ROM_C000 */
// OSVECTORS = READ_ONLY OxFF8A TO OxXFFFF; /* OSEK interrupt vectors
(use your vector.o) */
END

PLACEMENT /* All predefined and user segments are placed into the
SEGMENTS defined above. */

_PRESTART, /* Used in HIWARE format: jump to
_Startup at the code start */

STARTUP, /* startup data structures */

ROM_VAR, /* constant variables */

STRINGS, /* string literals */

VIRTUAL_TABLE_SEGMENT, /* C++ virtual table segment */

// .ostext, /* OSEK */

NON_BANKED, /* runtime routines which must not be

banked */

DEFAULT_ROM,

COPY /* copy down information: how to
initialize variables */

/* In case you want to use ROM_4000
here as well, make sure
that all files (incl. library
files) are compiled with the
option: -OnB=b */
INTO ROM_C000/*, ROM_4000%*/;

// .stackstart, /* eventually used for OSEK kernel
awareness: Main-Stack Start */
.stack, /* allocate stack first to avoid
overwriting variables on overflow */
// .stackend, /* eventually used for OSEK kernel
awareness: Main-Stack End */
DEFAULT_ RAM INTO RAM;
// .vectors INTO OSVECTORS; /* OSEK */
END

ENTRIES /* keep the following unreferenced variables */
/* OSEK: always allocate the vector table and all dependent objects */
//_vectab OsBuildNumber _OsOrtiStackStart _OsOrtiStart

HC(S)12 Assembler Manual 51

Working with the Assembler

Linking the application

END

STACKSIZE 0x80

//VECTOR 0 _Startup /*

VECTOR 0 Entry

INIT Entry

/*

/*

reset vector: This is the default entry point
for a C/C++ application. */

reset vector: This is the default entry point
for an Assembly application. */

for assembly applications: This is also

the initialization entry point */

NOTE

A number of entries in the PRM file in Listing 1.5 on page 50 are “commented-
out” by the CodeWarrior IDE because they would not be utilized in this simple
relocatable assembly project.

The Linker PRM file allocates memory for the stack and the sections named in the
assembly source-code files. If the sections in the source code are not specifically
referenced in the PLACEMENT section, then these sections are included in
DEFAULT_ROM or DEFAULT_RAM. You may use a different PRM file in place of the
default PRM file that was generated by the New Project Wizard.

The Linker for HC12 preference panel controls which PRM file is used for your
CodeWarrior project. The default PRM file for a CodeWarrior project is the PRM file in
the project window. Let’s see what other options exist for the PRM file. From the Edit
menu, select <target_name> Settings... > Target > Linker for HC12. The Linker for
HC12 preference panel appears (Figure 1.27 on page 53).

52

HC(S)12 Assembler Manual

Working with the Assembler
Linking the application

Figure 1.27 Linker for HC12 preference panel

im Simulator Settings =l
E T arget Settings Fanels |E Linker for HC12
B Target . I— Command Line Arguments:
- Target Settings
- Access Pathe I
- Build Extras .
- Runtime Setiings Messages Options | I~ Preprocess PRM file
- File M appings [Display generated commandlines in message windaw
- Source Trees - -
- D5EK Sysgen 7 lge Cugtom PRM file ISImuIatol_Ilnker. prm _I
~ ssembler for HC1Z " Use Template PRM fils Imch‘I 2632 prm d Copy Templatel
- Burner far HC12
- Compiler for HC12 i Llze PR file from project
Importr f 1 2 " Absolute, Single-File Assembly project
r for HC12 L .
o Simulink(t] I Application Filename:
= Editor ISimuIator.abs |
e Cugtom Kepwords
= Debugger About | Help |
Other Executables =
Factory Settings | Fewert | Import Panel... | Export Panel... |
QK | Cancel | Apply |

There are three radio buttons for selecting the PRM file and another for selecting an
absolute, single-file assembly project:

* Use Custom PRM file (exists for backward compatibility)

o Use Template PRM file (exists for backward compatibility)
e Use PRM file from project - the default, or

o Absolute, Single-File Assembly project.

In case you want to change the filename of the application, you can determine the
filename and its path with the Application Filename: text box. See the Smart Linker
section of the “Build Tools” manual for details.

The ‘STACKSIZE’ entry is used to set the stack size. The size of the stack for this project
is 80 bytes. The Entry symbol is used for both the entry point of the application and for
the initialization entry point.

Linking the object-code files

You can run this relocatable assembly project from the Project menu: Select

Project > Make or Project > Debug. The Linker generates a * . abs file and a

* _abs.s19 standard S-Record File in the bin subfolder of the project directory. You
can use the S-Record File for programming a ROM memory (Figure 1.28 on page 54).

HC(S)12 Assembler Manual 53

Working with the Assembler
Linking the application

Figure 1.28 Project directory in Windows Explorer after linking

B E-\Projects\Relocatable Assembly\bin

Fie Edit View Favorites Tools Help i3
Folders X Name
2 [Projects ~ m::ggfg
® . -
= A.bSO|UtE_ Simulator.abs
2 Fibonacd Simulator.abs.phy
=) Model T Simulator.abs.s19
= |3 Relocatable Assembly — & simulator.map
o
[cmd
3 prm
2 [Relocatable_Assembly_Data
B [Simulator
[C3) ObjectCode v
< I ¢ | >

The Full Chip Simulation option in CodeWarrior was selected when the project was
created, so if Project > Debug is selected, the debugger opens and you can follow each
assembly-code instruction during the execution of the program with the Simulator. You
can single-step the simulator through the program’s assembly-source instructions from the
Run menu in the Simulator (Run > Assembly Step or Ctrl+F11).

Linking with the Linker

If you are using the standalone Linker, you will use a PRM file for the Linker to allocate
memory.
 Start your editor and create the project’s linker parameter file. You can modify a
* . prm file from another project and rename it as <target_name>.prm.

 Store the PRM file in a convenient location. A good spot would be directly into the
project directory.

¢ Inthe <target_name>.prm file, add the name of the executable (* . abs) file,
say <target_name>.albs. In addition, you can also modify the start and end
addresses for the ROM and RAM memory areas. The module’s Fibonacci.prm
file — a PRM file for an MC9S12C32 from another CodeWarrior project was
adapted — is shown in Listing 1.6 on page 54.

Listing 1.6 Layout of a PRM file for the Linker - Fibonacci.prm

/* This is a linker parameter file for the MC9S12C32 */
LINK Fibonacci.abs
NAMES main.o /* filenames of the object files to be linked */

54 HC(S)12 Assembler Manual

Working with the Assembler
Linking the application

END

SEGMENTS /* All RAM/ROM areas of the device are listed. Used in
PLACEMENT below. */
RAM = READ_WRITE 0x0800 TO OxOFFF;
/* unbanked FLASH ROM */
ROM_4000 = READ_ONLY 0x4000 TO Ox7FFF;
ROM_CO000 = READ_ONLY O0xC000 TO OXFEFF;
END

PLACEMENT /* All predefined and user segments are placed into the
SEGMENTS defined above. */

ROM_VAR, /* constant variables */

NON_BANKED, /* runtime routines which must not be
banked */

DEFAULT_ROM INTO ROM_CO000/*, ROM_4000%*/;

.stack, /* allocate stack first to avoid
overwriting variables on overflow */

DEFAULT_ RAM INTO RAM;

END

STACKSIZE 0x100

VECTOR 0 Entry /* reset vector: This is the default entry point
for an Assembly application. */
INIT Entry /* for assembly applications: This is also

the initialization entry point */

NOTE If you are adapting a PRM file from a CodeWarrior project, most of what you
need to do is add object filenames that are to be linked in the LINK portion and

NAMES portion.

NOTE The default size for the stack using the CodeWarrior New Project Wizard for

the MC9S12C32 is 256 bytes: (STACKSIZE 0x100). This command and
__SEG_END_SSTACK in the assembly code file determine the size and
placement of the stack in RAM:

MyCode: SECTION

main:

Entry:

LDS #__ SEG_END_SSTACK ; initialize the stack ptr

HC(S)12 Assembler Manual

55

Working with the Assembler
Linking the application

The commands in the linker parameter file are described in the Linker portion of the Build
Tools manual.

¢ Start the Linker.

The Smart Linker tool is located in the prog folder in the CodeWarrior installation:
proj\linker.exe

* Press Close to close the Tip of the Day dialog box.

* Load the project’s configuration file. Use the same <project>. ini that the
Assembler used for its configuration - the project. ini file in the project
directory:

File > Load Configuration and navigate to the project’s configuration file
(Figure 1.29 on page 56).

Figure 1.29 HC(S)12 Linker

i?!!‘i'.’.‘!—"_"_‘ff-‘_r _C:\Program Files\Freescale\CW for HC12'p... |-_||ﬁ| [ZJ

21X

Loading configuration
Look in: |@ Fibonacci LI @ =5 EOw

[ChSources
|#] project.ini

||||||> E

File name: Iprojectini Open

Files of type: IProjectﬁIes (*.ini;®.pjt) LI Cancel | b

A

Ready 08:33:52 4

* Press Open to load the configuration file. The project directory is now the current
directory for the Linker. You can press the Save button to save the configuration if
you choose. From the File menu in the Smart Linker, select Link: (File > Link

(Figure 1.30 on page 57).

56 HC(S)12 Assembler Manual

Working with the Assembler
Linking the application

Figure 1.30 Select File to Link dialog box

i SmartLinker E:\Projects\Fibonacci\project.ini |__||ﬁ||z|

Select File to Link ? X|
Look in: I@ Fibonacci LI - £ Ev =
~
() Sources :I
[Fbonacci.prm =
File name: |Fibonacci.prm Open |
Files of type: IIink parameter files (*.prm) LI Cancel | Ll
— él
Ready 08:37:25 /|

* Browse to locate the PRM file for your project. Select the PRM file. Press Open. The
Smart Linker links the object-code files in the NAMES section to produce the
executable * . abs file as specified in the LINK portion of the Linker PRM file
(Figure 1.31 on page 58).

HC(S)12 Assembler Manual 57

Working with the Assembler
Linking the application

Figure 1.31 Linker main window after linking

SmartLinker E:\Projects\Fibonacci\project.ini \:‘@”‘Z‘

File SmartLinker Wiew Help

O

= H | T N2 |iE:RProjects\Fibonacci‘;Fibonacci.prmLl| & X | ~ = | =

Changed current directory to E:\Projects\Fibonacci
E:\Projects\Fibonacci\Fibonacci.prm

Command Line: "E:\Projects\Fibonacci\Fibonacci.prm'
Reading Parameters

Linking E:\Projects\Fibonacci\Fibonacci.prm

Read Binary Input Files

Reading file 'E:\Projects\Fibonacci\main.o"

Marking Referenced Cbjects

Moving Objects across Sections

Reserving Memory for Startup Data

Al locating Objects

Preparing Startup Data

Generating Code

Generating Symbol table

Generating DWARF data wersion 2.0

Code Size: 46

Generating MAP file "E:\Projecta\Fibonacci\Fibonacci.map"
SmartLinker: *** 0 error(s), 0 warning(s), 0 information message (3] ***
SmartlLinker: *** Processing ok *#**

<
Processing ok |08:50:12

m >

The messages in the linker’s project window indicate:

The current directory for the Linker is the project directory,
E:\Projects\Fibonacci

The Fibonacci .prm file was used to name the executable file, which object files
were linked, and how the RAM and ROM memory areas are to be allocated for the
relocatable sections. The Reset and application entry points were also specified in
this file.

There was one object-code file, main. o.

The output format was DWAREF 2.0.

The Code Size was 46 bytes.

A Linker Map file was generated - Fibonacci .map.

No errors or warnings occurred and no information messages were issued.

58

HC(S)12 Assembler Manual

Working with the Assembler
Linking the application

The Simulator/Debugger Build Tool, hiwave . exe, located in the prog folder in the
CodeWarrior installation could be used to simulate the Fibonacci program in the
main.asm source-code file. The Simulator Build Tool can be operated in this manner:

¢ Start the Simulator.
* Load the absolute executable file:
— File > Load Application... and browse to the appropriate * . abs file, or

— Select the given path to the executable file, if it is appropriate as in this case
(Figure 1.32 on page 59):
E:\Projects\Fibonacci\Fibonacci.abs

Figure 1.32 HC(S)12 Simulator: Select the executable file

rue-Time Simulator & Real-Time Debugger. C:¥Program Files\Freescale\CW for HC12hprogiproject.ini

G view Run Simulabor Component Command Window Help

Mew Chrl+r

Load Application. .. Chrl+L

nacciiFibonac

Open Configuration, . Chr+O
Save Configuration

Save Configuration As...

Configuration. ..

Startup Configuration. ..

Register

b project i HC12 [CPU Cyel
2 E:\Projectsiabsolute AssemblyiSimulator.ini — — ’ﬁ
3 E:\Projects|Fibonacciiproject.ini |_ |[§J| X| . e
4 Ci\Program Files\Freescale\CW0OS w5, 0\progiproject.ini — — I e

Exit

] Memory

* Assembly-Step (Figure 1.33 on page 60) through the program source code (or do
something else...).

HC(S)12 Assembler Manual 59

Working with the Assembler
Directly generating an ABS file

Figure 1.33 Assembly Stepping...

ue-Time Simulator & Real-Time Debugger. C:¥Program Files\FreescalerCW for Hi

File Wiew Run Simulator Component Command window Help
O] e 2N || ee] -] B

H Source assembly Step (Chr+FLL)

|E:\Projects'Fibonaccitmain.dbg [Line: 33

main:
Entry:

LDS # SEG END ACK ; lnitialize the stack pointer
CLT ; enable interrupts

EndlessLoop:

| Procedure

Directly generating an ABS file

You can also use CodeWarrior or the standalone assembler to generate an ABS file
directly from your assembly source file. The Assembler may also be configured to
generate an S-Record File at the same time. You can use the S-Record File for
programming ROM memory.

When you use CodeWarrior or the standalone Assembler to directly generate an ABS file,
there is no linker involved. This means that the source code for the application must be
implemented in a single assembly unit and must contain only absolute sections.

Using CodeWarrior to generate an ABS file

You can use the Wizard to produce an absolute assembly project. To do so, you follow the
same steps in creating a relocatable-assembly project given earlier. There are some
differences:
¢ No PRM file is required, so no PRM file will be included in the Prm group in the
project window.

* The memory area allocations are determined directly in the single * . asm assembly
source-code file.

Start the CodeWarrior New Project Wizard and create an assembler project in the usual
manner. Confer “The New Project Wizard” on page 19 if you need assistance in creating a

60

HC(S)12 Assembler Manual

Working with the Assembler
Directly generating an ABS file

CodeWarrior project. However in the New Project Wizard - Page 4 dialog box, Absolute
Assembly is selected. That is the only difference between relocatable and absolute
assembly using the New Project Wizard (Figure 1.34 on page 61).

Figure 1.34 New Project Wizard - Page 4 dialog box

Which kind of assembly would you like?

® Absolute Assembly
(" Relocatable Assembly

Using only one single assembly source file with
absolute assembly. No support for relocatable
assembly or linker.

<Back | MNext > ‘ Cancel ‘

The single absolute-assembly main.asm file

Only one * . asm assembly source-code file can be used in an absolute-assembly project.
The main.asm source code file differs slightly from a file used in relocatable assembly

(Listing 1.7 on page 62).

CAUTION We strongly recommend that you use separate sections for code,
(variable) data, and constants. All sections used in the assembler
application must be absolute and defined using the ORG directive. The
addresses for constant or code sections have to be located in the ROM
memory area, while the data sections have to be located in a RAM area
(according to the memory map of the hardware that you intend to use).
The programmer is responsible for making sure that no section overlaps
occur.

HC(S)12 Assembler Manual 61

Working with the Assembler
Directly generating an ABS file

Listing 1.7 main.asm file - absolute assembly

PR Rk R R S R R R I b e R R R R R S R i S R R IR I b e S Rk b I S O R
7

;* This stationery serves as the framework for a
user application (single file, absolute assembly application)
; For a more comprehensive program that

*
*
*
;* demonstrates the more advanced functionality of this
*
*
*
*

7

7

processor, please see the demonstration applications
located in the examples subdirectory of the

CodeWarrior for the HC1l2 Program directory
R B R R RS EESES

7

*
*
*
*
*
*
*

7

*

7

; export symbols
XDEF Entry ; export 'Entry' symbol
ABSENTRY Entry ; for absolute assembly: Mark this
; as the application entry point.

; include derivative specific macros
INCLUDE 'mc9sl12c32.inc'

ROMStart EQU $4000 ; absolute address to place my code/constant

; variable/data section

ORG RAMStart ; Insert here your data definition.
Counter DS.W 1
FiboRes DS.W 1

; code section
ORG ROMStart

Entry:
LDS #RAMEnd+1 ; initialize the stack pointer
CLI ; enable interrupts
mainLoop:
LDX #1 ; X contains counter
counterLoop:
STX Counter ; update global.
BSR CalcFibo
STD FiboRes ; store result
LDX Counter
INX
CPX #24 ; larger values cause overflow.
BNE counterLoop
BRA mainLoop ; restart.
CalcFibo: ; Function to calculate Fibonacci numbers. Argument is in X
LDY #3500 ; second last
LDD #501 ; last

62 HC(S)12 Assembler Manual

Working with the Assembler
Directly generating an ABS file

DBEQ X,FiboDone ; loop once more (if X was 1, were
FiboLoop:
LEAY D,Y ; overwrite second last with new va
EXG D,Y ; exchange them -> order is correct
DBNE X, FiboLoop
FiboDone:
RTS ; result in D

PR I I S I I I S I S R R I I S I I R R R R S I S R I I S I I I
7

i* Interrupt Vectors *
I.**
ORG SFFFE
DC.W Entry ; Reset Vector

Pay special attention to the following points:

* The Reset vector is usually initialized in the assembly source file with the application
entry point. An absolute section containing the application’s entry point address is
created at the Reset vector address. To set the entry point of the application at
address SFFFE on the Entry symbol, the following code is used (Listing 1.9 on
page 63):

Listing 1.8 Using ORG to set the Reset vector

ORG SFFFE
DC.W Entry ; Reset Vector

* The ABSENTRY directive is used to write the address of the application entry point
in the generated absolute file. To set the entry point of the application on the Entry
label in the absolute file, the following code is used (Listing 1.9 on page 63).

Listing 1.9 Using ABSENTRY to enter the entry-point address

ABSENTRY Entry

Assembling main.asm

From the Project menu, select Bring Up To Date or select themain.asm file inthe
project window and select Compile. If the project’s preferences are set to create an
assembler output listing file, this will generate a listing file as shown in Listing 1.10 on

page 64.

HC(S)12 Assembler Manual 63

Working with the Assembler

Directly generating an ABS file

Listing 1.10 Assembler output listing file of main.asm

Freescale HCl2-Assembler
(c) Copyright Freescale 1987-2005

Abs. Rel Loc Obj. code Source line
1 1 I.************************************
2 2 ;* This stationery serves as the fram
3 3 ;* user application (single file, abs
4 4 ;* For a more comprehensive program t
5 5 ;* demonstrates the more advanced fun
6 6 ;* processor, please see the demonstr
7 7 ;* located in the examples subdirecto
8 8 ;* Freescale CodeWarrior for the HC1
9 9 I.************************************
10 10
11 11 ; export symbols
12 12 XDEF Entry ;e
13 13 ABSENTRY Entry ; £
14 14 ;oa
15 15
16 16 ; include derivative specific macros
17 17 INCLUDE 'mc9sl12c32.inc’

5396 18

5397 19 0000 4000 ROMStart EQU $4000 ; absolute a

5398 20

5399 21 ; variable/data section

5400 22 ORG RAMStart ;0 I

5401 23 a000800 Counter DS.W 1

5402 24 a000802 FiboRes DS.W 1

5403 25

5404 26

5405 27 ; code section

5406 28 ORG ROMStart

5407 29 Entry:

5408 30 a004000 CF10 00 LDS #RAMEnd+1 ;i

5409 31 a004003 10EF CLI ;

5410 32 mainLoop:

5411 33 a004005 CEOO 01 LDX #1 ; X

5412 34 counterLoop:

5413 35 a004008 7E08 00 STX Counter ;u

5414 36 a00400B 070E BSR CalcFibo

5415 37 a00400D 7C08 02 STD FiboRes ;s

5416 38 a004010 FEO8 00 LDX Counter

5417 39 a004013 08 INX

5418 40 a004014 8EOO 18 CPX #24 ;L

64 HC(S)12 Assembler Manual

Working with the Assembler
Using the Assembler for absolute assembly

5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

a004017
a004019

a00401B
a00401E
a004021

a004024
a004026
a004028

a00402B

a00FFFE

26EF BNE counterLoop

20EA BRA mainLoop ;T
CalcFibo: ; Function to calculate Fi

CD00 00 LDY #5500 ;s

Cccoo 01 LDD #5501 ;1

0405 07 DBEQ X,FiboDone ;1
FiboLoop:

19EE LEAY D,Y ; O

B7C6 EXG D,Y ;e

0435 F9 DBNE X, FiboLoop
FiboDone:

3D RTS ;T
I.************************************
P* I
I.************************************

ORG SFFFE
4000 DC.W Entry ; R

However, using the Bring Up To Date or Compile commands will not produce an

executable (* .

abs) output file. From the Project menu, select either Make or Debug

(Project > Make or Project > Debug) to generate the * . abs executable and
*.abs.s109 files in the bin subfolder. Be advised that it is not necessary to use the

Compile or Bri

ng Up To Date commands used earlier to produce an assembler output

listing file because using either the Make or Debug command also performs that

functionality.

If you want to analyze the logic of the Fibonacci program, you can use the Simulator/
Debugger and assemble-step it through the program. If you select Project > Debug, the
Simulator opens and you can follow the execution of the program while assemble-
stepping the Simulator either from the Run menu in the Simulator (Run > Assembly Step

or Ctrl + FI1).

Using the Assembler for absolute assembly

Create a new configuration project.ini file and directory for the absolute assembly project

using the stand

alone Assembler Build Tool. This section does not go into the detail that

was done for the relocatable assembly section. Use an absolute assembly source file of the

isting 1.11 on page 65.

type listed in L

Listing 1.11 Main.asm file for absolute assembly

PR R R R I R R R I b e e S S R R R S R R S S R R SRR I b e R R I R e
7

;* This stationery serves as the framework for a *

;* user application
P I R I I R I R R I I R I I S R I R I S R I R R R R I I R I R I S I 2 S I E I
;

(single file, absolute assembly application) *

HC(S)12 Assembler Manual 65

Working with the Assembler
Using the Assembler for absolute assembly

; export symbols
XDEF Entry ; export 'Entry' symbol
ABSENTRY Entry ; for absolute assembly: Mark this
; as the application entry point.

; include derivative specific macros - RAMStart and RAMEnd data
INCLUDE 'mc9sl12c32.inc'

ROMStart EQU $4000 ; absolute address to place my code/constants

; variable/data section

ORG RAMStart ; Insert here your data definition.
Counter DS.w 1
FiboRes DS.W 1

; code section
ORG ROMStart

Entry:
LDS #RAMEnd+1 ; initialize the stack pointer to
; highest absolute RAM address
CLI ; enable interrupts
mainLoop:
LDX #1 ; X contains counter
counterLoop:
STX Counter ; update global.
BSR CalcFibo
STD FiboRes ; store result
LDX Counter
INX
CPX #24 ; larger values cause overflow.
BNE counterLoop
BRA mainLoop ; restart.
CalcFibo: ; Function to calculate Fibonacci numbers. Argument is in X
LDY #3500 ; second last
LDD #501 ; last
DBEQ X,FiboDone ; loop once more (if X was 1, were
FiboLoop:
LEAY D,Y ; overwrite second last with new va
EXG D,Y ; exchange them -> order is correct
DBNE X,FiboLoop
FiboDone:
RTS ; result in D

PR Rk b Ik I R R Ik b S R IR b S S R I A Rk R R i b e R R R R I
7

66 HC(S)12 Assembler Manual

Working with the Assembler
Using the Assembler for absolute assembly

P * Interrupt Vectors *

7
PR R kb R R R S R R R I S R R A R R R R I Ik R Ik e R Rk I
7

ORG SFFFE
DC.W Entry ; Reset Vector

Store the absolute-assembly form of main.asm in a new project directory.

» Start the Assembler. You can do this by opening the ahc12 . exe file in the prog
folder in the HC(S)12 CodeWarrior installation. The Assembler opens. Close the Tip
of the Day dialog box if this dialog box is open.

¢ Create anew project.ini configuration file (File > New / Default Configuration
and store it in the project directory (File > Save Configuration As.... This makes the
project directory the current directory for the Assembler (Figure 1.35 on page 67).

Figure 1.35 Creating a new absolute assembly project

i-/HC12 Assembler Default Configuration |_ ||D||X|
Saving Configuration as... ', A
] ZC

Save in: I@SE”"”P“a ﬂ L cF B E
i |
[#] project.ini El

File name: Iprojectini Save |
2|

<) saveas type: IProjectﬁIes (*ini".pjt) LI Cancel |
Ri)

* Select Assembler > Options. The HC12 Assembler Option Settings dialog box
appears (Figure 1.36 on page 68).

HC(S)12 Assembler Manual 67

Working with the Assembler
Using the Assembler for absolute assembly

Figure 1.36 HC12 Assembler Option Settings dialog box

HC12 Assembler Option Settings g|

Output l Input] Language] Host] Code Generation] Messages] ‘u’arious]

Ohject File Format

[WGenerate alisting file

[CIConfigure Listing File

[IConfigure the address size inthe Listing
(100 not print macro call in list file

(1D o not print macro definition in listfile

(1D o not print macro expansion in list file
[WDo not printincluded files in listfile
[(10bjectfile name specification (enter [<fila>])

“FMAZOAZZ0[Z] UD[ECTF e FOITar

ELF/DWARF 2.0 Absolute File he

-FA2 L =% (TEXTPATH)\%n.Ist-Li

OK | Cancel Help

* In the Output panel, select the check box in front of Object File Format. The
Assembler displays more information at the bottom of the dialog box. Select the
ELF/DWAREF 2.0 Absolute File radio button. The assembler options for generating a
listing file can also be set at this point, if desired. Click OK.

* Select the assembly source-code file that will be assembled: Select File > Assemble.
The Select File to Assemble dialog box appears (Figure 1.37 on page 69).

68 HC(S)12 Assembler Manual

Working with the Assembler
Using the Assembler for absolute assembly

Figure 1.37 Select File to Assemble dialog box

File Assembler Wiew Help

Loak in: |aSampIe LI - ek Ev Ell

File name: |main.asm
Files of type: |assemb|er source files (*.asm) Ll Cancel |

A
<l L2
Ready [10:22:27 A

* Browse to the assembly source-code file. Click Open. The Assembler now assembles
the source code. Error-message (Figure 1.38 on page 70) or positive feedback about
the assembly process is created in the assembler main window.

HC(S)12 Assembler Manual 69

Working with the Assembler
Using the Assembler for absolute assembly

Figure 1.38 “ERROR A2309: File not found” error message

HC12 Assembler E:\Projects\Sample\project.ini *

View Help

File Assembler

heE % 8 |E:\Projects\SampIe\main.asm

Could not open the file 'mc9sl2c32.inc’

>>» in "E:\Projects\Sanple‘main.zsm", line 17, col 0, po
INCLUDE 'mc9s12c32.inc'

ERRCE 22309: File not found

»» in "E:“Projects\Sample‘main.asm", line 22, col 0, po

ORG FEMStart ; Insert your data de
EERCR R2314: Expression must be sbscolute
HC12 RAsgembler: *** 2 error{a), 0 warning(s),
**% command line:
HC1Z2 Assembler:
<

Processing failed!

0 information megsage (3) ***
'"-FR2 -I=%(TEXTEATH)\%n.lst -Li E:\Projecta\Sample‘\main.asm' ***
**% Error cccurred while processing! **%*

3 886

3 1040
finition here.

v
&
12:16:35

Make sure that the GENPATH configuration is set (Figure 1.39 on page 71) for the include
file used by the main . asm file in this project in the event an error message for a missing

file appears, as above.

70

HC(S)12 Assembler Manual

Working with the Assembler
Using the Assembler for absolute assembly

Figure 1.39 Adding a GENPATH for the include file

Configuration
[y & EditorSetings | Save Configuration Environment
General Path
g’_‘:‘gg Object Path Browse for Folder
commal | TextPath
Absolute Path Select a directory:
Top: Header File Path
Various Environment Variables
Could #-0) (CodeWarrior_Examples) |
{22 (Helper Apps) m
>> in g3 bin
| -2 Help
ERRCR 20 b 0
Add | Change | Delete I B2 hei2e
»> in = hc12_lib_Data
§=]include |
lib
ERRCR
HC12 old
wwn g prm
ac12 -3 sre
i i .7 xnatec |
< i | B
L oK || [Cancel }
< | OK 3|
Ready] 112:30:41 A

113

Confer “Adding a GENPATH” on page 48 for instructions for setting a GENPATH.
(File > Configuration... > Environment > General Path and browse for the missing
include file.) After setting a GENPATH to the folder of the include file, try assembling
again.

Select File > Assemble and browse for the * . asm file and press Open for the assembly
command. This time, it should assemble correctly (Figure 1.40 on page 72).

HC(S)12 Assembler Manual 71

Working with the Assembler
Using the Assembler for absolute assembly

Figure 1.40 Successful absolute assembly

HC12 Assembler E:\Projects\Sample\project.ini E|E|E|

File Assembler View Help

= | 7 w2 |IE:\Projects\SampIe‘lmain.asm _v_]| @ r?’j | = | ﬁ

Changed current directory to E:\Projects\Sample

E:\Projects\Sample‘\main.asm
Command Line: '-FA2 -I=% (TEXTPATH)\%n.lst -Li E:\Projects\Sample‘\main.asm"

Top: E:\Projects\Sample\main.asm

"C:\Progrem Files\Freesacale\CW for HClZ\lib\hclZch\include\mc9s312c32.inc™
writing debug listing to E:\Projects\Sample\main.dbg

Generating SRecord File 'E:\Projects\Sample‘\main.sx"

Qutput file: "E:\Projects‘\Sample‘\main.abs™

Code Size: 46
writing listing to E:\Projects\Sample\main.lst
HC12 Assembler: *** 0 error{3), 0 warning{a), 0 information message (3) ***

HC12 Assembler: *** Processing ok *%%

L |
13:06:58 A

Ready

The messages indicate that:
* An assembly source code (main.asm) file and an MC68HC908GP32 . inc file

were read as input.

* A debugging (main.dbg) file was generated in the project directory.

An S-Record File was created, main . sx. This file can be used to program ROM

memory.
* An absolute executable file was generated, main.abs.

¢ The Code Size was 46 bytes.

The main. abs file can also be used as input to the Simulator/Debugger - another Build
Tool in the CodeWarrior Development Studio, with which you can follow the execution of

your program.

72 HC(S)12 Assembler Manual

2

Assembler Graphical User
Interface

The Macro Assembler runs under Windows 9X, Windows NT, 2000, XP, 2003, and
compatible operating systems.

This chapter covers the following topics:

¢ Starting the Assembler on page 73

¢ Assembler main window on page 74

» Editor Settings dialog box on page 81

» Save Configuration dialog box on page 87
* Option Settings dialog box on page 89

* Message Settings dialog box on page 89
¢ About... dialog box on page 92

* Specifying the input file on page 92
¢ Message/Error feedback on page 93

Starting the Assembler

When you start the Assembler, the Assembler displays a standard Tip of the Day
(Figure 2.1 on page 74) window containing news and tips about the Assembler.

HC(S)12 Assembler Manual 73

Assembler Graphical User Interface
Assembler main window

Figure 2.1 Tip of the Day dialog box

X]

Tip of the Day

@ Did ywou know...

The test in the about box can be copied into the clip
bioard uzing <CTRL-Cr and pasted uzing <CTRLA into
your email program to be zent to the suppart crew.

¥ Shaow Tips on Startlp Mest Tip | Close |

Click Next Tip to see the next piece of information about the Assembler.

Click Close to close the Tip of the Day dialog box.

If you do not want the Assembler to automatically open the standard Tip of the Day
window when the Assembler is started, uncheck Show Tips on StartUp.

If you want the Assembler to automatically open the standard Tip of the Day window at
Assembler start up, choose Help > Tip of the Day.... The Assembler displays the Tip of the
Day dialog box. Check the Show Tips on StartUp check box.

Assembler main window

This window is only visible on the screen when you do not specify any filename when you
start the Assembler.

The assembler window consists of a window title, a menu bar, a toolbar, a content area,
and a status bar (Figure 2.2 on page 75).

74 HC(S)12 Assembler Manual

Assembler Graphical User Interface
Assembler main window

Figure 2.2 Assembler main window

Window title
Menu bar Toolbar

few Hels
Yiew Help

O = | ? ¥ ||E\Projects\Sample\main.asm ~| @ R =N

Changed current directory to E:\Projects\Sample
E:\Projects\Sample\main.asm
Comnand Line: "-FA2 -I=% (TEXTPATH)\%n.lst -Li E:\Projects\Sample‘\main.asm’

Top: E:\Projects\Sample\main.asm

"C:\Program Files\Freescale\CW for HC12\lib\hcl2ch\include\mc8sl2c32.inc™
writing debug listing to E:\Projects‘\Sample\main.dbg

Generating SRecord File '"E:\Projects\Sample\main.ax'

Output file: "E:\Projects\Sample\main.abs"

Code S5ize: 46

writing listing to E:\Projects\Sample\main.lst

HC12 Zssembler: *** 0 error(s), 0 warning(s), 0 information message(3) ***
HC12 ZAssembler: *** Processing ok *#**

<) >

Ready+ 113:06:58 A

Status bar Content area

Window title

The window title displays the Assembler name and the project name. If a project is not
loaded, the Assembler displays “Default Configuration” in the window title. An asterisk
(*) after the configuration name indicates that some settings have changed. The
Assembler adds an asterisk (*) whenever an option, the editor configuration, or the
window appearance changes.

Content area

The Assembler displays logging information about the assembly session in the content
area. This logging information consists of:
¢ the name of the file being assembled,

e the whole name (including full path specifications) of the files processed (main
assembly file and all included files),

e the list of any error, warning, and information messages generated, and

HC(S)12 Assembler Manual 75

Assembler Graphical User Interface
Assembler main window

* the size of the code (in bytes) generated during the assembly session.

When a file is dropped into the assembly window content area, the Assembler either loads
the corresponding file as a configuration file or the Assembler assembles the file. The
Assembler loads the file as a configuration if the file has the * . ini extension. If the file
does not end with the * . ini extension, the Assembler assembles the file using the
current option settings.

All text in the assembler window content area can have context information consisting of
two items:

¢ afilename including a position inside of a file and

e amessage number.
File context information is available for all output lines where a filename is displayed.

There are two ways to open the file specified in the file-context information in the editor
specified in the editor configuration:

* Ifafile context is available for a line, double-click on a line containing file-context
information.

¢ Click with the right mouse on the line and select “Open ...”. This entry is only
available if a file context is available (Figure 2.3 on page 76).

Figure 2.3 Right-context Help

{*:!HC12 Assembler E:\Projects\Fibonacci\project.ini _ ”D|ﬁ|
File Assembler View Help

I = R Al F\Projects\Fibonacci\Sources\main.asmiba B = =

£

Top: E:\Froject3\Fibonacci‘\Scurces\main.asm
Could not open the file "mec9sl2c32.inc’

»» in "E:\Projecta\Fikonacci‘Sources\main.asm™, line 21, col 0, pos 990
INCLUDE 'mc9sl2c32.inc'

ERROR A2309: Fipm—mmsm—Snmms
8012 Assembler: Main Help 3y *
e Help on "Fle not found”
3012 Rssembler: b, " , , . ,
Cpen file "E:\Projects\Fibonacad\Sources\main.asm

Copy "ERROR A2309; File not found"

v
< >

Calls context help 06:03:36

If the Assembler cannot open a file even though a context menu entry is present, then the
editor configuration information is incorrect (see the on page 81Editor Settings dialog
box on page 81 section below).

The message number is available for any message output. There are three ways to open the
corresponding entry in the help file:

76

HC(S)12 Assembler Manual

Assembler Graphical User Interface
Assembler main window

* Select one line of the message and press the F1 key. If the selected line does not
have a message number, the main help is displayed.

e Press Shift-F1 and then click on the message text. If the point clicked does not
have a message number, the main help is displayed.

¢ Click the right mouse button on the message text and select Help on This entry is
only available if a message number is available.

Toolbar

Figure 2.4 on page 77 displays the elements of the Toolbar.

Figure 2.4 Toolbar
DEE| 2 %[l
F T 3 F 3

sl & |~ ==

Stop
Coammand Line
Azzemhble
Context Help Opfions
2n Line Help Messames

Save current Configuration

Clear Azzem bler
Load & Configuration WWindow

Mew Configuration

The three buttons on the left hand side of the toolbar corresnond to the menu items of the
. L]

File menu. You can use the New [] , Load, [@ and Save E buttons to reset, load and

save configuration files for the Macro Assembler.

The Help button ? and the Context Help button h{:‘ allow you to open the Help file or
the Context Help.

When pressing k‘? the buttons above, the mouse cursor changes to a question mark
beside an arrow. The Assembler opens Help for the next item on which you click. You can
get specific Help on menus, toolbar buttons, or on the window area by using this Context
Help.

The editable combo box contains a list of the last commands which were executed. After a
command line has been selected or entered in this combo hox, click the Assemble

button @ to execute this command. The Stop button =1 becomes enabled whenever
some file is assembled. When the Stop button is pressed, the assembler stops the assembly
process.

HC(S)12 Assembler Manual 77

Assembler Graphical User Interface
Assembler main window

Pressing the Options Dialog Box button }‘ opens the Option Settings dialog box.
Pressing the Message Dialog Box button [=] opens the Message Settings dialog box.

Pressing the Clear button E clears the assembler window’s content area.

Status bar

Figure 2.5 on page 78 displays the elements of the Status bar.

Figure 2.5 Status bar

Proceszing ok 17:22:00 él
MESTAYE area current time

When pointing to a button in the tool bar or a menu entry, the message area displays the
function of the button or menu entry to which you are pointing.

Assembler menu bar

The following menus are available in the menu bar (Table 2.1 on page 78):

Table 2.1 Menu bar options

Menu Description
File menu on page 78 | Contains entries to manage Assembler configuration files
Assembler menu on Contains entries to set Assembler options
page 80
View menu on Contains entries to customize the Assembler window output
page 80
Help A standard Windows Help menu
File menu

With the file menu, Assembler configuration files can be saved or loaded. An Assembler
configuration file contains the following information:

78 HC(S)12 Assembler Manual

Assembler Graphical User Interface
Assembler main window

* the assembler option settings specified in the assembler dialog boxes,
¢ the list of the last command line which was executed and the current command line,
* the window position, size, and font,

* the editor currently associated with the Assembler. This editor may be specifically
associated with the Assembler or globally defined for all Tools. (See Editor Settings
dialog box on page 81.),

* the Tips of the Day settings, including its startup configuration, and what is the
current entry, and

¢ Configuration files are text files which have the standard * . ini extension. You
can define as many configuration files as required for the project and can switch
among the different configuration files using the File > Load Configuration, File |
Save Configuration menu entries, or the corresponding toolbar buttons.

Table 2.2 File menu options

Menu entry Description

Assemble A standard Open File dialog box is opened, displaying
the list of all the *.asm files in the project directory. The
input file can be selected using the features from the
standard Open File dialog box. The selected file is
assembled when the Open File dialog box is closed by

clicking OK.
New/Default Resets the Assembler option settings to their default
Configuration values. The default Assembler options which are

activated are specified in the Assembler Options on
page 123 chapter.

Load Configuration A standard Open File dialog box is opened, displaying
the list of all the *.ini files in the project directory. The
configuration file can be selected using the features
from the standard Open File dialog box. The
configuration data stored in the selected file is loaded
and used in further assembly sessions.

Save Configuration Saves the current settings in the configuration file
specified on the title bar.

Save Configuration A standard Save As dialog box is opened, displaying
As... the list of all the *.ini files in the project directory. The
name or location of the configuration file can be
specified using the features from the standard Save As
dialog box. The current settings are saved in the
specified configuration file when the Save As dialog box
is closed by clicking OK.

HC(S)12 Assembler Manual 79

Assembler Graphical User Interface
Assembler main window

Table 2.2 File menu options (continued)

Menu entry Description

Configuration... Opens the Configuration dialog box to specify the editor
used for error feedback and which parts to save with a
configuration.

See Editor Settings dialog box

and Save Configuration dialog box.

1. project.ini Recent project list. This list can be used to reopen a
2. .. recently opened project.
Exit Closes the Assembler.

Assembler menu

The Assembler menu (Table 2.3 on page 80) allows you to customize the Assembler. You
can graphically set or reset the Assembler options or to stop the assembling process.

Table 2.3 Assembler menu options

Menu entry Description

Options Defines the options which must be activated when assembling
an input file. (See Option Settings dialog box on page 89)

Messages Maps messages to a different message class (See Message
Settings dialog box on page 89)

Stop assembling Stops the assembling of the current source file.

View menu

The View menu (Table 2.4 on page 80) lets you customize the assembler window. You
can specity if the status bar or the toolbar must be displayed or be hidden. You can also
define the font used in the window or clear the window.

Table 2.4 View menu options

Menu entry Description
Toolbar Switches display from the toolbar in the assembler window.
Status Bar Switches display from the status bar in the assembler window.

80 HC(S)12 Assembler Manual

Assembler Graphical User Interface
Editor Settings dialog box

Table 2.4 View menu options (continued)

Menu entry Description

Log... Customizes the output in the assembler window content area.
The following two entries in this table are available when Log...
is selected:

Change Font Opens a standard font dialog box. The options selected in the
font dialog box are applied to the assembler window content
area.

Clear Log Clears the assembler window content area.

Editor Settings dialog box

The Editor Setting dialog box has a main selection entry. Depending on the main type of
editor selected, the content below changes.

These are the following main entries:

Global Editor (shared by all tools and
projects)

This entry (Figure 2.6 on page 82) is shared by all tools (Compiler/Linker/Assembler/...)
for all projects. This setting is stored in the [Editor] section of the mcutools.ini
global initialization file. Some Modifiers on page 86 can be specified in the editor
command line.

HC(S)12 Assembler Manual 81

Assembler Graphical User Interface
Editor Settings dialog box

Figure 2.6 Global Editor Configuration

Configuration

Editar Settings] Save Configuration | Erviranment |

+ Global Editor (Shared by all Tools and all Projects]
" Local Editar (Shared by all Tools)
(" Editar started with Command Line
(" Editar Communication with DDE
~

Codebwarrion [with COB)]

Editar Mame |UItraEdit-32

Editor Executable |C:\F'rc-glam FilestDh Computer 5 J

Editar Arguments |5 3| 3

use Zf for the filename, %1 for the line and % for the column

ok | Cancel | Help |

Local Editor (shared by all tools)

This entry (Figure 2.7 on page 83) is shared by all tools (Compiler/Linker/Assembler/...)
for the current project. This setting is stored in the [Editor] section of the local
initialization file, usually project . ini in the current directory. Some Modifiers on
page 86 can be specified in the editor command line.

The global or local editor configuration affects other tools besides the Assembler. It is
recommended to close other tools while modifying these topics.

82 HC(S)12 Assembler Manual

Assembler Graphical User Interface
Editor Settings dialog box

Figure 2.7 Local Editor configuration

Configuration

]

Editar Settings] Save Configuration | Erviranment |

" Global Editor (Shared by all Tools and all Projects]

Local Editor (Shared by all Tools]

E ditar Canmmunization with DOE

Codebwarrion [with COB)]

i*
(" Editor started with Command Line
~
~

Editar Mame |EdilF'|US 2

Editor Executable |c:;\ng[am Files\E ditPlus 24editpl J

Editar Arguments sy 5

]

use Zf for the filename, %1 for the line and % for the column

Cancel | Help |

]

Editor started with the command line

When this editor type is selected, a separate editor is associated with the Assembler for
error feedback. The editor configured in the shell is not used for error feedback.

Enter the command which should be used to start the editor.

The format from the editor command depends on the syntax which should be used to start
the editor. Modifiers can be specified in the editor command line to refer to a filename and
line and column position numbers. (See the Modifiers on page 86 section below.)

HC(S)12 Assembler Manual

83

Assembler Graphical User Interface
Editor Settings dialog box

Figure 2.8 Command-Line Editor configuration

X]

Configuration
Editar Settings] Save Configuration | Erviranment |

" Global Editor (Shared by all Tools and all Projects]

Local Editor (Shared by all Tools]

~
{+ Editor started with Command Ling
" Editar Communication with DDE

~

Codebwarrion [with COB)]

Command Line

||:: “Program FileshDh Computer Solutions'UltraE dit J

use Zf for the filename, %1 for the line and % for the column

ok | Cancel | Help |

Examples of configuring a command-line editor

The following cases portray the syntax used for configuring two external editors.

Listing 2.1 on page 84 can be used for the CodeWright editor (with an adapted path to the
cw32 . exe file). For WinEdit 32 bit version, use the configuration in Listing 2.2 on
page 84 (with an adapted path to the winedit . exe file.

Listing 2.1 CodeWright editor configuration

C:\cw32\cw32.exe $f -g%l1

Listing 2.2 WinEdit editor configuration

C:\WinEdit32\WinEdit.exe %f /#:%1

84 HC(S)12 Assembler Manual

Assembler Graphical User Interface
Editor Settings dialog box

Editor started with DDE

Enter the service, topic and client name to be used for a DDE (Dynamic Data Exchange)
connection to the editor. All entries can have modifiers for the filename and line number,
as explained in the Modifiers on page 86 section. See Figure 2.9 on page 85.

Figure 2.9 DDE Editor configuration

Configuration

Editor Settings !Save Configuration | Environmentl

(" Global Editor (Shared by all Tools and all Projects)
(~ Local Editor (Shared by all Tools)

(" Editor started with Command Line

(& Editor Communication with DDE

" CodeWarrior (with COM)

Client Command

Service Name |msdev
Topic Name |system
(lopen(%f)]

Use %ffor the filename, %l for the line and %c for the column.

oK Cancel Help

For the Microsoft Developer Studio, use the following settings (Listing 2.3 on page 85):

Listing 2.3 Microsoft Developer Studio configuration settings

Service Name: "msdev"
Topic Name: "system"
Client Command: "[open(%$f)]"

HC(S)12 Assembler Manual 85

Assembler Graphical User Interface
Editor Settings dialog box

CodeWarrior with COM

If CodeWarrior with COM is enabled, the CodeWarrior IDE (registered as a COM server
by the installation script) is used as the editor (Figure 2.10 on page 86).

Figure 2.10 COM Editor Configuration

Configuration B|
Editor Settings]Save Configuration | Environment |
(Global Editor (Shared by all Tools and all Projects)
(" Local Editor (Shared by all Tools)
" Editor started with Command Line
(" Editor Communication with DDE

(@ CodeWarrior (with COM)

0K | Cancel Help

Modifiers

The configurations may contain some modifiers to tell the editor which file to open and at
which line and column.

¢ The % £ modifier refers to the name of the file (including path and extension) where
the error has been detected.

¢ The %1 modifier refers to the line number where the message has been detected.
¢ The %$c modifier refers to the column number where the message has been detected.

CAUTION Be careful. The $1 modifier can only be used with an editor which can be
started with a line number as a parameter. This is not the case for WinEdit

86

HC(S)12 Assembler Manual

Assembler Graphical User Interface
Save Configuration dialog box

version 3.1 or lower or for the Notepad. When you work with such an
editor, you can start it with the filename as a parameter and then select the
menu entry ‘Go fo’ to jump on the line where the message has been
detected. In that case the editor command looks like:
C:\WINAPPS\WINEDIT\Winedit.exe %f

Please check your editor’s manual to define the command line which
should be used to start the editor.

Save Configuration dialog box

The second index of the configuration dialog box contains all options for the save
operation.

In the Save Configuration index, there are four check boxes where you can choose which
items to save into a project file when the configuration is saved.

This dialog box has the following configurations:

e Options: This item is related to the option and message settings. If this check box is
set, the current option and message settings are stored in the project file when the
configuration is saved. By disabling this check box, changes done to the option and
message settings are not saved, and the previous settings remain valid.

* Editor Configuration: This item is related to the editor settings. If you set this check
box, the current editor settings are stored in the project file when the configuration
is saved. If you disable this check box, the previous settings remain valid.

e Appearance: This item is related to many parts like the window position (only
loaded at startup time) and the command-line content and history. If you set this
check box, these settings are stored in the project file when the current
configuration is saved. If you disable this check box, the previous settings remain
valid.

* Environment Variables: With this set, the environment variable changes done in the
Environment property panel are also saved.

NOTE By disabling selective options, only some parts of a configuration file can be
written. For example, when the best assembler options are found, the save
option mark can be removed. Then future save commands will not modify the
options any longer.

e Save on Exit: If this option is set, the Assembler writes the configuration on exit.
The Assembler does not prompt you to confirm this operation. If this option is not
set, the assembler does not write the configuration at exit, even if options or other
parts of the configuration have changed. No confirmation will appear in any case
when closing the assembler.

NOTE Almost all settings are stored in the project configuration file.
The only exceptions are:

HC(S)12 Assembler Manual 87

Assembler Graphical User Interface
Save Configuration dialog box

NOTE

- The recently used configuration list.
- All settings in the Save Configuration dialog box.

The configurations of the Assembler can, and in fact are intended to, coexist in
the same file as the project configuration of other tools and the IDF. When an
editor is configured by the shell, the assembler can read this content out of the
project file, if present. The default project configuration filename is
project.ini. The assembler automatically opens an existing
project.ini in the current directory at startup. Also when using the
-Prod: Specify project file at startup on page 185 assembler option at startup or
loading the configuration manually, a different name other than
project.ini can be chosen.

Environment Configuration dialog box

The third page of the dialog is used to configure the environment. The content of the
dialog is read from the actual project file out of the [Environment Variables] section.

The following variables are available:

¢ General Path: GENPATH
¢ Object Path: OBJPATH
¢ Text Path: TEXTPATH

¢ Absolute Path: ABSPATH

¢ Header File Path: LIBPATH

Various Environment Variables: other variables not covered by the above list.

The following buttons are available:

e Add: Adds a new line or entry

¢ Change: Changes a line or entry

e Delete: Deletes a line or entry

¢ Up: Moves a line or entry up

* Down: Moves a line or entry down

Note that the variables are written to the project file only if you press the Save Button (or
using File -> Save Configuration or CTRL-S). In addition, it can be specified in the Save
Configuration dialog box if the environment is written to the project file or not.

88

HC(S)12 Assembler Manual

Assembler Graphical User Interface
Option Settings dialog box

Option Settings dialog box

This dialog box allows you to set/reset assembler options. The options available are
arranged into different groups, and a sheet is available for each of these groups. The

content of the list box depends on the selected sheet (Table 2.5 on page 89):

Table 2.5 Option Settings options

Group Description

Output Lists options related to the output files generation (which kind
of file should be generated).

Input Lists options related to the input files.

Language Lists options related to the programming language (ANSI-C,
C++, ...)

Host Lists options related to the host.

Code Generation Lists options related to code generation (memory models, ...).

Messages Lists options controlling the generation of error messages.

Various Lists various additional options (options used for compatibility,
)

An assembler option is set when the check box in front of it is checked. To obtain more
detailed information about a specific option, select it and press the F1 key or the Help
button. To select an option, click once on the option text. The option text is then displayed
inverted.

When the dialog box is opened and no option is selected, pressing the F1 key or the Help
button shows the help about this dialog box.

The available options are listed in the Assembler Options on page 123 chapter.

Message Settings dialog box

You can use the Message Settings dialog box to map messages to a different message
class.

Some buttons in the dialog box may be disabled. For example, if an option cannot be
moved to an information message, the ‘Move to: Information’ button is disabled. The
following buttons are available in the dialog box (Table 2.6 on page 90):

HC(S)12 Assembler Manual 89

Assembler Graphical User Interface
Message Settings dialog box

Table 2.6 Message Settings options

Button

Description

Move to: Disabled

The selected messages are disabled; they will no longer be
displayed.

Move to: Information

The selected messages are changed to information
messages.

Move to: Warning

The selected messages are changed to warning
messages.

Move to: Error

The selected messages are changed to error messages.

Move to: Default

The selected messages are changed to their default
message types.

Reset All Resets all messages to their default message types.
OK Exits this dialog box and saves any changes.
Cancel Exits this dialog box without accepting any changes.
Help Displays online help about this dialog box.

A panel is available for each error message class and the content of the list box depends on
the selected panel (Table 2.7 on page 90):

Table 2.7 Types of message groups

Message group

Description

Disabled Lists all disabled messages. That means that messages
displayed in the list box will not be displayed by the Assembler.

Information Lists all information messages. Information messages informs
about action taken by the Assembler.

Warning Lists all warning messages. When such a message is

generated, translation of the input file continues and an object
file will be generated.

90

HC(S)12 Assembler Manual

Assembler Graphical User Interface
Message Settings dialog box

Table 2.7 Types of message groups (continued)

Message group Description

Error Lists all error messages. When such a message is generated,
translation of the input file continues, but no object file will be
generated.

Fatal Lists all fatal error messages. When such a message is

generated, translation of the input file stops immediately. Fatal
messages cannot be changed. They are only listed to call
context help.

Each message has its own character (‘A’ for Assembler message) followed by a 4- or
5-digit number. This number allows an easy search for the message on-line help.

Changing the class associated with a
message

You can configure your own mapping of messages to the different classes. To do this, use
one of the buttons located on the right hand of the dialog box. Each button refers to a
message class. To change the class associated with a message, you have to select the
message in the list box and then click the button associated with the class where you want
to move the message.

Example:
To define the warning ‘A2336: Value too big' as an error message:

¢ Click the Warning sheet to display the list of all warning messages in the list box.
e Click on the string ‘A2336: Value too big' in the list box to select the message.

e Click Error to define this message as an error message.

NOTE Messages cannot be moved from or to the fatal error class.

NOTE The ‘Move to’ buttons are enabled when all selected messages can be moved.
When one message is marked, which cannot be moved to a specific group, the
corresponding ‘Move to’ button is disabled (grayed).

If you want to validate the modification you have performed in the error message
mapping, close the 'Message settings' dialog box with the 'OK’ button. If you close it using
the 'Cancel' button, the previous message mapping remains valid.

HC(S)12 Assembler Manual 91

Assembler Graphical User Interface
About... dialog box

About... dialog box

The About... dialog box can be opened with the menu Help->About. The About... dialog
box contains much information including the current directory and the versions of
subparts of the Assembler. The main Assembler version is displayed separately on top of
the dialog box.

With the ‘Extended Information’ button it is possible to get license information about all
software components in the same directory of the executable.

Click on OK to close this dialog box.

NOTE During assembling, the subversions of the sub parts cannot be requested. They
are only displayed if the Assembler is not processing files.

Specifying the input file

There are different ways to specity the input file which must be assembled. During
assembling of a source file, the options are set according to the configuration performed
by the user in the different dialog boxes and according to the options specified on the
command line.

Before starting to assemble a file, make sure you have associated a working directory with
your assembler.

Use the command line in the toolbar to
assemble

You can use the command line to assemble a new file or to reassemble a previously
created file.

Assembling a new file

A new filename and additional assembler options can be entered in the command line. The
specified file is assembled when you press the Assemble button in the tool bar or when you
press the enter key.

92

HC(S)12 Assembler Manual

Assembler Graphical User Interface
Message/Error feedback

Assembling a file which has already been
assembled

The commands executed previously can be displayed using the arrow on the right side of
the command line. A command is selected by clicking on it. It appears in the command
line. The specified file will be processed when the button Assemble in the tool bar is
selected.

Use the File > Assemble... entry

When the menu entry File | Assemble... is selected a standard file Open File dialog box is
opened, displaying the list of all the * . asm files in the project directory. You can browse
to get the name of the file that you want to assemble. Select the desired file and click Open
in the Open File dialog box to assemble the selected file.

Use Drag and Drop

A filename can be dragged from an external software (for example the File Manager/
Explorer) and dropped into the assembler window. The dropped file will be assembled
when the mouse button is released in the assembler window. If a file being dragged has the
* _ini extension, it is considered to be a configuration and it is immediately loaded and
not assembled. To assemble a source file with the *.ini extension, use one of the other
methods.

Message/Error feedback

After assembly, there are several ways to check where different errors or warnings have
been detected. The default format of the error message is as Listing 2.4 on page 93.

Listing 2.4 Default configuration of an error message

>> <FileName>, line <line number>, col <column number>, pos <absolute
position in file>

<Portion of code generating the problem>

<message class><message number>: <Message string>

HC(S)12 Assembler Manual 93

Assembler Graphical User Interface
Message/Error feedback

A typical error message is like the one in Listing 2.5 on page 94.

Listing 2.5 Error message example

>> in "C:\Freescale\demo\fiboerr.asm", line 18, col 0, pos 722
DC label

~

ERROR A1104: Undeclared user defined symbol: label

For different message formats, see the following Assembler options:

e -WmsgFi (-WmsgFiv, -WmsgFim): Set message file format for interactive mode on
page 203,

* -WmsgFob: Message format for batch mode on page 205,

¢ -WmsgFoi: Message format for interactive mode on page 207,

* -WmsgFonf: Message format for no file information on page 209, and
¢ -WmsgFonp: Message format for no position information on page 211.

Use information from the assembler
window

Once a file has been assembled, the assembler window content area displays the list of all
the errors or warnings detected.

The user can use his usual editor to open the source file and correct the errors.

Use a user-defined editor

The editor for Error Feedback can be configured using the Configuration dialog box.
Error feedback is performed differently, depending on whether or not the editor can be
started with a line number.

Line number can be specified on the command
line

Editors like UltraEdit-32, WinEdit (v95 or higher), or CodeWright can be started with a
line number in the command line. When these editors have been correctly configured, they
can be started automatically by double clicking on an error message. The configured
editor will be started, the file where the error occurs is automatically opened and the
cursor is placed on the line where the error was detected.

94 HC(S)12 Assembler Manual

Assembler Graphical User Interface
Message/Error feedback

Line number cannot be specified on the
command line

Editors like WinEdit v31 or lower, Notepad, or Wordpad cannot be started with a line
number in the command line. When these editors have been correctly configured, they can
be started automatically by double clicking on an error message. The configured editor
will be started, and the file is automatically opened where the error occurs. To scroll to the
position where the error was detected, you have to:

Activate the assembler again.

Click the line on which the message was generated. This line is highlighted on the
screen.

Copy the line in the clipboard by pressing CTRL + C.

Activate the editor again.

Select Search > Find; the standard Find dialog box is opened.

Paste the contents of the clipboard in the Edit box pressing CTRL + V.

Click Forward to jump to the position where the error was detected.

HC(S)12 Assembler Manual 95

Assembler Graphical User Interface
Message/Error feedback

96 HC(S)12 Assembler Manual

Environment

This part describes the environment variables used by the Assembler. Some of those
environment variables are also used by other tools (e.g., Linker or Compiler), so consult
also the respective documentation.

There are three ways to specify an environment:

1) The current project file with the Environment Variables section. This file may be
specified on Tool startup using the -Prod: Specify project file at startup on page 185
assembler option. This is the recommended method and is also supported by the IDE.

2) An optional ‘default.env’ file in the current directory. This file is supported for
compatibility reasons with earlier versions. The name of this file may be specified using

the ENVIRONMENT: Environment file specification on page 108 environment variable.
Using the default. env file is not recommended.

3) Setting environment variables on system level (DOS level). This is also not
recommended.

Various parameters of the Assembler may be set in an environment using so-called
environment variables. The syntax is always the same (Listing 3.1 on page 97).

Listing 3.1 Syntax for setting environment variables

Parameter: KeyName"="ParamDef.

Listing 3.2 on page 97 is a typical example of setting an environment variable.

Listing 3.2 Setting the GENPATH environment variable

GENPATH=C: \INSTALL\LIB;D: \PROJECTS\TESTS; /usr/local/lib;
/home/me/my_project

These parameters may be defined in several ways:

¢ Using system environment variables supported by your operating system.

¢ Putting the definitions in a file called default.env (.hidefaults for UNIX)
in the default directory.

¢ Putting the definitions in a file given by the value of the ENVIRONMENT system
environment variable.

HC(S)12 Assembler Manual 97

Environment
Current directory

NOTE The default directory mentioned above can be set via the DEFAULTDIR
system environment variable.

When looking for an environment variable, all programs first search the system
environment, then the default.env (.hidefaults for UNIX) file and finally the
global environment file given by ENVIRONMENT. If no definition can be found, a default
value is assumed.

NOTE The environment may also be changed using the -Env: Set environment
variable on page 148 assembler option.

Current directory

The most important environment for all tools is the current directory. The current
directory is the base search directory where the tool starts to search for files (e.g., for the
default.env or .hidefaults)

Normally, the current directory of a launched tool is determined by the operating system
or by the program that launches another one (e.g., Make Utility, ...).

For the UNIX operating system, the current directory for an executable is also the current
directory from where the binary file has been started.

For MS Windows-based operating systems, the current directory definition is quite
complex:

e If the tool is launched using the File Manager/Explorer, the current directory is the
location of the launched executable tool.

e If the tool is launched using an icon on the Desktop, the current directory is the one
specified and associated with the Icon in its properties.

e If the tool is launched by dragging a file on the icon of the executable tool on the
desktop, the directory on the desktop is the current directory.

e If the tool is launched by another launching tool with its own current directory
specification (e.g., an editor as a Make utility, ...), the current directory is the one
specified by the launching tool.

¢ When a local project file is loaded, the current directory is set to the directory which
contains the local project file. Changing the current project file also changes the
current directory if the other project file is in a different directory. Note that
browsing for an assembly source file does not change the current directory.

To overwrite this behavior, the DEFAULTDIR: Default current directory on page 107
system environment variable may be used.

The current directory is displayed among other information with the -V: Prints the
Assembler version on page 187 assembler option and in the About... box.

98

HC(S)12 Assembler Manual

Environment
Environment macros

Environment macros

It is possible to use macros (Listing 3.3 on page 99) in your environment settings.

Listing 3.3 Using a macro for setting environment variables

MyVAR=C: \test
TEXTPATH=S$ (MyVAR) \ txt
OBJPATH=S {MyVAR} \obj

In the example in Listing 3.3 on page 99, TEXTPATH is expanded to ‘C: \test\txt’,
and OBJPATH is expanded to ‘C: \test\obj’.

From the example above, you can see that you either can use $ () or ${}. However, the
variable referenced has to be defined somewhere.

In addition, the following special variables in Listing 3.4 on page 99 are allowed. Note
that they are case-sensitive and always surrounded by { }. Also the variable content
contains a directory separator ‘\’ as well.

Listing 3.4 Special variables used with macros for setting environment variables
{Compiler}

This is the path of the directory one level higher than the directory for executable tool.
That is, if the executable is ‘C: \Freescale\prog\linker.exe’, then the variable
is ‘C: \Freescale\’. Note that { Compiler} is also used for the Assembler.

{Project}

Path of the directory containing the current project file. For example, if the current project
file is ‘C: \demo\project.ini’, the variable contains ‘C: \demo\’.

{System}
This is the path were your Windows O/S is installed, e.g., ‘C: \WINNT\ .

Global initialization file - mcutools.ini (PC
only)

All tools may store some global data into the mcutools. ini file.The tool first searches
for this file in the directory of the tool itself (path of the executable tool). If there is no
mcutools. ini file in this directory, the tool looks for an mcutools. ini file located
in the MS Windows installation directory (e.g., C : \WINDOWS).

Listing 3.5 on page 100 shows two typical locations used for the mcutools. ini files.

HC(S)12 Assembler Manual 99

Environment
Local configuration file (usually project.ini)

Listing 3.5 Usual locations for the mcutools.ini files

C:\WINDOWS\mcutools.ini
D:\INSTALL\prog\mcutools.ini

If a tool is started in the D: \INSTALL\prog\ directory, the initialization file located in
the same directory as the tool is used (D: \ INSTALL\prog\mcutools.ini).

But if the tool is started outside of the D: \ INSTALL\prog directory, the initialization
file in the Windows directory is used (C: \WINDOWS\mcutools.ini).

Local configuration file (usually project.ini)

The Assembler does not change the default . env file in any way. The Assembler only
reads the contents. All the configuration properties are stored in the configuration file. The
same configuration file can and is intended to be used by different applications
(Assembler, Linker, etc.).

The processor name is encoded into the section name, so that the Assembler for different
processors can use the same file without any overlapping. Different versions of the same
Assembler are using the same entries. This usually only leads to a potential problem when
options only available in one version are stored in the configuration file. In such situations,
two files must be maintained for the different Assembler versions. If no incompatible
options are enabled when the file is last saved, the same file can be used for both
Assembler versions.

The current directory is always the directory that holds the configuration file. If a
configuration file in a different directory is loaded, then the current directory also changes.
When the current directory changes, the whole default . env file is also reloaded.
When a configuration file is loaded or stored, the options located in the ASMOPTIONS:
Default assembler options on page 105 environment variable are reloaded and added to
the project’s options.

This behavior has to be noticed when in different directories different default.env
files exist which contain incompatible options in their ASMOPTIONS environment
variables. When a project is loaded using the first default . env file, its ASMOPTIONS
options are added to the configuration file. If this configuration is then stored in a different
directory, where a default . env file exists with these incompatible options, the
Assembler adds the options and remarks the inconsistency. Then a message box appears to
inform the user that those options from the default . env file were not added. In such a
situation, the user can either remove the options from the configuration file with the
advanced option dialog box or he can remove the option from the default . env file
with the shell or a text editor depending upon which options should be used in the future.

100

HC(S)12 Assembler Manual

Environment
Paths

Paths

At startup, the configuration stored in the project. ini file located in the current
directory is loaded.

Local Configuration File Entries on page 409 documents the sections and entries you can
putinaproject.ini file.

Most environment variables contain path lists telling where to look for files. A path list is
a list of directory names separated by semicolons following the syntax in Listing 3.6 on

page 101.

Listing 3.6 Syntax used for setting path lists of environment variables

PathList=DirSpec{"; "DirSpec}
DirSpec=["*"]DirectoryName

Listing 3.7 on page 101 is a typical example of setting an environment variable.

Listing 3.7 Setting the paths for the GENPATH environment variable

GENPATH=C

:\INSTALL\LIB;D:\PROJECTS\TESTS; /usr/local/Freescale/lib;/

home/me/my_project

If a directory name is preceded by an asterisk (*), the programs recursively search that
whole directory tree for a file, not just the given directory itself. The directories are
searched in the order they appear in the path list. Listing 3.8 on page 101 shows the use of
an asterisk (*) for recursively searching the entire C drive for a configuration file with a
\INSTALL\LIB path.

Listing 3.8 Recursive search for a configuration file

LIBPATH=*C:\INSTALL\LIB

NOTE Some DOS/UNIX environment variables (like GENPATH, LIBPATH, etc.) are
used. For further details refer to GENPATH=.\: TEXTFILE=.\txt Environment
variable details on page 103.

We strongly recommend working with the Shell and setting the environment by means of
adefault.env file in your project directory. (This ‘'project dir'can be set in the

HC(S)12 Assembler Manual 101

Environment
Line continuation

Shell's 'Configure' dialog box). Doing it this way, you can have different projects in
different directories, each with its own environment.

NOTE When starting the Assembler from an external editor, do not set the
DEFAULTDIR system environment variable. If you do so and this variable
does not contain the project directory given in the editor’s project
configuration, files might not be placed where you expect them to be!

A synonym also exists for some environment variables. Those synonyms may be used for
older releases of the Assembler, but they are deprecated and thus they will be removed in
the future.

Line continuation

It is possible to specify an environment variable in an environment file (default.env
or.hidefaults) over multiple lines using the line continuation character ‘\’
(Listing 3.9 on page 102):

Listing 3.9 Using multiple lines for an environment variable

ASMOPTIONS=\
-W2\
-WmsgNe=10

Listing 3.9 on page 102 is the same as the alternate source code in Listing 3.10 on
page 102.

Listing 3.10 Alternate form of Listing 3.9 on page 102

ASMOPTIONS=-W2 -WmsgNe=10

But this feature may be dangerous when used together with paths (Listing 3.11 on
page 102).

Listing 3.11 A path is included by the line continuation character

GENPATH=.\
TEXTFILE=.\txt

will result in

102 HC(S)12 Assembler Manual

Environment
Line continuation

GENPATH=.TEXTFILE=.\txt

In order to avoid such problems, we recommend that you use a semicolon’ ; ’ at the end of a path if there
is a backslash *\ ’ at the end (Listing 3.12 on page 103).

Listing 3.12 Recommended style whenever a backslash is present

GENPATH=.\;
TEXTFILE=.\txt
Environment variable details

The remainder of this section is devoted to describing each of the environment variables
available for the Assembler. The environment variables are listed in alphabetical order and
each is divided into several sections (Table 3.1 on page 103).

Table 3.1 Topics used for describing environment variables

Topic Description

Tools Lists tools which are using this variable.

Synonym (where one | A synonym exists for some environment variables. These
exists) synonyms may be used for older releases of the Assembler but
they are deprecated and they will be removed in the future. A
synonym has lower precedence than the environment variable.

Syntax Specifies the syntax of the option in an EBNF format.
Arguments Describes and lists optional and required arguments for the
variable.

Default (if one exists) | Shows the default setting for the variable if one exists.

Description Provides a detailed description of the option and its usage.

Example Gives an example of usage and effects of the variable where
possible. An example shows an entry in the default.env for the
PC or in the .hidefaults for UNIX.

See also (if needed) Names related sections.

HC(S)12 Assembler Manual 103

Environment
Line continuation

ABSPATH: Absolute file path

Tools

Compiler, Assembler, Linker, Decoder, or Debugger

Syntax
ABSPATH={<path>}

Arguments

<path>: Paths separated by semicolons, without spaces

Description

This environment variable is only relevant when absolute files are directly
generated by the Macro Assembler instead of relocatable object files. When this
environment variable is defined, the Assembler will store the absolute files it
produces in the first directory specified there. If ABSPATH is not set, the generated
absolute files will be stored in the directory where the source file was found.

Example

ABSPATH=\sources\bin;..\..\headers;\usr\local\bin

104 HC(S)12 Assembler Manual

Environment
Line continuation

ASMOPTIONS: Default assembler options

Tools

Assembler

Syntax
ASMOPTIONS={<option>}

Arguments

<option>: Assembler command-line option

Description

If this environment variable is set, the Assembler appends its contents to its
command line each time a file is assembled. It can be used to globally specify
certain options that should always be set, so you do not have to specify them each
time a file is assembled.

Options enumerated there must be valid assembler options and are separated by
space characters.

Example
ASMOPTIONS=-W2 -L

See also

Assembler Options on page 123

HC(S)12 Assembler Manual 105

Environment
Line continuation

COPYRIGHT: Copyright entry in object file

Tools

Compiler, Assembler, Linker, or Librarian

Syntax
COPYRIGHT=<copyright>

Arguments

<copyright>: copyright entry

Description

Each object file contains an entry for a copyright string. This information may be
retrieved from the object files using the Decoder.

Example
COPYRIGHT=Copyright

See also
Environment variables:

* USERNAME: User Name in object file on page 118
¢ INCLUDETIME: Creation time in the object file on page 113

106 HC(S)12 Assembler Manual

Environment
Line continuation

DEFAULTDIR: Default current directory

Tools

Compiler, Assembler, Linker, Decoder, Debugger, Librarian, or Maker

Syntax
DEFAULTDIR=<directory>

Arguments

<directory>: Directory to be the default current directory

Description

The default directory for all tools may be specified with this environment variable.
Each of the tools indicated above will take the directory specified as its current
directory instead of the one defined by the operating system or launching tool (e.g.,
editor).

NOTE This is an environment variable on the system level (global environment
variable). It cannot be specified in a default environment file (default.env
or.hidefaults).

Example
DEFAULTDIR=C:\INSTALL\PROJECT

See also

3

‘Current directory” on page 98
“Global initialization file - mcutools.ini (PC only)” on page 99

HC(S)12 Assembler Manual 107

Environment
Line continuation

ENVIRONMENT: Environment file specification

Tools

Compiler, Assembler, Linker, Decoder, Debugger, Librarian, or Maker

Synonym
HIENVIRONMENT

Syntax
ENVIRONMENT=<file>

Arguments

<file>: filename with path specification, without spaces

Description

This variable has to be specified on the system level. Normally the Assembler
looks in the current directory for an environment file named default.env
(.hidefaults on UNIX). Using ENVIRONMENT (e.g., set in the
autoexec.bat (DOS) or . cshrc (UNIX)), a different filename may be

specified.

NOTE This is an environment variable on the system level (global
environment variable). It cannot be specified in a default
environment file (default.envor.hidefaults).

Example

ENVIRONMENT=\Freescale\prog\global.env

108 HC(S)12 Assembler Manual

Environment
Line continuation

ERROREFILE: Filename specification error

Tools

Compiler, Assembler, or Linker

Syntax
ERRORFILE=<filename>

Arguments

<filename>: Filename with possible format specifiers

Default
EDOUT

Description

The ERRORFILE environment variable specifies the name for the error file (used
by the Compiler or Assembler).

Possible format specifiers are:
¢ '$n": Substitute with the filename, without the path.
e '$p': Substitute with the path of the source file.

e '$f': Substitute with the full filename, i.e., with the path and name (the same as
'$p%n').

In case of an improper error filename, a notification box is shown.

Examples

Listing 3.13 on page 109 lists all errors into the MyErrors . err file in the
current directory.

Listing 3.13 Naming an error file

ERRORFILE=MyErrors.err

HC(S)12 Assembler Manual 109

Environment
Line continuation

Listing 3.14 on page 110 lists all errors into the errors file in the \ tmp
directory.

Listing 3.14 Naming an error file in a specific directory

ERRORFILE=\tmp\errors

Listing 3.15 on page 110 lists all errors into a file with the same name as the source
file, but with extension * . err, into the same directory as the source file, e.g., if
we compile a file \sources\test.c, anerror list file \sources\test.err
will be generated.

Listing 3.15 Naming an error file as source filename

ERRORFILE=%f.err

For a test.c source file, a \dirl\test.err error list file will be generated
(Listing 3.16 on page 110).

Listing 3.16 Naming an error file as source filename in a specific directory

ERRORFILE=\dirl\%n.err

Fora\dirl\dir2\test.c source file,a \dirl\dir2\errors. txt error
list file will be generated (Listing 3.17 on page 110).

Listing 3.17 Naming an error file as a source filename with full path

ERRORFILE=%p\errors. txt

If the ERRORFILE environment variable is not set, errors are written to the default
error file. The default error filename depends on the way the Assembler is started.

If a filename is provided on the assembler command line, the errors are written to
the EDOUT file in the project directory.

If no filename is provided on the assembler command line, the errors are written to
the err. txt file in the project directory.

Another example (Listing 3.18 on page 111) shows the usage of this variable to
support correct error feedback with the WinEdit Editor which looks for an error file
called EDOUT:

110 HC(S)12 Assembler Manual

Environment
Line continuation

Listing 3.18 Configuring error feedback with WinEdit

Installation directory: E:\INSTALL\prog
Project sources: D:\SRC
Common Sources for projects: E:\CLIB

Entry in default.env (D:\SRC\default.env) :
ERRORFILE=E: \INSTALL\prog\EDOUT

Entry in WinEdit.ini (in Windows directory):
OUTPUT=E: \INSTALL\prog\EDOUT

NOTE Be careful to set this variable if the WinEdit Editor is used, otherwise the editor

cannot find the EDOUT file.

HC(S)12 Assembler Manual

111

Environment
Line continuation

GENPATH: Search path for input file

Tools

Compiler, Assembler, Linker, Decoder, or Debugger

Synonym
HIPATH

Syntax
GENPATH={<path>}

Arguments

<path>: Paths separated by semicolons, without spaces.

Description

The Macro Assembler will look for the sources and included files first in the
project directory, then in the directories listed in the GENPATH environment
variable.

NOTE If a directory specification in this environment variables starts with an asterisk
(*), the whole directory tree is searched recursive depth first, i.e., all
subdirectories and their subdirectories and so on are searched. Within one level
in the tree, the search order of the subdirectories is indeterminate.

Example

GENPATH=\sources\include; ..\..\headers; \usr\local\lib

112

HC(S)12 Assembler Manual

Environment
Line continuation

INCLUDETIME: Creation time in the object file

Tools

Compiler, Assembler, Linker, or Librarian

Syntax
INCLUDETIME= (ON|OFF)

Arguments
ON: Include time information into the object file.

OFF: Do not include time information into the object file.

Default
ON

Description

Normally each object file created contains a time stamp indicating the creation
time and data as strings. So whenever a new file is created by one of the tools, the
new file gets a new time stamp entry.

This behavior may be undesired if for SQA reasons a binary file compare has to be
performed. Even if the information in two object files is the same, the files do not
match exactly because the time stamps are not the same. To avoid such problems
this variable may be set to OFF. In this case the time stamp strings in the object file
for date and time are “none” in the object file.

The time stamp may be retrieved from the object files using the Decoder.

Example
INCLUDETIME=0OFF

See also

Environment variables:

e COPYRIGHT: Copyright entry in object file on page 106
¢ USERNAME: User Name in object file on page 118

HC(S)12 Assembler Manual 113

Environment
Line continuation

OBJPATH: Object file path

Tools

Compiler, Assembler, Linker, or Decoder

Syntax
OBJPATH= {<path>}

Arguments

<path>: Paths separated by semicolons, without spaces

Description

This environment variable is only relevant when object files are generated by the
Macro Assembler. When this environment variable is defined, the Assembler will
store the object files it produces in the first directory specified in path. If
OBJPATH is not set, the generated object files will be stored in the directory the
source file was found.

Example

OBJPATH=\sources\bin; ..\..\headers;\usr\local\bin

114

HC(S)12 Assembler Manual

Environment
Line continuation

SRECORD: S-Record type

Tools

Assembler, Linker, or Burner

Syntax
SRECORD=<RecordType>

Arguments

<RecordType>: Forces the type for the S-Record File which must be generated.
This parameter may take the value *S1’, *S2’,0r *S3".

Description

This environment variable is only relevant when absolute files are directly
generated by the Macro Assembler instead of object files. When this environment
variable is defined, the Assembler will generate an S-Record File containing
records from the specified type (S1 records when S1 is specified, S2 records when
S2 is specified, and S3 records when S3 is specified).

NOTE If the SRECORD environment variable is set, it is the user’s responsibility to
specify the appropriate S-Record File type. If you specify S1 while your code
is loaded above OXFFFF, the S-Record File generated will not be correct
because the addresses will all be truncated to 2-byte values.

When this variable is not set, the type of S-Record File generated will depend on
the size of the address, which must be loaded there. If the address can be coded on
2 bytes, an S1 record is generated. If the address is coded on 3 bytes, an S2 record
is generated. Otherwise, an S3 record is generated.

Example
SRECORD=S2

HC(S)12 Assembler Manual 115

Environment
Line continuation

TEXTPATH: Text file path

Tools

Compiler, Assembler, Linker, or Decoder

Syntax
TEXTPATH= {<path>}

Arguments

<path>: Paths separated by semicolons, without spaces.

Description

When this environment variable is defined, the Assembler will store the listing
files it produces in the first directory specified in path. If TEXTPATH is not set,
the generated listing files will be stored in the directory the source file was found.

Example

TEXTPATH=\sources\txt;..\..\headers;\usr\local\txt

116 HC(S)12 Assembler Manual

Environment
Line continuation

TMP: Temporary directory

Tools

Compiler, Assembler, Linker, Debugger, or Librarian

Syntax
TMP=<directory>

Arguments

<directory>: Directory to be used for temporary files

Description

If a temporary file has to be created, normally the ANSI function tmpnam () is
used. This library function stores the temporary files created in the directory
specified by this environment variable. If the variable is empty or does not exist,
the current directory is used. Check this variable if you get an error message
“Cannot create temporary file”.

NOTE TMP is an environment variable on the system level (global environment
variable). It CANNOT be specified in a default environment file (default. env
or .hidefaults).

Example
TMP=C: \TEMP

See also

Current directory on page 98

HC(S)12 Assembler Manual 117

Environment
Line continuation

USERNAME: User Name in object file

Tools

Compiler, Assembler, Linker, or Librarian

Syntax
USERNAME=<user>

Arguments

<user>: Name of user

Description

Each object file contains an entry identifying the user who created the object file.
This information may be retrieved from the object files using the decoder.

Example
USERNAME=PowerUser

See also
Environment variables:

e COPYRIGHT: Copyright entry in object file on page 106
¢ INCLUDETIME: Creation time in the object file on page 113

118 HC(S)12 Assembler Manual

Files

This chapter covers:

3

e “Input files” on page 119
e “Qutput files” on page 119

¢ “File Processing” on page 122

Input files

Input files to the Assembler:

¢ Source files on page 119
¢ Include files on page 119

Source files

The Macro Assembler takes any file as input. It does not require the filename to have a
special extension. However, we suggest that all your source filenames have the * . asm
extension and all included files have the * . inc.extension. Source files will be searched
first in the project directory and then in the directories enumerated in GENPATH: Search
path for input file on page 112

Include files

The search for include files is governed by the GENPATH environment variable. Include
files are searched for first in the project directory, then in the directories given in the
GENPATH environment variable. The project directory is set via the Shell, the Program

Manager, or the DEFAULTDIR: Default current directory on page 107 environment
variable.

Output files

Output files from the Assembler:
¢ Object files on page 120

e Absolute files on page 120
¢ S-Record Files on page 120

HC(S)12 Assembler Manual 119

Files
Output files

e Listing files on page 121

¢ Debug listing files on page 121
e Error listing file on page 121

Object files

After a successful assembling session, the Macro Assembler generates an object file
containing the target code as well as some debugging information. This file is written to
the directory given in the OBJPATH: Object file path on page 114 environment variable.
If that variable contains more than one path, the object file is written in the first directory
given; if this variable is not set at all, the object file is written in the directory the source
file was found. Object files always get the * . o extension.

Absolute files

When an application is encoded in a single module and all the sections are absolute
sections, the user can decide to generate directly an absolute file instead of an object file.
This file is written to the directory given in the ABSPATH: Absolute file path on page 104
environment variable. If that variable contains more than one path, the absolute file is
written in the first directory given; if this variable is not set at all, the absolute file is
written in the directory the source file was found. Absolute files always get the * . abs
extension.

S-Record Files

When an application is encoded in a single module and all the sections are absolute
sections, the user can decide to generate directly an ELF absolute file instead of an object
file. In that case a S-Record File is generated at the same time. This file can be burnt into a
ROM. It contains information stored in all the READ_ONLY sections in the application.
The extension for the generated S-Record File depends on the setting from the SRECORD
variable.

e If SRECORD = S1, the S-Record File gets the * . s1 extension.
e If SRECORD = S2, the S-Record File gets the * . s2 extension.
e If SRECORD = S3, the S-Record File gets the * . s3 extension.
e If SRECORD is not set, the S-Record File gets the * . sx extension.

This file is written to the directory given in the ABSPATH environment variable. If that
variable contains more than one path, the S-Record File is written in the first directory
given; if this variable is not set at all, the S-Record File is written in the directory the
source file was found.

120

HC(S)12 Assembler Manual

Files
Output files

Listing files
After successful assembling session, the Macro Assembler generates a listing file
containing each assembly instruction with their associated hexadecimal code. This
file is always generated when the -L: Generate a listing file on page 153 assembler
option is activated (even when the Macro Assembler generates directly an absolute
file). This file is written to the directory given in the TEXTPATH: Text file path on
page 116.environment variable. If that variable contains more than one path, the
listing file is written in the first directory given; if this variable is not set at all, the
listing file is written in the directory the source file was found. Listing files always
get the * . 1st extension. The format of the listing file is described in the
Assembler Listing File on page 355 chapter.

Debug listing files

After successful assembling session, the Macro Assembler generates a debug listing file,
which will be used to debug the application. This file is always generated, even when the
Macro Assembler directly generates an absolute file. The debug listing file is a duplicate
from the source, where all the macros are expanded and the include files merged. This file
is written to the directory given in the OBJPATH: Object file path on page 114
environment variable. If that variable contains more than one path, the debug listing file is
written in the first directory given; if this variable is not set at all, the debug listing file is
written in the directory the source file was found. Debug listing files always get the

* . dbg extension.

Error listing file

If the Macro Assembler detects any errors, it does not create an object file but does create
an error listing file. This file is generated in the directory the source file was found (see

ERRORFILE: Filename specification error on page 109.

If the Assembler’s window is open, it displays the full path of all include files read. After
successful assembling, the number of code bytes generated is displayed, too. In case of an
error, the position and filename where the error occurs is displayed in the assembler
window.

If the Assembler is started from the IDE (with '$ £' given on the command line), this error
file is not produced. Instead, it writes the error messages in a special Microsoft default
format in a file called EDOUT. Use WinEdit’s Next Error or CodeWright’s Find Next
Error command to see both error positions and the error messages.

HC(S)12 Assembler Manual 121

Files
File Processing

Interactive mode (Assembler window open)

If ERRORFILE is set, the Assembler creates a message file named as specified in this
environment variable.

If ERRORFILE is not set, a default file named err . txt is generated in the current
directory.

Batch mode (Assembler window not open)

If ERRORFILE is set, the Assembler creates a message file named as specified in this
environment variable.

If ERRORFILE is not set, a default file named EDOUT is generated in the current
directory.

File Processing

Figure 4.1 on page 122 shows how the Assembler locates its input and output files.

122 HC(S)12 Assembler Manual

Files
File Processing

Figure 4.1 File processing with the Assembler

LAS51

1. current dir

inc

.

.0

.dbg

1. current dir

2. GENPATH 2. GENPATH
r
Assembler
ERRORFILE
1. OBJPATH 1st | 1. TEXTPATH | ERR.TXT
2. Source file 2. Source file or
path path EDOUT

. ABSPATH
. Source file
path

[N

HC(S)12 Assembler Manual

123

Files
File Processing

124 HC(S)12 Assembler Manual

Assembler Options

Types of assembler options

The Assembler offers a number of assembler options that you can use to control the
Assembler’s operation. Options are composed of a dash/minus (-) followed by one or
more letters or digits. Anything not starting with a dash/minus is supposed to be the name
of a source file to be assembled. Assembler options may be specified on the command line
or in the ASMOPTIONS: Default assembler options on page 105 (Table 5.1 on page 123)
environment variable. Typically, each Assembler option is specified only once per
assembling session.

Command-line options are not case-sensitive. For example, "-Li" is the same as
"-11i". Itis possible to coalescing options in the same group, i.e., one might also write
"-Lci" instead of "-Lc -Li". However such a usage is not recommended as it make
the command line less readable and it does also create the danger of name conflicts. For
example "-Li -Lc" is not the same as "-Lic" because this is recognized as a separate,
independent option on its own.

NOTE It is not possible to coalesce options in different groups, e.g.,
"-Lc -W1" cannot be abbreviated by the terms "-LC1" or "-LCW1".

Table 5.1 ASMOPTIONS environment variable

ASMOPTIONS If this environment variable is set, the Assembler appends its
contents to its command line each time a file is assembled. It can
be used to globally specify certain options that should always be
set, so you do not have to specify them each time a file is assem-
bled.

HC(S)12 Assembler Manual 123

Assembler Options
Types of assembler options

Assembler options (Table 5.2 on page 124) are grouped by:

Output, Input, Language, Host, Code Generation, Messages, and Various.

Table 5.2 Assembler option categories

Group Description

Output Lists options related to the output files generation (which kind of
file should be generated).

Input Lists options related to the input files.

Language Lists options related to the programming language (ANSI-C,
C++, ...)

Host Lists options related to the host.

Code Generation Lists options related to code generation (memory models, ...).

Messages Lists options controlling the generation of error messages.

Various Lists various options.

The group corresponds to the property sheets of the graphical option settings.

Each option has also a scope (Table 5.3 on page 124).

Table 5.3 Scopes for assembler options

Scope Description

Application This option has to be set for all files (assembly units) of an
application. A typical example is an option to set the memory model.
Mixing object files will have unpredictable results.

Assembly Unit This option can be set for each assembling unit for an application
differently. Mixing objects in an application is possible.

None The scope option is not related to a specific code part. A typical
example are options for the message management.

The options available are arranged into different groups, and a tab selection is available
for each of these groups. The content of the list box depends upon the tab that is selected.

124 HC(S)12 Assembler Manual

Assembler Options
Assembler Option details

Assembler Option details

The remainder of this section is devoted to describing each of the assembler options
available for the Assembler. The options are listed in alphabetical order and each is
divided into several sections (Table 5.4 on page 125).

Table 5.4 Assembler option details

Topic

Description

Group

Output, Input, Language, Host, Code Generation, Messages, or Various.

Scope

Application, Assembly Unit, Function, or None.

Syntax

Specifies the syntax of the option in an EBNF format.

Arguments

Describes and lists optional and required arguments for the option.

Default

Shows the default setting for the option.

Description

Provides a detailed description of the option and how to use it.

Example

Gives an example of usage, and effects of the option where possible.
Assembler settings, source code and/or Linker PRM files are displayed
where applicable. The examples shows an entry in the default.env
for the PC or in the .hidefaults for UNIX.

See also (if
needed)

Names related options.

Using special modifiers

With some options it is possible to use special modifiers. However, some modifiers may
not make sense for all options. This section describes those modifiers.

The following modifiers are supported (Table 5.5 on page 125).

Table 5.5 Special modifiers for assembler options

Modifier

Description

Yop

Path including file separator

%N

Filename in strict 8.3 format

%on

Filename without its extension

%E

Extension in strict 8.3 format

HC(S)12 Assembler Manual 125

Assembler Options
Assembler Option details

Table 5.5 Special modifiers for assembler options (continued)

Modifier | Description

Y% Extension

Yof Path + filename without its extension

%" A double quote (“) if the filename, the path or the extension contains a
space

%’ A single quote (') if the filename, the path, or the extension contains a
space

%(ENV) Replaces it with the contents of an environment variable

%% Generates a single ‘%’

Examples using special modifiers

The assumed path and filename (filename base for the modifiers) used for the examples
Listing 5.2 on page 126 through Listing 5.13 on page 128 is displayed in Listing 5.1 on
page 126.

Listing 5.1 Example filename and path used for the following examples

C:\Freescale\my demo\TheWholeThing.myExXt

Using the $p modifier as in Listing 5.2 on page 126 shows the path with a file separator
but without the filename.

Listing 5.2 %p gives the path only with the final file separator

C:\Freescale\my demo\

Using the $N modifier only displays the filename in 8.3 format but without the file
extension (Listing 5.3 on page 126).

Listing 5.3 %N results in the filename in 8.3 format (only the first 8 characters)

TheWhole

The %n modifier returns the entire filename but with no file extension (Listing 5.4 on
page 127.

126 HC(S)12 Assembler Manual

Assembler Options
Assembler Option details

Listing 5.4 %n returns just the filename without the file extension

TheWholeThing

Using %E as a modifier returns the first three characters in the file extension (Listing
5.5 on page 127).

Listing 5.5 %E gives the file extension in 8.3 format (only the first 3 characters)

myE

If you want the entire file extension, use the $e modifier (Listing 5.6 on page 127).

Listing 5.6 %e is used for returning the whole extension

myExt

The % £ modifier returns the path and the filename but without the file extension
(Listing 5.7 on page 127).

Listing 5.7 %f gives the path plus the filename (no file extension)

C:\Freescale\my demo\TheWholeThing

The path in Listing 5.1 on page 126 contains a space, therefore using $” or %’ is
recommended

(Listing 5.8 on page 127 or Listing 5.9 on page 127).

Listing 5.8 Use %”%f%” in case there is a space in its path, filename, or extension

“C:\Freescale\my demo\TheWholeThing”

Listing 5.9 Use %’%f%’ where there is a space in its path, filename, or extension

‘C:\Freescale\my demo\TheWholeThing’

Using % (envVariable) an environment variable may be used. A file separator
following % (envVariable) isignored if the environment variable is empty or does not
exist. If TEXTPATH is set as in Listing 5.10 on page 128, then $(TEXTPATH)\myfile.txt

is expressed as in Listing 5.11 on page 128.

HC(S)12 Assembler Manual 127

Assembler Options
List of assembler options

Listing 5.10 Example for setting TEXTPATH

TEXTPATH=C: \Freescale\txt

Listing 5.11 $(TEXTPATH)\myfile.txt where TEXTPATH is defined

C:\Freescale\txt\myfile.txt

However, if TEXTPATH does not exist or is empty, then $(TEXTPATH)\myfile.txt is
expressed as in Listing 5.12 on page 128).

Listing 5.12 $(TEXTPATH)\myfile.txt where TEXTPATH does not exist

myfile.txt

It is also possible to display the percent sign by using %%. %e%% allows the expression
of a percent sign after the extension as in Listing 5.13 on page 128.

Listing 5.13 %% allows a percent sign to be expressed

myExt%

List of assembler options

The following table lists each command line option you can use with the Assember
(Table 5.6 on page 128)

Table 5.6 Assembler options

Assembler option

-C=SAvocet: Switch Semi-Compatibility with Avocet Assembler ON on page 132

-Ci: Switch case sensitivity on label names OFF on page 133

-CMacAngBrack: Angle brackets for grouping Macro Arguments on page 135

-CMacBrackets: Square brackets for macro arguments grouping on page 136

-Compat: Compatibility modes on page 137

-CpDirect: Define DIRECT register value on page 140

128 HC(S)12 Assembler Manual

Assembler Options
List of assembler options

Table 5.6 Assembler options (continued)

Assembler option

-Cpu (-CpuCPU12, -CpuHCS12, -CpuHCS12X): Derivative on page 143

-D: Define Label on page 146

-Env: Set environment variable on page 148
-F (-Fh. -F20, -FA20, -F2, -FA2): Output-file format on page 149

-H: Short Help on page 151

-I: Include file path on page 152

-L: Generate a listing file on page 153

-Lasmc: Configure listing file on page 156

-Lasms: Configure the address size in the listing file on page 158

-Lc: No Macro call in listing file on page 160

-Ld: No macro definition in listing file on page 163

-Le: No Macro expansion in listing file on page 166

-Li: Not included file in listing file on page 169

-Lic: License information on page 171

-LicA: License information about every feature in directory on page 172

-LicBorrow: Borrow license feature on page 173

-LicWait: Wait until floating license is available from floating License Server on page 175

-MacroNest: Configure maximum macro nesting on page 177

-M (-Ms, -Mb, -Ml): Memory Model on page 176

-MCUasm: Switch compatibility with MCUasm ON on page 178

-N: Display notify box on page 179

-NoBeep: No beep in case of an error on page 180

-NoDebuglinfo: No debug information for ELF/DWAREF files on page 181

-NoEnv: Do not use environment on page 182

-ObjN: Object filename specification on page 183

HC(S)12 Assembler Manual 129

Assembler Options
List of assembler options

Table 5.6 Assembler options (continued)

Assembler option

-Prod: Specify project file at startup on page 185

-Struct: Support for structured types on page 186

-V: Prints the Assembler version on page 187

-View: Application standard occurrence on page 188

-W1: No information messages on page 190

-W2: No information and warning messages on page 191

-WErrFile: Create "err.log" error file on page 192

-Wmsg8x3: Cut filenames in Microsoft format to 8.3 on page 193

-WmsgCE: RGB color for error messages on page 195

-WmsgCF: RGB color for fatal messages on page 196

-WmsqgCl: RGB color for information messages on page 197

-WmsgCU: RGB color for user messages on page 198

-WmsgCW: RGB color for warning messages on page 199

-WmsqgFb (-WmsgFbv, -WmsgFbm): Set message file format for batch mode on
page 200

-WmsgFi (-WmsgFiv, -WmsgFim): Set message file format for interactive mode on
page 203

-WmsgFob: Message format for batch mode on page 205

-WmsqgFoi: Message format for interactive mode on page 207

-WmsgFonf: Message format for no file information on page 209

-WmsgFonp: Message format for no position information on page 211

-WmsgNe: Number of error messages on page 213

-WmsgNi: Number of Information messages on page 214

-WmsgNu: Disable user messages on page 215

-WmsgNw: Number of Warning messages on page 217

-WmsgSd: Setting a message to disable on page 218

130

HC(S)12 Assembler Manual

Assembler Options
Detailed listing of all assembler options

Table 5.6 Assembler options (continued)

Assembler option

-WmsgSe: Setting a message to Error on page 219

-WmsgSi: Setting a message to Information on page 220

-WmsgSw: Setting a Message to Warning on page 221

-WOutFile: Create error listing file on page 222

-WStdout: Write to standard output on page 223

Detailed listing of all assembler options

The remainder of the chapter is a detailed listing of all assembler options arranged in
alphabetical order.

HC(S)12 Assembler Manual 131

Assembler Options
Detailed listing of all assembler options

-C=SAvocet: Switch Semi-Compatibility with Avocet
Assembler ON

Group

Various

Scope
Assembly Unit

Syntax
-C=SAvocet

Arguments

None

Default

none.

Description

This switches ON compatibility mode with the Avocet Assembler. Additional
features supported when this option is activated are enumerated in the “‘Semi-
Avocet Compatibility” on page 435.

Example
ASMOPTIONS=-C=SAvocet

See also

Semi-Avocet Compatibility on page 435

132 HC(S)12 Assembler Manual

Assembler Options
Detailed listing of all assembler options

-Ci: Switch case sensitivity on label names OFF

Group
Input

Scope
Assembly Unit

Syntax
-ci

Arguments

None

Default

None

Description

This option turns off case sensitivity on label names. When this option is activated,
the Assembler ignores case sensitivity for label names. If the Assembler generates
object files but not absolute files directly (-FA2 assembler option), the case of
exported or imported labels must still match.

HC(S)12 Assembler Manual 133

Assembler Options
Detailed listing of all assembler options

Example

When case sensitivity on label names is switched off, the Assembler will not
generate an error message for the assembly source code in Listing 5.14 on

page 134.

Listing 5.14 Example assembly source code

ORG 5200
entry: NOP
BRA Entry

The instruction *BRA Entry’ branches on the ‘entry’ label. The default
setting for case sensitivity is ON, which means that the Assembler interprets the
labels ‘Entry’ and ‘entry’ as two distinct labels.

See also
-F (-Fh, -F2o0. -FA20, -F2, -FA2): Output-file format on page 149

134 HC(S)12 Assembler Manual

Assembler Options
Detailed listing of all assembler options

-CMacAngBrack: Angle brackets for grouping Macro Ar-
guments

Group

Language

Scope
Application

Syntax
-CMacAngBrack (ON| OFF)

Arguments
ON or OFF

Default

None

Description

This option controls whether the < > syntax for macro invocation argument
grouping is available. When it is disabled, the Assembler does not recognize the
special meaning for < in the macro invocation context. There are cases where the
angle brackets are ambiguous. New code should use the [? ?] syntax instead.

See also

Macro argument grouping on page 349

-CMacBrackets: Square brackets for macro arguments grouping on page 136

HC(S)12 Assembler Manual 135

Assembler Options
Detailed listing of all assembler options

-CMacBrackets: Square brackets for macro arguments grouping

Group

Language

Scope
Application

Syntax
-CMacBrackets (ON|OFF)

Arguments
ON or OFF

Default
ON

Description
This option control whether the [? 2] syntax for macro invocation argument
grouping is available. When it is disabled, the Assembler does not recognize the
special meaning for [? in the macro invocation context.

See also

Macro argument grouping on page 349

-CMacAngBrack: Angle brackets for grouping Macro Arguments on page 135

136 HC(S)12 Assembler Manual

Assembler Options
Detailed listing of all assembler options

-Compat: Compatibility modes

Group

Language

Scope
Application

Syntax
-Compat[={!|=|c|s|f|$]|a]|b}

Arguments

See below.

Default

None

Description

This option controls some compatibility enhancements of the Assembler. The goal
is not to provide 100% compatibility with any other Assembler but to make it
possible to reuse as much as possible. The various suboptions control different
parts of the assembly:

e =:Operator ! = means equal

The Assembler takes the default value of the ! = operator as not equal, as it is in
the C language. For compatibility, this behavior can be changed to equal with
this option. Because the danger of this option for existing code, a message is
issued for every ! = which is treated as equal.

e 1: Support additional ! operators
The following additional operators are defined when this option is used:
— I”:exponentiation
— !'m: modulo
— ! @:signed greater or equal
— 1g:signed greater

— 1%:signed less or equal

HC(S)12 Assembler Manual 137

Assembler Options
Detailed listing of all assembler options

! t: signed less than

— 1$:unsigned greater or equal
— !S:unsigned greater

— 1&: unsigned less or equal

— !'1: unsigned less

— In:one complement

— !'w: low operator

— h: high operator

NOTE The default values for the following ! operators are defined:
! .: binary AND
1 x: exclusive OR
! +: binary OR

¢ c: Alternate comment rules

With this suboption, comments implicitly start when a space is present after the
argument list. A special character is not necessary. Be careful with spaces when
this option is given because part of the intended arguments may be taken as a
comment. However, to avoid accidental comments, the Assembler issues a
warning if such a comment does not start witha "*" ora "; ".

Examples

— Listing 5.15 on page 138 demonstrates that when -Compat=c, comments
can start with an asterisk, *.

Listing 5.15 Comments starting with an asterisk (*)

NOP * Anything following an asterisk is a comment.

— When the -Compat=c assembler option is used, the first DC . B directive in
Listing 5.16 on page 138 has "+ 1 , 1" asacomment. A warning is
issued because the "comment” does not start witha " ; " ora "*". With -
Compat=c, this code generates a warning and three bytes with constant
values 1, 2, and 1. Without it, this code generates four 8-bit constants of 2, 1,
2,and 1.

Listing 5.16 Implicit comment start after a space

DC.B 1 + 1, 1
DC.B 1+1,1

138 HC(S)12 Assembler Manual

Assembler Options
Detailed listing of all assembler options

* s: Symbol prefixes

With this suboption, some compatibility prefixes for symbols are supported.
With this option, the Assembler accepts “pgz: ” and “byte: ” prefixed for
symbols in XDEF's and XREF's. They correspond to XREF . B or XDEF . B with
the same symbols without the prefix.

e f:Ignore FF character at line start

With this suboption, an otherwise improper character recognized from the
line-feed character is ignored.

e $: Support the $ character in symbols
With this suboption, the Assembler supports to start identifiers with a $ sign.
e a: Add some additional directives

With this suboption, some additional directives are added for enhanced
compatibility.

The Assembler actually supports a SECT directive as an alias of the usual
SECTION - Declare Relocatable Section on page 338 assembly directive. The
SECT directive takes the section name as its first argument.

* b: support the FOR directive

With this suboption, the Assembler supports a FOR - Repeat assembly block on
page 307 assembly directive to generate repeated patterns more easily without
having to use recursive macros.

HC(S)12 Assembler Manual 139

Assembler Options
Detailed listing of all assembler options

-CpDirect: Define DIRECT register value

Group

Code Generation

Scope
Application

Syntax
-CpDirect<num>

<num> is the start address of the memory window.

Arguments

<num>

Default
-CpDirect0x0000

Description

For the HC12 or HCS12 families, all direct accesses were accessing the address
range from 0x0000 to OxOOFF. In this range, a resource which is frequently used
could be mapped to benefit from the shorter direct-addressing mode compared to
the extended- addressing mode.

For the HCS12X, the mapping of RAM, registers, and EEPROM is no longer
supported. Instead, the direct accesses can now be configured to map to any
boundary in memory which is a multiple of 256 bytes.

Because of this change, the Assembler does need to know which part of the address
space is accessible through with the direct-addressing mode.

With the -CpDirect0 assembler option, the generated code is as for the HC12 or
HCS12.

NOTE This optimization is only useful for if the address is known. Variables allocated
in a SHORT section are not affected by this option.

140

HC(S)12 Assembler Manual

Assembler Options
Detailed listing of all assembler options

Example
Consider the following code in Listing 5.17 on page 141:

Listing 5.17 Example assembly code

data:

MyCode:
Entry:

main:

ORG $50
DS.B 1

SECTION

LDS #SAFE ; init Stack Pointer
LDAA #$01

STAA data

STAA $1150

BRA main

By default, or with -CpDirect0x0000 option, the following assembler listing is
generated (Listing 5.18 on page 141):

Listing 5.18 Default assembler output listing or when using the -CpDirect0x0000 option

a000050

000000
000003
000005
000007
00000A

ORG $50

data: DS.B 1

MyCode: SECTION

Entry:
CFOA FE LDS #SAFE ; init Stack Pointer
8601 LDAA #S$S01
5A50 main: STAA data
7211 50 STAA $1150
20F9 BRA main

When using the -CpDirectOx 1100 option (with the DIRECT page register contains
0x11), the assembler output listing (Listing 5.19 on page 141) is generated.

Listing 5.19 Assembler output listing when using the -CpDirect0x1100 option

a000050

000000
000003

ORG $50
data: DS.B 1
MyCode: SECTION
Entry:
CFOA FE LDS #SAFE ; init Stack Pointer
8601 LDAA #S$S01

HC(S)12 Assembler Manual 141

Assembler Options
Detailed listing of all assembler options

000005 7A00 50 main: STAA data
000008 5A50 STAA $1150
00000A 20F9 BRA main
142 HC(S)12 Assembler Manual

Assembler Options
Detailed listing of all assembler options

-Cpu (-CpuCPU12, -CpuHCS12, -CpuHCS12X): Derivative

Group

Code Generation

Scope
Application

Syntax
-Cpu{CPU12|HCS12|HCS12X}

Arguments

None

Default
-CpuCPU12

Description

This option controls whether code for an HC12, an HCS12, or for an HCS12X is
produced.

The instruction formats for the CPU12 and the HCS12 are very similar; these two
options do only differ in the PCR-relative MOVB /MOVW instructions.

In the CPU12 (or default) mode, the Assembler adapts the offsets according to the
CPU12 Reference Manual, paragraph 3.9.1 Move Instructions. In the HCS12
mode, it does not.

In the HCS12X mode, the Assembler supports the additional HCS12X instructions.
For the MOVB and MOVW instructions, it also supports their additional addressing
modes.

Examples
Consider the source code in Listing 5.20 on page 144:

HC(S)12 Assembler Manual 143

Assembler Options
Detailed listing of all assembler options

Listing 5.20 Example assembly code

One: DC 1
CopyOne: MOVB One, PCR, $1000

Using the default or with -CpuCPU12 assembler option, the Assembler generates
the output listing in Listing 5.21 on page 144:

Listing 5.21 Assembler output listing when using the default or the -CpuCPU12 option

000000 01 One: DC 1
000001 180D DC10 CopyOne: MOVB One, PCR, $1000
003005 00

With the -CpuHCS12 or the -CpuHCS12X option, the Assembler generates the
output listing in Listing 5.22 on page 144:

Listing 5.22 Assembler output listing when using the -CpuHCS12 or the -CpuHCS12X
option

003000 01 One: DC 1
003001 180D DA1O CopyOne: MOVB One, PCR, $1000
003005 00

The difference is that for the CPU12 the Assembler adapts the offset to One
according to the MOVB IDX/EXT case by -2, so the resulting code is $DC for the
IDX encoding. For the HCS12, this is not done, so the IDX encodes it as SDA.

NOTE PC-relative MOVB/MOVW instructions (e.g., *"MOVB 1, PC, 2, PC”) are not
adapted. Only PCR-relative move instructions (MOVB 1, PCR, 2, PCR) are
adapted.

To assemble HCS12X code, specify the ~-CpuHCS12X option.

Consider the source code in Listing 5.23 on page 145:

144 HC(S)12 Assembler Manual

Assembler Options
Detailed listing of all assembler options

Listing 5.23 Example assembly code

GLDAA $1234
MOVB $1234,X,$5678,Y
ANDX S$CDEF

When using the -CpuHCS 12X option, the Assembler generates the output listing in

Listing 5.24 on page 145:

Listing 5.24 Assembler output listing when using the -CpuHCS12X option

1 1 000000 18B6 1234 GLDAA $1234
2 2 000004 180A E212 MOVB $1234,X,$5678,Y
000008 34EA 5678
3 3 00000C 18B4 CDEF ANDX SCDEF
See also

CPU12 Reference Manual, paragraph 3.9.1 Move Instructions

HC(S)12 Assembler Manual

145

Assembler Options
Detailed listing of all assembler options

-D: Define Label

Group
Input

Scope
Assembly Unit

Syntax

-D<LabelName> [=<Value>]

Arguments

<LabelName>: Name of label.
<Value>: Value for label. 0 if not present.

Default

0 for Vvalue.

Description

This option behaves as if a “Label: EQU Value” would be at the start of the
main source file. When no explicit value is given, O is used as the default.

This option can be used to build different versions with one common source file.

Example

Conditional inclusion of a copyright notice. See Listing 5.25 on page 146 and
Listing 5.26 on page 147.

Listing 5.25 Source code that conditionally includes a copyright notice

YearAsString: MACRO

DC.B $30+(\1 /1000)%10

DC.B $30+(\1 / 100)%10

DC.B $30+(\1 / 10)%10

DC.B $30+(\1 / 1)%10
ENDM

146 HC(S)12 Assembler Manual

Assembler Options
Detailed listing of all assembler options

ifdef ADD_COPYRIGHT

ORG $1000

DC.B "Copyright by "

DC.B "John Doe"
ifdef YEAR

DC.B " 2005-"

YearAsString YEAR
endif

DC.B 0
endif

Listing 5.26 Generated listing file

When assembled with the "-dADD_COPYRIGHT -dYEAR=2005" option, the
assembler output listing file in Listing 5.26 on page 147 is generated:

1 1 YearAsString: MACRO
2 2 DC.B $30+(\1 /1000)%10
3 3 DC.B $30+(\1 / 100)%10
4 4 DC.B $30+(\1 / 10)%10
5 5 DC.B $30+(\1 / 1)%10
6 6 ENDM
7 7
8 8 0000 0001 ifdef ADD_COPYRIGHT
9 9 ORG $1000
10 10 a001000 436F 7079 DC.B "Copyright by "
001004 7269 6768
001008 7420 6279
00100C 20
11 11 a00100D 4A6F 686E DC.B "John Doe"
001011 2044 6F65
12 12 0000 0001 ifdef YEAR
13 13 a001015 2031 3939 DC.B " 2005-"
001019 392D
14 14 YearAsString YEAR
15 2m a00101B 32 + DC.B $30+(YEAR /1000)%10
16 3m a00101C 30 + DC.B $30+(YEAR / 100)%10
17 4m a00101D 30 + DC.B $30+(YEAR / 10)%10
18 5m a00101E 31 + DC.B $30+(YEAR / 1)%10
19 15 endif
20 16 a00101F 00 DC.B 0
21 17 endif

HC(S)12 Assembler Manual

147

Assembler Options
Detailed listing of all assembler options

-Env: Set environment variable

Group
Host

Scope
Assembly Unit

Syntax

-Env<EnvironmentVariable>=<VariableSetting>

Arguments
<EnvironmentVariable>: Environment variable to be set

<VariableSetting>: Setting of the environment variable

Default

None

Description

This option sets an environment variable.

Example
ASMOPTIONS=-EnvOBJPATH=\sources\obj
This is the same as:
OBJPATH=\sources\obj

in the default.env file.

See also

“GENPATH=.\: TEXTFILE=.\txt Environment variable details” on page 103

148 HC(S)12 Assembler Manual

Assembler Options
Detailed listing of all assembler options

-F (-Fh, -F20, -FA20, -F2, -FA2): Output-file format

Group
Output

Scope
Application

Syntax
-F(h|20|A20]|2|A2)

Arguments
h: HIWARE object-file format; this is the default
20: Compatible ELF/DWAREF 2.0 object-file format
A2o0: Compatible ELF/DWAREF 2.0 absolute-file format
2: ELF/DWAREF 2.0 object-file format
A2: ELF/DWAREF 2.0 absolute-file format

Default
-F2

Description
Defines the format for the output file generated by the Assembler.
Use the -Fh option to use a proprietary (HIWARE) object-file format.

With the -F2 option set, the Assembler produces an ELF/DWAREF object file.
This object-file format may also be supported by other Compiler or Assembler
vendors.

With the -FA2 option set, the Assembler produces an ELF/DWAREF absolute file.
This file format may also be supported by other Compiler or Assembler vendors.

Note that the ELF/DWAREF 2.0 file format has been updated in the current version
of the Assembler. If you are using HI-WAVE version 5.2 (or an earlier version),
-F2o0 or ~-FA20 must be used to generate the ELF/DWARF 2.0 object files which
can be loaded in the debugger.

HC(S)12 Assembler Manual 149

Assembler Options
Detailed listing of all assembler options

Example
ASMOPTIONS=-F2

150 HC(S)12 Assembler Manual

Assembler Options
Detailed listing of all assembler options

-H: Short Help

Listing 5.27

Group

Various

Scope

None

Syntax

-H

Arguments

None

Default

None

Description

The -H option causes the Assembler to display a short list (i.e., help list) of
available options within the assembler window. Options are grouped into Output,
Input, Language, Host, Code Generation, Messages, and Various.

No other option or source files should be specified when the —H option is invoked.

Example

Listing 5.27 on page 151 is a portion of the list produced by the —-H option:

Example help list

MESSAGE:
-N
-NoBeep
-wil

-W2
-WErrFile

Show notification box in case of errors

No beep in case of an error

Do not print INFORMATION messages

Do not print INFORMATION or WARNING messages
Create "err.log" Error File

HC(S)12 Assembler Manual

151

Assembler Options
Detailed listing of all assembler options

-I: Include file path

Group
Input

Scope

None

Syntax
-I<path>

Arguments

<path>: File path to be used for includes

Default

None

Description

With the - T option it is possible to specify a file path used for include files.

Example

-Id:\mySources\include

152 HC(S)12 Assembler Manual

Assembler Options
Detailed listing of all assembler options

-L: Generate a listing file

Group
Output

Scope

Assembly unit

Syntax

-L[=<dest>]

Arguments
<dest>: the name of the listing file to be generated.

It may contain special modifiers (see “Using special modifiers” on page 125).

Default

No generated listing file

Description

Switches on the generation of the listing file. If dest is not specified, the listing
file will have the same name as the source file, but with extension * . 1st. The
listing file contains macro definition, invocation, and expansion lines as well as
expanded include files.

Example
ASMOPTIONS=-L

In the following example of assembly code (Listing 5.28 on page 154), the cpChar
macro accepts two parameters. The macro copies the value of the first parameter to
the second one.

When the -L option is specified, the portion of assembly source code in
Listing 5.28 on page 154, together with the code from an include file (Listing
5.29 on page 154) generates the output listing in Listing 5.30 on page 154.

HC(S)12 Assembler Manual 153

Assembler Options
Detailed listing of all assembler options

Listing 5.28 Example assembly source code

XDEF Start

MyData: SECTION
charl: DS.B 1
char2: DS.B 1
INCLUDE "macro.inc"
CodeSec: SECTION
Start:

cpChar charl, char2

NOP

Listing 5.29 Example source code from an include file

cpChar: MACRO
LDAA \1
STAA \2

ENDM

Listing 5.30 Assembly output listing

Abs. Rel Loc Obj. code Source line

1 1 XDEF Start

2 2 MyData: SECTION

3 3 000000 charl: DS.B 1

4 4 000001 char2: DS.B 1

5 5 INCLUDE "macro.inc"

6 1i cpChar: MACRO

7 21 LDAA \1

8 31 STAA \2

9 41 ENDM

10 6 CodeSec: SECTION

11 7 Start:

12 8 cpChar charl, char2

13 2m 000000 B6 xxxx LDAA charl

14 3m 000003 7A xxxX STAA char?2

15 9 000006 A7 NOP
The Assembler stores the content of included files in the listing file. The
Assembler also stores macro definitions, invocations, and expansions in the listing
file.

154 HC(S)12 Assembler Manual

Assembler Options
Detailed listing of all assembler options

For a detailed description of the listing file, see the Assembler Listing File on
page 355 chapter.

See also
Assembler options:
e -Lasmc: Configure listing file on page 156

e -Lasms: Configure the address size in the listing file on page 158
e -Lc: No Macro call in listing file on page 160

¢ -Ld: No macro definition in listing file on page 163

¢ -Le: No Macro expansion in listing file on page 166

¢ -Li: Not included file in listing file on page 169

HC(S)12 Assembler Manual 155

Assembler Options
Detailed listing of all assembler options

-Lasmc: Configure listing file

Group
Output

Scope
Assembly unit

Syntax

-Lasmc={s|r|m|l|k|i|c]|a}

Arguments
s - Do not write the source column
r - Do not write the relative column (Rel.)
m - Do not write the macro mark
1 - Do not write the address (Loc)
k - Do not write the location type
1 - Do not write the include mark column
¢ - Do not write the object code

a - Do not write the absolute column (Abs.)

Default

Write all columns.

Description

The default-configured listing file shows a lot of information. With this option, the
output can be reduced to columns which are of interest. This option configures
which columns are printed in a listing file. To configure which lines to print, see
the -Lc: No Macro call in listing file on page 160, -Ld: No macro definition in
listing file on page 163, -Le: No Macro expansion in listing file on page 166, and -
Li: Not included file in listing file on page 169 assembler options.

156

HC(S)12 Assembler Manual

Assembler Options
Detailed listing of all assembler options

Examples
For the following assembly source code, the Assembler generates the default-
configured output listing (Listing 5.31 on page 157):

DC.B "Hello World"
DC.B O

Listing 5.31 Example assembler output listing

Rel. Loc Obj. code Source line

1 000000 4865 6C6C DC.B "Hello World"
000004 6F20 576F
000008 726C 64

2 00000B 00 DC.B O

In order to get this output without the source file line numbers and other irrelevant
parts for this simple DC . B example, the following option is added:
"-Lasmc=ramki ". This generates the output listing in Listing 5.32 on page 157:

Listing 5.32 Example output listing

000000
000004
000008
00000B

Obj. code Source line

4865 6C6C DC.B "Hello World"
6F20 576F

726C 64

00 DC.B 0

For a detailed description of the listing file, see the Assembler Listing File on
page 355 chapter.

See also
Assembler options:
e -L: Generate a listing file on page 153
e -Lc: No Macro call in listing file on page 160
e -Ld: No macro definition in listing file on page 163
* -Le: No Macro expansion in listing file on page 166
e -Li: Not included file in listing file on page 169

HC(S)12 Assembler Manual 157

Assembler Options
Detailed listing of all assembler options

e -Lasms: Configure the address size in the listing file on page 158

158 HC(S)12 Assembler Manual

Assembler Options
Detailed listing of all assembler options

-Lasms: Configure the address size in the listing file

Group
Output

Scope

Assembly unit

Syntax
-Lasms{1]2]|3]4}

Arguments
1 - The address size is xx
2 - The address size is Xxxx
3 - The address size is XXXXXX

4 - The address size iS XXXXXXXX

Default

-Lasms3

Description

The default-configured listing file shows a lot of information. With this option, the
size of the address column can be reduced to the size of interest. To configure

which columns are printed, see the -Lasmc: Configure listing file on page 156
option. To configure which lines to print, see the following assembler options:

e -Lc: No Macro call in listing file on page 160

¢ -Ld: No macro definition in listing file on page 163,

¢ -Le: No Macro expansion in listing file on page 166, and

* -Li: Not included file in listing file on page 169.

Example
For the following instruction:

NOP

HC(S)12 Assembler Manual 159

Assembler Options
Detailed listing of all assembler options

the Assembler generates this default-configured output listing (Listing 5.33 on
page 159):

Listing 5.33 Example assembler output listing

Abs. Rel. Loc Obj. code Source line

1 1 000000 XX NOP

In order to change the size of the address column the following option is added:
"-Lasms1". This changes the address size to two digits (Listing 5.34 on
page 159).

Listing 5.34 Example assembler output listing configured with -Lasms1

Abs. Rel Loc Obj. code Source line
1 1 00 XX NOP
See also

Assembler Listing File on page 355 chapter
Assembler options:

* -Lasmc: Configure listing file on page 156
e -L: Generate a listing file on page 153

¢ -Lc: No Macro call in listing file on page 160
e -Ld: No macro definition in listing file on page 163

* -Le: No Macro expansion in listing file on page 166
e -Li: Not included file in listing file on page 169

160 HC(S)12 Assembler Manual

Assembler Options
Detailed listing of all assembler options

-Lc: No Macro call in listing file

Group
Output

Scope

Assembly unit

Syntax

-Lc

Arguments

None

Default

None

Description

Switches on the generation of the listing file, but macro invocations are not present
in the listing file. The listing file contains macro definition and expansion lines as
well as expanded include files.

Example
ASMOPTIONS=-Lc

In the following example of assembly code, the cpChar macro accept two
parameters. The macro copies the value of the first parameter to the second one.

When the -Lc option is specified, the following portion of assembly source code in
Listing 5.35 on page 160:

Listing 5.35 Example assembly source code

MyData:
charl:
char?2:

CodeSec:

XDEF Start

SECTION

DS.B 1

DS.B 1

INCLUDE "macro.inc"
SECTION

HC(S)12 Assembler Manual 161

Assembler Options
Detailed listing of all assembler options

Start:

cpChar charl,

NOP

char2

Listing 5.36 Example source code from the macro.inc file

along with additional source code (Listing 5.36 on page 161) from the
macro . inc include file generates the following output in the assembly listing file

(Listing 5.37 on page 161):

cpChar:

MACR
LDAA
STAA
ENDM

(0]
\1
\2

Listing 5.37 Output assembly listing

Abs. Rel Loc Obj. code Source line
1 1 XDEF Start
2 2 MyData: SECTION
3 3 000000 charl: DS.B 1
4 4 000001 char2: DS.B 1
5 5 INCLUDE "macro.inc"
6 1i cpChar: MACRO
7 21 LDAA \1
8 31 STAA \2
9 4i ENDM
10 6 CodeSec: SECTION
11 7 Start:
13 2m 000000 B6 xxxx + LDAA charl
14 3m 000003 B7 xxxxX + STAA char2
15 9 000006 01 NOP
13 2m 000000 B6 xxxx LDAA charl
14 3m 000003 7A xxxX STAA char2
15 9 000006 A7 NOP
The Assembler stores the content of included files in the listing file. The
Assembler also stores macro definitions, invocations, and expansions in the listing
file.
The listing file does not contain the line of source code that invoked the macro.
162 HC(S)12 Assembler Manual

Assembler Options
Detailed listing of all assembler options

For a detailed description of the listing file, see the Assembler Listing File on
page 355 chapter.

See also
Assembler options:
e -L: Generate a listing file on page 153

¢ -Ld: No macro definition in listing file on page 163

¢ -Le: No Macro expansion in listing file on page 166

¢ -Li: Not included file in listing file on page 169

HC(S)12 Assembler Manual 163

Assembler Options
Detailed listing of all assembler options

-Ld: No macro definition in listing file

Group
Output

Scope

Assembly unit

Syntax
-1d

Arguments

None

Default

None

Description

Instructs the Assembler to generate a listing file but not including any macro
definitions. The listing file contains macro invocation and expansion lines as well
as expanded include files.

Example
ASMOPTIONS=-Ld

In the following example of assembly code, the cpChar macro accepts two
parameters. The macro copies the value of the first parameter to the second one.

When the -Ld option is specified, the assembly source code in Listing 5.38 on
page 163 along with additional source code (Listing 5.39 on page 164) from the
macro.inc file generates an assembler output listing (Listing 5.40 on page 164)
file:

Listing 5.38 Example assembly source code

XDEF Start
MyData: SECTION
charl: DS.B 1
char2: DS.B 1

164 HC(S)12 Assembler Manual

Assembler Options
Detailed listing of all assembler options

INCLUDE
SECTION

CodeSec:
Start:

cpChar charl,
NOP

"macro.inc"

char2

Listing 5.39 Example source code from an include file

cpChar: MACRO
LDAA \1
STAA \2

ENDM

Listing 5.40 Example assembler output listing

Abs. Rel
1 1
2 2
3 3
4 4
5 5
6 1i
10 6
11 7
12 8
13 2m
14 3m
15 9

Loc Obj. code
000000

000001

000000 B6 xxxx%X
000003 7A xxxXX
000006 A7

Source line

MyData:
charl:
char?2:

cpChar:
CodeSec:
Start:

XDEF Start
SECTION

DS.B 1

DS.B 1

INCLUDE "macro.inc"
MACRO

SECTION

cpChar charl, char2
LDAA charl

STAA char2

NOP

The Assembler stores that content of included files in the listing file. The
Assembler also stores macro invocation and expansion in the listing file.

The listing file does not contain the source code from the macro definition.

For a detailed description of the listing file, see the Assembler Listing File on

page 355 chapter.

HC(S)12 Assembler Manual

165

Assembler Options
Detailed listing of all assembler options

See also
Assembler options:
e -L: Generate a listing file on page 153

e -Lc: No Macro call in listing file on page 160

¢ -Le: No Macro expansion in listing file on page 166

¢ -Li: Not included file in listing file on page 169

166 HC(S)12 Assembler Manual

Assembler Options
Detailed listing of all assembler options

-Le: No Macro expansion in listing file

Group
Output

Scope

Assembly unit

Syntax

-Le

Arguments

None

Default

None

Description

Switches on the generation of the listing file, but macro expansions are not present
in the listing file. The listing file contains macro definition and invocation lines as
well as expanded include files.

Example
ASMOPTIONS=-Le

In the following example of assembly code, the cpChar macro accepts two
parameters. The macro copies the value of the first parameter to the second one.

When the -Le option is specified, the assembly code in Listing 5.41 on page 166
along with additional source code (Listing 5.42 on page 167) from the
macro . inc file generates an assembly output listing file (Listing 5.43 on

page 167):

Listing 5.41 Example assembly source code

XDEF Start
MyData: SECTION
charl: DS.B 1
char2: DS.B 1

HC(S)12 Assembler Manual 167

Assembler Options
Detailed listing of all assembler options

INCLUDE "macro.inc"

CodeSec: SECTION

Start:
cpChar charl, char2
NOP

Listing 5.42 Example source code from an included file

cpChar: MACRO

LDAA \1
STAA \2
ENDM

Listing 5.43 Example assembler output listing

Abs. Rel Loc Obj. code Source line

1 1 XDEF Start

2 2 MyData: SECTION

3 3 000000 charl: DS.B 1

4 4 000001 char2: DS.B 1

5 5 INCLUDE "macro.inc"
6 1i cpChar: MACRO

7 21 LDAA \1

8 3i STAA \2

9 4i ENDM
10 6 CodeSec: SECTION
11 7 Start:
12 8 cpChar charl, char2
15 9 000006 A7 NOP

The Assembler stores the content of included files in the listing file. The
Assembler also stores the macro definition and invocation in the listing file.

The Assembler does not store the macro expansion lines in the listing file.

For a detailed description of the listing file, see the Assembler Listing File on
page 355 chapter.

168 HC(S)12 Assembler Manual

Assembler Options
Detailed listing of all assembler options

See also
Assembler options:
e -L: Generate a listing file on page 153
e -Lc: No Macro call in listing file on page 160
¢ -Ld: No macro definition in listing file on page 163
¢ -Li: Not included file in listing file on page 169

HC(S)12 Assembler Manual 169

Assembler Options
Detailed listing of all assembler options

-Li: Not included file in listing file

Group
Output

Scope

Assembly unit

Syntax

-Li

Arguments

None

Default

None

Description

Switches on the generation of the listing file, but include files are not expanded in
the listing file. The listing file contains macro definition, invocation, and expansion
lines.

Example
ASMOPTIONS=-Li

In the following example of assembly code, the cpChar macro accepts two
parameters. The macro copies the value of the first parameter to the second one.

When -Li option is specified, the assembly source code in Listing 5.44 on
page 169 along with additional source code (Listing 5.45 on page 170) from the
macro . inc file generates the following output in the assembly listing file:

Listing 5.44 Example assembly source code

XDEF Start
MyData: SECTION
charl: DS.B 1
char?2: DS.B 1
INCLUDE "macro.inc"

170 HC(S)12 Assembler Manual

Assembler Options
Detailed listing of all assembler options

CodeSec: SECTION

Start:
cpChar charl, char2
NOP

Listing 5.45 Example source code in an include file

cpChar: MACRO

LDAA \1
STAA \2
ENDM

Listing 5.46 Example assembler output listing

Abs. Rel. Loc Obj. code Source line
1 1 XDEF Start
2 2 MyData: SECTION
3 3 000000 charl: DS.B 1
4 4 000001 char2: DS.B 1
5 5 INCLUDE "macro.inc"
10 6 CodeSec: SECTION
11 7 Start:
12 8 cpChar charl, char2
13 2m 000000 B6 xxxx + LDAA charl
14 3m 000003 7A xxxx + STAA char2
15 9 000006 A7 NOP
The Assembler stores the macro definition, invocation, and expansion in the listing
file. The Assembler does not store the content of included files in the listing file.
For a detailed description of the listing file, see the Assembler Listing File on
page 355 chapter.
See also

Assembler options:

e -L: Generate a listing file on page 153

e -Lc: No Macro call in listing file on page 160

e -Ld: No macro definition in listing file on page 163
* -Le: No Macro expansion in listing file on page 166

HC(S)12 Assembler Manual 171

Assembler Options
Detailed listing of all assembler options

-Lic: License information

Group

Various

Scope

None

Syntax

-Lic

Arguments

None

Default

None

Description

The -Lic option prints the current license information (e.g., if it is a demo
version or a full version). This information is also displayed in the About... dialog
box.

Example
ASMOPTIONS=-Lic

See also
Assembler options:

* -LicA: License information about every feature in directory on page 172

e -LicBorrow: Borrow license feature on page 173

* -LicWait: Wait until floating license is available from floating License
Server on page 175

172 HC(S)12 Assembler Manual

Assembler Options
Detailed listing of all assembler options

-LicA: License information about every feature in directo-
ry

Group

Various

Scope

None

Syntax
-LicA

Arguments

None

Default

None

Description

The -LicA option prints the license information of every tool or DLL in the
directory where the executable is (e.g., if tool or feature is a demo version or a full
version). Because the option has to analyze every single file in the directory, this
may take a long time.

Example
ASMOPTIONS=-LicA

See also
Assembler options:

e -Lic: License information on page 171

* -LicBorrow: Borrow license feature on page 173
o -LicWait: Wait until floating license is available from floating License
Server on page 175

HC(S)12 Assembler Manual 173

Assembler Options
Detailed listing of all assembler options

-LicBorrow: Borrow license feature

Group
Host

Scope

None

Syntax

-LicBorrow<feature>[;<version>] :<Date>

Arguments

<feature>: the feature name to be borrowed (e.g., HI100100).
<version>: optional version of the feature to be borrowed (e.g., 3.000).
<date>: date with optional time until when the feature shall be borrowed (e.g.,
15-Mar-2005:18:35).

Default

None

Defines

None

Pragmas

None

Description

This option lets you borrow a license feature until a given date/time. Borrowing
allows you to use a floating license even if disconnected from the floating license
server.

You need to specify the feature name and the date until you want to borrow the
feature. If the feature you want to borrow is a feature belonging to the tool where
you use this option, then you do not need to specify the version of the feature
(because the tool is aware of the version). However, if you want to borrow any
feature, you need to specify the feature’s version number.

174

HC(S)12 Assembler Manual

Assembler Options
Detailed listing of all assembler options

You can check the status of currently borrowed features in the tool’s About . . .
box.

NOTE You only can borrow features if you have a floating license and if your floating
license is enabled for borrowing. See the provided FLEXIm documentation
about details on borrowing.

Example
-LicBorrowHI100100;3.000:12-Mar-2005:18:25

See also
Assembler options:
e -Lic: License information on page 171

* -LicA: License information about every feature in directory on page 172

o -LicWait: Wait until floating license is available from floating License
Server on page 175

HC(S)12 Assembler Manual 175

Assembler Options
Detailed listing of all assembler options

-LicWait: Wait until floating license is available from floating

License Server

Group
Host

Scope

None

Syntax
-LicWait

Arguments

None

Default

None

Description

If a license is not available from the floating license server, then the default
condition is that the application will immediately return. With the -LicWait
assembler option set, the application will wait (blocking) until a license is available
from the floating license server.

Example
ASMOPTIONS=-LicWait

See also
Assembler options:

e -Lic: License information on page 171

* -LicA: License information about every feature in directory on page 172

e -LicBorrow: Borrow license feature on page 173

176 HC(S)12 Assembler Manual

Assembler Options
Detailed listing of all assembler options

-M (-Ms, -Mb, -MI): Memory Model

Group

Code Generation

Scope
Application

Syntax
-M(s|b|1)

Arguments
s: small memory model
b: banked memory model

1: large memory model.

Default

-Ms

Description

The Assembler for the MC68HC(S)12 supports three different memory models.
The default is the small memory model, which corresponds to the normal setup,
i.e., a 64kB code-address space. If you use some code memory expansion scheme,
you may use banded memory model. The large memory model is used when using
both a code and data memory expansion scheme.

Memory models are interesting when mixing ANSI-C and assembler files. For
compatibility reasons, the different files must use the identical memory model.

Example
ASMOPTIONS=-Ms

HC(S)12 Assembler Manual 177

Assembler Options
Detailed listing of all assembler options

-MacroNest: Configure maximum macro nesting

Group

Language

Scope
Assembly Unit

Syntax

-MacroNest<Value>

Arguments

<Value>: max. allowed nesting level

Default
3000

Description

This option controls how deep macros calls can be nested. Its main purpose is to
avoid endless recursive macro invocations. When the nesting level is reached, then
the message A

Example

See the description of message A1004 for an example.

See also
Message A1004 (available in the online help)

178 HC(S)12 Assembler Manual

Assembler Options
Detailed listing of all assembler options

-MCUasm: Switch compatibility with MCUasm ON

Group

Various

Scope
Assembly Unit

Syntax

-MCUasm

Arguments

None

Default

None

Description

This switches ON compatibility mode with the MCUasm Assembler. Additional
features supported, when this option is activated are enumerated in MCUasm
Compatibility on page 433.

Example
ASMOPTIONS=-MCUasm

HC(S)12 Assembler Manual 179

Assembler Options
Detailed listing of all assembler options

-N: Display notify box

Group

Messages

Scope
Assembly Unit

Syntax
-N

Arguments

None

Default

None

Description

Makes the Assembler display an alert box if there was an error during assembling.
This is useful when running a makefile (please see the manual about Build Tools)
because the Assembler waits for the user to acknowledge the message, thus
suspending makefile processing. (The 'N' stands for “Notify”.)

This feature is useful for halting and aborting a build using the Make Utility.

Example
ASMOPTIONS=-N

If an error occurs during assembling , an alert dialog box will be opened.

180 HC(S)12 Assembler Manual

Assembler Options
Detailed listing of all assembler options

-NoBeep: No beep in case of an error

Group

Messages

Scope
Assembly Unit

Syntax

-NoBeep

Arguments

None

Default

None

Description

Normally there is a ‘beep’ notification at the end of processing if there was an
error. To have a silent error behavior, this ‘beep’ may be switched off using this
option.

Example
ASMOPTIONS=-NoBeep

HC(S)12 Assembler Manual 181

Assembler Options
Detailed listing of all assembler options

-NoDebuginfo: No debug information for ELF/DWAREF files

Group

Language

Scope
Assembly Unit

Syntax
-NoDebugInfo

Arguments

None

Default

None

Description

By default, the Assembler produces debugging info for the produced ELF/
DWAREF files. This can be switched off with this option.

Example
ASMOPTIONS=-NoDebugInfo

182 HC(S)12 Assembler Manual

Assembler Options
Detailed listing of all assembler options

-NoEnv: Do not use environment

Group

Startup (This option cannot be specified interactively.)

Scope
Assembly Unit

Syntax

-NoEnv

Arguments

None

Default

None

Description

This option can only be specified at the command line while starting the
application. It cannot be specified in any other circumstances, including the
default.env file, the command line or whatever.

When this option is given, the application does not use any environment
(default.env, project.ini or tips file).

Example
xx.exe -NoEnv

(Use the actual executable name instead of “xx”

See also
Environment on page 97

HC(S)12 Assembler Manual 183

Assembler Options
Detailed listing of all assembler options

-ObjN: Object filename specification

Group
Output

Scope
Assembly Unit

Syntax
-ObjN<FileName>

Arguments

<FileName>: Name of the binary output file generated.

Default

-ObjN%n. o when generating a relocatable file or
-ObjN%n.abs when generating an absolute file.

Description

Normally, the object file has the same name than the processed source file, but with
the . o” extension when relocatable code is generated or the “ . abbs” extension
when absolute code is generated. This option allows a flexible way to define the
output filename. The modifier “%n” can also be used. It is replaced with the source
filename. If <file> in this option contains a path (absolute or relative), the
OBJPATH environment variable is ignored.

Example

For ASMOPTIONS=-0bjNa . out, the resulting object file will be *a.out”. If
the OBJPATH environment variable is set to “\src\obj"”, the object file will be
“\src\obj\a.out”.

For fibo.c -0bjN%n.obj, the resulting object file will be “f£ibo.obj".

Formyfile.c -ObjN..\objects_%n.obj, the object file will be named
relative to the current directory to *. . \objects_myfile.obj. Note that the
environment variable OBJPATH is ignored, because <file> contains a path.

184 HC(S)12 Assembler Manual

Assembler Options
Detailed listing of all assembler options

See also
OBJPATH: Object file path on page 114

HC(S)12 Assembler Manual 185

Assembler Options
Detailed listing of all assembler options

-Prod: Specify project file at startup

Group

None (This option cannot be specified interactively.)

Scope

None

Syntax

-Prod=<file>

Arguments

<file>: name of a project or project directory

Default

None

Description

This option can only be specified at the command line while starting the
application. It cannot be specified in any other circumstances, including the
default.env file, the command line or whatever.

When this option is given, the application opens the file as configuration file.
When the filename does only contain a directory, the default name
project.ini is appended. When the loading fails, a message box appears.

Example
assembler.exe -Prod=project.ini

(Use the Assembler executable name instead of “assembler”.)

See also
Environment on page 97

186 HC(S)12 Assembler Manual

Assembler Options
Detailed listing of all assembler options

-Struct: Support for structured types

Group
Input

Scope
Assembly Unit

Syntax
-Struct

Arguments

None

Default

None

Description
When this option is activated, the Macro Assembler also support the definition and
usage of structured types. This is interesting for application containing both
ANSI-C and Assembly modules.

Example
ASMOPTIONS=-Struct

See also

Mixed C and Assembler Applications on page 361

HC(S)12 Assembler Manual 187

Assembler Options
Detailed listing of all assembler options

-V: Prints the Assembler version

Group

Various

Scope

None

Syntax
Y

Arguments

None

Default

None

Description

Prints the Assembler version and the current directory.

NOTE Use this option to determine the current directory of the Assembler.

Example
-V produces the following listing (Listing 5.47 on page 187):

Listing 5.47 Example of a version listing

Command Line '-v'
Assembler V-5.0.8, Jul 7 2005

Directory: C:\Freescale\demo

Common Module V-5.0.7, Date Jul 7 2005

User Interface Module, V-5.0.17, Date Jul 7 2005
Assembler Kernel, V-5.0.13, Date Jul 7 2005
Assembler Target, V-5.0.8, Date Jul 7 2005

188 HC(S)12 Assembler Manual

Assembler Options
Detailed listing of all assembler options

-View: Application standard occurrence

Group
Host

Scope
Assembly Unit

Syntax

-View<kind>

Arguments
<kind> is one of:
* Window: Application window has the default window size.
e Min: Application window is minimized.
* Max: Application window is maximized.

e Hidden: Application window is not visible (only if there are arguments).

Default
Application is started with arguments: Minimized.

Application is started without arguments: Window.

Description

Normally, the application (e.g., Assembler, Linker, Compiler, ...) is started with a
normal window if no arguments are given. If the application is started with
arguments (e.g., from the Maker to assemble, compile, or link a file), then the
application is running minimized to allow for batch processing. However, the
application’s window behavior may be specified with the View option.

Using -ViewWindow, the application is visible with its normal window. Using
-ViewMin the application is visible iconified (in the task bar). Using -ViewMax,
the application is visible maximized (filling the whole screen). Using
-ViewHidden, the application processes arguments (e.g., files to be compiled or
linked) completely invisible in the background (no window or icon visible in the
task bar). However, for example, if you are using the -N: Display notify box on
page 179 assembler option, a dialog box is still possible.

HC(S)12 Assembler Manual 189

Assembler Options
Detailed listing of all assembler options

Example

C:\Freescale\prog\linker.exe -ViewHidden fibo.prm

190 HC(S)12 Assembler Manual

Assembler Options
Detailed listing of all assembler options

-W1: No information messages

Group

Messages

Scope
Assembly Unit

Syntax
-wl

Arguments

None

Default

None

Description

Inhibits the Assembler’s printing INFORMATION messages. Only WARNING
and ERROR messages are written to the error listing file and to the assembler
window.

Example
ASMOPTIONS=-W1

HC(S)12 Assembler Manual 191

Assembler Options
Detailed listing of all assembler options

-W2: No information and warning messages

Group

Messages

Scope
Assembly Unit

Syntax
-W2

Arguments

None

Default

None

Description

Suppresses all messages of INFORMATION or WARNING types. Only ERROR
messages are written to the error listing file and to the assembler window.

Example
ASMOPTIONS=-W2

192 HC(S)12 Assembler Manual

Assembler Options
Detailed listing of all assembler options

-WErrFile: Create "err.log" error file

Group

Messages

Scope
Assembly Unit

Syntax
-WErrFile (On|Off)

Arguments

None

Default

An err.log file is created or deleted.

Description

The error feedback from the Assembler to called tools is now done with a return
code. In 16-bit Windows environments this was not possible. So in case of an error,
an “err.log” file with the numbers of written errors was used to signal any errors.
To indicate no errors, the “err.log”file would be deleted. Using UNIX or WIN32, a
return code is now available. Therefore, this file is no longer needed when only
UNIX or WIN32 applications are involved. To use a 16-bit Maker with this tool, an
error file must be created in order to signal any error.

Example
e -WErrFileOn
err.log is created or deleted when the application is finished.
e -WErrFileOff

existing err . log is not modified.

See also

-WStdout: Write to standard output on page 223
-WOutFile: Create error listing file on page 222

HC(S)12 Assembler Manual 193

Assembler Options
Detailed listing of all assembler options

-Wmsg8x3: Cut filenames in Microsoft format to 8.3

Group

Messages

Scope
Assembly Unit

Syntax
-Wmsg8x3

Arguments

None

Default

None

Description

Some editors (e.g., early versions of WinEdit) are expecting the filename in the
Microsoft message format in a strict 8.3 format. That means the filename can have
at most 8 characters with not more than a 3-character extension. Using Win95,
WinNT, or a newer Windows O/S, longer file names are possible. With this option
the filename in the Microsoft message is truncated to the 8.3 format.

Example

x:\mysourcefile.c(3): INFORMATION C2901: Unrolling
loop

With the -Wmsg8x3 option set, the above message will be
x:\mysource.c(3): INFORMATION C2901: Unrolling loop

194 HC(S)12 Assembler Manual

Assembler Options
Detailed listing of all assembler options

See also
Assembler options:

o -WmsgFb (-WmsgFbv, -WmsgFbm): Set message file format for batch mode on
page 200

¢ -WmsgFi (-WmsgFiv. -WmsgFim): Set message file format for interactive
mode on page 203

¢ -WmsgFoi: Message format for interactive mode on page 207
¢ -WmsgFob: Message format for batch mode on page 205

¢ -WmsgFonp: Message format for no position information on page 211

HC(S)12 Assembler Manual 195

Assembler Options
Detailed listing of all assembler options

-WmsgCE: RGB color for error messages

Group

Messages

Scope

Compilation Unit

Syntax
-WmsgCE<RGB>

Arguments
<RGB>: 24-bit RGB (red green blue) value.

Default
-WmsgCE16711680 (rFF g00 b00, red)

Description

It is possible to change the error message color with this option. The value to be
specified has to be an RGB (Red-Green-Blue) value and has to be specified in
decimal.

Example

-WmsgCE255 changes the error messages to blue.

196 HC(S)12 Assembler Manual

Assembler Options
Detailed listing of all assembler options

-WmsgCF: RGB color for fatal messages

Group

Messages

Scope

Compilation Unit

Syntax
-WmsgCF<RGB>

Arguments
<RGB>: 24-bit RGB (red green blue) value.

Default
-WmsgCF8388608 (r80 g00 b00, dark red)

Description

It is possible to change the fatal message color with this option. The value to be
specified has to be an RGB (Red-Green-Blue) value and has to be specified in
decimal.

Example
-WmsgCF255 changes the fatal messages to blue.

HC(S)12 Assembler Manual 197

Assembler Options
Detailed listing of all assembler options

-WmsgCl: RGB color for information messages

Group

Messages

Scope

Compilation Unit

Syntax
-WmsgCI<RGB>

Arguments
<RGB>: 24-bit RGB (red green blue) value.

Default
-WmsgCI32768 (r00 g80 b00, green)

Description

It is possible to change the information message color with this option. The value
to be specified has to be an RGB (Red-Green-Blue) value and has to be specified in
decimal.

Example

-WmsgCI255 changes the information messages to blue.

198 HC(S)12 Assembler Manual

Assembler Options
Detailed listing of all assembler options

-WmsgCU: RGB color for user messages

Group

Messages

Scope

Compilation Unit

Syntax
-WmsgCU<RGB>

Arguments
<RGB>: 24-bit RGB (red green blue) value.

Default
-WmsgCUO (r00 g00 b00, black)

Description

It is possible to change the user message color with this option. The value to be
specified has to be an RGB (Red-Green-Blue) value and has to be specified in
decimal.

Example

-WmsgCU255 changes the user messages to blue.

HC(S)12 Assembler Manual 199

Assembler Options
Detailed listing of all assembler options

-WmsgCW: RGB color for warning messages

Group

Messages

Scope

Compilation Unit

Syntax
-WmsgCW<RGB>

Arguments
<RGB>: 24-bit RGB (red green blue) value.

Default
-WmsgCW255 (r00 g00 bFF, blue)

Description

It is possible to change the warning message color with this option. The value to be
specified has to be an RGB (Red-Green-Blue) value and has to be specified in
decimal.

Example

-WmsgCWO changes the warning messages to black.

200 HC(S)12 Assembler Manual

Assembler Options
Detailed listing of all assembler options

-WmsgFb (-WmsgFbv, -WmsgFbm): Set message file
format for batch mode

Group

Messages

Scope
Assembly Unit

Syntax
-lmsgFb [v|m]

Arguments
v: Verbose format

m: Microsoft format

Default
-WmsgFbm

Description

The Assembler can be started with additional arguments (e.g., files to be assembled
together with assembler options). If the Assembler has been started with arguments
(e.g., from the Make tool), the Assembler works in the batch mode. That is, no
assembler window is visible and the Assembler terminates after job completion.

If the Assembler is in batch mode, the Assembler messages are written to a file and
are not visible on the screen. This file only contains assembler messages (see
examples below).

The Assembler uses a Microsoft message format as the default to write the
assembler messages (errors, warnings, or information messages) if the Assembler
is in the batch mode.

With this option, the default format may be changed from the Microsoft format
(with only line information) to a more verbose error format with line, column, and
source information.

HC(S)12 Assembler Manual 201

Assembler Options
Detailed listing of all assembler options

Example

Assume that the assembly source code in Listing 5.48 on page 201 is to be
assembled in the batch mode.

Listing 5.48 Example assembly source code

varl: equ 5
var2: equ 5
if (varl=var2)
NOP
endif
endif

The Assembler generates the error output (Listing 5.49 on page 201) in the
assembler window if it is running in batch mode:

Listing 5.49 Example error listing in the Microsoft (default) format for batch mode

X:\TW2.ASM(12) :ERROR: Conditional else not allowed here.

If the format is set to verbose, more information is stored in the file (Listing
5.50 on page 201):

Listing 5.50 Example error listing in the verbose format for batch mode

ASMOPTIONS=-WmsgFbv
>> in "C:\tw2.asm", line 6, col 0, pos 81
endif

A

ERROR A1001: Conditional else not allowed here

See also

ERRORFILE: Filename specification error on page 109

Assembler options:

¢ -WmsgFi (-WmsgFiv, -WmsgFim): Set message file format for interactive
mode on page 203

¢ -WmsgFob: Message format for batch mode on page 205

¢ -WmsgFoi: Message format for interactive mode on page 207
¢ -WmsgFonf: Message format for no file information on page 209

202 HC(S)12 Assembler Manual

Assembler Options
Detailed listing of all assembler options

e -WmsgFonp: Message format for no position information on page 211

HC(S)12 Assembler Manual 203

Assembler Options
Detailed listing of all assembler options

-WmsgFi (-WmsgFiv, -WmsgFim): Set message file
format for interactive mode

Group

Messages

Scope
Assembly Unit

Syntax
-lmsgFi[v|m]

Arguments
v: Verbose format

m: Microsoft format

Default

-WmsgFiv

Description

If the Assembler is started without additional arguments (e.g., files to be assembled
together with Assembler options), the Assembler is in the interactive mode (that is,
a window is visible).

While in interactive mode, the Assembler uses the default verbose error file format
to write the assembler messages (errors, warnings, information messages).

Using this option, the default format may be changed from verbose (with source,
line and column information) to the Microsoft format (which displays only line
information).

NOTE Using the Microsoft format may speed up the assembly process because the
Assembler has to write less information to the screen.

204 HC(S)12 Assembler Manual

Assembler Options
Detailed listing of all assembler options

Example

If the Assembler is running in interactive mode, the default error output is shown in
the assembler window as in Listing 5.52 on page 204.

Listing 5.51 Example error listing in the default mode for interactive mode

>> in "X:\TWE.ASM", line 12, col 0, pos 215
endif
endif

A

ERROR A1001: Conditional else not allowed here

Setting the format to Microsoft, less information is displayed (Listing 5.52 on page 204):

Listing 5.52 Example error listing in Microsoft format for interactive mode

ASMOPTIONS=-WmsgFim
X:\TWE.ASM(12) : ERROR: conditional else not allowed here

See also

ERRORFILE: Filename specification error on page 109

Assembler options:

¢ -WmsgFb (-WmsgFbv, -WmsgFbm): Set message file format for batch mode on
page 200

¢ -WmsgFob: Message format for batch mode on page 205

¢ -WmsgFoi: Message format for interactive mode on page 207
¢ -WmsgFonf: Message format for no file information on page 209
* -WmsgFonp: Message format for no position information on page 211

HC(S)12 Assembler Manual 205

Assembler Options
Detailed listing of all assembler options

-WmsgFob: Message format for batch mode

Group

Messages

Scope
Assembly Unit

Syntax

-WmsgFob<string>

Arguments
<string>: format string (see Listing 5.53 on page 205)

Default

-WmsgFob"%f%e(%1): %K %d: Sm\n"

Description

With this option it is possible to modify the default message format in the batch
mode. The formats in Listing 5.53 on page 205 are supported (assumed that the
source file is x: \Freescale\sourcefile.asmx).

Listing 5.53 Supported formats for messages in the batch node

Format Description Example

%s Source Extract

%P Path x:\Freescale\
st Path and name x:\Freescale\sourcefile
n Filename sourcefile

%e Extension .asmx

3N File (8 chars) sourcefi

SE Extension (3 chars) .asm

%1 Line 3

%C Column 47

%0 Pos 1234

%K Uppercase kind ERROR

sk Lowercase kind error

sd Number Al1051

206 HC(S)12 Assembler Manual

Assembler Options
Detailed listing of all assembler options

$m Message text
%% Percent %
\n New line

Example

ASMOPTIONS=-WmsgFob”%f%e(%1) : %k %d: %m\n”

produces a message displayed in Listing 5.54 on page 206 using the format. The
options are set for producing the path of a file with its filename, extension, and
line.

Listing 5.54 Message format in batch mode

x:\Freescale\sourcefile.asmx(3): error Al1051: Right
parenthesis expected

See also
Assembler options:

o -WmsgFb (-WmsgFbv, -WmsgFbm): Set message file format for batch mode on
page 200

¢ -WmsgFi (-WmsgFiv, -WmsgFim): Set message file format for interactive
mode on page 203

¢ -WmsgFoi: Message format for interactive mode on page 207
¢ -WmsgFonf: Message format for no file information on page 209
* -WmsgFonp: Message format for no position information on page 211

HC(S)12 Assembler Manual 207

Assembler Options
Detailed listing of all assembler options

-WmsgFoi: Message format for interactive mode

Group

Messages

Scope
Assembly Unit

Syntax

-WmsgFoi<string>

Arguments

<string>: format string (see Listing 5.55 on page 207)

Default

-WmsgFoi"\n>> in \"%{%e\", line %I, col %c, pos %0\n%s\n%K %d: %em\n"

Description

With this option it is possible modify the default message format in interactive
mode. The formats in Listing 5.55 on page 207 are supported (supposed that the
source file is x: \Freescale\sourcefile.asmx):

Listing 5.55 Supported formats for the interactive mode

Format Description Example

%s Source Extract

%P Path x:\Freescale\

st Path and name x:\Freescale\sourcefile
n Filename sourcefile

%e Extension .asmx

3N File (8 chars) sourcefi

SE Extension (3 chars) .asm

%1 Line 3

%C Column 47

%0 Pos 1234

%K Uppercase kind ERROR

sk Lowercase kind error

sd Number A1051

208 HC(S)12 Assembler Manual

Assembler Options
Detailed listing of all assembler options

$m Message text
%% Percent %
\n New line

Example

ASMOPTIONS=-WmsgFoi”%$f%e(%1): %k %d: %m\n”
produces a message in following format (Listing 5.56 on page 208):

Listing 5.56 Message format for interactive mode

x:\Freescale\sourcefile.asmx(3): error Al051: Right parenthesis
expected

See also
ERRORFILE: Filename specification error on page 109 environment variable
Assembler options:

o -WmsgFb (-WmsgFbv, -WmsgFbm): Set message file format for batch mode on
page 200

e -WmsgFi (-WmsgFiv. -WmsgFim): Set message file format for interactive
mode on page 203

¢ -WmsgFob: Message format for batch mode on page 205
¢ -WmsgFonf: Message format for no file information on page 209
* -WmsgFonp: Message format for no position information on page 211

HC(S)12 Assembler Manual 209

Assembler Options
Detailed listing of all assembler options

-WmsgFonf: Message format for no file information

Group

Messages

Scope

Assembly Unit

Syntax

-WmsgFonf<string>

Arguments

<string>: format string (see below)

Default

-WmsgFonf"%K %$d: %$m\n"

Description

Sometimes there is no file information available for a message (e.g., if a message
not related to a specific file). Then this message format string is used. The formats
in Listing 5.57 on page 209 are supported:

Listing 5.57 Supported formats for the “no file information option”

Format Description Example
%K Uppercase kind ERROR
sk Lowercase kind error
sd Number L10324
$m Message text
%% Percent %
\n New line

Example

ASMOPTIONS=-WmsgFonf”%k %d: %$m\n”

210 HC(S)12 Assembler Manual

Assembler Options
Detailed listing of all assembler options

produces a message in following format:

information L10324: Linking successful

See also
ERRORFILE: Filename specification error on page 109 environment variable
Assembler options:

o -WmsgFb (-WmsgFbv, -WmsgFbm): Set message file format for batch mode on
page 200

¢ -WmsgFi (-WmsgFiv. -WmsgFim): Set message file format for interactive
mode on page 203

¢ -WmsgFob: Message format for batch mode on page 205
¢ -WmsgFoi: Message format for interactive mode on page 207
* -WmsgFonp: Message format for no position information on page 211

HC(S)12 Assembler Manual 211

Assembler Options

Detailed listing of all assembler options

-WmsgFonp: Message format for no position information

Group

Messages

Scope
Assembly Unit

Syntax

-WmsgFonp<string>

Arguments

<string>: format string (see below)

Default

-WmsgFonp"%f%e: %$K %d:

Description

Sm\n"

Sometimes there is no position information available for a message (e.g., if a
message not related to a certain position). Then this message format string is used.
The formats in Listing 5.58 on page 211 are supported (supposed that the source
fileis x: \Freescale\sourcefile.asmx)

Listing 5.58 Supported formats for the “no position information” option

Format Description

P Path x:\Freescale\

st Path and name x:\Freescale\sourcefile
n Filename sourcefile

%e Extension .asmx

SN File (8 chars) sourcefi

SE Extension (3 chars) .asm

%K Uppercase kind ERROR

sk Lowercase kind error

sd Number L10324

$m Message text

%% Percent %

212 HC(S)12 Assembler Manual

Assembler Options
Detailed listing of all assembler options

\n New line

Example
ASMOPTIONS=-WmsgFonf”%k %d: %m\n”
produces a message in following format:

information L10324: Linking successful

See also

ERRORFILE: Filename specification error on page 109 environment variable
Assembler options:

o -WmsgFb (-WmsgFbv, -WmsgFbm): Set message file format for batch mode on
page 200

o -WmsgFi (-WmsgFiv, -WmsgFim): Set message file format for interactive
mode on page 203

¢ -WmsgFob: Message format for batch mode on page 205
¢ -WmsgFoi: Message format for interactive mode on page 207
* -WmsgFonf: Message format for no file information on page 209

HC(S)12 Assembler Manual 213

Assembler Options
Detailed listing of all assembler options

-WmsgNe: Number of error messages

Group

Messages

Scope
Assembly Unit

Syntax

-WmsgNe<number>

Arguments

<number>: Maximum number of error messages.

Default
50

Description

With this option the amount of error messages can be reported until the Assembler
stops assembling. Note that subsequent error messages which depends on a
previous one may be confusing.

Example
ASMOPTIONS=-WmsgNe2

The Assembler stops assembling after two error messages.

See also
Assembler options:
e -WmsgNi: Number of Information messages on page 214
¢ -WmsgNw: Number of Warning messages on page 217

214 HC(S)12 Assembler Manual

Assembler Options
Detailed listing of all assembler options

-WmsgNi: Number of Information messages

Group

Messages

Scope
Assembly Unit

Syntax

-WmsgNi<number>

Arguments

<number>: Maximum number of information messages.

Default
50

Description

With this option the maximum number of information messages can be set.

Example
ASMOPTIONS=-WmsgNi10

Only ten information messages are logged.

See also
Assembler options:

¢ -WmsgNe: Number of error messages on page 213

¢ -WmsgNw: Number of Warning messages on page 217

HC(S)12 Assembler Manual

215

Assembler Options
Detailed listing of all assembler options

-WmsgNu: Disable user messages

Group

Messages

Scope

None

Syntax
-WmsgNu[={a|b|c|d}]

Arguments
a: Disable messages about include files
b: Disable messages about reading files
c: Disable messages about generated files
d: Disable messages about processing statistics

e: Disable informal messages

Default

None

Description

The application produces some messages which are not in the normal message
categories (WARNING, INFORMATION, ERROR, or FATAL). With this option
such messages can be disabled. The purpose for this option is to reduce the amount
of messages and to simplify the error parsing of other tools.

e a

The application provides information about all included files. With this
suboption this option can be disabled.

* b

With this suboption messages about reading files e.g., the files used as input can
be disabled.

e C

Disables messages informing about generated files.

216 HC(S)12 Assembler Manual

Assembler Options
Detailed listing of all assembler options

. d

At the end of the assembly, the application may provide information about
statistics, e.g., code size, RAM/ROM usage, and so on. With this suboption this
option can be disabled.

e e

With this option, informal messages (e.g., memory model, floating point
format, ...) can be disabled.

NOTE Depending on the application, not all suboptions may make sense. In that case,
they are just ignored for compatibility.

Example
-WmsgNu=c

HC(S)12 Assembler Manual 217

Assembler Options
Detailed listing of all assembler options

-WmsgNw: Number of Warning messages

Group

Messages

Scope
Assembly Unit

Syntax

-WmsgNw<number>

Arguments

<number>: Maximum number of warning messages.

Default
50

Description

With this option the maximum number of warning messages can be set.

Example
ASMOPTIONS=-WmsgNwl5

Only 15 warning messages are logged.

See also
Assembler options:
* -WmsgNe: Number of error messages on page 213
e -WmsgNi: Number of Information messages on page 214

218 HC(S)12 Assembler Manual

Assembler Options
Detailed listing of all assembler options

-WmsgSd: Setting a message to disable

Group

Messages

Scope
Assembly Unit

Syntax

-WmsgSd<number>

Arguments

<number>: Message number to be disabled, e.g., 1801

Default

None

Description

With this option a message can be disabled so it does not appear in the error output.

Example
-WmsgSd1l801

See also
Assembler options:

¢ -WmsgSe: Setting a message to Error on page 219

* -WmsgSi: Setting a message to Information on page 220
e -WmsgSw: Setting a Message to Warning on page 221

HC(S)12 Assembler Manual 219

Assembler Options
Detailed listing of all assembler options

-WmsgSe: Setting a message to Error

Group

Messages

Scope
Assembly Unit

Syntax

-WmsgSe<number>

Arguments

<number>: Message number to be an error, e.g., 1853

Default

None

Description

Allows changing a message to an error message.

Example
-WmsgSel853

See also
Assembler options:

¢ -WmsgSd: Setting a message to disable on page 218

* -WmsgSi: Setting a message to Information on page 220
e -WmsgSw: Setting a Message to Warning on page 221

220 HC(S)12 Assembler Manual

Assembler Options
Detailed listing of all assembler options

-WmsgSi: Setting a message to Information

Group

Messages

Scope
Assembly Unit

Syntax

-WmsgSi<number>

Arguments

<number>: Message number to be an information, e.g., 1853

Default

None

Description

With this option a message can be set to an information message.

Example
-WmsgSil853

See also
Assembler options:

¢ -WmsgSd: Setting a message to disable on page 218

* -WmsgSe: Setting a message to Error on page 219
e -WmsgSw: Setting a Message to Warning on page 221

HC(S)12 Assembler Manual 221

Assembler Options
Detailed listing of all assembler options

-WmsgSw: Setting a Message to Warning

Group

Messages

Scope
Assembly Unit

Syntax

-WmsgSw<number>

Arguments

<number>: Error number to be a warning, e.g., 2901

Default

None

Description

With this option a message can be set to a warning message.

Example
-WmsgSw2901

See also
Assembler options:

¢ -WmsgSd: Setting a message to disable on page 218

* -WmsgSe: Setting a message to Error on page 219
e -WmsgSi: Setting a message to Information on page 220

222 HC(S)12 Assembler Manual

Assembler Options
Detailed listing of all assembler options

-WOutFile: Create error listing file

Group

Messages

Scope
Assembly Unit

Syntax
-WOutFile (On|Off)

Arguments

none.

Default

Error listing file is created.

Description

This option controls if a error listing file should be created at all. The error listing
file contains a list of all messages and errors which are created during a assembly
process. Since the text error feedback can now also be handled with pipes to the
calling application, it is possible to obtain this feedback without an explicit file.
The name of the listing file is controlled by the environment variable

ERRORFILE: Filename specification error on page 109.

Example
-WOutFileOn
The error file is created as specified with ERRORFILE.
-WErrFileOff

No error file is created.

See also

Assembler options:

e -WErrFile: Create "err.log" error file on page 192
¢ -WStdout: Write to standard output on page 223

HC(S)12 Assembler Manual 223

Assembler Options
Detailed listing of all assembler options

-WStdout: Write to standard output

Group

Messages

Scope
Assembly Unit

Syntax
-Wstdout (On|Off)

Arguments

None

Default

output is written to stdout

Description

With Windows applications, the usual standard streams are available. But text
written into them does not appear anywhere unless explicitly requested by the
calling application. With this option is can be controlled if the text to error file
should also be written into stdout.

Example
-WStdoutOn
All messages are written to stdout.
-WErrFileOff

Nothing is written to stdout.

See also
Assembler options:

¢ -WEirFile: Create "err.log" error file on page 192

¢ -WOutFile: Create error listing file on page 222

224 HC(S)12 Assembler Manual

Sections

Sections are portions of code or data that cannot be split into smaller elements. Each
section has a name, a type, and some attributes.

Each assembly source file contains at least one section. The number of sections in an
assembly source file is only limited by the amount of memory available on the system at
assembly time. If several sections with the same name are detected inside of a single
source file, the code is concatenated into one large section.

Sections from different modules, but with the same name, will be combined into a single
section at linking time.

Sections are defined through Section attributes on page 225 and Section types on
page 226. The last part of the chapter deals with the merits of using relocatable sections.

(See “Relocatable vs. absolute sections” on page 231.)

Section attributes

An attribute is associated with each section according to its content. A section may be:

e adata section,
e aconstant data section, or
e acode section.

Code sections

A section containing at least one instruction is considered to be a code section. Code
sections are always allocated in the target processor’s ROM area.

Code sections should not contain any variable definitions (variables defined using the DS
directive). You do not have any write access on variables defined in a code section. In
addition, variables in code sections cannot be displayed in the debugger as data.

Constant sections

A section containing only constant data definition (variables defined using the DC or DCB
directives) is considered to be a constant section. Constant sections should be allocated in
the target processor’s ROM area, otherwise they cannot be initialized at application loading
time.

HC(S)12 Assembler Manual 225

Sections

Section types

Data sections

A section containing only variables (variables defined using the DS directive) is
considered to be a data section. Data sections are always allocated in the target processor’s
RAM area.

NOTE A section containing variables (DS) and constants (DC) or code is not a data
section. The default for such a section with mixed DC and code content is to
put that content into ROM.

We strongly recommend that you use separate sections for the definition of variables and
constant variables. This will prevent problems in the initialization of constant variables.

Section types

First of all, you should decide whether to use relocatable or absolute code in your
application. The Assembler allows the mixing of absolute and relocatable sections in a
single application and also in a single source file. The main difference between absolute
and relocatable sections is the way symbol addresses are determined.

This section covers these two types of sections:

¢ Absolute sections on page 226

¢ Relocatable sections on page 228

Absolute sections

The starting address of an absolute section is known at assembly time. An absolute section
is defined through the ORG - Set Location Counter on page 330 assembler directive. The
operand specified in the ORG directive determines the start address of the absolute section.
See Listing 6.1 on page 226 for an example of constructing absolute sections using the
ORG assembler directive.

Listing 6.1 Example source code using ORG for absolute sections

XDEF entry

ORG

SA00 ; Absolute constant data section.

cstl: DC.B $A6
cst2: DC.B S$BC

ORG
var: DS

ORG

$800 ; Absolute data section.
.B 1
SC00 ; Absolute code section.

226

HC(S)12 Assembler Manual

Sections
Section types

entry:
LDAA c¢stl ; Loads value in cstl
ADDA c¢st2 ; Adds value in cst2
STAA var ; Stores into var

BRA entry

In the previous example, two bytes of storage are allocated starting at address SA00. The
constant variable - cst1 - will be allocated one byte at address $8000 and another
constant - cst2 - will be allocated one byte at address $8001. All subsequent
instructions or data allocation directives will be located in this absolute section until
another section is specified using the ORG or SECTION directives.

When using absolute sections, it is the user’s responsibility to ensure that there is no
overlap between the different absolute sections defined in the application. In the previous
example, the programmer should ensure that the size of the section starting at address
$8000 is not bigger than $10 bytes, otherwise the section starting at $8000 and the
section starting at $8010 will overlap.

Even applications containing only absolute sections must be linked. In that case, there
should not be any overlap between the address ranges from the absolute sections defined
in the assembly file and the address ranges defined in the linker parameter (PRM) file.

The PRM file used to link the example above, can be defined as in Listing 6.2 on page 227.

Listing 6.2 Example PRM file for Listing 6.1 on page 226

LINK test.abs /* Name of the executable file generated. */
NAMES test.o /* Name of the object file in the application */
END
SECTIONS
/* READ_ONLY memory area. There should be no overlap between this
memory area and the absolute sections defined in the assembly
source file. */
MY_ROM = READ_ONLY 0x8000 TO OxFDFF;
/* READ_WRITE memory area. There should be no overlap between this
memory area and the absolute sections defined in the assembly
source file. */

MY_RAM = READ_WRITE 0x0100 TO 0x023F;
END
PLACEMENT
/* Relocatable variable sections are allocated in MY_RAM. */

DEFAULT_RAM, SSTACK INTO MY_ RAM;

/* Relocatable code and constant sections are allocated in MY_ROM. */
DEFAULT_ROM INTO MY_ROM;

END

HC(S)12 Assembler Manual 227

Sections

Section types

STACKSTOP $014F /* Initializes the stack pointer */
INIT entry /* entry is the entry point to the application. */
VECTOR ADDRESS OxXFFFE entry /* Initialization for Reset vector.*/

The linker PRM file contains at least:

The name of the absolute file (LINK command).
The name of the object file which should be linked (NAMES command).

The specification of a memory area where the sections containing variables must be
allocated. At least the predefined DEFAULT_RAM (or its ELF alias * .data’)
section must be placed there. For applications containing only absolute sections,
nothing will be allocated (SECTIONS and PLACEMENT commands).

The specification of a memory area where the sections containing code or constants
must be allocated. At least the predefined section DEFAULT_ROM (or its ELF alias
*.data’) must be placed there. For applications containing only absolute
sections, nothing will be allocated (SECTIONS and PLACEMENT commands).

The specification of the application entry point (INIT command)
The definition of the reset vector (VECTOR ADDRESS command)

Relocatable sections

The starting address of a relocatable section is evaluated at linking time according to the
information stored in the linker parameter file. A relocatable section is defined through the
SECTION - Declare Relocatable Section on page 338 assembler directive. See Listing

6.3 on page 228 for an example using the SECTION directive.

Listing 6.3 Example source code using SECTION for relocatable sections

XDEF entry
constSec: SECTION ; Relocatable constant data section.
cstl: DC.B S$A6
cst2: DC.B S$BC
dataSec: SECTION ; Relocatable data section.
var: DS.B 1
codeSec: SECTION ; Relocatable code section.
entry:
LDAA c¢stl ; Loads value into cstl
ADDA cst2 ; Adds value in cst2
STAA var ; Stores into var
BRA entry
228 HC(S)12 Assembler Manual

Sections
Section types

In the previous example, two bytes of storage are allocated in the constSec section. The
constant cst1 is allocated at the start of the section at address $A00 and another constant
cst2 is allocated at an offset of 1 byte from the beginning of the section. All subsequent
instructions or data allocation directives will be located in the relocatable constSec
section until another section is specified using the ORG or SECTION directives.

When using relocatable sections, the user does not need to care about overlapping
sections. The linker will assign a start address to each section according to the input from
the linker parameter file.

The user can decide to define only one memory area for the code and constant sections and
another one for the variable sections or to split the sections over several memory areas.
Example: Defining one RAM and one ROM area.

When all constant and code sections as well as data sections can be allocated
consecutively, the PRM file used to assemble the example above can be defined as in

Listing 6.4 on page 229.

Listing 6.4 PRM file for Listing 6.3 on page 228 defining one RAM area and one ROM

area
LINK test.abs /* Name of the executable file generated. */
NAMES
test.o /* Name of the object file in the application. */
END
SECTIONS

/* READ_ONLY memory area. */

MY_ROM = READ_ONLY O0x0B00 TO O0xOBFF;
/* READ_WRITE memory area. */

MY_RAM = READ_WRITE 0x0800 TO OxO8FF;

END

PLACEMENT

/* Relocatable variable sections are allocated in MY_RAM. */
DEFAULT_ RAM INTO MY_RAM;

/* Relocatable code and constant sections are allocated in MY_ROM. */
DEFAULT_ROM INTO MY_ROM;

END

INIT entry /* Application entry point. */

VECTOR ADDRESS OxFFFE entry /* Initialization of the reset vector. */

The linker PRM file contains at least:

¢ The name of the absolute file (LINK command).

¢ The name of the object files which should be linked (NAMES command).

HC(S)12 Assembler Manual 229

Sections
Section types

e The specification of a memory area where the sections containing variables must be
allocated. At least the predefined DEFAULT_RAM section (or its ELF alias
‘.data’) must be placed there (SECTIONS and PLACEMENT commands).

¢ The specification of a memory area where the sections containing code or constants
must be allocated. At least, the predefined DEFAULT_ROM section (or its ELF alias
' . text’) must be placed there (SECTIONS and PLACEMENT commands).

¢ Constants sections should be defined in the ROM memory area in the PLACEMENT
section (otherwise, they are allocated in RAM).

* The specification of the application entry point (INIT command).

¢ The definition of the reset vector (VECTOR ADDRESS command).
According to the PRM file above,

* the dataSec section will be allocated starting at 0x0800.

* the constSec section will be allocated starting at 0x0B0O0.

* the codeSec section will be allocated next to the constSec section.

Example: Defining multiple RAM and ROM areas

When all constant and code sections as well as data sections cannot be allocated
consecutively, the PRM file used to link the example above can be defined as in

Listing 6.5 on page 230:

Listing 6.5 PRM file for Listing 6.3 on page 228 defining multiple RAM and ROM areas

LINK test.abs /* Name of the executable file generated. */
NAMES

test.o /* Name of the object file in the application. */
END
SECTIONS

/* Two READ_ONLY memory areas */
ROM_AREA_1= READ_ONLY 0x8000 TO 0x800F;
ROM_AREA_2= READ_ONLY 0x8010 TO OxXFDFF;
/* Three READ_WRITE memory areas */
RAM_AREA_1= READ_WRITE 0x0040 TO 0x00FF; /* zero-page memory area */
RAM_AREA 2= READ WRITE 0x0100 TO Ox01FF;

END

PLACEMENT

/* Relocatable variable sections are allocated in MY_RAM. */
dataSec INTO RAM_AREA_2;
DEFAULT_ RAM INTO RAM_AREA_1;

/* Relocatable code and constant sections are allocated in MY_ROM. */

constSec INTO ROM_AREA 2;
codeSec, DEFAULT_ROM INTO ROM_AREA_1;
END
INIT entry /* Application’s entry point. */

230 HC(S)12 Assembler Manual

Sections
Relocatable vs. absolute sections

VECTOR 0 entry /* Initialization of the reset vector. */

The linker PRM file contains at least:

¢ The name of the absolute file (LINK command).
¢ The name of the object files which should be linked (NAMES command).

* The specification of memory areas where the sections containing variables must be
allocated. At least, the predefined DEFAULT_RAM section (or its ELF alias
‘.data’) must be placed there (SECTIONS and PLACEMENT commands).

* The specification of memory areas where the sections containing code or constants
must be allocated. At least the predefined DEFAULT_ROM section (or its ELF alias
‘. text’) must be placed there (SECTIONS and PLACEMENT commands).

* The specification of the application entry point (INIT command)
¢ The definition of the reset vector (VECTOR command)
According to the PRM file in Listing 6.5 on page 230,

* the dataSec section is allocated starting at 0x0100.

¢ the constSec section is allocated starting at 0x8000.

* the codeSec section is allocated starting at 0x8010.

e 64 bytes of RAM are allocated in the stack starting at 0x0200.

Relocatable vs. absolute sections

Generally, we recommend developing applications using relocatable sections. Relocatable
sections offer several advantages.

Modularity

An application is more modular when programming can be divided into smaller units
called sections. The sections themselves can be distributed among different source files.

Multiple developers

When an application is split over different files, multiple developers can be involved in the
development of the application. To avoid major problems when merging the different
files, attention must be paid to the following items:

¢ Aninclude file must be available for each assembly source file, containing XREF
directives for each exported variable, constant and function. In addition, the
interface to the function should be described there (parameter passing rules as well
as the function return value).

* When accessing variables, constants, or functions from another module, the
corresponding include file must be included.

HC(S)12 Assembler Manual 231

Sections
Relocatable vs. absolute sections

e Variables or constants defined by another developer must always be referenced by
their names.

¢ Before invoking a function implemented in another file, the developer should
respect the function interface, i.e., the parameters are passed as expected and the
return value is retrieved correctly.

Early development

The application can be developed before the application memory map is known. Often the
application’s definitive memory map can only be determined once the size required for
code and data can be evaluated. The size required for code or data can only be quantified
once the major part of the application is implemented. When absolute sections are used,
defining the definitive memory map is an iterative process of mapping and remapping the
code. The assembly files must be edited, assembled, and linked several times. When
relocatable sections are used, this can be achieved by editing the PRM file and linking the
application.

Enhanced portability

As the memory map is not the same for each derivative (MCU), using relocatable sections
allow easy porting of the code for another MCU. When porting relocatable code to another
target you only need to link the application again with the appropriate memory map.

Tracking overlaps

When using absolute sections, the programmer must ensure that there is no overlap
between the sections. When using relocatable sections, the programmer does not need to
be concerned about any section overlapping another. The labels’ offsets are all evaluated
relatively to the beginning of the section. Absolute addresses are determined and assigned
by the linker.

Reusability

When using relocatable sections, code implemented to handle a specific I/O device (serial
communication device), can be reused in another application without any modification.

232 HC(S)12 Assembler Manual

Assembler Syntax

An assembler source program is a sequence of source statements. Each source statement is
coded on one line of text and can be a:

¢ Comment line on page 233 or a

¢ Source line on page 233.

Comment line

A comment can occupy an entire line to explain the purpose and usage of a block of
statements or to describe an algorithm. A comment line contains a semicolon followed by
a text (Listing 7.1 on page 233). Comments are included in the assembly listing, but are
not significant to the Assembler.

An empty line is also considered to be a comment line.

Listing 7.1 Examples of comments

; This is a comment line followed by an empty line and non comments

(non comments)

Source line

Each source statement includes one or more of the following four fields:

* a Label field on page 234,
¢ an Operation field on page 234,

¢ one or several operands, or
¢ acomment.

Characters on the source line may be either upper or lower case. Directives and
instructions are case-insensitive, whereas symbols are case-sensitive unless the assembler
option for case insensitivity on label names (-Ci: Switch case sensitivity on label names
OFF on page 133) is activated.

HC(S)12 Assembler Manual 233

Assembler Syntax

Source line

Label field

The label field is the first field in a source line. A label is a symbol followed by a colon.
Labels can include letters (‘A’.. “Z’ or ‘a’.. ‘z’), underscores, periods and numbers. The
first character must not be a number.

NOTE For compatibility with other macro assembler vendors, an identifier starting on
column 1 is considered to be a label, even when it is not terminated by a colon.

When the -MCUasm: Switch compatibility with MCUasm ON on page 178

assembler option is activated, you MUST terminate labels with a colon. The
Assembler produces an error message when a label is not followed by a colon.

Labels are required on assembler directives that define the value of a symbol (SET or
EQU). For these directives, labels are assigned the value corresponding to the expression
in the operand field.

Labels specified in front of another directive, instruction or comment are assigned the
value of the location counter in the current section.

NOTE When the Macro Assembler expands a macro it generates internal symbols
starting with an underscore *_’. Therefore, to avoid potential conflicts, user
defined symbols should not begin with an underscore

NOTE For the Macro Assembler, a . B or . W at the end of a label has a specific
meaning. Therefore, to avoid potential conflicts, user- defined symbols should
not end with .Bor .W.

Operation field

The operation field follows the label field and is separated from it by a white space. The
operation field must not begin in the first column. An entry in the operation field is one of
the following:

¢ an instruction’s mnemonic - an abbreviated, case-insensitive name for a member in
the Instruction Set on page 234

¢ a Directive on page 246 name, or

* a Macro on page 246 name.

Instruction Set

Executable instructions for the M68HC12 processor are defined in the “CPU Reference
Manual CPU12RM/AD”

234

HC(S)12 Assembler Manual

Assembler Syntax
Source line

(http://www.freescale.com/files/microcontrollers/doc/ref_manual/CPU12RM.pdf). The
instructions for the HCS12X processor are defined in the “CPU Reference Manual
S12XCPUV1”

(http://www freescale.com/files/microcontrollers/doc/ref_manual/S12XCPUV 1.pdf).

Table 7.1 on page 235 presents an overview of the instructions available:

Table 7.1 HC12, HCS12, and HCS12X Instruction set

Instruction Description

ABA Add accumulator A and B

ABX Add accumulator B and register X
ABY Add accumulator B and register Y
ADCA Add with Carry to accumulator A
ADCB Add with Carry to accumulator B
ADDA Add without carry to accumulator A
ADDB Add without carry to accumulator B
ADDD Add without carry to accumulator D
ADDX Add without Carry to register X
ADDY Add without Carry to register Y
ADDED Add with Carry to accumulator D
ADEX Add with Carry to register X

ADEY Add with Carry to register Y

ANDA Logical AND with accumulator A
ANDB Logical AND with accumulator B
ANDCC Logical AND with CCR

ANDX Logical AND with register X

ANDY Logical AND with register Y

ASL Arithmetic Shift Left in memory
ASLA Arithmetic Shift Left accumulator A
ASLB Arithmetic Shift Left accumulator B

HC(S)12 Assembler Manual

235

Assembler Syntax
Source line

Table 7.1 HC12, HCS12, and HCS12X Instruction set (continued)

Instruction Description

ASLD Arithmetic Shift Left accumulator D
ASLW Arithmetic Shift Left in memory
ASLX Arithmetic Shift Left register X
ASLY Arithmetic Shift Left register Y

ASR Arithmetic Shift Right in memory
ASRA Arithmetic Shift Right accumulator A
ASRB Arithmetic Shift Right accumulator B
ASRW Arithmetic Shift Right in memory
ASRX Arithmetic Shift Right register X
ASRY Arithmetic Shift Right register Y
BCC Branch if Carry Clear

BCLR Clear Bits in memory

BCS Branch if Carry Set

BEQ Branch if Equal

BGE Branch if Greater than or Equal
BGND Place in BGND mode

BGT Branch if Greater Than

BHI Branch if Higher

BHS Branch if Higher or Same

BITA Logical AND accumulator A and memory
BITB Logical AND accumulator B and memory
BITX Logical AND register X and memory
BITY Logical AND register Y and memory
BLE Branch if Less than or Equal

BLO Branch if Lower (same as BCS)

236 HC(S)12 Assembler Manual

Assembler Syntax

Source line

Table 7.1 HC12, HCS12, and HCS12X Instruction set (continued)

Instruction Description

BLS Branch if Lower or Same

BLT Branch if Less Than

BMI Branch if Minus

BNE Branch if Not Equal

BPL Branch if Plus

BRA Branch Always

BRCLR Branch if bit Clear

BRN Branch Never

BRSET Branch if bits Set

BSET Set Bits in memory

BSR Branch to Subroutine

BTAS Bit(s) Test and Set in memory
BVC Branch if overflow Cleared

BVS Branch if overflow Set

CALL Call subroutine in extended memory
CBA Compare accumulators A and B
CLC Clear Carry bit

CLI Clear Interrupt bit

CLR Clear memory

CLRA Clear accumulator A

CLRB Clear accumulator B

CLRW Clear memory

CLRX Clear register X

CLRY Clear register Y

CLV Clear two’s complement overflow bit

HC(S)12 Assembler Manual

237

Assembler Syntax
Source line

Table 7.1 HC12, HCS12, and HCS12X Instruction set (continued)

Instruction Description

CMPA Compare memory with accumulator A
CMPB Compare memory with accumulator B

COM One’s complement on memory location
COMA One’s complement on accumulator A

COMB One’s complement on accumulator B
COoOMW Complement memory

COMX One’s complement on register X

COMY One’s complement on register Y

CPD Compare accumulator D and memory

CPED Compare accumulator D and memory with borrow
CPES Compare register SP and memory with borrow
CPEX Compare register X and memory with borrow
CPEY Compare register Y and memory with borrow
CPS Compare register SP and memory

CPX Compare register X and memory

CPY Compare register Y and memory

DAA Decimal Adjust Accumulator A

DBEQ Decrement counter and Branch if zero
DBNE Decrement counter and Branch if Not zero
DEC Decrement memory location

DECA Decrement accumulator A

DECB Decrement accumulator B

DECW Decrement memory location

DECX Decrement register X

DECY Decrement register Y

238 HC(S)12 Assembler Manual

Assembler Syntax
Source line

Table 7.1 HC12, HCS12, and HCS12X Instruction set (continued)

Instruction Description

DES Decrement register SP

DEX Decrement index register X

DEY Decrement index register Y

EDIV Unsigned Division 32-bit/16-bit

EDIVS Signed Division 32-bit/16-bit

EMACS Multiply and Accumulate Signed

EMAXD Get Maximum of two unsigned integers in accumulator D
EMAXM Get Maximum of two unsigned integers in memory
EMIND Get Minimum of two unsigned integers in accumulator D
EMINM Get Minimum of two unsigned integers in Memory
EMUL 16-bit * 16-bit Multiplication (unsigned)

EMULS 16-bit * 16-bit Multiplication (Signed)

EORA Logical XOR with accumulator A

EORB Logical XOR with accumulator B

EORX Logical XOR with register X

EORY Logical XOR with register Y

ETBL 16-bit Table Lookup and Interpolate

EXG Exchange register content

FDIV 16-bit /16-bit Fractional Divide

GLDAA Load accumulator A from Global memory

GLDAB Load accumulator B from Global memory

GLDD Load accumulator D from Global memory

GLDS Load register SP from Global memory

GLDX Load register X from Global memory

GLDY Load register Y from Global memory

HC(S)12 Assembler Manual

239

Assembler Syntax
Source line

Table 7.1 HC12, HCS12, and HCS12X Instruction set (continued)

Instruction Description

GSTAA Store accumulator A to Global memory
GSTAB Store accumulator B to Global memory
GSTD Store accumulator D to Global memory
GSTS Store register SP to Global memory
GSTX Store register X to Global memory
GSTY Store register Y to Global memory
IBEQ Increment counter and Branch if zero
IBNE Increment counter and Branch if not zero
IDIV 16-bit /16-bit Integer Division (unsigned)
IDIVS 16-bit /16-bit Integer Division (Signed)
INC Increment memory location

INCA Increment accumulator A

INCB Increment accumulator B

INCW Increment memory location

INCX Increment register X

INCY Increment register Y

INS Increment register SP

INX Increment register X

INY Increment register Y

JMP Jump to label

JSR Jump to Subroutine

LBCC Long Branch if Carry Clear

LBCS Long Branch if Carry Set

LBEQ Long Branch if Equal

LBGE Long Branch if Greater than or Equal

240 HC(S)12 Assembler Manual

Assembler Syntax
Source line

Table 7.1 HC12, HCS12, and HCS12X Instruction set (continued)

Instruction Description

LBGT Long Branch if Greater Than
LBHI Long Branch if Higher

LBHS Long Branch if Higher or Same
LBLE Long Branch if Less than or Equal
LBLO Long Branch if Lower (same as BCS)
LBLS Long Branch if Lower or Same
LBLT Long Branch if Less Than

LBMI Long Branch if Minus

LBNE Long Branch if Not Equal

LBPL Long Branch if Plus

LBRA Long Branch Always

LBRN Long Branch Never

LBSR Long Branch Subroutine

LBVC Long Branch if overflow Clear
LBVS Long Branch if overflow Set
LDAA Load Accumulator A

LDAB Load Accumulator B

LDD Load accumulator D

LDS Load register SP

LDX Load index register X

LDY Load index register Y

LEAS Load SP with Effective Address
LEAX Load X with Effective Address
LEAY Load Y with Effective Address
LSL Logical Shift Left in memory

HC(S)12 Assembler Manual

241

Assembler Syntax
Source line

Table 7.1 HC12, HCS12, and HCS12X Instruction set (continued)

Instruction Description

LSLA Logical Shift Left accumulator A

LSLB Logical Shift Left accumulator B

LSLD Logical Shift Left accumulator D

LSLW Logical Shift Left in memory

LSLX Logical Shift Left register X

LSLY Logical Shift Left register Y

LSR Logical Shift Right in memory

LSRA Logical Shift Right Accumulator A

LSRB Logical Shift right accumulator B

LSRD Logical shift Right accumulator D

LSRW Logical Shift Right in memory

LSRX Logical Shift Right register X

LSRY Logical Shift Right register Y

MAXA Get Maximum of two unsigned bytes in accumulator A
MAXM Get Maximum of two unsigned byte in Memory
MEM Membership function

MOVW Memory to memory word move

MINA Get Minimum of two unsigned byte in accumulator A
MINM Get Minimum of two unsigned byte in Memory
MOVB Memory to memory Byte Move

MOVW Memory to memory Word Move

MUL 8 * 8 bit unsigned Multiplication

NEG 2’s complement in memory

NEGA 2’s complement accumulator A

NEGB 2’s complement accumulator B

242 HC(S)12 Assembler Manual

Assembler Syntax

Source line

Table 7.1 HC12, HCS12, and HCS12X Instruction set (continued)

Instruction Description

NEGW 2’s complement in memory

NEGX 2’s complement register X

NEGY 2’s complement register Y

NOP No operation

ORAA Logical OR with Accumulator A
ORAB Logical OR with Accumulator B
ORCC Logical OR with CCR

ORX Logical OR register X with memory
ORY Logical OR register Y with memory
PSHA Push register A

PSHB Push register B

PSHC Push register CCR

PSHCW Push register CCRW

PSHD Push register D

PSHX Push register X

PSHY Push register Y

PULA Pop register A

PULB Pop register B

PULC Pop register CCR

PULCW Pop register CCRW

PULD Pop register D

PULX Pop register X

PULY Pop register Y

REV MIN-MAX Rule Evaluation for 8-bit values
REVW MIN-MAX Rule Evaluation for 16-bit values

HC(S)12 Assembler Manual

243

Assembler Syntax

Source line

Table 7.1 HC12, HCS12, and HCS12X Instruction set (continued)

Instruction Description

ROL Rotate memory left

ROLA Rotate accumulator A left

ROLB Rotate accumulator B left

ROLW Rotate memory left

ROLX Rotate register X left

ROLY Rotate register Y left

ROR Rotate memory right

RORA Rotate accumulator A Right

RORB Rotate accumulator B Right

RORW Rotate memory Right

RORX Rotate register X Right

RORY Rotate register Y Right

RTC Return from CALL

RTI Return from Interrupt

RTS Return from Subroutine

SBA Subtract accumulator A and B

SBCA Subtract with Carry from accumulator A
SBCB Subtract with Carry from accumulator B
SBED Subtract with borrow from accumulator D
SBEX Subtract with borrow from register X
SBEY Subtract with borrow from register Y
SEC Set carry bit

SEI Set interrupt bit

SEV Set two’s complement overflow bit

SEX Sign Extend into 16-bit register

244

HC(S)12 Assembler Manual

Assembler Syntax

Source line

Table 7.1 HC12, HCS12, and HCS12X Instruction set (continued)

Instruction Description

STAA Store Accumulator A

STAB Store Accumulator B

STD Store Accumulator D

STOP Stop

STS Store register SP

STX Store register X

STY Store register Y

SUBA Subtract without carry from accumulator A
SUBB Subtract without carry from accumulator B
SUBD Subtract without carry from accumulator D
SUBX Subtract without carry from register X
SUBY Subtract without carry from register Y
SWiI Software interrupt

TAB Transfer Ato B

TAP Transfer A to CCR

TBA Transfer Bto A

TBEQ Test counter and branch if zero

TBL 8-bit Table Lookup and Interpolate

TBNE Test counter and branch if Not zero

TFR Transfer Register to register

TPA Transfer CCR to A

TRAP Software Interrupt

TST Test memory for 0 or minus

TSTA Test accumulator A for 0 or minus

TSTB Test accumulator B for 0 or minus

HC(S)12 Assembler Manual

245

Assembler Syntax

Source line

Table 7.1 HC12, HCS12, and HCS12X Instruction set (continued)

Instruction Description

TSTW Test memory for 0 or minus

TSTX Test register X for 0 or minus

TSTY Test register Y for 0 or minus

TSX Transfer SP to X

TSY Transfer SPto Y

TXS Transfer X to SP

TYS Transfer Y to SP

WAI Wait for Interrupt

WAV Weighted Average Calculation

XGDX Exchange D with X

XGDY Exchange D with Y
Directive

Assembler directives are described in the “Assembler Directives” on page 277 chapter of
this manual.

Macro

A user-defined macro can be invoked in the assembler source program. This results in the
expansion of the code defined in the macro. Defining and using macros are described in
the “Macros” on page 347 chapter in this manual.

Operand field: Addressing modes

The operand fields, when present, follow the operation field and are separated from it by a
white space. When two or more operand subfields appear within a statement, a comma
must separate them.

The addressing mode notations in Table 7.2 on page 247 are allowed in the operand field:

246

HC(S)12 Assembler Manual

Assembler Syntax
Source line

Table 7.2 HC(S)12 addressing modes

Addressing Mode

Notation

Inherent on page 248

No operands

Immediate on page 248

#<immediate 8-bit expression> or
#<immediate 16-bit expression>

Direct on page 249

<8-bit address>

Extended on page 250

<16-bit address>

Relative on page 250

<PC relative, 8-bit offset> or
<PC relative, 16-bit offset>

Indexed, 5-bit offset on page 251

<5-bit offset>, xysp

Indexed., 9-bit offset on page 252

<9-bit offset>, xysp

Indexed. 16-bit offset on page 253

<16-bit offset>, xysp

Indexed, indirect 16-bit offset on page 253

[<16-bit offset>, xysp]

Indexed, pre-decrement on page 254

<3-bit offset>, -xys

Indexed, pre-increment on page 255

<3-bit offset>, +xys

Indexed, post-decrement on page 255

<3-bit offset>, xys-

Indexed, post-increment on page 256

<3-bit offset>, xys+

page 257

Indexed, accumulator offset on page 257 abd, xysp
Indexed-indirect, accumulator D offset on [D, xysp]

Global on page 258

New instructions started with the label G
are created for this usage like (GLDAA,
GSTAA,...).

In the table above:

* xysp stands for one of the index registers X, Y, SP, PC, or PCR

* xys stands for one of the index registers X, Y, or SP

¢ abd stands for one of the accumulators A, B, or D

HC(S)12 Assembler Manual

247

Assembler Syntax
Source line

Inherent

Instructions using this addressing mode have no operands or all operands are stored in
internal CPU registers (Listing 7.2 on page 248). The CPU does not need to perform any
memory access to complete the instruction.

Listing 7.2 Inherent addressing-mode instructions

NOP ; Instruction with no operand
CLRA ; The operand is in the A CPU register
Immediate

The opcode contains the value to use with the instruction rather than the address of this
value. The ‘' # ' character is used to indicate an immediate addressing mode operand

(Listing 7.3 on page 248).

Listing 7.3 Immediate addressing mode

main: LDAA #$64
LDX #S$SAFE
BRA main

In this example, the hexadecimal value $64 is loaded in the A register. The size of the
immediate operand is implied by the instruction context. The A register is an 8-bit register,
so the LDAA instruction expects an 8-bit immediate operand. The X register is a 16-bit
register, so the LDX instruction expects a 16-bit immediate operand.

The immediate addressing mode can also be used to refer to the address of a symbol
(Listing 7.4 on page 248).

Listing 7.4 Using the immediate addressing mode to refer to the address of a symbol

ORG $80
varl: DC.B $45, $67
ORG $800

main:
LDX #varl
BRA main

In this example, the address of the variable *varl’ ($80) is loaded in the X register.

248 HC(S)12 Assembler Manual

Assembler Syntax
Source line

One very common programming error is to omit the # character. This causes the
Assembler to misinterpret the expression as an address rather than an explicit data (Listing

7.5 on page 249).

Listing 7.5 Potential error - direct addressing mode instead of immediate

LDAA $60

means to load accumulator A with the value stored at address $60.

Direct

On the HC(S)12, the direct addressing mode is used to address operands in the direct page
of the memory (location $0000 to SOOFF, also called the zero page). On the HCS12X
the direct page register (DIRECT) determines the position of the direct page within the
memory map.The direct-addressing mode is used to access operands in the address range
$00 through SFF in the direct page. Accesses on this memory range are faster and require
less code than using the extended addressing mode (see Listing 7.6 on page 249). In order
to speed up an application a programmer can decide to place the most commonly accessed
data in this area of memory.

Listing 7.6 Direct addressing mode in an absolute section

data:

MyCode:

Entry:

main:

ORG $50
DS.B 1

SECTION

LDS #SAFE ; init Stack Pointer
LDAA #$01
STAA data
BRA main

In this example, the value in the A register is stored in the data variable which is located
at address $50.

In Listing 7.7 on page 250, datal is located in a relocatable section. To inform the
Assembler that this section will be placed in the zero page, the SHORT qualifier after
SECTION is used. The data2 label is imported into this code. To inform the Assembler
that this label can also be used with the direct addressing mode, the “XREF . B” directive
is used.

HC(S)12 Assembler Manual 249

Assembler Syntax

Source line

Listing 7.7 Direct addressing modes in a relocatable section

MyData: SECTION SHORT
datal: DS.B 1
XREF.B data2
MyCode: SECTION
Entry:
LDS #SAFE ; 1lnit Stack Pointer
LDAA datal
main: STAA data?2
BRA main
Extended

The extended addressing mode is used to access any memory location in the 64-Kilobyte
memory map. In Listing 7.8 on page 250, the value in the A register is stored in the
variable data. This variable is located at address $0100 in the memory map.

Listing 7.8 Extended addressing mode

XDEF Entry

ORG $100
data: DS.B 1
MyCode: SECTION
Entry:
LDS #SAFE ; init Stack Pointer
LDAA #501
main: STAA data
BRA main
Relative
This addressing mode is used to determine the destination address of branch instructions.
Each conditional branch instruction tests some bits in the condition code register. If the
bits are in the expected state, the specified offset is added to the address of the instruction
following the branch instruction, and execution continues at that address.
Short branch instructions (BRA, BEQ, ...) expect a signed offset encoded on one byte. The
valid range for a short branch offset is [-128. .127]. In Listing 7.9 on page 251, after
the two NOPs have been executed, the application branches on the first NOP and continues
execution.
250 HC(S)12 Assembler Manual

Assembler Syntax
Source line

Listing 7.9 Relative addressing mode

main:
NOP
NOP
BRA main

Long branch instructions (LBRA, LBEQ, ...) expect a signed offset encoded on two bytes.
The valid range for a long branch offset is [-32768. .32767].

Using the special symbol for the location counter, you can also specify an offset to the
location pointer as the target for a branch instruction. The * refers to the beginning of the
instruction where it is specified. In Listing 7.10 on page 251, after the two NOPs have been
executed, the application branches at offset -2 from the BRA instruction (i.e., on the
‘main’ label).

Listing 7.10 Using BRA with an offset

main:
NOP
NOP
BRA *-2

Inside of an absolute section, expressions specified in a PC-relative addressing mode may
be:

 alabel defined in any absolute section

* alabel defined in any relocatable section

¢ an external label (defined in an XREF directive)
¢ an absolute EQU or SET label.

Inside of a relocatable section, expressions specified in a PC-relative addressing mode
may be:

¢ alabel defined in any absolute section
* alabel defined in any relocatable section

¢ an external label (defined in an XREF directive)

Indexed, 5-bit offset

This addressing mode add a 5-bit signed offset to the base index register to form the
memory address that is referenced in the instruction. The valid range for a 5-bit signed
offsetis [-16. . 15]. The base index register may be X, Y, SP, PC, or PCR.

HC(S)12 Assembler Manual 251

Assembler Syntax

Source line

For information about the Indexed-PC and Indexed-PC-Relative addressing modes, see
section ‘Indexed PC vs. Indexed PC Relative Addressing Mode’ below.

This addressing mode may be used to access elements in an n-element table, which size is
smaller than 16 bytes (Listing 7.11 on page 252).

Listing 7.11 Indexed (5-bit offset) addressing mode
ORG $1000
CST_TBL: DC.B $5, $10, s$18, s$20, $28, $30
ORG $800
DATA_TBL: DS.B 10
main:
LDX #CST_TBL
LDAA 3,X
LDY #DATA_TBL
STAA 8, Y
The accumulator A is loaded with the byte value stored in memory location $1003
($1000 +3).
Then the value of accumulator A is stored at address $808 ($800 + 8).
Indexed, 9-bit offset
This addressing mode add a 9-bit signed offset to the base index register to form the
memory address, which is referenced in the instruction. The valid range for a 9-bit signed
offsetis [-256. . 255]. The base index register may be X, Y, SP, PC, or PCR.
For information about Indexed-PC and Indexed-PC-Relative addressing modes, see the
Indexed-PC vs. Indexed-PC relative addressing mode on page 258 section below.
This addressing mode may be used to access elements in an n-element table, whose size is
smaller than 256 bytes (Listing 7.12 on page 252).
Listing 7.12 Indexed, 9-bit offset addressing mode
ORG $1000
CST_TBL: DC.B s$5, $10, s$18, $20, $28, $30, $38, $40, $48
DC.B $50, $58, $60, $68, $70, $78, $80, $88, $90
DC.B $98, $A0, S$A8, $B0O, $B8, s$CO, s$C8, $DO, $D8
ORG $800
DATA_TBL: DS.B 40
main:
LDX #CST_TBL
LDAA 20,X
252 HC(S)12 Assembler Manual

Assembler Syntax
Source line

LDY #DATA_TBL
STAA 18, Y

Listing 7.13

Accumulator A is loaded with the byte value stored in memory location $1014
($1000 + 20).

Then the value of accumulator A is stored at address $812 ($800 + 18).

Indexed, 16-bit offset

This addressing mode add a 16-bit offset to the base index register to form the memory
address, which is referenced in the instruction. The 16-bit offset may be considered either
as signed or unsigned (SFFFF may be considered to be -1 or 65,535). The base index
register may be X, Y, SP, PC, or PCR.

For information about Indexed PC and Indexed PC Relative addressing mode, see the
Indexed-PC vs. Indexed-PC relative addressing mode on page 258 section.

In Listing 7.13 on page 253, accumulator A is loaded with the byte value stored in memory
location $900 ($600 + $300).

Then the value of accumulator A is stored at address $1140 ($1000 + $140).

Indexed, 16-bit offset addressing mode

main:

LDX #$600
LDAA $300,X

LDY #$1000
STAA $140, Y

Indexed, indirect 16-bit offset

This addressing mode adds a 16-bit offset to the base index register to form the address of
a memory location containing a pointer to the memory location referenced in the

instruction. The 16-bit offset may be considered either as signed or unsigned (SFFFF may
be considered to be -1 or 65, 535). The base index register may be X, Y, SP, PC, or PCR.

For information about Indexed-PC and Indexed-PC-Relative addressing mode, see section

‘Indexed PC vs. Indexed PC Relative Addressing Mode’.

HC(S)12 Assembler Manual 253

Assembler Syntax

Source line

In Listing 7.14 on page 254, the offset ‘4’ is added to the value of register ‘X’ ($1000)
to form the address $1004. Then an address pointer ($2001) is read from memory at
$1004. The accumulator A is loaded with $35, the value stored at address $2001.

Listing 7.14 Indexed, indirect 16-bit offset addressing mode
ORG $1000
CST_TBL1: DC.W $1020, $1050, $2001
ORG $2000
CST_TBL: DC.B $10, $35, $46
ORG $3000
main:
LDX #CST_TBL1
LDAA [4,X]
Indexed, pre-decrement
This addressing mode allow you to decrement the base register by a specified value,
before indexing takes place. The base register is decremented by the specified value and
the content of the modified base register is referenced in the instruction.
The valid range for a pre-decrement value is [1..8]. The base index register may be X, Y, or
SP.
Listing 7.15 Indexed, pre-decrement addressing mode
ORG $1000
CST_TBL: DC.B $5, $10, $18, $20, $28, $30
END_TBL: DC.B $0
main:
CLRA
CLRB
LDX #END_TBL
loop:
ADDD 1,-X
CPX #CST_TBL
BNE loop
In Listing 7.15 on page 254, the base register X is loaded with the address of the element
following the table CST_TBL ($1006).
The X register is decremented by 1 (its value is $1005) and the value at this address
($30) is added to register D.
254 HC(S)12 Assembler Manual

Assembler Syntax
Source line

Listing 7.16

X is not equal to the address of CST_TBL, so it is decremented again and the content of
address ($1004) is added to D.

This loop is repeated as long as the X register did not reach the beginning of the table
CST_TBL ($1000).

Indexed, pre-increment

This addressing mode allow you to increment the base register by a specified value, before
indexing takes place. The base register is incremented by the specified value and the
content of the modified base register is referenced in the instruction.

The valid range for a pre-increment value is [1 . . 8]. The base index register may be X, Y,
or SP.

In Listing 7.16 on page 253, the base register X is loaded with the address of the table
CST_TBL ($1000). The register X is incremented by 2 (its value is $1002) and the
value at this address ($18) is added to register D.

Indexed, pre-increment addressing mode

CST_TBL:
END_TBL:
main:

loop:

ORG $1000

DC.B $5, $10, s18, $20, $28, $30
DC.B sO0

CLRA

CLRB

LDX #CST_TBL

ADDD 2,+X

CPX #END_TBL

BNE loop

X is not equal to the address of END_TBL, so it is incremented again and the content of
address ($1004) is added to D. This loop is repeated as long as the register X did not reach
the end of the END_TBL ($1006) table.

Indexed, post-decrement

This addressing mode allow you to decrement the base register by a specified value, after
indexing takes place. The content of the base register is read, and then the base register is
decremented by the specified value.

The valid range for a pre-decrement value is [1..8]. The base index register may be X, Y, or
SP.

HC(S)12 Assembler Manual

255

Assembler Syntax
Source line

In Listing 7.17 on page 256, the base register X is loaded with the address of the element
following the table CST_TBL ($1006). The value at address $1006 ($0) is added to
register D, and X is decremented by 2 (its value is $1004). X is not equal to the address of
CST_TBL, so the value at address $1004 is added to D, and X is decremented by two
again (its value is now $1002). This loop is repeated as long as the X register did not
reach the beginning of the table CST_TBL ($1000).

Listing 7.17 Indexed, post-increment addressing mode

ORG $1000
CST_TBL: DC.B $5, $10, $18, $20, $28, $30
END_TBL: DC.B $0
main:
CLRA
CLRB
LDX #END_TBL
loop:

ADDD 2,X-
CPX #CST_TBL
BNE loop

Indexed, post-increment

This addressing mode allow you to increment the base register by a specified value, after
indexing takes place. The content of the base register is read and then the base register is
incremented by the specified value.

The valid range for a pre-increment value is [1..8]. The base index register may be X, Y, or
SP.

In Listing 7.18 on page 256, the base register X is loaded with the address of the table
CST_TBL ($1000). The value at address $1000 ($5) is added to register D and then the X
register is incremented by 1 (its value is $1001). X is not equal to the address of
END_TBL, so the value at address $1001 ($10) is added to register D and then the X
register is incremented by 1 (its value is $1002). This loop is repeated as long as the X
register did not reach the end of the table END_TBL ($1006).

Listing 7.18 Indexed, post-increment addressing mode

ORG $1000
CST_TBL: DC.B $5, $10, $18, $20, $28, $30
END_TBL: DC.B sO0
main:

CLRA

256 HC(S)12 Assembler Manual

Assembler Syntax
Source line

loop:

CLRB
LDX #CST_TBL

ADDD 1,X+
CPX #END_TBL
BNE loop

Listing 7.19

Indexed, accumulator offset

This addressing mode add the value in the specified accumulator to the base index register
to form the address, which is referenced in the instruction. The base index register may be
X, Y, SP, or PC. The accumulator may be A, B, or D.

In Listing 7.19 on page 257, the value stored in B ($20) is added to the value of X ($600)
to form a memory address ($620). The value stored at $620 is loaded in accumulator A.

Indexed, accumulator offset addressing mode

main:

LDAB #$20
LDX #$600
LDAA B,X

LDY #$1000
STAA $140, Y

Indexed-indirect, accumulator D offset

This addressing mode add the value in D to the base index register to form the address of a
memory location containing a pointer to the memory location referenced in the
instruction. The base index register may be X, Y, SP or PC.

Listing 7.20 on page 257 is an example of jump table. The values beginning at gotol are
potential destination for the jump instruction. When JMP [D, PC] is executed, PC points
to gotol and D holds the value 2. The JMP instruction adds the value in D and PC to form
the address of goto2. The CPU reads the address stored there (the address of the label
entry2) and jumps there.

Listing 7.20 Index-indirect, accumulator D offset addressing mode

entryl:

entry2:

NOP
NOP
NOP
NOP

HC(S)12 Assembler Manual 257

Assembler Syntax

Source line

entry3:
main:
gotol:

goto2:
goto3:

NOP
NOP

LDD #2

JMP [D, PC]
DC.W entryl
DC.W entry2
DC.W entry3

Listing 7.21

Global

The physical address space on the HCS12 core architecture is limited to 64 KB. The
HCS12X core architecture with the usage of the Global Page Index Register allows the
accessing of up to 8 MB of memory. New instructions started with the label G are created
for this usage.

In Listing 7.21 on page 258, Accumulator A is loaded from Global Memory. GLDAA has
the same addressing mode like LDAA. However, the only difference is that memory
address

(64 KB) is presented by the Global memory address (8 MB). This is the case for all Global
instructions.

Global addressing mode

main:

GLDAA $1020
GSTAA $1020

Indexed-PC vs. Indexed-PC relative addressing
mode

When using the indexed addressing mode with PC as the base register, the Macro
Assembler allow you to use either Indexed-PC (<offset>, PC) or Indexed-PC Relative
(<offset>, PCR) notation.

When Indexed-PC notation is used, the offset specified in inserted directly in the opcode
(Listing 7.22 on page 258.

Listing 7.22 Using the indexed-PC addressing mode

main:

LDAB 3, PC

258

HC(S)12 Assembler Manual

Assembler Syntax
Source line

DC.B $20, $30, $40, s$50

Listing 7.23

In the example above, the register B is loaded with the value stored at address PC + 3
(850).

When Indexed-PC-Relative notation is used, the offset between the current location
counter and the specified expression is computed and inserted in the opcode.

In Listing 7.23 on page 259, the B register is loaded with the value at stored at label ‘X4’
($50). The Macro Assembler evaluates the offset between the current location counter
and the ‘x4’ symbol to determine the value, which must be stored in the opcode.

Using the indexed-PC relative addressing mode

main:

x1:
X2
x3:
x4

LDAB x4, PCR

DC.B $20
DC.B $30
DC.B $40
DC.B $50

Inside of an absolute section, expressions specified in an indexed PC-relative addressing
mode may be:

¢ alabel defined in any absolute section

* alabel defined in any relocatable section

¢ an external label (defined in an XREF directive)
¢ an absolute EQU or SET label.

Inside of a relocatable section, expressions specified in an indexed-PC relative addressing
mode may be:

¢ alabel defined in any absolute section
* alabel defined in any relocatable section

¢ an external label (defined in an XREF directive)

Comment field

The last field in a source statement is an optional comment field. A semicolon (;) is the
first character in the comment field. Listing 7.24 on page 260 shows a typical comment as
the last field in a source statement.

HC(S)12 Assembler Manual 259

Assembler Syntax
Symbols

Listing 7.24 Example of a comment

NOP ; Comment following an instruction

Symbols

The following types of symbols are the topics of this section:

¢ User-defined symbols on page 260

» External symbols on page 261
¢ Undefined symbols on page 261

* Reserved symbols on page 262

User-defined symbols

Symbols identify memory locations in program or data sections in an assembly module. A
symbol has two attributes:

* The section, in which the memory location is defined
* The offset from the beginning of that section.

Symbols can be defined with an absolute or relocatable value, depending on the section in
which the labeled memory location is found. If the memory location is located within a
relocatable section (defined with the SECTION - Declare Relocatable Section on

page 338 assembler directive), the label has a relocatable value relative to the section start
address.

Symbols can be defined relocatable in the label field of an instruction or data definition
source line (Listing 7.25 on page 260).

Listing 7.25 Example of a user-defined relocatable SECTION

Sec: SECTION

labell: DC.B 2 ; labell is assigned offset 0 within Sec.
label2: DC.B 5 ; label2 is assigned offset 2 within Sec.
label3: DC.B 1 ; label3 is assigned offset 7 within Sec.

It is also possible to define a label with either an absolute or a previously defined
relocatable value, using the SET - Set Symbol Value on page 340 or EQU - Equate
symbol value on page 300 assembler directives.

Symbols with absolute values must be defined with constant expressions.

260 HC(S)12 Assembler Manual

Assembler Syntax
Symbols

Listing 7.26 Example of a user-defined absolute and relocatable SECTION

Sec: SECTION

labell: DC.B 2 ; labell is assigned offset 0 within Sec.
label2: EQU 5 ; label2 is assigned value 5.

label3: EQU labell ; label3 is assigned the address of labell.

External symbols

A symbol may be made external using the XDEF - External Symbol Definition on

page 344 assembler directive. In another source file, an XREF - External Symbol
Reference on page 345 assembler directive must reference it. Since its address is unknown
in the referencing file, it is considered to be relocatable. See Listing 7.27 on page 261 for
an example of using XDEF and XREF.

Listing 7.27 Examples of external symbols

XREF extLabel ; symbol defined in an other module.
; extLabel is imported in the current module
XDEF label ; symbol is made external for other modules

; label is exported from the current module
constSec: SECTION
label: DC.W 1, extLabel

Undefined symbols

If a label is neither defined in the source file nor declared external using XREF, the
Assembler considers it to be undefined and generates an error message. Listing 7.28 on
page 261 shows an example of an undeclared label.

Listing 7.28 Example of an undeclared label

codeSec: SECTION

entry:

NOP

BNE entry

NOP

JMP end

JMP label ; <- Undeclared user-defined symbol: label
end: RTS

HC(S)12 Assembler Manual 261

Assembler Syntax
Constants

END

Reserved symbols

Reserved symbols cannot be used for user-defined symbols.

Register names are reserved identifiers.

For the HC12 processor these reserved identifiers are:
A,B,CCR, D, X, Y, SP, PC, PCR, TEMP1, TEMP2.

In addition, the keywords HIGH, LOW and PAGE are also a reserved identifier. It is used to
refer to the bits 16-23 of a 24-bit value.

Constants

The Assembler supports integer and ASCII string constants:

Integer constants

The Assembler supports four representations of integer constants:

A decimal constant is defined by a sequence of decimal digits (0-9).
Example: 5, 512, 1024

A hexadecimal constant is defined by a dollar character ($) followed by a sequence
of hexadecimal digits (0-9, a-f, A-F).

Example: $5, $200, $400

An octal constant is defined by the commercial at character (@) followed by a
sequence of octal digits (0-7).

Example: @5,@1000, @2000

A binary constant is defined by a percent character followed by a sequence of binary
digits (0-1)

Example: $101,$1000000000,%10000000000

The default base for integer constant is initially decimal, but it can be changed using the
BASE - Set number base on page 285 assembler directive. When the default base is not
decimal, decimal values cannot be represented, because they do not have a prefix
character.

262

HC(S)12 Assembler Manual

Assembler Syntax
Operators

String constants

A string constant is a series of printable characters enclosed in single (‘) or double quote
(). Double quotes are only allowed within strings delimited by single quotes. Single
quotes are only allowed within strings delimited by double quotes. See Listing 7.29 on
page 263 for a variety of string constants.

Listing 7.29 String constants

‘ABCD‘, "ABCD", '"A', "'B", "A'B", "A"B'

Floating-Point constants

The Macro Assembler does not support floating-point constants.

Operators

Operators recognized by the Assembler in expressions are:

¢ Addition and subtraction operators (binary) on page 263

¢ Multiplication, division and modulo operators (binary) on page 264

¢ Sign operators (unary) on page 265

« Shift operators (binary) on page 265

¢ Bitwise operators (binary) on page 266

¢ Logical operators (unary) on page 267
¢ Relational operators (binary) on page 268

* HIGH operator on page 269
¢ PAGE operator on page 270

* Force operator (unary) on page 270

Addition and subtraction operators
(binary)

The addition and subtraction operators are + and -, respectively.

Syntax

Addition: <operand> + <operand>

HC(S)12 Assembler Manual 263

Assembler Syntax

Operators

Subtraction: <operand> - <operand>

Description

The + operator adds two operands, whereas the — operator subtracts them. The operands
can be any expression evaluating to an absolute or relocatable expression.

Addition between two relocatable operands is not allowed.

Example

See Listing 7.30 on page 264 for an example of addition and subtraction operators.

Listing 7.30 Addition and subtraction operators

SA3216 + $42 ; Addition of two absolute operands (= $A3258).
labelB - $10 ; Subtraction with value of ‘labelB’

Multiplication, division and modulo
operators (binary)

The multiplication, division, and modulo operators are *, /, and %, respectively.

Syntax

Multiplication: <operand> * <operand>

Division: <operand> / <operand>
Modulo: <operand> % <operand>
Description

The * operator multiplies two operands, the / operator performs an integer division of
the two operands and returns the quotient of the operation. The % operator performs an
integer division of the two operands and returns the remainder of the operation

The operands can be any expression evaluating to an absolute expression. The second
operand in a division or modulo operation cannot be zero.

264

HC(S)12 Assembler Manual

Assembler Syntax
Operators

Listing 7.31

Example

See Listing 7.31 on page 265 for an example of the multiplication, division, and modulo
operators.

Multiplication, division, and modulo operators

23 * 4
23 / 4
23 % 4

; multiplication (= 92)
; division (= 5)
; remainder (= 3)

Listing 7.32

Sign operators (unary)

The (unary) sign operators are + and - .

Syntax

Plus: +<operand>

Minus: -<operand>

Description

The + operator does not change the operand, whereas the — operator changes the operand
to its two’s complement. These operators are valid for absolute expression operands.

Example

See Listing 7.32 on page 265 for an example of the unary sign operators.

Unary sign operators

+$32
-$32

A
;o

$32)
$CE = -$32)

Shift operators (binary)

The binary shift operators are << and >>.

HC(S)12 Assembler Manual 265

Assembler Syntax

Operators

Listing 7.33

Syntax

Shift left: <operand> << <count>

Shift right: <operand> >> <count>

Description

The << operator shifts its left operand left by the number of bits specified in the right
operand.

The >> operator shifts its left operand right by the number of bits specified in the right
operand.

The operands can be any expression evaluating to an absolute expression.

Example

See Listing 7.33 on page 266 for an example of the binary shift operators.

Binary shift operators

$25 << 2
SAS5 >> 3

; shift left (= $94)
; shift right(= $14)

Bitwise operators (binary)

The binary bitwise operators are &, |, and .

Syntax

Bitwise AND: <operand> & <operand>
Bitwise OR: <operand> | <operand>

~

Bitwise XOR: <operand> <operand>

Description

The & operator performs an AND between the two operands on the bit level.
The | operator performs an OR between the two operands on the bit level.
* The ~ operator performs an XOR between the two operands on the bit level.

* The operands can be any expression evaluating to an absolute expression.

266

HC(S)12 Assembler Manual

Assembler Syntax
Operators

Listing 7.34

Example
See Listing 7.34 on page 267 for an example of the binary bitwise operators

Binary bitwise operators

Uy Uy Ur

a3l e e

>— R
w W w

;= $2 (%1110 & %0011 = %0010)
; = $F (%1110 | %0011 = %1111)
; = $D (%1110 ~ %0011 = %1101)

Bitwise operators (unary)

The unary bitwise operator is ~.

Syntax

One’s complement: ~<operand>

Description

The ~ operator evaluates the one’s complement of the operand.

The operand can be any expression evaluating to an absolute expression.

Example
See Listing 7.35 on page 267 for an example of the unary bitwise operator.

Listing 7.35 Unary bitwise operator

~$C

= SFFFFFFF3 (~%00000000 00000000 00000000 00001100

=%11111111 11111111 11111111 11110011)

Logical operators (unary)

The unary logical operator is !.

Syntax

Logical NOT: !<operand>

HC(S)12 Assembler Manual 267

Assembler Syntax
Operators

Description

The ! operator returns 1 (true) if the operand is 0, otherwise it returns 0 (false).

The operand can be any expression evaluating to an absolute expression.

Example

See Listing 7.36 on page 268 for an example of the unary logical operator.

Listing 7.36 Unary logical operator

1 (8<5) ; = $1 (TRUE)

Relational operators (binary)

The binary relational operators are =, ==, !=, <>, <, <=, >, and >=.

Listing 7.37 Syntax - relational operators

Equal: <operand>

<operand>
Not equal: <operand>

<operand>
Less than: <operand>
Less than or equal: <operand>
Greater than: <operand>

Greater than or equal: <operand>

<operand>
<operand>
<operand>
<operand>
<operand>
<operand>
<operand>

= <operand>

Description

These operators compare two operands and return 1 if the condition is ‘true’ or O if the

condition is ‘false’.

The operands can be any expression evaluating to an absolute expression.

Example

See Listing 7.38 on page 269 for an example of the binary relational operators

268

HC(S)12 Assembler Manual

Assembler Syntax

Operators
Listing 7.38 Binary relational operators
3 >= 4 ; = 0 (FALSE)
label = 4 ; =1 (TRUE) if label is 4, 0 or (FALSE) otherwise.
9 < $B ; = 1 (TRUE)

HIGH operator

The HIGH operator is HIGH.

Syntax

High Byte: HIGH (<operand>)

Description

This operator returns the high byte of the address of a memory location.

Example
Assume datal is a word located at address $1050 in the memory.
LDAA #HIGH(datal)

This instruction will load the immediate value of the high byte of the address of datal
($10) in register A.

LDAA HIGH(datal)

This instruction will load the direct value at memory location of the higher byte of the
address of datal (i.e., the value in memory location $10) in register A.

LOW operator
The LOW operator is LOW.

Syntax

LOW Byte: LOW (<operand>)

HC(S)12 Assembler Manual 269

Assembler Syntax

Operators
Description
This operator returns the low byte of the address of a memory location.
Example
Assume datal is a word located at address $1050 in the memory.
LDAA #LOW(datal)
This instruction will load the immediate value of the lower byte of the address of datal
($50) in register A.
LDAA LOW(datal)
This instruction will load the direct value at memory location of the lower byte of the
address of datal (i.e., the value in memory location $50) in register A.
PAGE operator
The PAGE operator is PAGE.
Syntax
PAGE Byte: PAGE (<operand>)
Description
This operator returns the page byte of the address of a memory location.
Example
Assume datal is a word located at address $28050 in the memory.
LDAA #PAGE (datal)
This instruction will load the immediate value of the page byte of the address of datal
(52).
LDAA PAGE(datal)
This instruction will load the direct value at memory location of the page byte of the
address of datal (i.e., the value in memory location $2).
Force operator (unary)
The unary force operators are <, .B, >, and .W.
270 HC(S)12 Assembler Manual

Assembler Syntax
Operators

Syntax

8-bit address: <<operand> or <operand>.B

16-bit address: ><operand> or <operand>.W

Description

The < or . B operators force the operand to be an 8-bit operand, whereas the > or . W
operators force the operand to be a 16-bit operand.

The < operator may be useful to force the 8-bit immediate, 8-bit indexed, or direct
addressing mode for an instruction.

> operator may be useful to force the 16-bit immediate, 16-bit indexed, or extended
addressing mode for an instruction.

The operand can be any expression evaluating to an absolute or relocatable expression.

Example

<label ; label is a 8-bit address.
label.B ; label is a 8-bit address.
>label ; label is a 16-bit address.
label.W ; label is a 16-bit address.

Operator precedence

Operator precedence follows the rules for ANSI - C operators (Table 7.3 on page 271).

Table 7.3 Operator precedence priorities

Operator Description Associativity

0] Parenthesis Right to Left

~ One’s complement Left to Right
Unary Plus

- Unary minus

* Integer multiplication Left to Right

/ Integer division

% Integer modulo

+ Integer addition Left to Right

- Integer subtraction

HC(S)12 Assembler Manual 271

Assembler Syntax
Expression

Table 7.3 Operator precedence priorities (continued)

Operator Description Associativity

<< Shift Left Left to Right

>> Shift Right

< Less than Left to Right

<= Less or equal to

> Greater than

>= Greater or equal to

=, == Equal to Left to Right

1=, <> Not Equal to

& Bitwise AND Left to Right

A Bitwise Exclusive OR Left to Right
Bitwise OR Left to Right

Expression

An expression is composed of one or more symbols or constants, which are combined
with unary or binary operators. Valid symbols in expressions are:

» User defined symbols
* External symbols

» The special symbol ‘*’ represents the value of the location counter at the beginning
of the instruction or directive, even when several arguments are specified. In the
following example, the asterisk represents the location counter at the beginning of
the DC directive:

pc.w 1, 2, *-2

Once a valid expression has been fully evaluated by the Assembler, it is reduced as one of
the following type of expressions:

» Absolute expression on page 273: The expression has been reduced to an absolute
value, which is independent of the start address of any relocatable section. Thus it is

a constant. Simple relocatable expression on page 274: The expression evaluates to

an absolute offset from the start of a single relocatable section.

* Complex relocatable expression: The expression neither evaluates to an absolute
expression nor to a simple relocatable expression. The Assembler does not support
such expressions.

272 HC(S)12 Assembler Manual

Assembler Syntax
Expression

All valid user defined symbols representing memory locations are simple relocatable
expressions. This includes labels specified in XREF directives, which are assumed to be
relocatable symbols.

Absolute expression

An absolute expression is an expression involving constants or known absolute labels or
expressions. An expression containing an operation between an absolute expression and a
constant value is also an absolute expression.

See Listing 7.39 on page 273 for an example of an absolute expression.

Listing 7.39 Absolute expression

Base: SET $100
Label: EQU Base * $5 + 3

Expressions involving the difference between two relocatable symbols defined in the same
file and in the same section evaluate to an absolute expression. An expression as
“label2-labell” can be translated as:

Listing 7.40 Interpretation of label2-label1: difference between two relocatable symbols

(<offset label2> + <start section address >) -
(<offset labell> + <start section address >)

This can be simplified to (Listing 7.41 on page 273):

Listing 7.41 Simplified result for the difference between two relocatable symbols

<offset label2> + <start section address > -
<offset labell> - <start section address>
= <offset label2> - <offset labell>

Example

In the example in Listing 7.42 on page 274, the expression “tabEnd-tabBegin”
evaluates to an absolute expression and is assigned the value of the difference between the
offset of tabEnd and tabBegin in the section DataSec.

HC(S)12 Assembler Manual 273

Assembler Syntax
Expression

Listing 7.42 Absolute expression relating the difference between two relocatable
symbols

DataSec: SECTION
tabBegin: DS.B 5
tabEnd: DS.B 1

ConstSec: SECTION
label: EQU tabEnd-tabBegin ; Absolute expression

CodeSec: SECTION
entry: NOP

Simple relocatable expression

A simple relocatable expression results from an operation such as one of the following:
» <relocatable expression> + <absolute expression>
* <relocatable expression> - <absolute expression>

¢ < absolute expression> + < relocatable expression>

Listing 7.43 Example of relocatable expression

XREF XtrnLabel
DataSec: SECTION
tabBegin: DS.B 5
tabEnd: DS.B 1
CodeSec: SECTION

entry:
LDAA tabBegin+2 ; Simple relocatable expression
BRA *-3 ; Simple relocatable expression
LDAA XtrnLabel+6 ; Simple relocatable expression

Unary operation result

Table 7.4 on page 275 describes the type of an expression according to the operator in an
unary operation:

274 HC(S)12 Assembler Manual

Assembler Syntax
Expression

Table 7.4 Expression type resulting from operator and operand type

Operator Operand Expression
-~ absolute absolute
-~ relocatable complex

+ absolute absolute

+ relocatable relocatable

Binary operations result

Table 7.5 on page 275 describes the type of an expression according to the left and right
operators in a binary operation:

Table 7.5 Expression type resulting from operator and their operands

Operator Left Operand Right Expression
Operand

- absolute absolute absolute

- relocatable absolute relocatable
- absolute relocatable complex

- relocatable relocatable absolute

+ absolute absolute absolute

+ relocatable absolute relocatable
+ absolute relocatable relocatable
+ relocatable relocatable complex
1, %, <<, >>, 1, &, A absolute absolute absolute
%, <<, >>, |, &N relocatable absolute complex
%, <<, >>, |, &N absolute relocatable complex
%, <<, >>, |, & N relocatable relocatable complex

HC(S)12 Assembler Manual 275

Assembler Syntax
Translation limits

Translation limits

The following limitations apply to the Macro Assembler:
» Floating-point constants are not supported.
¢ Complex relocatable expressions are not supported.
» Lists of operands or symbols must be separated with a comma.
¢ Includes may be nested up to 50.

¢ The maximum line length is 1023.

276 HC(S)12 Assembler Manual

Assembler Directives

There are different class of assembler directives. The following tables gives you an
overview over the different directives and their class:

Directive overview

Section-Definition directives

The directives in Table 8.1 on page 277 are used to define new sections.

Table 8.1 Directives for defining sections

Directive Description

ORG - Set Location Counter on page 330 Define an absolute section

Define a relocatable section

SECTION - Declare Relocatable Section on
page 338

OFFSET - Create absolute symbols on
page 328

Define an offset section

Constant-Definition directives

The directives in Table 8.2 on page 277 are used to define assembly constants.

Table 8.2 Directives for defining constants

Directive Description

EQU - Equate symbol value on page 300 Assign a name to an expression (cannot
be redefined)

Assign a name to an expression (can be
redefined)

SET - Set Symbol Value on page 340

HC(S)12 Assembler Manual 277

Assembler Directives
Directive overview

Data-Allocation directives
The directives in Table 8.3 on page 278 are used to allocate variables.

Table 8.3 Directives for allocating variables

Directive Description

DC - Define Constant on page 288 Define a constant variable

DCB - Define Constant Block on Define a constant block

page 290

DS - Define Space on page 292 Define storage for a variable
RAD50 - Rad50-encoded string RADS50 encoded string constants
constants on page 335

Symbol-Linkage directives

Symbol-linkage directives (Table 8.4 on page 278) are used to export or import global
symbols.

Table 8.4 Symbol linkage directives

Directive Description

ABSENTRY - Application entry point on Specify the application entry point when an
page 282 absolute file is generated

XDEF - External Symbol Definition on Make a symbol public (visible from outside)
page 344

XREF - External Symbol Reference on Import reference to an external symbol.
page 345

XREFB - External Reference for Import reference to an external symbol
Symbols located on the Direct Page on located on the direct page.

page 346

Assembly-Control directives

Assembly-control directives (Table 8.5 on page 279) are general purpose directives used
to control the assembly process.

278 HC(S)12 Assembler Manual

Assembler Directives
Directive overview

Table 8.5 Assembly control directives

Directive

Description

ALIGN - Align Location Counter on
page 284

Define Alignment Constraint

BASE - Set number base on page 285

Specify default base for constant definition

END - End assembly on page 296

End of assembly unit

ENDFOR - End of FOR block on
page 297

End of FOR block

EVEN - Force word alignment on
page 301

Define 2-byte alignment constraint

FAIL - Generate Error message on
page 303

Generate user defined error or warning
messages

FOR - Repeat assembly block on
page 307

Repeat assembly blocks

INCLUDE - Include text from another
file on page 313

Include text from another file.

LONGEVEN - Forcing Long-Word
alignment on page 318

Define 4 Byte alignment constraint

Listing-File Control directives

Listing-file control directives (Table 8.6 on page 279) control the generation of the

assembler listing file.

Table 8.6 Listing-file control directives

Directive

Description

CLIST - List conditional assembly on
page 286

Specify if all instructions in a conditional
assembly block must be inserted in the
listing file or not.

LIST - Enable Listing on page 314

Specify that all subsequent instructions
must be inserted in the listing file.

LLEN - Set Line Length on page 316

Define line length in assembly listing file.

HC(S)12 Assembler Manual

279

Assembler Directives
Directive overview

Table 8.6 Listing-file control directives (continued)

Directive Description

MLIST - List macro expansions on Specify if the macro expansions must be
page 322 inserted in the listing file.

NOLIST - Disable Listing on page 325 Specify that all subsequent instruction

must not be inserted in the listing file.

NOPAGE - Disable Paging on page 327 Disable paging in the assembly listing file.

PAGE - Insert Page break on page 332 Insert page break.

PLEN - Set Page Length on page 334 Define page length in the assembler listing
file.

SPC - Insert Blank Lines on page 341 Insert an empty line in the assembly listing
file.

TABS - Set Tab Length on page 342 Define number of character to insert in the

assembler listing file for a TAB character.

TITLE - Provide Listing Title on page 343 Define the user defined title for the
assembler listing file.

Macro Control directives

Macro control directives (Table 8.7 on page 280) are used for the definition and expansion
of macros.

Table 8.7 Macro control directives

Directive Description

ENDM - End macro definition on page 299 End of user defined macro.

MACRO - Begin macro definition on Start of user defined macro.
page 319

MEXIT - Terminate Macro Expansion on Exit from macro expansion.
page 320

Conditional Assembly directives

Conditional assembly directives (Table 8.8 on page 281) are used for conditional
assembling.

280 HC(S)12 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives

Table 8.8 Conditional assembly directives

Directive Description

ELSE - Conditional assembly on alternate block
page 294

-Compat: Compatibility modes on End of conditional block
page 137 assembler option on page 297

IF - Conditional assembly on page 309 Start of conditional block. A boolean
expression follows this directive.

IFcc - Conditional assembly on page 311 | Test if two string expressions are equal.

IFDEF Test if a symbol is defined.

IFEQ Test if an expression is null.

IFGE Test if an expression is greater or equal to
0.

IFGT Test if an expression is greater than 0.

IFLE Test if an expression is less or equal to 0.

IFLT Test if an expression is less than 0.

IFNC Test if two string expressions are different.

IFNDEF Test if a symbol is undefined

IFNE Test if an expression is not null.

Detailed descriptions of all assembler
directives

The remainder of the chapter covers the detailed description of all available
assembler directives.

HC(S)12 Assembler Manual 281

Assembler Directives
Detailed descriptions of all assembler directives

ABSENTRY - Application entry point

Syntax

ABSENTRY <label>

Synonym

None

Description

This directive is used to specify the application Entry Point when the Assembler
directly generates an absolute file. The -FA2 assembly option - ELF/DWARF 2.0
Absolute File - must be enabled.

Using this directive, the entry point of the assembly application is written in the
header of the generated absolute file. When this file is loaded in the debugger, the
line where the entry point label is defined is highlighted in the source window.

This directive is ignored when the Assembler generates an object file.

NOTE This instruction only affects the loading on an application by a debugger. It
tells the debugger which initial PC should be used. In order to start the
application on a target - initialize the Reset vector.

If the example in Listing 8.1 on page 282 is assembled using the -FA2 assembler
option, an ELF/DWAREF 2.0 Absolute file is generated.

Listing 8.1 Using ABSENTRY to specify an application entry point

ABSENTRY entry

ORG Sfffe
Reset: DC.W entry

ORG $70
entry: NOP
NOP
main: LDS #S1FFF
NOP

BRA main

282 HC(S)12 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives

According to the ABSENTRY directive, the entry point will be set to the address of
entry in the header of the absolute file.

HC(S)12 Assembler Manual 283

Assembler Directives

Detailed descriptions of all assembler directives

ALIGN - Align Location Counter

Syntax

ALIGN <n>

Synonym

None

Description

This directive forces the next instruction to a boundary that is a multiple of <n>,
relative to the start of the section. The value of <n> must be a positive number
between 1 and 32767. The ALIGN directive can force alignment to any size. The
filling bytes inserted for alignment purpose are initialized with *\0 .

ALIGN can be used in code or data sections.

Example

The example shown in Listing 8.2 on page 284 aligns the HEX label to a location,
which is a multiple of 16 (in this case, location 00010 (Hex))

Listing 8.2 Aligning the HEX Label to a Location

Assembler
Abs. Rel Loc Obj. code Source line
1 1
2 2 000000 6869 6768 DC.B "high"
3 3 000004 0000 0000 ALIGN 16
000008 0000 0000
00000C 0000 0000
4 4
5 5
6 6 000010 7F HEX: DC.B 127 ; HEX is allocated
7 7 ; on an address,
8 8 ; which is a
9 9 ; multiple of 16.
284 HC(S)12 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives

BASE - Set number base

Syntax

BASE <n>

Synonym

None

Description

The directive sets the default number base for constants to <n>. The operand <n>
may be prefixed to indicate its number base; otherwise, the operand is considered
to be in the current default base. Valid values of <n> are 2, 8, 10, 16. Unless a
default base is specified using the BASE directive, the default number base is
decimal.

Example

See Listing 8.3 on page 285 for examples of setting the number base.

Listing 8.3 Setting the Number Base

000000

000001

9 9 000002
10 10 000003

12 12 000004
13 13
14 14 000005
15 15
16 16

17 17 000006

64

0A

04
04

64

64

40

base
dc.b
base
dc.b
base
dc.b
dc.b
base
dc.b
base
dc.b

base
dc.b

10
100
16
Oa

100
%100
@iz
100
Sa
100

100

7

default

default

default

default

default

default

base:

base:

base:

base:

base:

base:

decimal
hex

binary

decimal

decimal

octal

Be careful. Even if the base value is set to 16, hexadecimal constants terminated by
a ‘D’ must be prefixed by the $ character, otherwise they are supposed to be

decimal constants in old style format. For example, constant 45D is interpreted as
decimal constant 45, not as hexadecimal constant 45D.

HC(S)12 Assembler Manual

285

Assembler Directives
Detailed descriptions of all assembler directives

CLIST - List conditional assembly

Syntax
CLIST [ON|OFF]

Synonym

None

Description

The CLIST directive controls the listing of subsequent conditional assembly
blocks. It precedes the first directive of the conditional assembly block to which it
applies, and remains effective until the next CLIST directive is read.

When the ON keyword is specified in a CLI ST directive, the listing file includes all
directives and instructions in the conditional assembly block, even those which do
not generate code (which are skipped).

When the OFF keyword is entered, only the directives and instructions that
generate code are listed.

A soon as the -L: Generate a listing file on page 153 assembler option is activated,
the Assembler defaults to CLIST ON.

Example

Listing 8.4 on page 286 is an example where the CLIST OFF option is used.

Listing 8.4 Listing file with CLIST OFF

CLIST OFF
Try: EQU 0
IFEQ Try
LDAA #103
ELSE
LDAA #0
ENDIF

Listing 8.5 on page 287 is the corresponding listing file.

286 HC(S)12 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives

Listing 8.5 Example assembler listing where CLIST OFF is used

Abs. Rel. Loc Obj. code Source line
2 2 0000 0000 Try: EQU 0
3 3 0000 0000 IFEQ Try
4 4 000000 8667 LDAA #103
5 5 ELSE
7 7 ENDIF

Listing 8.6 on page 287 is a listing file where CLIST ON is used.

Listing 8.6 CLIST ON is selected

CLIST ON
Try: EQU 0
IFEQ Try
LDAA #103
ELSE
LDAA #0
ENDIF

Listing 8.7 on page 287 is the corresponding listing file.

Listing 8.7 Example assembler listing where CLIST ON is used

HCl2-Assembler

Abs. Rel. Loc Obj. code Source line
2 2 0000 0000 Try: EQU 0
3 3 0000 0000 IFEQ Try
4 4 000000 8667 LDAA #103
5 5 ELSE
6 6 LDAA #0
7 7 ENDIF

HC(S)12 Assembler Manual 287

Assembler Directives
Detailed descriptions of all assembler directives

DC - Define Constant

Syntax

[<label>:] DC [.<size>] <expression> [, <expression>]...
where <size> = B (default), W, or L

Synonym

DCW (= 2 byte DCs), DCL (= 4 byte DCs), FCB (= DC.B),
FDB (= 2 byte DCs), FQB (= 4 byte DCs)

Description

The DC directive defines constants in memory. It can have one or more
<expression> operands, which are separated by commas. The
<expression> can contain an actual value (binary, octal, decimal, hexadecimal,
or ASCII). Alternatively, the <expression> can be a symbol or expression that
can be evaluated by the Assembler as an absolute or simple relocatable expression.
One memory block is allocated and initialized for each expression.

The following rules apply to size specifications for DC directives:

e DC.B: One byte is allocated for numeric expressions. One byte is allocated per
ASCII character for strings (Listing 8.8 on page 288).

e DC.W: Two bytes are allocated for numeric expressions. ASCII strings are right
aligned on a two-byte boundary (Listing 8.9 on page 288).

e DC.L: Four bytes are allocated for numeric expressions. ASCII strings are right
aligned on a four byte boundary (Listing 8.10 on page 289).

Listing 8.8 Example for DC.B

000000 4142 4344 Label: DC.B "ABCDE"
000004 45
000005 OAOA 010A DC.B %1010, @12, 1,3A

Listing 8.9 Example for DC.W

000000 0041 4243 Label: DC.W "ABCDE"
000004 4445

288 HC(S)12 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives

000006 000A 000A DC.W %1010, @12, 1, $A
00000A 0001 000A
00000E xxxx DC.W Label

Listing 8.10 Example for DC.L

000000 0000 0041 Label: DC.L "ABCDE"

000004 4243 4445

000008 0000 000A DC.L %1010, @12, 1, s$A
00000C 0000 000A

000010 0000 0001

000014 0000 000A

000018 xXxXxXX XXXX DC.L Label

If the value in an operand expression exceeds the size of the operand, the value is
truncated and a warning message is generated.

See also
Assembler directives:

¢ DCB - Define Constant Block on page 290

¢ DS - Define Space on page 292
¢ ORG - Set Location Counter on page 330

¢ SECTION - Declare Relocatable Section on page 338

HC(S)12 Assembler Manual 289

Assembler Directives
Detailed descriptions of all assembler directives

DCB - Define Constant Block

Syntax
[<label>:] DCB [.<size>] <count>, <value>

where <size> = B (default), W, or L.

Description

The DCB directive causes the Assembler to allocate a memory block initialized
with the specified <value>. The length of the block is the product:
<gsize>*<count>.

<count> may not contain undefined, forward, or external references. It may
range from 1 to 4096.

The value of each storage unit allocated is the sign-extended expression <value>,
which may contain forward references. The <count> cannot be relocatable. This
directive does not perform any alignment.

The following rules apply to size specifications for DCB directives (Listing 8.11 on
page 290):

e DCB.B: One byte is allocated for numeric expressions.
* DCB.W: Two bytes are allocated for numeric expressions.

e DCB.L: Four bytes are allocated for numeric expressions.

Listing 8.11 Assembly output listing showing the allocation of constants

000000 FFFF FF Label: DCB.B 3, SFF
000003 FFFE FFFE DCB.W 3, SFFFE
000007 FFFE

000009 0000 FFFE DCB.L 3, SFFFE

00000D 0000 FFFE
000011 0000 FFFE

See also

Assembler directives:

¢ DC - Define Constant on page 288
¢ DS - Define Space on page 292

* ORG - Set Location Counter on page 330

290 HC(S)12 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives

¢ SECTION - Declare Relocatable Section on page 338

HC(S)12 Assembler Manual 291

Assembler Directives
Detailed descriptions of all assembler directives

DS - Define Space

Syntax
[<label>:] DS[.<size>] <count>

where <size> =B (default), W, or L.

Synonym

RMB (= DS.B)
RMD (2 bytes)
RMQ (4 bytes)

Description

The DS directive is used to reserve memory for variables (Listing 8.12 on

page 292). The content of the memory reserved is not initialized. The length of the
block is the product:

<gize> * <count>.

<count> may not contain undefined, forward, or external references. It may
range from 1 to 4096.

Listing 8.12 Examples of DS directives

Counter: DS.B 2 ; 2 continuous bytes in memory
DS.B 2 ; 2 continuous bytes in memory

; can only be accessed through the label Counter
DS.W 5 ; 5 continuous words in memory

The label Counter references the lowest address of the defined storage area.

NOTE Storage allocated with a DS directive may end up in constant data section or
even in a code section, if the same section contains constants or code as well.
The Assembler allocates only a complete section at once.

Example

In Listing 8.13 on page 293 on page 293, a variable, a constant, and code were put
in the same section. Because code has to be in ROM, then all three elements must

292 HC(S)12 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives

be put into ROM. In order to allocate them separately, put them in different
sections (Listing 8.14 on page 293).

Listing 8.13 Poor memory allocation

; How it should NOT be done

Counter: DS 1 ; l-byte used
InitialCounter: DC.B $f5 ; constant $f5
main: NOP ; NOP instruction

Listing 8.14 How it should be done.

DataSect: SECTION ; separate section for variables
Counter: DS 1 ; l-byte used

ConstSect: SECTION ; sSeparate section for constants
InitialCounter: DC.B $f5 ; constant S$f5

CodeSect: SECTION ; section for code

main: NOP ; NOP instruction

An ORG directive also starts a new section.

See also

Assembler directives:

¢ DC - Define Constant on page 288
¢ ORG - Set Location Counter on page 330

¢ SECTION - Declare Relocatable Section on page 338

HC(S)12 Assembler Manual 293

Assembler Directives
Detailed descriptions of all assembler directives

ELSE - Conditional assembly

Syntax

IF <condition>

[<Block 1 - assembly language statements>]
[ELSE]

[<Block 2 - assembly language statements>]
ENDIF

Synonym
ELSEC

Description

If <condition> is true, the statements between IF and the corresponding ELSE
directive are assembled (generate code).

If <condition> is false, the statements between ELSE and the corresponding
ENDIF directive are assembled. Nesting of conditional blocks is allowed. The
maximum level of nesting is limited by the available memory at assembly time.

Example

Listing 8.15 on page 294 is an example of the use of conditional assembly
directives:

Listing 8.15 Various conditional assembly directives

Try: EQU 1
IF Try != 0
LDAA #103
ELSE
LDAA #0
ENDIF

The value of Try determines the instruction to be assembled in the program. As
shown, the “*1daa #103” instruction is assembled. Changing the operand of the
“EQU” directive to O causes the “1daa #0” instruction to be assembled instead.
Listing 8.16 on page 295 shows the listing provided by the Assembler for these
lines of code:

294 HC(S)12 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives

Listing 8.16 Output listing of Listing 8.15 on page 294

Abs. Rel. Loc Obj. code Source line
1 1 0000 0001 Try: EQU 1
2 2 0000 0001 IF Try != 0
3 3 000000 8667 LDAA #103
4 4 ELSE
6 6 ENDIF

HC(S)12 Assembler Manual 295

Assembler Directives

Detailed descriptions of all assembler directives

END - End assembly

Syntax
END

Synonym

None

Description

The END directive indicates the end of the source code. Subsequent source
statements in this file are ignored. The END directive in included files skips only
subsequent source statements in this include file. The assembly continues in the

including file in a regular way.

Example

The END statement in Listing 8.17 on page 296 causes any source code after the
END statement to be ignored, as in Listing 8.18 on page 296.

Listing 8.17 Source File

Label: DC.W $1234
DC.W $5678
END

DC.W $90AB ; no code generated
DC.W SCDEF ; no code generated

Listing 8.18 Generated listing file

1 1 000000 1234
2 2 000002 5678

DC.W $1234
DC.W $5678

296

HC(S)12 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives

ENDFOR - End of FOR block

Syntax
ENDFOR

Synonym

None

Description
The ENDFOR directive indicates the end of a FOR block.

NOTE The FOR directive is only available when the -Compat=b assembler option
is used. Otherwise, the FOR directive is not supported.

Example
See Listing 8.28 on page 307 in the FOR.section.

See also

FOR - Repeat assembly block on page 307 assembler directive

-Compat: Compatibility modes on page 137 assembler option

HC(S)12 Assembler Manual 297

Assembler Directives
Detailed descriptions of all assembler directives

ENDIF - End conditional assembly

Syntax
ENDIF

Synonym
ENDC

Description

The ENDIF directive indicates the end of a conditional block. Nesting of
conditional blocks is allowed. The maximum level of nesting is limited by the
available memory at assembly time.

Example
See Listing 8.30 on page 309 in the IF section.

See also

IF - Conditional assembly on page 309 assembler directive

298 HC(S)12 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives

ENDM - End macro definition

Syntax
ENDM

Synonym

None

Description

The ENDM directive terminates the macro definition (Listing 8.19 on page 299).

Example
The ENDM statement in Listing 8.19 on page 299 terminates the cpChar macro.

Listing 8.19 Using ENDM to terminate a macro definition

cpChar: MACRO

LDAA \1
STAA \2
ENDM
DataSec: SECTION
charl: DS 1
char2: DS 1
CodeSec: SECTION

Start:
cpChar charl, char2

HC(S)12 Assembler Manual 299

Assembler Directives
Detailed descriptions of all assembler directives

EQU - Equate symbol value

Syntax

<label>: EQU <expression>

Synonym

None

Description

The EQU directive assigns the value of the <expression> in the operand field to
<label>. The <label> and <expression> fields are both required, and the
<label> cannot be defined anywhere else in the program. The <expression>
cannot include a symbol that is undefined or not yet defined.

The EQU directive does not allow forward references.

Example
See Listing 8.20 on page 300 for examples of using the EQU directive.

Listing 8.20 Using EQU to set variables

0000 0014 MaxElement: EQU 20

0000 0050 MaxSize: EQU MaxElement * 4
Time: DS.B 3
0000 0000 Hour: EQU Time ; first byte addr

0000 0002 Minute: EQU Time+l ; second byte addr
0000 0004 Second: EQU Time+2 ; third byte addr

300 HC(S)12 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives

EVEN - Force word alignment
Syntax
EVEN

Synonym

None

Description

This directive forces the next instruction to the next even address relative to the
start of the section. EVEN is an abbreviation for ALIGN 2. Some processors require
word and long word operations to begin at even address boundaries. In such cases,
the use of the EVEN directive ensures correct alignment. Omission of this directive
can result in an error message.

Example

See Listing 8.21 on page 301 for instances where the EVEN directive causes

padding bytes to be inserted.

Listing 8.21 Using the Force Word Alignment Directive

Abs. Rel. Loc Obj. code
1 1 000000
2 2
3 3
4 4
5 5 000004
6 6
7 7
8 8 000005
9 9 000006
10 10
11 11
12 12 000009
13 13 0000 000A

Source line

ds.b 4
location count has an even value
no padding byte inserted.

even

ds.b 1
location count has an odd value
one padding byte inserted.

even

ds.b 3
location count has an odd value
one padding byte inserted.

even

aaa: equ 10

HC(S)12 Assembler Manual

301

Assembler Directives
Detailed descriptions of all assembler directives

See also
ALIGN - Align Location Counter on page 284 assembly directive

302 HC(S)12 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives

FAIL - Generate Error message

Syntax

FAIL <arg>|<string>

Synonym

None

Description

There are three modes of the FATL directive, depending upon the operand that is
specified:

e If <arg> is a number in the range [0-499], the Assembler generates an error
message, including the line number and argument of the directive. The
Assembler does not generate an object file.

e If <arg> is a number in the range [500-SFFFFFFFF], the Assembler
generates a warning message, including the line number and argument of the
directive.

» If astring is supplied as an operand, the Assembler generates an error message,
including the line number and the <string>. The Assembler does not
generate an object file.

e The FATL directive is primarily intended for use with conditional assembly to
detect user-defined errors or warning conditions.

Examples

The assembly code in Listing 8.22 on page 303 generates the error messages in
Listing 8.23 on page 304. The value of the operand associated with the

‘FAIL 200’ or ‘FAIL 600 directives determines (1) the format of any
warning or error message and (2) whether the source code segment will be
assembled.

Listing 8.22 Example source code

cpChar: MACRO
IFC "\1", ""
FAIL 200
MEXIT
ELSE
LDAA \1

HC(S)12 Assembler Manual 303

Assembler Directives
Detailed descriptions of all assembler directives

ENDIF

IFC "\2", ""
FAIL 600
ELSE
STAA \2
ENDIF
ENDM
codSec: SECTION
Start:
cpChar charl

Listing 8.23 Error messages resulting from assembling the source code in Listing
8.22 on page 303

>> in "C:\Freescale\demo\warnfail.asm", line 13, col 19, pos 226

IFC Il\2ll , nn
FAIL 600

WARNING A2332: FAIL found
Macro Call : FAIL 600

Listing 8.24 on page 304 is another assembly code example which again incorporates the
‘FATIL 200’ and the ‘FATIL 600’ directives. Listing 8.25 on page 305 is the error
message that was generated as a result of assembling the source code in Listing 8.24 on

page 304.

Listing 8.24 Example source code

cpChar: MACRO
IFC "\1", ""
FAIL 200
MEXIT
ELSE
LDAA \1
ENDIF

IFC "\2", "*
FATIL 600
ELSE
STAA \2
ENDIF
ENDM

304 HC(S)12 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives

codeSec: SECTION
Start:
cpChar, char2

Listing 8.25 Error messages resulting from assembling the source code in Listing
8.24 on page 304

>> in "C:\Freescale\demo\errfail.asm", line 6, col 19, pos 96

IFC Il\lll , nn
FAIL 200

ERROR A2329: FAIL found
Macro Call : FAIL 200

Listing 8.26 on page 305 has additional uses of the FAIL directive. In this
example, the ‘FATIL string’ and ‘FAIL 600’ directives are used. Any error
messages generated from the assembly code as a result of the FAIL directive are

listed in Listing 8.27 on page 306.

Listing 8.26 Example source code

cpChar: MACRO
IFC "\1", ""
FAIL "A character must be specified as first parameter"
MEXIT
ELSE
LDAA \1
ENDIF

IFC "\2", "
FAIL 600
ELSE
STAA \2
ENDIF
ENDM
codeSec: SECTION
Start:
cpChar, char2

HC(S)12 Assembler Manual 305

Assembler Directives
Detailed descriptions of all assembler directives

Listing 8.27 Error messages resulting from assembling the source code in Listing
8.26 on page 305

>> in "C:\Freescale\demo\failmes.asm", line 7, col 17, pos 110
IFC " \l n , nn

FAIL "A character must be specified as first parameter"

~

ERROR A2338: A character must be specified as first parameter
Macro Call : FAIL "A character must be specified as first parameter"

306 HC(S)12 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives

FOR - Repeat assembly block

Syntax

FOR <label>=<num> TO <num>
ENDFOR

Synonym

None

Description

The FOR directive is an inline macro because it can generate multiple lines of
assembly code from only one line of input code.

FOR takes an absolute expression and assembles the portion of code following it,
the number of times represented by the expression. The FOR expression may be
either a constant or a label previously defined using EQU or SET.

NOTE The FOR directive is only available when the -Compat=b assembly option is
used. Otherwise, the FOR directive is not supported.

Example

Listing 8.28 on page 307 is an example of using FOR to create a 5-repetition loop.

Listing 8.28 Using the FOR directive in a loop

FOR label=2 TO 6
DC.B 1label*7
ENDFOR

Listing 8.29 Resulting output listing

Abs. Rel. Loc Obj. code Source line
1 1 FOR label=2 TO 6
2 2 DC.B 1label*7
3 3 ENDFOR
4 2 000000 OE DC.B label*7
5 3 ENDFOR

HC(S)12 Assembler Manual 307

Assembler Directives
Detailed descriptions of all assembler directives

6 2 000001 15 DC.B label*7
7 3 ENDFOR
8 2 000002 1C DC.B label*7
9 3 ENDFOR
10 2 000003 23 DC.B label*7
11 3 ENDFOR
12 2 000004 2A DC.B label*7
13 3 ENDFOR
See also

on page 297ENDFOR - End of FOR block on page 297

-Compat: Compatibility modes on page 137 assembler option

308

HC(S)12 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives

IF - Conditional assembly

Syntax
IF <condition>
[<Block 1 - assembly language statements>]
[ELSE]
[<Block 2 - assembly language statements>]
ENDIF
Synonym
None
Description

If <condition> is true, the statements immediately following the IF directive
are assembled. Assembly continues until the corresponding ELSE or ENDIF
directive is reached. Then all the statements until the corresponding ENDIF
directive are ignored. Nesting of conditional blocks is allowed. The maximum
level of nesting is limited by the available memory at assembly time.

The expected syntax for <condition> is:

<condition>: <expression> <relation> <expression>
<relation>: =|!=|>=|>|<=|<|<>

The <expression> must be absolute (It must be known at assembly time).

Example

Listing 8.30 on page 309 is an example of the use of conditional assembly
directives

Listing 8.30 IF and ENDIF

Try: EQU 0

IF Try != 0
LDAA #103
ELSE
LDAA #0

HC(S)12 Assembler Manual 309

Assembler Directives
Detailed descriptions of all assembler directives

ENDIF

The value of Try determines the instruction to be assembled in the program. As
shown, the *1daa #0” instruction is assembled. Changing the operand of the
“EQU” directive to one causes the *1daa #103” instruction to be assembled
instead. The following shows the listing provided by the Assembler for these lines
of code:

Listing 8.31 Output listing after conditional assembly

1 1 0000 0000 Try: EQU 0

2 2 0000 0000 IF Try != 0
4 4 ELSE

4 4 000000 8667 LDAA #103
6 6 ENDIF

310 HC(S)12 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives

IFcc - Conditional assembly

Syntax

IFcc <condition>

[<assembly language statements>]
[ELSE]

[<assembly language statements>]
ENDIF

Synonym

None

Description

These directives can be replaced by the IF directive Ifcc <condition> is
true, the statements immediately following the I f£cc directive are assembled.
Assembly continues until the corresponding ELSE or ENDIF directive is reached,
after which assembly moves to the statements following the ENDIF directive.
Nesting of conditional blocks is allowed. The maximum level of nesting is limited
by the available memory at assembly time.

Table 8.9 on page 311 lists the available conditional types:

Table 8.9 Conditional assembly types

Ifcc Condition Meaning

ifeq <expression> if <expression> ==

ifne <expression> if <expression> !=0

iflt <expression> if <expression> < 0

ifle <expression> if <expression> <=0

ifgt <expression> if <expression> > 0

ifge <expression> if <expression> >=0

ifc <string1>, <string2> if <string1> == <string2>
ifnc <string1>, <string2> if <string1> != <string2>

HC(S)12 Assembler Manual 311

Assembler Directives
Detailed descriptions of all assembler directives

Table 8.9 Conditional assembly types (continued)

Ifcc Condition Meaning

ifdef <label> if <label> was defined

ifndef <label> if <label> was not defined
Example

In Listing 8.32 on page 312 the value of Try determines the instruction to be
assembled in the program. As shown, the *1daa #0” instruction is assembled.
Changing the directive to “IFEQ"” causes the “1daa #103” instruction to be
assembled instead.

Listing 8.32 on page 312 is an example of the use of conditional assembler
directives:

Listing 8.32 Using the IFNE conditional assembler directive

Try: EQU 0

IFNE Try
LDAA #103
ELSE
LDAA #0
ENDIF

The value of Try determines the instruction to be assembled in the program. As
shown, the *1daa #0"” instruction is assembled. Changing the directive to
“IFEQ” causes the “1daa #103” instruction to be assembled instead.

Listing 8.33 on page 312 shows the listing provided by the Assembler for these
lines of code

Listing 8.33 output listing for Listing 8.32 on page 312

1 1 0000 0000 Try: EQU 0

2 2 0000 0000 IFNE Try

4 4 ELSE

5 5 000000 8600 LDAA #0
6 6 ENDIF

312 HC(S)12 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives

INCLUDE - Include text from another file

Syntax
INCLUDE <file specification>

Synonym

None

Description

This directive causes the included file to be inserted in the source input stream. The
<file specification> is not case-sensitive and must be enclosed in
quotation marks.

The Assembler attempts to open <file specification> relative to the
current working directory. If the file is not found there, then it is searched for

relative to each path specified in the GENPATH: Search path for input file on
page 112 environment variable.

Example
INCLUDE "..\LIBRARY\macros.inc"

HC(S)12 Assembler Manual 313

Assembler Directives

Detailed descriptions of all assembler directives

LIST - Enable Listing

Listing 8.34 Using the LIST and NOLIST assembler directives

Syntax
LIST

Synonym

None

Description

Specifies that instructions following this directive must be inserted into the listing
and into the debug file. This is a default option. The listing file is only generated if
the -L: Generate a listing file on page 153 assembler option is specified on the

command line.

The source text following the LIST directive is listed until a NOLIST - Disable
Listing on page 325 or an END - End assembly on page 296 assembler directive is

reached

This directive is not written to the listing and debug files.

Example

The assembly source code using the LIST and NOLIST directives in Listing 8.34 on
page 314 generates the output listing in Listing 8.35 on page 315.

aaa:

bbb:

ccc:

ddd:

NOP

LIST
NOP
NOP

NOLIST
NOP
NOP

LIST
NOP NOP

314

HC(S)12 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives

Listing 8.35 Output listing generated from running Listing 8.34 on page 314

Abs. Rel. Loc Obj. code Source line
1 1 000000 A7 aaa: NOP
2 2
4 4 000001 A7 bbb: NOP
5 5 000002 A7 NOP
6 6
12 12 000005 A7 ddd: NOP
13 13 000006 A7 NOP

HC(S)12 Assembler Manual 315

Assembler Directives
Detailed descriptions of all assembler directives

LLEN - Set Line Length

Syntax

LLEN <n>

Synonym

None

Description

Sets the number of characters from the source line that are included on the listing

line to <n>. The values allowed for <n> are in the range [0 - 132].If a value
smaller than 0 is specified, the line length is set to 0. If a value bigger than 132 is
specified, the line length is set to 132.

Lines of the source file that exceed the specified number of characters are truncated
in the listing file.

Example

The following portion of code in Listing 8.36 on page 316 generates the listing file in
Listing 8.37 on page 316. Notice that the ‘LLEN 24’ directive causes the output at the
location-counter line 7 to be truncated.

Listing 8.36 Example assembly source code using LLEN

DC.B $55
LLEN 32
DC.W $1234, $4567

LLEN 24
DC.W $1234, $4567
EVEN

Listing 8.37 Formatted assembly output listing as a result of using LLEN

Abs. Rel. Loc Obj. code Source line
1 1 000000 55 DC.B s$55
2 2
4 4 000001 1234 4567 DC.W $1234, s$4567

316 HC(S)12 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives

5 5
7 7 000005 1234 4567 DC.W $1234, $
8 8 000009 00 EVEN

HC(S)12 Assembler Manual 317

Assembler Directives
Detailed descriptions of all assembler directives

LONGEVEN - Forcing Long-Word alignment

Syntax
LONGEVEN

Synonym

None

Description

This directive forces the next instruction to the next long-word address relative to
the start of the section. LONGEVEN is an abbreviation for ALIGN 4.

Example

See Listing 8.38 on page 318 for an example where LONGEVEN aligns the next
instruction to have its location counter to be a multiple of four (bytes).

Listing 8.38 Forcing Long Word Alignment

2 2 000000 01 dcb.b 1,1
; location counter is not a multiple of 4; three filling
; bytes are required.
3 3 000001 0000 0O longeven
000004 0002 0002 dcb.w 2,2
; location counter is already a multiple of 4; no filling
; bytes are required.

S
IS

5 5 longeven

6 6 000008 0202 dcb.b 2,2

7 7 ; following is for text section

8 8 s27 SECTION 27

9 9 000000 9D nop
; location counter is not a multiple of 4; three filling
; bytes are required.

10 10 000001 0000 00 longeven

11 11 000004 9D nop

See Also

ALIGN - Align Location Counter on page 284 assembler directive

318 HC(S)12 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives

MACRO - Begin macro definition

Syntax
<label>: MACRO

Synonym

None

Description

The <label> of the MACRO directive is the name by which the macro is called.
This name must not be a processor machine instruction or assembler directive
name. For more information on macros, see the Macros chapter.

Example

See Listing 8.39 on page 319 for a macro definition.

Listing 8.39 Example macro definition

MyData:
charl:
char?2:
cpChar:

CodeSec:
Start:

XDEF Start
SECTION
DS.B 1
DS.B 1
MACRO

LDAA \1

STAA \2
ENDM
SECTION

cpChar charl, char2

HC(S)12 Assembler Manual 319

Assembler Directives
Detailed descriptions of all assembler directives

MEXIT - Terminate Macro Expansion

Syntax
MEXTIT

Synonym

None

Description

MEXIT is usually used together with conditional assembly within a macro. In that
case it may happen that the macro expansion should terminate prior to termination
of the macro definition. The MEXIT directive causes macro expansion to skip any

remaining source lines ahead of the ENDM - End macro definition on page 299
directive.

Example

See Listing 8.40 on page 320 allows the replication of simple instructions or
directives using MACRO with MEXIT.

Listing 8.40 Example assembly code using MEXIT

XDEF entry
storage: EQU SOOFF

save: MACRO ; Start macro definition
LDX #storage
LDAA \1
STAA 0,x ; Save first argument
LDAA \2
STAA 2,X ; Save second argument
IFC '\3', ''" ; Is there a third argument?
MEXIT ; No, exit from macro.
ENDC
LDAA \3 ; Save third argument
STAA 4,X
ENDM ; End of macro definition

datSec: SECTION
charl: ds.b 1
char2: ds.b 1

320 HC(S)12 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives

codSec: SECTION
entry:
save charl, char2

Listing 8.41 on page 321 shows the macro expansion of the previous macro.

Listing 8.41 Macro expansion of Listing 8.40 on page 320

HCl12-Assembler
Abs. Rel. Loc Obj. code Source line

XDEF entry

0000 OOFF storage: EQU SOOFF

o JoUlT i WN R
0 JoUlT i WN R

save: MACRO ; Start macro definiti

LDX #storage

LDAA \1

STAA O0,x ; Save first arg
9 9 LDAA \2
10 10 STAA 2,x ; Save second ar
11 11 IFC '\3', '' ; Is there a
12 12 MEXIT ; No, exit macro
13 13 ENDC
14 14 LDAA \3 ; Save third ar
15 15 STAA 4,X
16 16 ENDM ; End of macro
17 17
18 18 datSec: SECTION
19 19 000000 charl: ds.b 1
20 20 000001 char?2: ds.b 1
21 21
22 22 codSec: SECTION
23 23 entry:
24 24 save charl, char?2
25 6m 000000 CE OOFF + LDX #storage
26 T 000003 B6 xxxxX + LDAA charl
27 8m 000006 6A00 + STAA 0,x ; save first arg
28 9m 000008 B6 xxxx + LDAA char2
29 10m 00000B 6A02 + STAA 2,X ; save second ar
30 11lm 0000 0001 + IFCc ', ! ; Is there a 3rd
32 12m + MEXIT ; No, exit macro
33 13m + ENDC
34 14m + LDAA ; Save third arg
35 15m + STAA 4,X

HC(S)12 Assembler Manual 321

Assembler Directives

Detailed descriptions of all assembler directives

MLIST - List macro expansions

Listing 8.42 Example assembly source code

Syntax

MLIST [ON|OFF]

Description

When the ON keyword is entered with an MLI ST directive, the Assembler includes
the macro expansions in the listing and in the debug file.

When the OFF keyword is entered, the macro expansions are omitted from the

listing and from the debug file.

This directive is not written to the listing and debug file, and the default value is

ON.

Synonym

None

Example

The assembly code in Listing 8.42 on page 322, with MLIST ON, generates the
assembler output listing in Listing 8.43 on page 323

XDEF entry
MLIST ON
swap: MACRO
LDD \1
LDX \2
STD \2
STX \1
ENDM
codSec: SECTION
entry:
LDD #SFO
LDX #SOF
main:
STD first
STX second
swap first, second
NOP
BRA main
322 HC(S)12 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives

datSec: SECTION
first: DS.W 1
second: DS.W 1

Listing 8.43 Assembler output listing the example in Listing 8.42 on page 322 with MLIST
ON

HCl2-Assembler

Abs. Rel Loc Obj. code Source line

1 1 XDEF entry

3 3 swap MACRO

4 4 LDD \1

5 5 LDX \2

6 6 STD \2

7 7 STX \1

8 8 ENDM

9 9 codSec: SECTION

10 10 entry:

11 11 000000 CC O0OFO LDD #SFO

12 12 000003 CE O0OOOF LDX #SOF

13 13 main:

14 14 000006 7C xxxX STD first

15 15 000009 7E xxxx STX second
16 16 swap first, second
17 4dm 00000C FC xxxXX + LDD first
18 5m 00000F FE xXxXxX + LDX second
19 6m 000012 7C xxxx + STD second
20 7m 000015 7E xxxXX + STX first
21 17 000018 A7 NOP
22 18 000019 20EB BRA main
23 19 datSec: SECTION
24 20 000000 first: DS.W 1
25 21 000002 second: DS.W 1

For the same code, with MLIST OFF, the Assembler produces the listing file
shown in Listing 8.44 on page 323.

Listing 8.44 Listing File with MLIST OFF

HCl2-Assembler

HC(S)12 Assembler Manual

323

Assembler Directives
Detailed descriptions of all assembler directives

Abs. Rel Loc Obj. code Source line
1 1 XDEF entry
3 3 swap MACRO
4 4 LDD \1
5 5 LDX \2
6 6 STD \2
7 7 STX \1
8 8 ENDM
9 9 codSec: SECTION
10 10 entry:
11 11 000000 CcC 0OOFO LDD #SFO
12 12 000003 CE O0OOOF LDX #SOF
13 13 main:
14 14 000006 7C xxxx STD first
15 15 000009 7E xxxx STX second
16 16 swap first, second
21 17 000018 A7 NOP
22 18 000019 20EB BRA main
23 19 datSec: SECTION
24 20 000000 first: DS.W 1
25 21 000002 second: DS.W 1
The MLIST directive does not appear in the listing file. When a macro is called
after aMLIST ON, it is expanded in the listing file. If the MLIST OFF is
encountered before the macro call, the macro is not expanded in the listing file.
324 HC(S)12 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives

NOLIST - Disable Listing

Syntax
NOLIST

Synonym
NOL

Description

Suppresses the printing of the following instructions in the assembly listing and
debug file until a LIST - Enable Listing on page 314 assembler directive is
reached.

Example

See Listing 8.45 on page 325 for an example of using LIST and NOLIST.

Listing 8.45 Examples of LIST and NOLIST

aaa: NOP

LIST
bbb: NOP
NOP

NOLIST
ccc: NOP
NOP

LIST
ddd: NOP
NOP

The listing above generates the listing file in Listing 8.46 on page 325.

Listing 8.46 Assembler output listing from the assembler source code in Listing 8.45 on
page 325

HCl2-Assembler

HC(S)12 Assembler Manual 325

Assembler Directives
Detailed descriptions of all assembler directives

Abs. Rel Loc Obj. code Source line
1 1 000000 A7 aaa NOP
2 2
4 4 000001 A7 bbb: NOP
5 5 000002 A7 NOP
6 6
12 12 000005 A7 ddd: NOP
13 13 000006 A7 NOP
See Also
LIST - Enable Listing on page 314 assembler directive
326 HC(S)12 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives

NOPAGE - Disable Paging

Syntax
NOPAGE

Synonym

None

Description

Disables pagination in the listing file. Program lines are listed continuously,
without headings or top or bottom margins.

HC(S)12 Assembler Manual 327

Assembler Directives
Detailed descriptions of all assembler directives

OFFSET - Create absolute symbols

Syntax

OFFSET <expression>

Synonym

None

Description

The OFFSET directive declares an offset section and initializes the location
counter to the value specified in <expression>. The <expression> must be
absolute and may not contain references to external, undefined or forward defined
labels.

An offset section is useful to simulate data structures or a stack frame.

Examples

The example shown in Listing 8.47 on page 328 shows you how to use the
OFFSET directive to access elements of a structure.

Listing 8.47 Using the OFFSET Directive

OFFSET 0
ID: DS.B 1
COUNT: DS.W 1
VALUE: DS.L. 1
SIZE: EQU *
DataSec: SECTION
Struct: DS.B SIZE
CodeSec: SECTION
entry:
LDX #Struct
LDAA #0
STAA ID, X
INC COUNT, X
INCA
STAA VALUE, X
328 HC(S)12 Assembler Manual

Assembler Directives

Detailed descriptions of all assembler directives

Listing 8.48 Example—Using the OFFSET Directive

When a statement affecting the location counter other than EVEN, LONGEVEN,
ALIGN, or DS is encountered after the OFFSET directive, the offset section is
terminated. The preceding section is reactivated, and the location counter is
restored to the next available location in this section.

See Listing 8.48 on page 329 for an example.

Abs. Rel
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9

10 10
11 11
12 12
13 13
14 14
15 15
16 16
17 17

000000
000001
000003

000000

000000
000003
000005
000007
000009
00000A

Obj. code

0000 0007

CExx xXx
8600
6A00
6201

42

6A03

Source line

ID:
COUNT :
VALUE:
SIZE:

DataSec:

Struct:

CodeSec:

entry:

OFFSET 0

DS.B 1

DS.W 1

DS.L 1

EQU *

SECTION

DS.B SIZE
SECTION

LDX #Struct
LDAA #0

STAA ID, X
INC COUNT, X
INCA

STAA VALUE, X

In the example above, the *cst3’ symbol, defined after the OFFSET directive,
defines a constant byte value. This symbol is appended to the ‘ConstSec”’

section, which precedes the OFFSET directive.

HC(S)12 Assembler Manual

329

Assembler Directives
Detailed descriptions of all assembler directives

ORG - Set Location Counter

Syntax

ORG <expression>

Synonym

None

Description

The ORG directive sets the location counter to the value specified by
<expression>. Subsequent statements are assigned memory locations starting
with the new location counter value. The <expression> must be absolute and
may not contain any forward, undefined, or external references. The ORG directive
generates an internal section, which is absolute (see the Sections on page 225

chapter).

Example
See Listing 8.49 on page 330 for an example where ORG sets the location counter.

Listing 8.49 Using ORG to set the location counter

org $2000
bl: nop
b2: rts

Viewing Listing 8.50 on page 330, you can see that the b1 label is located at address
$2000 and label b2 is at address $2001.

Listing 8.50 Assembler output listing from the source code in Listing 8.49 on

page 330
Abs. Rel. Loc Obj. code Source line
1 1 org $2000
2 2 a002000 A7 bl: nop
3 3 a002001 3D b2: rts

330 HC(S)12 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives

See also
Assembler directives:
¢ DC - Define Constant on page 288

¢ DCB - Define Constant Block on page 290
¢ DS - Define Space on page 292

¢ SECTION - Declare Relocatable Section on page 338

HC(S)12 Assembler Manual 331

Assembler Directives
Detailed descriptions of all assembler directives

PAGE - Insert Page break

Syntax
PAGE

Synonym

None

Description

Insert a page break in the assembly listing.

Example

The portion of code in Listing 8.51 on page 332 demonstrates the use of a page
break in the assembler output listing.

Listing 8.51 Example assembly source code

code: SECTION
DC.B $00,$12
DC.B $00,s$34
PAGE
DC.B $00,s$56
DC.B $00,s$78

The effect of the PAGE directive can be seen in Listing 8.52 on page 332.

Listing 8.52 Assembler output listing from the source code in Listing 8.51 on page 332

Abs. Rel. Loc Obj. code Source line
1 1 code SECTION
2 2 000000 0012 DC.B $00,s12
3 3 000002 0034 DC.B $00,s34
Abs. Rel. Loc Obj. code Source line
5 5 000004 0056 DC.B $00,$56
332 HC(S)12 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives

6 6 000006 0078 DC.B $00,$78

HC(S)12 Assembler Manual 333

Assembler Directives
Detailed descriptions of all assembler directives

PLEN - Set Page Length

Syntax
PLEN <n>

Synonym

None

Description

Sets the listings page length to <n> lines. <n> may range from 10 to 10000. If
the number of lines already listed on the current page is greater than or equal to
<n>, listing will continue on the next page with the new page length setting.

The default page length is 65 lines.

334 HC(S)12 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives

RADS50 - Rad50-encoded string constants

Syntax

RAD50 <str>[, cnt]

Synonym

None

Description

This directive places strings encoded with the RADS50 encoding into constants. The
RADS50 encoding places 3 string characters out of a reduced character set into 2
bytes. It therefore saves memory when comparing it with a plain ASCII
representation. It also has some drawbacks, however. Only 40 different character
values are supported, and the strings have to be decoded before they can be used.
This decoding does include some computations including divisions (not just shifts)
and is therefore rather expensive.

The encoding takes three bytes and looks them up in a string table (Listing 8.53 on
page 335).

Listing 8.53 RAD50 encoding

unsigned short LookUpPos (char x) {
static const char translatel[]=

" ABCDEFGHIJKLMNOPQRSTUVWXYZS.?0123456789";
const char* pos= strchr (translate, X);
if (pos == NULL) { EncodingError(); return 0; }
return pos-translate;
}
unsigned short Encode(char a, char b, char c) {
return LookUpPos (a)*40*40 + LookUpPos (b) *40
+ LookUpPos(c) ;

If the remaining string is shorter than 3 bytes, it is filled with spaces (which
correspond to the RAD50 character 0).

The optional argument cnt can be used to explicitly state how many 16-bit values
should be written. If the string is shorter than 3 *cnt, then it is filled with spaces.

HC(S)12 Assembler Manual 335

Assembler Directives
Detailed descriptions of all assembler directives

See the example C code below (Listing 8.56 on page 336) about how to decode it.

Example

The string data in Listing 8.54 on page 336 assembles to the following data
(Listing 8.55 on page 336). The 11 characters in the string are represented by 8
bytes.

Listing 8.54 RAD50 Example

XDEF rad50, rad50Len
DataSection SECTION
rad50: RAD50 "Hello World"
rad50Len: EQU (*-rad50)/2

Listing 8.55 Assembler output where 11 characters are contained in eight bytes

$32D4 $4D58 $922A $4BAO

This C code shown in Listing 8.56 on page 336 takes the data and prints “Hello
World”.

Listing 8.56 Example—Program that Prints Hello World

#include "stdio.h"

extern unsigned short rad50[];

extern int rad50Len; /* address is value. Exported asm label */
#define rad50len ((int) &rad50Len)

void printRadChar (char ch) {
static const char translatel[]=
" ABCDEFGHIJKLMNOPQRSTUVWXYZS.?20123456789";
char asciiChar= translate([ch];
(void)putchar (asciiChar) ;
}
void PrintHallo (void) {
unsigned char values= radb50len;
unsigned char i;
for (i=0; 1 < values; i++) {
unsigned short val= rad50[i];
printRadChar (val / (40 * 40));
printRadChar ((val / 40) % 40)
printRadChar (val % 40);

7

336 HC(S)12 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives

HC(S)12 Assembler Manual 337

Assembler Directives
Detailed descriptions of all assembler directives

SECTION - Declare Relocatable Section

Syntax

<name>: SECTION [SHORT] [<number>]

Synonym

None

Description

This directive declares a relocatable section and initializes the location counter for
the following code. The first SECTION directive for a section sets the location
counter to zero. Subsequent SECTION directives for that section restore the
location counter to the value that follows the address of the last code in the section.

<name> is the name assigned to the section. Two SECTION directives with the
same name specified refer to the same section.

<number> is optional and is only specified for compatibility with the MASM
Assembler.

A section is a code section when it contains at least one assembly instruction. It is
considered to be a constant section if it contains only DC or DCB directives. A
section is considered to be a data section when it contains at least a DS directive or
if it is empty.

Example

The example in Listing 8.57 on page 338 demonstrates the definition of a section
aaa, which is split in two blocks, with section bbb in between them.

The location counter associated with the label zz is 1, because a NOP instruction
was already defined in this section at label xx.

Listing 8.57 Example of the SECTION assembler directive

N ool b WwWN

N ool bW N

aaa: SECTION 4
000000 A7 XX NOP

bbb : SECTION 5
000000 A7 VY NOP
000001 A7 NOP
000002 A7 NOP

aaa: SECTION 4

338

HC(S)12 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives

8 8 000001 A7 ZZ: NOP

The optional qualifier SHORT specifies that the section is a short section, That
means than the objects defined there can be accessed using the direct addressing
mode.

Example
The following example demonstrates the definition and usage of a SHORT section.

In the example shown in Listing 8.58 on page 339, the symbol data is accessed
using the direct addressing mode.

Listing 8.58 Using the direct addressing mode

HCl2-Assembler
Abs. Rel. Loc Obj. code Source line

dataSec: SECTION SHORT
000000 data: DS.B 1

codeSec: SECTION
entry:

000000 87 CLRA
000001 5Axx STAA data

00 JoUl kW
00 JoUl ik WN R

See also
Assembler directives:
¢ ORG - Set Location Counter on page 330

¢ DC - Define Constant on page 288

¢ DCB - Define Constant Block on page 290
¢ DS - Define Space on page 292

HC(S)12 Assembler Manual 339

Assembler Directives
Detailed descriptions of all assembler directives

SET - Set Symbol Value

Syntax

<label>: SET <expression>

Synonym

None

Description

Similar to the EQU - Equate symbol value on page 300 directive, the SET directive
assigns the value of the <expression> in the operand field to the symbol in the
<label> field. The <expression> must resolve as an absolute expression and
cannot include a symbol that is undefined or not yet defined. The <label> is an
assembly time constant. SET does not generate any machine code.

The value is temporary; a subsequent SET directive can redefine it.

Example
See Listing 8.59 on page 340 for examples of the SET directive.

Listing 8.59 Using the SET assembler directive

Abs. Rel. Loc Obj. code Source line
1 1 0000 0002 count: SET 2
2 2 000000 02 one: DC.B count
3 3
4 4 0000 0001 count: SET count-1
5 5 000001 01 DC.B count
6 6
7 7 0000 0001 IFNE count
8 8 0000 0000 count: SET count-1
9 9 ENDIF
10 10 000002 00 DC.B count

The value associated with the label count is decremented after each DC . B
instruction.

340 HC(S)12 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives

SPC - Insert Blank Lines

Syntax

SPC <count>

Synonym

None

Description

Inserts <count> blank lines in the assembly listing. <count> may range from 0
to 65. This has the same effect as writing that number of blank lines in the
assembly source. A blank line is a line containing only a carriage return.

HC(S)12 Assembler Manual 341

Assembler Directives
Detailed descriptions of all assembler directives

TABS - Set Tab Length

Syntax

TABS <n>

Synonym

None

Description

Sets the tab length to <n> spaces. The default tab length is eight. <n> may range
from O to 128.

342 HC(S)12 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives

TITLE - Provide Listing Title

Syntax
TITLE <title>

Synonym
TTL

Description

Print the <t it1le> on the head of every page of the listing file. This directive must
be the first source code line. A title consists of a string of characters enclosed in
quotes (").

The title specified will be written on the top of each page in the assembly listing
file.

HC(S)12 Assembler Manual 343

Assembler Directives
Detailed descriptions of all assembler directives

XDEF - External Symbol Definition

Syntax
XDEF [.<size>] <label>[,<label>]...

where <size> = B(direct), W (default), orL

Synonym
GLOBAL, PUBLIC

Description

This directive specifies labels defined in the current module that are to be passed to
the linker as labels that can be referenced by other modules linked to the current
module.

The number of symbols enumerated in an XDEF directive is only limited by the
memory available at assembly time.
Example

See Listing 8.60 on page 344 for the case where the XDEF assembler directive can
specify symbols that can be used by other modules.

Listing 8.60 Using XDEF to create a variable to be used in another file

XDEF Count, main

;; variable Count can be referenced in other modules,
;; same for label main. Note that Linker & Assembler
;; are case-sensitive, i.e., Count != count.

Count: DS.W 2

code: SECTION
main: DC.B 1

344 HC(S)12 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives

XREF - External Symbol Reference

Syntax
XREF [.<size>] <symbol>[,<symbol>]...

where <size> = B(direct),W (default), or L.

Synonym
EXTERNAL

Description

This directive specifies symbols referenced in the current module but defined in
another module. The list of symbols and corresponding 32-bit values is passed to
the linker.

The number of symbols enumerated in an XREF directive is only limited by the
memory available at assembly time.

Example

XREF OtherGlobal ; Reference "OtherGlobal" defined in
; another module. (See the XDEF
; directive example.)

HC(S)12 Assembler Manual 345

Assembler Directives
Detailed descriptions of all assembler directives

XREFB - External Reference for Symbols located on the Direct

Page

Syntax
XREFB <symbol>[,<symbol>]...

Synonym

None

Description

This directive specifies symbols referenced in the current module but defined in
another module. Symbols enumerated in an XREFB directive, can be accessed
using the direct address mode. The list of symbols and corresponding 8-bit values
is passed to the linker.

The number of symbols enumerated in an XREFB directive is only limited by the
memory available at assembly time.

Example

XREFB OtherDirect ; Reference "OtherDirect" def in another
; module (See XDEF directive example.)

346 HC(S)12 Assembler Manual

Macros

A macro is a template for a code sequence. Once a macro is defined, subsequent reference
to the macro name are replaced by its code sequence.

Macro overview

A macro must be defined before it is called. When a macro is defined, it is given a name.
This name becomes the mnemonic by which the macro is subsequently called.

The Assembler expands the macro definition each time the macro is called. The macro call
causes source statements to be generated, which may include macro arguments. A macro
definition may contain any code or directive except nested macro definitions. Calling
previously defined macros is also allowed. Source statements generated by a macro call
are inserted in the source file at the position where the macro is invoked.

To call a macro, write the macro name in the operation field of a source statement. Place
the arguments in the operand field. The macro may contain conditional assembly
directives that cause the Assembler to produce in-line-coding variations of the macro
definition.

Macros call produces in-line code to perform a predefined function. Each time the macro
is called, code is inserted in the normal flow of the program so that the generated
instructions are executed in line with the rest of the program.

Defining a macro

The definition of a macro consists of four parts:

¢ The header statement, a MACRO directive with a label that names the macro.

¢ The body of the macro, a sequential list of assembler statements, some possibly
including argument placeholders.

e The ENDM directive, terminating the macro definition.

e eventually an instruction MEXIT, which stops macro expansion.
See the Assembler Directives on page 277 chapter for information about the MACRO,
ENDM, MEXIT, and ML.IST directives.

The body of a macro is a sequence of assembler source statements. Macro parameters are
defined by the appearance of parameter designators within these source statements. Valid

HC(S)12 Assembler Manual 347

Macros

Calling macros

macro definition statements includes the set of processor assembly language instructions,
assembler directives, and calls to previously defined macros. However, macro definitions
may not be nested.

Calling macros

The form of a macro call is:
[<label>:] <name>[.<sizearg>] [<argument> [,<argument>]...]

Although a macro may be referenced by another macro prior to its definition in the source
module, a macro must be defined before its first call. The name of the called macro must
appear in the operation field of the source statement. Arguments are supplied in the
operand field of the source statement, separated by commas.

The macro call produces in-line code at the location of the call, according to the macro
definition and the arguments specified in the macro call. The source statements of the
expanded macro are then assembled subject to the same conditions and restrictions
affecting any source statement. Nested macros calls are also expanded at this time.

Macro parameters

As many as 36 different substitutable parameters can be used in the source statements that
constitute the body of a macro. These parameters are replaced by the corresponding
arguments in a subsequent call to that macro.

A parameter designator consists of a backlashes character (\), followed by a digit (0 - 9) or
an uppercase letter (A - Z). Parameter designator \0 corresponds to a size argument that
follows the macro name, separated by a period (.).

Consider the macro definition in Listing 9.1 on page 348:

Listing 9.1 Example macro definition

MyMacro: MACRO
DC.\0 \1, \2
ENDM
When this macro is used in a program, e.g.,
MyMacro.B $10, $56
the Assembler expands it to:
DC.B $10, $56
348 HC(S)12 Assembler Manual

Macros
Macro parameters

Arguments in the operand field of the macro call refer to parameter designator \ 1 through
\ 9 and \A through \ Z, in that order. The argument list (operand field) of a macro call
cannot be extended onto additional lines.

At the time of a macro call, arguments from the macro call are substituted for parameter
designators in the body of the macro as literal (string) substitutions. The string
corresponding to a given argument is substituted literally wherever that parameter
designator occurs in a source statement as the macro is expanded. Each statement
generated in the execution is assembled in line.

It is possible to specify a null argument in a macro call by a comma with no character (not
even a space) between the comma and the preceding macro name or comma that follows
an argument. When a null argument itself is passed as an argument in a nested macro call,
a null value is passed. All arguments have a default value of null at the time of a macro
call.

Macro argument grouping

To pass text including commas as a single macro argument, the Assembler supports a
special syntax. This grouping starts with the [? prefix and ends with the ?] suffix. If the
[? or 7] patterns occur inside of the argument text, they have to be in pairs. Alternatively,
brackets, question marks and backward slashes can also be escaped with a backward slash
as a prefix.

NOTE This escaping only takes place inside of [? ?] arguments. A backslash is only

removed in this process if it is just before a bracket ([or 1), a question mark
(?), orasecond backslash (\).

Listing 9.2 Example macro definition

MyMacro: MACRO
DC \1
ENDM
MyMacrol: MACRO
\1
ENDM

Listing 9.3 on page 349 has some macro calls with rather complicated arguments:

Listing 9.3 Macro calls for Listing 9.2 on page 349

MyMacro [?$10, $567]
MyMacro [?"\[?"?]
MyMacrol [?MyMacro [?$10, $56?]7]

HC(S)12 Assembler Manual 349

Macros
Labels inside macros

MyMacrol [?MyMacro \[?$10, $56\?]172]

These macro calls expand to the following lines (Listing 9.4 on page 350):

Listing 9.4 Macro expansion of Listing 9.3 on page 349

DC $10, $56
DC n [?II

DC $10, $56
DC $10, $56

The Macro Assembler does also supports for compatibility with previous version’s macro
grouping with an angle bracket syntax (Listing 9.5 on page 350):

Listing 9.5 Angle bracket syntax

MyMacro <$10, $56>

CAUTION However, this old syntax is ambiguous, as < and > are also used as
compare operators. For example, the following code (Listing 9.6 on
page 350) does not produce the expected result:

Listing 9.6 Potential problem using the angle-bracket syntax

MyMacro <1 > 2, 2 > 3> ; Wrong!

TIP Because of this, the old angle brace syntax should be avoided in new code. There
is also an option to disable it explicitly.

See also the following assembler options:

¢ -CMacBrackets: Square brackets for macro arguments grouping on page 136
¢ -CMacAngBrack: Angle brackets for grouping Macro Arguments on page 135

Labels inside macros

To avoid the problem of multiple-defined labels resulting from multiple calls to a macro
that has labels in its source statements, the programmer can direct the Assembler to
generate unique labels on each call to a macro.

350 HC(S)12 Assembler Manual

Macros
Labels inside macros

Assembler-generated labels include a string of the form _nnnnn where nnnnn is a
5-digit value. The programmer requests an assembler-generated label by specifying \@ in
a label field within a macro body. Each successive label definition that specifies a \@
directive generates a successive value of _nnnnn, thereby creating a unique label on each
macro call. Note that \@ may be preceded or followed by additional characters for clarity
and to prevent ambiguity.

This is the definition of the clear macro (Listing 9.7 on page 351).

Listing 9.7 Clear macro definition

clear: MACRO
LDX #\1
LDAA #16
\@LOOP: CLR 1,X+
DBNE A, \QLOOP
ENDM

This macro is called in the application (Listing 9.8 on page 351).

Listing 9.8 Calling the clear macro

Data: Section
temporary: DS 16
data: DS 16

Code: Section
clear temporary
clear data

The two macro calls of clear are expanded in the manner shown in Listing 9.9 on
page 351.

Listing 9.9 Example—Labels within Macros

HCl2-Assembler

Abs. Rel. Loc Obj. code Source line
1 1 clear: MACRO
2 2 LDX #\1
3 3 LDAA #16
4 4 \@LOOP: CLR 1,X+
5 5 DBNE A, \@LOOP
6 6 ENDM

HC(S)12 Assembler Manual 351

Macros

Macro expansion

7

8

9
10
11
12
13
14
15
16
17
18
19
20
21
22

7

Data: Section
000000 temporary: DS 16
000010 data: DS 16
Code: Section
clear temporary
m 000000 CE xxxXx + LDX #temporary
m 000003 8610 + LDAA #16
m 000005 6930 +_00001LOOP: CLR 1,X+
m 000007 0430 FB + DBNE A,_00001LOOP
clear data
m O00000A CE xXXXX + LDX #data
m 00000D 8610 + LDAA #16
m 00000F 6930 +_00002LOOP: CLR 1,X+
m 000011 0430 FB + DBNE A,_00002LOOP

Macro expansion

When the Assembler reads a statement in a source program calling a previously defined
macro, it processes the call as described in the following paragraphs.

The symbol table is searched for the macro name. If it is not in the symbol table, an
undefined symbol error message is issued.

The rest of the line is scanned for arguments. Any argument in the macro call is saved as a
literal or null value in one of the 35 possible parameter fields. When the number of
arguments in the call is less than the number of parameters used in the macro the
argument, which have not been defined at invocation time are initialize with “* (empty
string).

Starting with the line following the MACRO directive, each line of the macro body is saved
and is associated with the named macro. Each line is retrieved in turn, with parameter
designators replaced by argument strings or assembler-generated label strings.

Once the macro is expanded, the source lines are evaluated and object code is produced.

Nested macros

Macro expansion is performed at invocation time, which is also the case for nested
macros. If the macro definition contains nested macro call, the nested macro expansion
takes place in line. Recursive macro call are also supported.

A macro call is limited to the length of one line, i.e., 1024 characters.

352

HC(S)12 Assembler Manual

Macros
Nested macros

HC(S)12 Assembler Manual 353

Macros
Nested macros

354 HC(S)12 Assembler Manual

10

Assembler Listing File

The assembly listing file is the output file of the Assembler that contains information
about the generated code. The listing file is generated when the —L assembler option is
activated. When an error is detected during assembling from the file, no listing file is
generated.

The amount of information available depends upon the following assembler options:

¢ -L: Generate a listing file on page 153

e -Lc: No Macro call in listing file on page 160

e -Ld: No macro definition in listing file on page 163

* -Le: No Macro expansion in listing file on page 166
¢ -Li: Not included file in listing file on page 169

The information in the listing file also depends on following assembler directives:
LIST - Enable Listing on page 314

le

NOLIST - Disable Listing on page 325
CLIST - List conditional assembly on page 286

le

MLIST - List macro expansions on page 322
The format from the listing file is influenced by the following assembler directives:
¢ PLEN - Set Page Length on page 334

e LLEN - Set Line Length on page 316
* TABS - Set Tab Length on page 342

SPC - Insert Blank Lines on page 341
PAGE - Insert Page break on page 332

le

NOPAGE - Disable Paging on page 327
e TITLE - Provide Listing Title on page 343.

The name of the generated listing file is <base name>.1lst.

Page header

The page header consists of three lines:

HC(S)12 Assembler Manual 355

Assembler Listing File
Source listing

» The first line contains an optional user string defined in the TITLE directive.

¢ The second line contains the name of the Assembler vendor (Freescale) as well as the
target processor name, e.g., HC12.

* The third line contains a copyright notice (Listing 10.1 on page 356).

Listing 10.1 Example page header output

Demo Application
Freescale HCl2-Assembler
(c) COPYRIGHT Freescale 1991-2005

Source listing

The printed columns can be configured in various formats with the -Lasmc: Configure
listing file on page 156 assembler option. The default format of the source listing has five
columns:

e “Abs.” on page 356

3

e “Rel.” on page 357,

3

e “Loc” on page 358,
¢ “Obj. code” on page 359, and

* “Source line” on page 360.

Abs.

This column contains the absolute line number for each instruction. The absolute line
number is the line number in the debug listing file, which contains all included files and
where any macro calls have been expanded.

Listing 10.2 Example output listing - Abs. column

Abs. Rel. Loc Obj. code Source line

XDEF Start
MyData: SECTION
000000 charl: DS.B 1

356 HC(S)12 Assembler Manual

Assembiler Listing File
Source listing

8 8 000001

9 9

10 1i

11 21

12 3i

13 41

14 10

15 11

16 12

17 2m 000000 B6 xxxxX
18 3m 000003 7A xxxx
19 13 000006 A7

20 14 000007 A7

DS.B 1
INCLUDE
MACRO
LDAA
STAA
ENDM
SECTION

char2:

cpChar:

CodeSec:
Start:
cpChar
LDAA
STAA
NOP
NOP

"macro.inc"

\1
\2

charl, char2
charl

char?2

In the previous example, the line number displayed in the ‘Abs.” column is incremented

for each line.

Rel.

This column contains the relative line number for each instruction. The relative line
number is the line number in the source file. For included files, the relative line number is
the line number in the included file. For macro call expansion, the relative line number is
the line number of the instruction in the macro definition. See Listing 10.3 on page 357.

An 1’ suffix is appended to the relative line number when the line comes from an
included file. An *‘m’ suffix is appended to the relative line number when the line is

generated by a macro call.

Listing 10.3 Example listing file - Rel. column

Abs. Rel. Loc Obj. code

1 1

2 2

3 3

4 4

5 5

6 6

7 7 000000
8 8 000001
9 9

10 1i

11 2i

12 3i

13 4i

; File: test.o
XDEF Start
MyData: SECTION
charl: DS.B 1
char?2: DS.B 1
INCLUDE "macro.inc"
cpChar: MACRO
LDAA \1
STAA \2
ENDM

HC(S)12 Assembler Manual

357

Assembler Listing File
Source listing

14 10

15 11

16 12

17 2m 000000 B6 xxxxX
18 3m 000003 7A xxXxX
19 13 000006 A7

20 14 000007 A7

CodeSec:
Start:

SECTION

cpChar charl,
LDAA charl
STAA char?2

NOP

NOP

char2

In the previous example, the line number displayed in the ‘Rel.” column. represent the
line number of the corresponding instruction in the source file.

‘11’ on absolute line number 10 denotes that the instruction ‘cpChar: MACRO’ is located
in an included file.

‘2m’ on absolute line number 17 denotes that the instruction ‘LDAA charl’ is generated
by a macro expansion.

Loc

This column contains the address of the instruction. For absolute sections, the address is
preceded by an ‘a’ and contains the absolute address of the instruction. For relocatable
sections, this address is the offset of the instruction from the beginning of the relocatable
section. This offset is a hexadecimal number coded on 6 digits.

A value is written in this column in front of each instruction generating code or allocating
storage. This column is empty in front of each instruction that does not generate code (for
example SECTION, XDEF, ...). See Listing 10.4 on page 358.

Listing 10.4 Example Listing File - Loc column

Abs. Rel Loc Obj. code Source line
1 1 e
2 2 ; File: test.o
3 3 R et
4 4
5 5 XDEF Start
6 6 MyData: SECTION
7 7 000000 charl: DS.B 1
8 8 000001 char2: DS.B 1
9 9 INCLUDE "macro.inc"
10 1i cpChar: MACRO
11 21 LDAA \1
12 3i STAA \2
13 4i ENDM
14 10 CodeSec: SECTION
358 HC(S)12 Assembler Manual

Assembiler Listing File
Source listing

15
16
17
18
19
20

11 Start:

12 cpChar charl, char2
2m 000000 B6 xXxXxxX + LDAA charl

3m 000003 7A xXxxX + STAA char2

13 000006 A7 NOP

14 000007 A7 NOP

In the previous example, the hexadecimal number displayed in the column ‘Loc.’ is the
offset of each instruction in the section ‘codeSec’.

There is no location counter specified in front of the instruction ‘INCLUDE
"macro.inc"’ because this instruction does not generate code.

The instruction ‘LDAA charl’ is located at offset O from the section ‘codeSec’ start
address.

The instruction ‘STAA char?2’ is located at offset 3 from the section ‘codeSec’ start
address.

Obj. code

This column contains the hexadecimal code of each instruction in hexadecimal format.
This code is not identical to the code stored in the object file. The letter ‘x’ is displayed at
the position where the address of an external or relocatable label is expected. Code at any
position when ‘x’ is written will be determined at link time. See Listing 10.5 on page 359.

Listing 10.5 Example listing file - Obj. column

Loc Obj. code Source line
; File: test.o
XDEF Start
MyData: SECTION
000000 charl: DS.B 1
000001 char?2: DS.B 1
INCLUDE "macro.inc"
i cpChar: MACRO
i LbDaA \1
i STAA \2
i ENDM
0 CodeSec: SECTION
Start:

cpChar charl, char2

HC(S)12 Assembler Manual 359

Assembler Listing File
Source listing

17 2m 000000 B6 xxxx
18 3m 000003 7A xxxx
19 13 000006 A7
20 14 000007 a7

LDAA charl
STAA char?2

NOP
NOP

Source line

This column contains the source statement. This is a copy of the source line from the
source module. For lines resulting from a macro expansion, the source line is the expanded
line, where parameter substitution has been done. See Listing 10.6 on page 360.

Listing 10.6 Example listing file - Source line column

000000
000001

9 9

10 1i

11 21

12 31

13 41

14 10

15 11

16 12

17 2m 000000 B6 xxxx
18 3m 000003 7A xxxX
19 13 000006 A7
20 14 000007 A7

Source line

cpChar:

CodeSec:
Start:

XDEF Start

SECTION
DS.B 1
DS.B 1

INCLUDE "macro.inc"

MACRO
LDAA
STAA

ENDM

SECTION

\1
\2

cpChar charl, char2
LDAA charl
STAA char2

NOP
NOP

360

HC(S)12 Assembler Manual

11

Mixed C and Assembler
Applications

When you intend to mix Assembly source file and ANSI-C source files in a single
application, the following issues are important:

3
.

‘Memory models” on page 361

e “Parameter passing scheme” on page 362

3

e “Return Value” on page 363
e “Accessing assembly variables in an ANSI-C source file” on page 363

e “Accessing ANSI-C variables in an assembly source file” on page 364

¢ “Invoking an assembly function in an ANSI-C source file”” on page 365

3

e “Support for structured types” on page 368
To build mixed C and Assembler applications, you have to know how the C Compiler uses
registers and calls procedures. The following sections will describe this for compatibility
with the compiler. If you are working with another vendor’s ANSI-C compiler, refer to
your Compiler Manual to get the information about parameter passing rules.

Memory models

The memory models are only important if you mix C and assembly code. In this case all
sources must be compiled or assembled with the same memory model.

The Assembler supports all memory models of the compiler. Depending on your
hardware, use the smallest memory model suitable for your programming needs.

Table 11.1 on page 362 summarizes the different memory models. It shows when to use a
particular memory model and which assembler switch to use.

HC(S)12 Assembler Manual 361

Mixed C and Assembler Applications
Parameter passing scheme

Table 11.1 HC(S)12 Memory Models

Parameter passing scheme

Optio
n

Memory
Model

Local
Data

Global
Data

Suggested Use

—Ms

SMALL

SP rel

extended

Small applications which fit into the
64k address space or which do only
have limited places where paged area
is accessed.

BANKED

SP rel

extended

Larger applications which code does
not fit into the 64k address space.
Data is limited to the 64k address
space. The code generated by the
compiler is not much larger than in the
SMALL memory model because the
CPU supports the CALL instruction.
Usually there is one additional byte
per function call.

LARGE

SP rel

far

Applications whose data does not fit
into 64k address space. The code
generated by the compiler is
significantly larger than in the other
memory models.

NOTE

The default pointer size for the compiler is also affected by the memory model

chosen.

When you are using the HC12 compiler, the parameter passing scheme is the following:

The Pascal calling convention is used for functions with a fixed number of parameters:
The caller pushes the arguments from left to right. After the call, the caller removes the
parameters from the stack again.

The C calling convention is used only for functions with a variable number of parameters.
In this case the caller pushes the arguments from right to left.

If the last parameter of a function with a fixed number of arguments has a simple type, it is
not pushed but passed in a register. This results in shorter code because pushing the last

parameter can be avoided. Table 11.2 on page 363 shows an overview of the registers used
for argument passing

362

HC(S)12 Assembler Manual

Mixed C and Assembler Applications
Return Value

Table 11.2 Registers used for passing the last argument to a function

Size of Last Parameter Type example Register
1 byte char B
2 bytes int, array D
3 bytes far data pointer X(L), B(H)
4 bytes long D(L), X(H)

Parameters having a type not listed are passed on the stack (i.e., all those having a size
greater than 4 bytes).

Return Value

Function results usually are returned in registers, except if the function returns a result
larger than 4 bytes (see Table 11.3 on page 363). Depending on the size of the return type,
different registers are used:

Table 11.3 Data type and registers used in function returns

Size of return value Type example Register
1 byte char B
2 bytes int D
3 bytes far data pointer X(L), B(H)
4 bytes long D(L), X(H)

Functions returning a result larger than two words are called with an additional parameter.
This parameter is the address where the result should get copied to.

Accessing assembly variables in an ANSI-C
source file

A variable or constant defined in an assembly source file is accessible in an ANSI-C
source file.

HC(S)12 Assembler Manual 363

Mixed C and Assembler Applications
Accessing ANSI-C variables in an assembly source file

The variable or constant is defined in the assembly source file using the standard assembly
syntax.

Variables and constants must be exported using the XDEF directive to make them visible
from other modules (Listing 11.1 on page 364).

Listing 11.1 Example of data and constant definition

XDEF ASMData, ASMConst
DataSec: SECTION

ASMData: DS.W 1 ; Definition of a variable
ConstSec: SECTION
ASMConst: DC.W $44A6 ; Definition of a constant

We recommend that you generate a header file for each assembler source file. This header
file should contain the interface to the assembly module.

An external declaration for the variable or constant must be inserted in the header file
(Listing 11.2 on page 364).

Listing 11.2 Example of data and constant declarations

/* External declaration of a variable */
extern int ASMData;
/* External declaration of a constant */
extern const int ASMConst;

The variables or constants can then be accessed in the usual way, using their names
(Listing 11.3 on page 364).

Listing 11.3 Example of data and constant reference

ASMData = ASMConst + 3;

Accessing ANSI-C variables in an assembly
source file

A variable or constant defined in an ANSI-C source file is accessible in an assembly
source file.

The variable or constant is defined in the ANSI-C source file using the standard ANSI-C
syntax (Listing 11.4 on page 365).

364 HC(S)12 Assembler Manual

Mixed C and Assembler Applications
Invoking an assembly function in an ANSI-C source file

Listing 11.4 Example definition of data and constants

unsigned int CData; /* Definition of a variable */
unsigned const int CConst; /* Definition of a constant */

An external declaration for the variable or constant must be inserted into the assembly
source file (Listing 11.5 on page 365).

This can also be done in a separate file, included in the assembly source file.

Listing 11.5 Example declaration of data and constants

XREF CData; External declaration of a variable
XREF CConst; External declaration of a constant

The variables or constants can then be accessed in the usual way, using their names
(Listing 11.6 on page 365).

NOTE The compiler supports also the automatic generation of assembler include files.
See the description of the -La compiler option in the compiler manual.

Listing 11.6 Example of data and constant reference

LDAA CConst

LDAA CData

Invoking an assembly function in an ANSI-C
source file

An function implemented in an assembly source file (mixasm.asm in Listing 11.7 on
page 366) can be invoked in a C source file (Listing 11.9 on page 367). During the
implementation of the function in the assembly source file, you should pay attention to the
parameter passing scheme of the ANSI-C compiler you are using in order to retrieve the
parameter from the right place.

HC(S)12 Assembler Manual 365

Mixed C and Assembler Applications
Invoking an assembly function in an ANSI-C source file

Listing 11.7 Example of an assembly file: mixasm.asm

XREF CDhata
XDEF Addvar
XDEF ASMData

DataSec: SECTION

ASMData: DS.B 1

CodeSec: SECTION

Addvar:
ADDB CData ; add CDhata to the parameter in register B
STAB ASMData ; result of the addition in ASMData
RTS

We recommend that you generate a header file for each assembly source file
(Listing 11.7 on page 366). This header file (mixasm.h in Listing 11.8 on page 366)
should contain the interface to the assembly module.

Listing 11.8 Header file for the assembly mixasm.asm file: mixasm.h

/* mixasm.h */
#ifndef _MIXASM H_
#define _MIXASM H_

void AddvVar (unsigned char value);
/* function that adds the parameter value to global CDhata */
/* and then stores the result in ASMData */

/* variable which receives the result of Addvar */
extern char ASMData;

#endif /* _MIXASM_H_ */

The function can then be invoked in the usual way, by using its name.

Example of a C file

A C source code file (mixc . c) has the main() function which calls the Addvar ()
function. See Listing 11.9 on page 367. (Compile it with the -Cc compiler option when
using the HIWARE Object File Format).

366 HC(S)12 Assembler Manual

Mixed C and Assembler Applications
Invoking an assembly function in an ANSI-C source file

Listing 11.9 Example C source code file: mixc.c

static int Error = 0;
const unsigned char CDhata = 12;
#include "mixasm.h"

void main(void) {

Addvar (10) ;

if (ASMData != CDhata + 10){
Error = 1;

} else {
Error = 0;

}

for(;;); // wait forever

NOTE Be careful, as the Assembler will not make any checks on the number and type
of the function parameters.

The application must be correctly linked.

For these C and *. asm files, a possible linker parameter file is shown in Listing 11.10 on
page 367.

Listing 11.10 Example of linker parameter file: mixasm.prm

LINK mixasm.abs
NAMES
mixc.o mixasm.o
END
SECTIONS
MY_ROM READ_ONLY 0x4000 TO Ox4FFF;
MY_RAM = READ_WRITE 0x2400 TO Ox2FFF;
MY_STACK = READ_WRITE 0x2000 TO O0x23FF;
END
PLACEMENT
DEFAULT_ RAM INTO MY_RAM;
DEFAULT_ROM INTO MY_ROM;
SSTACK INTO MY_STACK;
END

INIT main

HC(S)12 Assembler Manual 367

Mixed C and Assembler Applications
Support for structured types

NOTE We recommend that you use the same memory model and object file format for
all the generated object files.

Support for structured types

When the -Struct: Support for structured types on page 186 assembler option is activated,
the Macro Assembler also supports the definition and usage of structured types. This
allows an easier way to access ANSI-C structured variable in the Macro Assembler.

In order to provide an efficient support for structured type the macro assembler should
provide notation to:

¢ Define a structured type. See “Structured type definition” on page 368.

¢ Define a structured variable. See “Variable definition” on page 370.

¢ Declare a structured variable. See “Variable declaration” on page 370.

3

¢ Access the address of a field inside of a structured variable. See “Accessing a field
address” on page 371

* Access the offset of a field inside of a structured variable. See “Accessing a field
offset” on page 372.

NOTE Some limitations apply in the usage of the structured types in the Macro
Assembler. See Structured type: Limitations on page 373.

Structured type definition

The Macro Assembler is extended with the following new keywords in order to support
ANSI-C type definitions.

¢ STRUCT
* UNION

The structured type definition for STRUCT can be encoded as in Listing 11.11 on
page 368:

Listing 11.11 Definition for STRUCT

typeName: STRUCT
labl: DS.W 1
lab2: DS.W 1
368 HC(S)12 Assembler Manual

Mixed C and Assembler Applications
Support for structured types

ENDSTRUCT

where:

e 'typeName' is the name associated with the defined type. The type name is
considered to be a user-defined keyword. The Macro Assembler will be case-
insensitive on typeName.

e 'STRUCT' specifies that the type is a structured type.

e 'labl'and 'lab2"' are the fields defined inside of the ' typeName' type. The
fields will be considered as user-defined labels, and the Macro Assembler will be
case-sensitive on label names.

As with all other directives in the Assembler, the STRUCT and UNION directives are
case-insensitive.

The STRUCT and UNION directives cannot start on column 1 and must be preceded by a
label.

Types allowed for structured type fields

The field inside of a structured type may be:

¢ another structured type or

¢ abase type, which can be mapped on 1, 2, or 4 bytes.

Table 11.4 on page 369 shows how the ANSI-C standard types are converted in the

assembler notation:

Table 11.4 Converting ANSI-C standard types to assembler notation

ANSI-C type Assembler Notation

char DS - Define Space on page 292
short DS.W

int DS.W

long DS.L

enum DS.W

bitfield -- not supported --

float -- not supported --DS.F

HC(S)12 Assembler Manual 369

Mixed C and Assembler Applications
Support for structured types

Table 11.4 Converting ANSI-C standard types to assembler notation (continued)

ANSI-C type Assembler Notation
double -- not supported --DS.D
data pointer DS.W

function pointer -- not supported --

Variable definition

The Macro Assembler can provide a way to define a variable with a specific type. This is
done using the following syntax (Listing 11.12 on page 370):

var: typeName
where:
e 'var' is the name of the variable.

e 'typeName' is the type associated with the variable.

Listing 11.12 Assembly code analog of a C struct of type: myType

myType:
fieldl:
field2:
field3:
field4d:
field5:

STRUCT
DS.W
DS.W
DS.B
DS.B
DS.W 1

ENDSTRUCT

wWR PR

DataSection: SECTION

structVar:

TYPE myType ; var ‘structVar’ is of type ‘myType’

Variable declaration

The Macro Assembler can provide a way to associated a type with a symbol which is
defined externally. This is done by extending the XREF syntax:

XREF var: typeName, var2
where:
* 'var'is the name of an externally defined symbol.

* 'typeName' is the type associated with the variable 'var'.

370

HC(S)12 Assembler Manual

Mixed C and Assembler Applications
Support for structured types

'var2' isthe name of another externally defined symbol. This symbol is not associated
with any type. See Listing 11.13 on page 371 for an example.

Listing 11.13 Example of extending XREF

myType: STRUCT

fieldl: DS.Ww 1
field2: Ds.w 1
field3: DS.B 1
field4: DS.B 3
field5: Ds.w 1

ENDSTRUCT

XREF extData: myType ; var ‘extData’ is type ‘myType’

Accessing a structured variable

The Macro Assembler can provide a means to access each structured type field absolute
address and offset.

Accessing a field address

To access a structured-type field address (Listing 11.14 on page 371), the Assembler uses
the colon character ":'.

var:field
where
¢ 'var'is the name of a variable, which was associated with a structured type.

* 'field'is the name of a field in the structured type associated with the variable.

Listing 11.14 Example of accessing a field address

myType: STRUCT

fieldl: DS.w 1
field2: DS.w 1
field3: DS.B 1
field4: DS.B 3
field5: DS.w 1
ENDSTRUCT

XREF myData:myType
XDEF entry

HC(S)12 Assembler Manual 371

Mixed C and Assembler Applications
Support for structured types

CodeSec:

entry:

SECTION

LDAA myData:field3 ; Loads register A with the
; contents of field field3 from
; variable myData.

NOTE The period cannot be used as separator because in assembly language it is a
valid character inside of a symbol name.

Accessing a field offset

To access a structured type field offset, the Assembler will use following notation:
<typeName>-><field>
where:

¢ 'typeName'is the name of a structured type.

e 'field'is the name of a field in the structured type associated with the variable. See
Listing 11.15 on page 372 for an example of using this notation for accessing an
offset..

Listing 11.15 Accessing a field offset with the -><field> notation

myType: STRUCT
fieldl: DS.w 1
field2: DS.w 1
field3: DS.B 1
field4d: DS.B 3
field5: DS.w 1
ENDSTRUCT
XREF.B myData
XDEF entry
CodeSec: SECTION
entry:
LDX #myData
LDAA myType->field3,X ; Adds the offset of field
;'field3' (4) to X and loads
; A with the content of the
; effective address
372 HC(S)12 Assembler Manual

Mixed C and Assembler Applications
Support for structured types

Structured type: Limitations

A field inside of a structured type may be:
* another structured type
* abase type, which can be mapped on 1, 2, or 4 bytes.
The Macro Assembler is not able to process bitfields or pointer types.

The type referenced in a variable definition or declaration must be defined previously. A
variable cannot be associated with a type defined afterwards.

HC(S)12 Assembler Manual 373

Mixed C and Assembler Applications
Support for structured types

374 HC(S)12 Assembler Manual

12
Make Applications

This chapters has the following sections:

e “Assembly applications” on page 375

¢ “Memory maps and segmentation” on page 376

Assembly applications

This section covers:

¢ Directly generating an absolute file on page 375

¢ Mixed C and assembly applications on page 375

Directly generating an absolute file

When an absolute file is directly generated by the Assembler:

¢ the application entry point must be specified in the assembly source file using the
directive ABSENTRY.

¢ The whole application must be encoded in a single assembly unit.

e The application should only contain absolute sections.

Generating object files

The entry point of the application must be mentioned in the Linker parameter file using the
"INIT funcname" command. The application is build of the different object files with the
Linker. The Linker is document in a separate document.

Your assembly source files must be separately assembled. Then the list of all the object
files building the application must be enumerated in the application PRM file.

Mixed C and assembly applications

Normally the application starts with the main procedure of a C file. All necessary object
files - assembly or C - are linked with the Linker in the same fashion like pure C
applications. The Linker is documented in a separate document.

HC(S)12 Assembler Manual 375

Make Applications
Memory maps and segmentation

Memory maps and segmentation

Relocatable Code Sections are placed in the DEFAULT_ROM or . text Segment.

Relocatable Data Sections are placed in the DEFAULT_RAM or .data Segment.

NOTE The . text and .data names are only supported when the ELF object file
format is used.

There are no checks at all that variables are in RAM. If you mix code and data in a section
you cannot place the section into ROM. That is why we suggest that you separate code and
data into different sections.

If you want to place a section in a specific address range, you have to put the section name
in the placement portion of the linker parameter file (Listing 12.1 on page 376).

Listing 12.1 SECTIONS/PLACEMENT portion of a PRM file

SECTIONS
ROM1 = READ_ONLY 0x0200 TO OxOFFF;
SpecialROM = READ_ONLY 0x8000 TO Ox8FFF;
RAM = READ _WRITE 0x4000 TO Ox4FFF;
END
PLACEMENT
DEFAULT_ROM INTO ROMI1;
mySection INTO SpecialROM;
DEFAULT_RAM INTO RAM;
END

376 HC(S)12 Assembler Manual

13

How to ...

This chapter covers the following topics:

“How to work with absolute sections” on page 377

“How to work with relocatable sections” on page 380

3

‘How to initialize the Vector table” on page 383

“Splitting an application into different modules” on page 390
“Using the direct addressing mode to access symbols” on page 392

How to work with absolute sections

An absolute section is a section whose start address is known at assembly time.

(See modules fiboorg.asmand fiboorg.prm in the demo directory)

Defining absolute sections in an assembly
source file

An absolute section is defined using the ORG directive. In that case, the Macro Assembler
generates a pseudo section, whose name is “ORG_<index>", where index is an integer
which is incremented each time an absolute section is encountered (Listing 13.1 on

page 377).

Listing 13.1 Defining an absolute section containing data

ORG
var: DsS.

ORG
cstl: DC.B
cst2: DC.B

$800 ; Absolute data section.

1

SA00 ; Absolute constant data section.
SA6

$SBC

In the previous portion of code, the cst1 label is located at address SA00, and the cst2
label is located at address SAQ01.

HC(S)12 Assembler Manual 377

How to ...

How to work with absolute sections

Listing 13.2 Assembler output listing for Listing 13.1 on page 377

1 1

2 2 a000800

3 3

4 4 al000A00 A6
5 5 a000Aa01 BC

ORG $800
var: DS.B 1
ORG $SA00

cstl: DC.B $A6
cst2: DC.B $BC

Program assembly source code should be located in a separate absolute section (Listing
13.3 on page 378).

Listing 13.3 Defining an absolute section containing code

XDEF entry
ORG SC00
entry:
LDAA cstl ;
ADDA cst2 ;
STAA var ;
BRA entry

Absolute code section.

Load value in cstl
Add value in cst2
Store in var

In the previous portion of code, the instruction LDAA will be located at address $C00, and
instruction ADDA at address $CO03. See Listing 13.4 on page 378.

Listing 13.4 Assembler output listing for Listing 13.3 on page 378

6 6 ORG $CO00 ; Absolute section.
7 7 entry:
8 8 a000Cc00 B6 0A00 LDAA cstl ; Load value
9 9 a000Cc03 BB 0A01 ADDA cst2 ; Add value in cst2
10 10 al000CO6 7A 0800 STAA var ; Store in var
11 11 a000Cc09 20F5 BRA entry
In order to avoid problems during linking or execution from an application, an assembly
file should at least:
« Initialize the stack pointer if the stack is used.
The instruction LDS can be used to initialize the stack pointer.
* Publish the application’s entry point using XDEF.
¢ The programmer should ensure that the addresses specified in the source files are
valid addresses for the MCU being used.
378 HC(S)12 Assembler Manual

How to ...
How to work with absolute sections

Linking an application containing absolute
sections

When the Assembler is generating an object file, applications containing only absolute
sections must be linked. The linker parameter file must contain at least:

« the name of the absolute file
 the name of the object file which should be linked

« the specification of a memory area where the sections containing variables must be
allocated. For applications containing only absolute sections, nothing will be
allocated there.

« the specification of a memory area where the sections containing code or constants
must be allocated. For applications containing only absolute sections, nothing will be
allocated there.

« the specification of the application entry point, and
* the definition of the reset vector.

The minimal linker parameter file will look as shown in Listing 13.5 on page 379.

Listing 13.5 Minimal linker parameter file

LINK test.abs /* Name of the executable file generated. */
NAMES

test.o /* Name of the object files in the application. */
END
SECTIONS

/* READ_ONLY memory area. There should be no overlap between this
memory area and the absolute sections defined in the assembly
source file.

*/

MY_ROM = READ_ONLY 0x4000 TO Ox4FFF;

/* READ_WRITE memory area. There should be no overlap between this
memory area and the absolute sections defined in the assembly
source file.

*/

MY_RAM = READ_WRITE 0x2000 TO Ox2FFF;

END

PLACEMENT

/* Relocatable variable sections are allocated in MY_RAM. */
DEFAULT_RAM INTO MY_RAM;

/* Relocatable code and constant sections are allocated in MY _ROM. */
DEFAULT_ ROM INTO MY_ROM;

END

HC(S)12 Assembler Manual 379

How to ...
How to work with relocatable sections

INIT entry /* Application entry point. */
VECTOR ADDRESS OxXFFFE entry /* Initialization of the reset vector. */

CAUTION There should be no overlap between the absolute sections defined in the
assembly source file and the memory areas defined in the PRM file.

NOTE As the memory areas (segments) specified in the PRM file are only used to
allocate relocatable sections, nothing will be allocated there when the
application contains only absolute sections. In that case you can even specify
invalid address ranges in the PRM file.

How to work with relocatable sections

A relocatable section is a section which start address is determined at linking time.

(See modules fibo.asmand fibo.prm in the demo directory)

Defining relocatable sections in a source
file

A relocatable section is defined using the SECTION directive. See Listing 13.6 on
page 380 for an example of defining relocatable sections.

Listing 13.6 Defining relocatable sections containing data:

constSec: SECTION ; Relocatable constant data section.
cstl: DC.B S$A6

cst2: DC.B $BC

dataSec: SECTION ; Relocatable data section.

var: DS.B 1

In the previous portion of code, the label cst1 will be located at an offset O from the
section constSec start address, and label cst2 will be located at an offset 1 from the
section constSec start address. See Listing 13.7 on page 381.

380 HC(S)12 Assembler Manual

How to ...
How to work with relocatable sections

Listing 13.7 Assembler output listing for Listing 13.6 on page 380

2 2 constSec: SECTION ; Relocatable
3 3 000000 a6 cstl: DC.B SA6

4 4 000001 BC cst2: DC.B SBC

5 5

6 6 dataSec: SECTION ; Relocatable
7 7 000000 var: DS.B 1

Program assembly source code should be located in a separate relocatable section
(Listing 13.8 on page 381).

Listing 13.8 Defining a relocatable section for code

XDEF entry

codeSec: SECTION ; Relocatable code section.
entry:

LDAA c¢cstl ; Load value in cstl

ADDA c¢st2 ; Add value in cst2

STAA var ; Store in var

BRA entry

In the previous portion of code, the instruction LDAA will be located at offset O from the
section codeSec start address, and instruction ADDA at offset 3 from the section
codesSec start address.

In order to avoid problems during linking or execution from an application, an assembly
file should at least:

« Initialize the stack pointer if the stack is used.
The instruction LDS can be used to initialize the stack pointer.

* Publish the application’s entry point using the XDEF directive.

Linking an application containing
relocatable sections

Applications containing relocatable sections must be linked. The linker parameter file
must contain at least:

* the name of the absolute file,
 the name of the object file which should be linked,

« the specification of a memory area where the sections containing variables must be
allocated,

HC(S)12 Assembler Manual 381

How to ...

How to work with relocatable sections

* the specification of a memory area where the sections containing code or constants
must be allocated,

« the specification of the application’s entry point, and
* the definition of the reset vector.

A minimal linker parameter file will look as shown in Listing 13.9 on page 382.

Listing 13.9 Minimal linker parameter file

/* Name of the executable file generated. */
LINK test.abs
/* Name of the object file in the application. */
NAMES

test.o
END
SECTIONS

/* READ_ONLY memory area. */

MY_ROM

= READ_ONLY 0x2B00 TO Ox2BFF;

/* READ_WRITE memory area. */

MY_RAM = READ_WRITE 0x2800 TO O0x28FF;

END

PLACEMENT

/* Relocatable variable sections are allocated in MY_RAM. */
DEFAULT_RAM INTO MY_RAM;

/* Relocatable code and constant sections are allocated in MY_ROM. */
DEFAULT_ROM, constSec INTO MY_ROM;

END

INIT entry /* Application entry point. */

VECTOR ADDRESS OxXFFFE entry /* Initialization of the reset vector. */

NOTE The programmer should ensure that the memory ranges he specifies in the
SECTIONS block are valid addresses for the controller he is using. In addition,
when using the SDI debugger the addresses specified for code or constant
sections must be located in the target board ROM area. Otherwise, the
debugger will not be able to load the application

The sample main.asm module created by a CodeWarrior’s New Project Wizard
relocatable assembly project is an example of usage of relocatable sections in an
application.

382

HC(S)12 Assembler Manual

How to ...
How to initialize the Vector table

How to initialize the Vector table

The vector table can be initialized in the assembly source file or in the linker parameter
file. We recommend that you initialize it in the linker parameter file.

¢ _on page 383Initializing the Vector table in the linker PRM file on page 383
(recommended),

« Initializing the Vector table in a source file using a relocatable section on page 385,
or

« Initializing the Vector table in a source file using an absolute section on page 388.

Initializing the Vector table in the linker
PRM file

Initializing the vector table from the PRM file allows you to initialize single entries in the
table. The user can decide to initialize all the entries in the vector table or not.

The labels or functions, which should be inserted in the vector table, must be implemented
in the assembly source file (Listing 13.10 on page 383). All these labels must be
published, otherwise they cannot be addressed in the linker PRM file.

Listing 13.10 Initializing the Vector table from a PRM File

XDEF IRQFunc, XIRQFunc, SWIFunc, OpCodeFunc, ResetFunc
DataSec: SECTION
Data: DS.W 5 ; Each interrupt increments an element in the table.
CodeSec: SECTION
; Implementation of the interrupt functions.

IRQFunc:

LDAB #0

BRA int
XIRQFunc:

LDAB #2

BRA int
SWIFunc:

LDAB #4

BRA int
OpCodeFunc:

LDAB #6

BRA int
ResetFunc:

LDAB #8

BRA entry
int:

LDX #Data ; Load address of symbol Data in X

HC(S)12 Assembler Manual 383

How to ...

How to initialize the Vector table

ABX ; X <- address of the appropriate element in the table
INC 0, X ; The table element is incremented
RTT
entry:
LDS #SAFE
loop: BRA loop
NOTE The functions ' IRQFunc’, ‘XIRQFunc’, ‘SWIFunc’, ‘OpCodeFunc’,
‘ResetFunc’ are published. This is required because they are referenced in
the linker PRM file.

NOTE As the processor automatically pushes all registers on the stack on occurrence
of an interrupt, the interrupt function do not need to save and restore the
registers it is using

NOTE All Interrupt functions must be terminated with an RTT instruction

The vector table is initialized using the linker VECTOR ADDRESS command
(Listing 13.11 on page 384).

Listing 13.11 Using the VECTOR ADDRESS Linker Command

LINK test.abs
NAMES

test.o
END

SECTIONS
MY_ROM
MY_RAM

END

PLACEMENT
DEFAULT_RAM
DEFAULT_ROM

END

INIT ResetFunc

READ_ONLY 0x0800 TO Ox08FF;
READ_WRITE 0xO0B00 TO OxOCFF;

INTO MY_RAM;
INTO MY_ROM;

VECTOR ADDRESS OxFFF2 IRQFunc
VECTOR ADDRESS OxFFF4 XIRQFunc
VECTOR ADDRESS O0xFFF6 SWIFunc
VECTOR ADDRESS OxFFF8 OpCodeFunc

384

HC(S)12 Assembler Manual

How to ...
How to initialize the Vector table

VECTOR ADDRESS OxFFFE ResetFunc

NOTE The statement * INIT ResetFunc’ defines the application entry point.
Usually, this entry point is initialized with the same address as the reset vector.

NOTE The statement *VECTOR ADDRESS OxFFF2 IRQFunc’ specifies that the
address of the * TRQFunc’ function should be written at address OXFFF2.

Initializing the Vector table in a source file
using a relocatable section

Initializing the vector table in the assembly source file requires that all the entries in the
table are initialized. Interrupts, which are not used, must be associated with a standard
handler.

The labels or functions that should be inserted in the vector table must be implemented in
the assembly source file or an external reference must be available for them. The vector
table can be defined in an assembly source file in an additional section containing constant

variables. See Listing 13.12 on page 385.

Listing 13.12 Initializing the Vector table in source code with a relocatable section

XDEF ResetFunc

DataSec: SECTION
Data: DS.W 5 ; Each interrupt increments an element of the table.
CodeSec: SECTION
; Implementation of the interrupt functions.
IRQFunc:
LDAB #0
BRA int
XIRQFunc:
LDAB #2
BRA int
SWIFunc:
LDAB #4
BRA int
OpCodeFunc:
LDAB #6
BRA int
ResetFunc:
LDAB #8

BRA entry

HC(S)12 Assembler Manual 385

How to ...

How to initialize the Vector table

DummyFunc :
RTT
int:
LDX #Data
ABX
INC 0, X
RTT
entry:
LDS #SAFE
loop: BRA loop

VectorTable: SECTION
; Definition of the

IRQInt: DC.W
XIRQInt: DC.W
SWIInt: DC.W
OpCodelInt: DC.W
COPResetInt: DC.W
ClMonResInt: DC.W
ResetInt: DC.W

vector table.

IRQFunc

XIRQFunc

SWIFunc

OpCodeFunc

DummyFunc ; No function attached to COP Reset.
DummyFunc ; No function attached to Clock

; MonitorReset.
ResetFunc

NOTE Each constant in the *VectorTable’ section is defined as a word (a 2-byte
constant), because the entries in the vector table are 16 bits wide.

NOTE In the previous example, the constant * TRQ1Int is initialized with the
address of the label * IRQ1Func’.

NOTE In the previous example, the constant * XIRQInt ' is initialized with the
address of the label * XIRQFunc’.

NOTE All the labels specifying an initialization value must be defined, published
(using XDEF), or imported (using XREF) in the assembly source file

The section should now be placed at the expected address. This is performed in the linker
parameter file (Listing 13.13 on page 386).

Listing 13.13 Example linker parameter file

LINK test.abs
NAMES test.o
END

386

HC(S)12 Assembler Manual

How to ...
How to initialize the Vector table

SECTIONS
MY_ROM = READ_ONLY 0x0800 TO O0xO8FF;
MY_RAM = READ_WRITE 0x0AO00 TO OxOBFF;
/* Define the memory range for the vector table */
Vector = READ_ONLY OxFFF2 TO OXFFFF;
END
PLACEMENT
DEFAULT_RAM INTO MY_RAM;
DEFAULT_ROM INTO MY_ROM;

/* Place the section ‘VectorTable’ at the appropriated address. */
VectorTable INTO Vector;
END

INIT ResetFunc
ENTRIES

*

END

NOTE The statement *Vector = READ_ONLY OxFFF2 TO OxFFFF' defines
the memory range for the vector table.

NOTE The statement ‘VectorTable INTO Vector'’ specifies that the
VectorTable section should be loaded in the read only memory area
Vector. This means, the constant * IRQInt ' will be allocated at address
0xFFF2, the constant *XIRQInt ’ will be allocated at address 0xFFF4, and
so on. The constant *ResetInt’ will be allocated at address OxXFFFE.

NOTE The statement *ENTRIES * END'’ switches smart linking off. If this
statement is missing in the PRM file, the vector table will not be linked with
the application, because it is never referenced. The smart linker only links the
referenced objects in the absolute file.

NOTE When developing a banked application, make sure that the code from the
interrupt functions is located in the non banked memory area.

HC(S)12 Assembler Manual 387

How to ...

How to initialize the Vector table

Listing 13.1

Initializing the Vector table in a source file
using an absolute section

Initializing the vector table in the assembly source file requires that all the entries in the
table are initialized. Interrupts, which are not used, must be associated with a standard
handler.

The labels or functions, which should be inserted in the vector table must be implemented
in the assembly source file or an external reference must be available for them. The vector
table can be defined in an assembly source file in an additional section containing constant
variables. See Listing 13.14 on page 388 for an example.

4 Initializing the Vector table using an absolute section

XDEF ResetFunc

DataSec: SECTION
Data: DS.W 5 ; Each interrupt increments an element of the table.
CodeSec: SECTION
; Implementation of the interrupt functions.
IRQFunc:
LDAB #0
BRA int
XIRQFunc:
LDAB #2
BRA int
SWIFunc:
LDAB #4
BRA int
OpCodeFunc:
LDAB #6
BRA int
ResetFunc:
LDAB #8
BRA entry
DummyFunc :
RTI
int:
LDX #Data
ABX
INC 0, X
RTI
entry:
LDS #SAFE
loop: BRA loop
ORG SFFF2
388 HC(S)12 Assembler Manual

How to ...
How to initialize the Vector table

;Definition of the vector table
;in an absolute section starting at address SFFF2.

IRQINnt: DC.W IRQFunc
XIRQInt: DC.W XIRQFunc
SWIInt: DC.W SWIFunc
OpCodelInt: DC.W OpCodeFunc
COPResetInt: DC.W DummyFunc ; No function attached to COP Reset.
ClMonResInt: DC.W DummyFunc ; No function attached to Clock
; MonitorReset.
ResetInt: DC.W ResetFunc

The section should now be placed at the expected address. This is performed in the linker
parameter file (Listing 13.15 on page 389).

NOTE Each constant in the section starting at SFFF2 is defined as a word (a 2-byte
constant), because the entry in the vector table are 16 bits wide.

NOTE In the previous example, the constant * IRQInt ’ is initialized with the
address of the label * IRQFunc’.

NOTE All the labels with an initialization value must be defined, published (using
XDEF) or imported (using XREF) in the assembly source file.

NOTE The statement *ORG SFFF2 " specifies that the following section must start at
address SFFF2.

Listing 13.15 Example linker parameter file for Listing 13.14 on page 388:

LINK test.abs
NAMES

test.o
END

SECTIONS
MY _ROM = READ_ONLY 0x0800 TO 0xO8FF;
MY_RAM = READ_WRITE O0x0A00 TO OxOBFF;
END
PLACEMENT
DEFAULT_RAM INTO MY_RAM;
DEFAULT_ROM INTO MY_ROM;
END

HC(S)12 Assembler Manual 389

How to ...
Splitting an application into different modules

INIT ResetFunc
ENTRIES

*

END

NOTE The statement *ENTRY * END’ switches smart linking off. If this statement
is missing in the PRM file, the vector table will not be linked with the
application, because it is never referenced. The smart linker only links the
referenced objects in the absolute file.

NOTE When developing a banked application, make sure that the code from the
interrupt functions is located in the non-banked memory area

Splitting an application into different
modules

Complex application or application involving several programmers can be split into
several simple modules. In order to avoid any problem when merging the different
modules following rules must be followed:

* For each assembly source file, one include file must be created containing the
definition of the symbols exported from this module. For the symbols referring to
code label, a small description of the interface is required.

Example of an assembly file (Test1.asm)

See Listing 13.16 on page 390 for an example assembly file which is used in the following
sections.

Listing 13.16 Separating Code into Modules—Test1.asm

XDEF AddSource
XDEF Source

initStack: EQU SAFF

DataSec: SECTION

Source: DS.B 1
CodeSec: SECTION
AddSource:

390 HC(S)12 Assembler Manual

How to ...
Splitting an application into different modules

ADDA Source
STAA Source
RTS

Corresponding include file (Test1.inc)
See Listing 13.17 on page 391 for an example Testlinc include file.

Listing 13.17 Separating Code into Modules—Test1.inc

XREF AddSource
The AddSource function adds the value stored in the variable
Source to the contents of the A register. The result of the
computation is stored in the Source variable.

Input Parameter: The A register contains the value that should be
added to the Source variable.
Output Parameter: Source contains the result of the addition.

XREF Source
The Source variable is a l-byte variable.

Example of an assembly File (Test2.asm)
Listing 13.18 on page 391 is another assembly code file module for this project.

Listing 13.18 Separating Code into Modules—Test2.asm

XDEF entry
INCLUDE "Testl.inc"

initStack: EQU $SAFE

CodeSec: SECTION

entry: LDS #initStack
LDAA #$7
JSR AddSource
BRA entry

The application’s * . prm file should list both object files building the application. When a
section is present in the different object files, the object file sections are concatenated into

HC(S)12 Assembler Manual 391

How to ...
Using the direct addressing mode to access symbols

a single absolute file section. The different object file sections are concatenated in the
order the object files are specified in the * . prm file.

Example of a PRM file (Test2.prm)

Listing 13.19 Separating assembly code into modules—Test2.prm

LINK test2.abs /* Name of the executable file generated. */
NAMES

testl.o

test2.0 / *Name of the object files building the application. */
END

SECTIONS
MY_ROM = READ_ONLY O0x2B00 TO Ox2BFF; /* READ_ONLY mem. */
MY_RAM = READ_WRITE 0x2800 TO 0x28FF; /* READ WRITE mem. */
END
PLACEMENT
/* variables are allocated in MY_RAM */
DataSec, DEFAULT_RAM INTO MY_RAM;

/* code and constants are allocated in MY_ROM */

CodeSec, ConstSec, DEFAULT_ROM INTO MY_ROM;
END
INIT entry /* Definition of the application entry point. */
VECTOR ADDRESS OxXFFFE entry /* Definition of the reset vector. */

NOTE The ‘CodeSec’ section is defined in both object files. In *testl.o’, the
‘CodesSec’ section contains the symbol ‘AddSource’.In ‘test2.0’,
the *CodeSec’ section contains the ‘entry’ symbol. According to the
order in which the object files are listed in the NAMES block, the function
*Addsource’ is allocated first and the *entry’ symbol is allocated next to
it.

Using the direct addressing mode to access
symbols

There are different ways for the Assembler to use the direct addressing mode on a symbol:

* “Using the direct addressing mode to access external symbols” on page 393,
* “Using the direct addressing mode to access exported symbols” on page 393,

392 HC(S)12 Assembler Manual

How to ...
Using the direct addressing mode to access symbols

¢ “Defining symbols in the direct page” on page 394,

* “Using the force operator” on page 394, or
¢ “Using SHORT sections” on page 395.

Using the direct addressing mode to
access external symbols

External symbols, which should be accessed using the direct addressing mode, must be
declared using the XREF . B directive. Symbols which are imported using XREF are
accessed using the extended addressing mode.

Listing 13.20 Using direct addressing to access external symbols

XREF.B ExternalDirLabel
XREF ExternalExtLabel

LDD ExternalDirLabel ; Direct addressing mode is used.

LDD ExternalExtLabel ; Extended addressing mode is used.

Using the direct addressing mode to
access exported symbols

Symbols, which are exported using the XDEF . B directive, will be accessed using the
direct addressing mode. Symbols which are exported using XDEF are accessed using the
extended addressing mode.

Listing 13.21 Using direct addressing to access exported symbols

XDEF.B DirLabel
XDEF ExtLabel

LDD DirLabel ; Direct addressing mode is used.

LDD ExtLabel ; Extended addressing mode is used.

HC(S)12 Assembler Manual 393

How to ...
Using the direct addressing mode to access symbols

Defining symbols in the direct page

Symbols that are defined in the predefined BSCT section are always accessed using the
direct-addressing mode (Listing 13.22 on page 394).

Listing 13.22 Defining symbols in the direct page

BSCT
DirLabel: DS.B 3
dataSec: SECTION
ExtLabel: DS.B 5
codeSec: SECTION

LDD DirLabel ; Direct addressing mode is used.

LDD ExtLabel ; Extended addressing mode is used.

Using the force operator

A force operator can be specified in an assembly instruction to force direct or extended
addressing mode (Listing 13.23 on page 394).

The supported force operators are:
e < or .B to force direct addressing mode

e > or .W to force extended addressing mode.

Listing 13.23 Using a force operator

dataSec: SECTION
label: DS.B 5

codeSec: SECTION

LDD <label ; Direct addressing mode is used.
LDD label.B ; Direct addressing mode is used.

LDD >label ; Extended addressing mode is used.
LDD label.W ; Extended addressing mode is used.

394 HC(S)12 Assembler Manual

How to ...
Using the direct addressing mode to access symbols

Using SHORT sections

Symbols that are defined in a section defined with the SHORT qualifier are always
accessed using the direct addressing mode (Listing 13.24 on page 395).

Listing 13.24 Using SHORT sections

shortSec:
DirLabel:
dataSec:

ExtLabel:

codeSec:

SECTION SHORT
DS.B 3
SECTION
DS.B 5
SECTION

LDD DirLabel ; Direct addressing mode is used.

LDD ExtLabel ; Extended addressing mode is used.

HC(S)12 Assembler Manual 395

How to ...
Using the direct addressing mode to access symbols

396 HC(S)12 Assembler Manual

Appendices

This document has the following appendices:

“Global Configuration File Entries” on page 399

3

‘Local Configuration File Entries” on page 409

“MASM Compatibility” on page 429
“MCUasm Compatibility” on page 433

3

‘Semi-Avocet Compatibility” on page 435

HC(S)12 Assembler Manual 397

398 HC(S)12 Assembler Manual

Global Configuration File
Entries

This appendix documents the sections and entries that can appear in the global
configuration file. This file is named mcutools. ini.

mcutools.ini can contain these sections:
e [Installation] Section on page 400
¢ [Options] Section on page 401
e [XXX Assembler] Section on page 402
* [Editor] Section on page 405

HC(S)12 Assembler Manual 399

Global Configuration File Entries
[Installation] Section

[Installation] Section

Path
Arguments
Last installation path.
Description
Whenever a tool is installed, the installation script stores the installation
destination directory into this variable.
Example
Path=C:\install
Group

Arguments

Last installation program group.

Description
Whenever a tool is installed, the installation script stores the installation program

group created into this variable.

Example

Group=Assembler

400 HC(S)12 Assembler Manual

Global Configuration File Entries
[Options] Section

[Options] Section

DefaultDir

Arguments
Default Directory to be used.

Description

Specifies the current directory for all tools on a global level. See also
DEFAULTDIR: Default current directory on page 107 environment variable.

Example
DefaultDir=C:\install\project

HC(S)12 Assembler Manual 401

Global Configuration File Entries
[XXX_Assembler] Section

[XXX_Assembler] Section

This section documents the entries that can appear in an [XXX Assembler] section of
the mcutools.ini file.

NOTE XXXis a placeholder for the name of the name of the particular Assembler you
are using. For example, if you are using the HC12 Assembler, the name of this
section would be [HC12_Assembler].

SaveOnExit

Arguments
1/0

Description

1 if the configuration should be stored when the Assembler is closed, 0 if it should
not be stored. The Assembler does not ask to store a configuration in either cases.

SaveAppearance

Arguments
1/0

Description

1 if the visible topics should be stored when writing a project file, O if not. The
command line, its history, the windows position and other topics belong to this
entry.

This entry corresponds to the state of the check box ‘Appearance’ in the*
Save Configuration’ dialog box.

402 HC(S)12 Assembler Manual

Global Configuration File Entries
[XXX_Assembler] Section

SaveEditor

Arguments
1/0

Description

If the editor settings should be stored when writing a project file, O if not. The
editor setting contain all information of the editor configuration dialog box.
This entry corresponds to the state of the check box ‘Editor Configuration’ in the

‘Save Configuration’ dialog box.

SaveOptions

Arguments
1/0

Description
1 if the options should be contained when writing a project file, O if not.

This entry corresponds to the state of the check box ‘Options’ in the ¢
Save Configuration’ dialog box.

RecentProject0, RecentProjecti, ...

Arguments

Names of the last and prior project files

HC(S)12 Assembler Manual 403

Global Configuration File Entries
[XXX_Assembler] Section

Description
This list is updated when a project is loaded or saved. Its current content is shown
in the file menu.

Example

SaveOnExit=1

SaveAppearance=1

SaveEditor=1

SaveOptions=1
RecentProject0=C:\myprj\project.ini
RecentProjectl=C:\otherprj\project.ini

404 HC(S)12 Assembler Manual

Global Configuration File Entries
[Editor] Section

[Editor] Section

Editor Name

Arguments
The name of the global editor

Description

Specifies the name of the editor used as global editor. This entry has only a
descriptive effect. Its content is not used to start the editor.

Saved

Only with * Editor Configuration’ set in the File > Configuration Save
Configuration dialog box.

Editor Exe

Arguments
The name of the executable file of the global editor (including path).

Description

Specifies the filename which is started to edit a text file, when the global editor
setting is active.

Saved

Only with * Editor Configuration’ set in the File > Configuration Save
Configuration dialog box.

HC(S)12 Assembler Manual 405

Global Configuration File Entries
[Editor] Section

Editor_Opts

Arguments
The options to use with the global editor

Description
Specifies options (arguments), which should be used when starting the global

editor. If this entry is not present or empty, “$£” is used. The command line to
launch the editor is built by taking the Editor_Exe content, then appending a

space followed by the content of this entry.

Saved
Only with * Editor Configuration’ set in the File > Configuration Save

Configuration dialog box.

Example

[Editor]
editor_name=WinEdit
editor_exe=C:\WinEdit32\WinEdit.exe

editor_opts=%f /#:%1

406 HC(S)12 Assembler Manual

Global Configuration File Entries
Example

Example

Listing A.1 on page 407 shows a typical mcutools.ini file.

Listing A.1 Typical mcutools.ini file layout

[Installation]
Path=c:\Freescale
Group=Assembler

[Editor]

editor_name=IDF
editor_exe=C:\WinEdit32\WinEdit.exe
editor_opts=%f /#:%1

[Options]
DefaultDir=c:\myprj

[XXX_Assembler]

SaveOnExit=1

SaveAppearance=1

SaveEditor=1

SaveOptions=1

RecentProjectO=c: \myprj\project.ini
RecentProjectl=c:\otherprj\project.ini

HC(S)12 Assembler Manual 407

Global Configuration File Entries
Example

408 HC(S)12 Assembler Manual

Local Configuration File
Entries

This appendix documents the sections and entries that can appear in the local
configuration file. Usually, you name this file project.ini, where project isa
placeholder for the name of your project.

A project.ini file could contain these sections for using the Assembler:

» [Editor] Section on page 409
¢ [XXX Assembler] Section on page 413

See the Example on page 428 section for a sample project. ini file.

[Editor] Section

HC(S)12 Assembler Manual 409

Local Configuration File Entries
[Editor] Section

Editor Name

Arguments

The name of the local editor

Description

Specifies the name of the editor used as local editor. This entry has only a
description effect. Its content is not used to start the editor.

This entry has the same format as for the global editor configuration in the
mcutools. ini file.

Saved

Only with *Editor Configuration’ setinthe File > Configuration Save
Configuration dialog box.

410 HC(S)12 Assembler Manual

Local Configuration File Entries
[Editor] Section

Editor_Exe

Arguments

The name of the executable file of the local editor (including path).

Description

Specifies the filename with is started to edit a text file, when the local editor setting
is active. In the editor configuration dialog box, the local editor selection is only
active when this entry is present and not empty.

This entry has the same format as for the global editor configuration in the
mcutools. ini file.

Saved

Only with ‘Editor Configuration’ set in the File > Configuration Save
Configuration dialog box.

HC(S)12 Assembler Manual 411

Local Configuration File Entries
[Editor] Section

Editor_Opts

Arguments

The options to use with the local editor

Description

Specifies options (arguments), which should be used when starting the local editor.
If this entry is not present or empty, “$£” is used. The command line to launch the

editor is build by taking the Editor_Exe content, then appending a space followed
by the content of this entry.

This entry has the same format as for the global editor configuration in the
mcutools.ini file.

Saved
Only with *Editor Configuration’ setinthe File > Configuration Save

Configuration dialog box.

Example

[Editor]
editor_name=WINEdit
editor_exe=C:\WinEdit32\WinEdit.exe

editor_opts=%f /#:%1

412 HC(S)12 Assembler Manual

Local Configuration File Entries
[XXX_Assembler] Section

[XXX_Assembler] Section

This section documents the entries that can appear in an [XXX Assembler] section of
aproject.ini file.

NOTE XxXxXis a placeholder for the name of the name of the particular Assembler you

are using. For example, if you are using the HC12 Assembler, the name of this
section would be [HC12_Assembler].

HC(S)12 Assembler Manual 413

Local Configuration File Entries
[XXX_Assembler] Section

RecentCommandLineX, X= integer

Arguments

String with a command line history entry, e.g., fibo.asm

Description

This list of entries contains the content of the command line history.

Saved

Only with Appearance set in the File > Configuration Save Configuration dialog
box.

414 HC(S)12 Assembler Manual

Local Configuration File Entries
[XXX_Assembler] Section

CurrentCommandLine

Arguments

String with the command line, e.g., “fibo.asm -wl”

Description

The currently visible command line content.

Saved

Only with Appearance set in the File > Configuration Save Configuration dialog
box.

HC(S)12 Assembler Manual 415

Local Configuration File Entries
[XXX_Assembler] Section

StatusbarEnabled

Arguments
1/0

Special

This entry is only considered at startup. Later load operations do not use it any
more.

Description
Current status bar state.
e 1: Status bar is visible

e (: Status bar is hidden

Saved

Only with Appearance set in the File > Configuration Save Configuration dialog
box.

416 HC(S)12 Assembler Manual

Local Configuration File Entries
[XXX_Assembler] Section

ToolbarEnabled

Arguments
1/0

Special

This entry is only considered at startup. Afterwards, any load operations do not use
it any longer.

Description
Current toolbar state
e 1: Toolbar is visible

¢ 0: Toolbar is hidden

Saved

Only with Appearance set in the File > Configuration Save Configuration dialog
box.

HC(S)12 Assembler Manual 417

Local Configuration File Entries
[XXX_Assembler] Section

WindowPos

Arguments
10 integers, e.g., “0,1,-1,-1,-1,-1,390,107,1103, 643"

Special

This entry is only considered at startup. Afterwards, any load operations do not use
it any longer.

Changes of this entry do not show the * ” in the title.

Description

This numbers contain the position and the state of the window (maximized,..) and
other flags.

Saved

Only with Appearance set in the File > Configuration Save Configuration dialog
box.

418 HC(S)12 Assembler Manual

Local Configuration File Entries
[XXX_Assembler] Section

WindowFont

Arguments
size: == 0 -> generic size, < 0 -> font character height, > 0 -> font cell height
weight: 400 = normal, 700 = bold (valid values are 0..1000)
italic:0==no, 1 ==yes

font name: max. 32 characters.

Description

Font attributes.

Saved
Only with Appearance set in the File > Configuration Save Configuration dialog

box.

Example
WindowFont=-16,500,0,Courier

HC(S)12 Assembler Manual 419

Local Configuration File Entries
[XXX_Assembler] Section

TipFilePos

Arguments
any integer, e.g., 236

Description

Actual position in tip of the day file. Used that different tips are shown at different
calls.

Saved

Always when saving a configuration file.

420 HC(S)12 Assembler Manual

Local Configuration File Entries
[XXX_Assembler] Section

ShowTipOfDay

Arguments
0/1

Description
Should the Tip of the Day dialog box be shown at startup?
e 1: It should be shown

¢ 0: No, only when opened in the help menu

Saved

Always when saving a configuration file.

HC(S)12 Assembler Manual 421

Local Configuration File Entries
[XXX_Assembler] Section

Options
Arguments
current option string, e.g.: -W2

Description

The currently active option string. This entry can be very long.

Saved

Only with Options set in the File > Configuration Save Configuration dialog box.

422 HC(S)12 Assembler Manual

Local Configuration File Entries
[XXX_Assembler] Section

EditorType

Arguments
0/1/2/3/4

Description

This entry specifies which editor configuration is active:

.

0: global editor configuration (in the file mcutools.ini)

1: local editor configuration (the one in this file)

2: command line editor configuration, entry EditorCommandLine
3: DDE editor configuration, entries beginning with EditorDDE
4: CodeWarrior with COM. There are no additional entries.

For details, see also Editor Setting dialog box.

Saved

Only with Editor Configuration set in the File > Configuration Save Configuration
dialog box.

HC(S)12 Assembler Manual 423

Local Configuration File Entries
[XXX_Assembler] Section

EditorCommandLine

Arguments

command line, for WinEdit: “C:\WinEdit32\WinEdit.exe %f /
#:%1"

Description

Command line content to open a file. For details, see also Editor Setting dialog
box.

Saved

Only with Editor Configuration set in the File > Configuration Save Configuration
dialog box.

424 HC(S)12 Assembler Manual

Local Configuration File Entries
[XXX_Assembler] Section

EditorDDECIlientName

Arguments

client command, e.g., * [open (%£) 1~

Description

Name of the client for DDE editor configuration. For details, see also Editor
Setting dialog box.

Saved

Only with Editor Configuration set in the File > Configuration Save Configuration
dialog box.

HC(S)12 Assembler Manual 425

Local Configuration File Entries
[XXX_Assembler] Section

EditorDDETopicName

Arguments

topic name, e.g., “system”

Description
Name of the topic for DDE editor configuration. For details, see also Editor Setting
dialog box.

Saved

Only with Editor Configuration set in the File > Configuration Save Configuration
dialog box.

426 HC(S)12 Assembler Manual

Local Configuration File Entries
[XXX_Assembler] Section

EditorDDEServiceName

Arguments

service name, e.g., “system”

Description

Name of the service for DDE editor configuration. For details, see also Editor
Setting dialog box.

Saved

Only with Editor Configuration set in the File > Configuration Save Configuration
dialog box.

HC(S)12 Assembler Manual 427

Local Configuration File Entries
[XXX_Assembler] Section

Example

The example in Listing B.1 on page 428 shows a typical layout of the configuration file

(usually project.ini).

Listing B.1 Example of a project.ini file

[Editor]

Editor_Name=IDF
Editor_Exe=C:\WinEdit32\WinEdit.exe
Editor_Opts=%f /#:%1

[XXX_Assembler]
StatusbarEnabled=1
ToolbarEnabled=1
WindowPos=0,1,-1,-1,-1,-1,390,107,1103,643
WindowFont=-16,500,0,Courier
TipFilePos=0
ShowTipOfDay=1
Options=-wl
EditorType=3
RecentCommandLineO=fibo.asm -w2
RecentCommandLinel=fibo.asm
CurrentCommandLine=fibo.asm -w2
EditorDDEClientName=[open (%f)]
EditorDDETopicName=system
EditorDDEServiceName=msdev

EditorCommandLine=C:\WinEdit32\WinEdit.exe %f /#:%1

428

HC(S)12 Assembler Manual

C

MASM Compatibility

The Macro Assembler has been extended to ensure compatibility with the MASM
Assembler.

Comment Line

A line starting with a (*) character is considered to be a comment line by the Assembler.

Constants (Integers)

For compatibility with the MASM Assembler, the following notations are also supported
for integer constants (Listing C.1 on page 429):

A decimal constant is defined by a sequence of decimal digits (0-9) followed by a
*d’ or ‘D’ character.

A hexadecimal constant is defined by a sequence of hexadecimal digits (0-9, a-£,
A-F)followed by a *h’ or *H’ character.

An octal constant is defined by a sequence of octal digits (0-7) followed by an
‘o’,'0’, ‘g’,or ‘Q’ character.

A binary constant is defined by a sequence of binary digits (0-1) followed by a
‘b’ or ‘B’ character.

Listing C.1 Integer examples

512d

512D

200h

200H

10000

10000

1000g

10000
1000000000b
1000000000B

7

7

decimal representation
decimal representation
hexadecimal representation
hexadecimal representation
octal representation

octal representation

octal representation

octal representation
binary representation
binary representation

HC(S)12 Assembler Manual 429

MASM Compatibility
Operators

Operators

For compatibility with the MASM Assembler, the following notations in Table C.1 on
page 430 are also supported for operators:

Table C.1 Operator notation for MASM compatibility

Operator Notation

Shift left I<

Shift right I>

Arithmetic AND .

Arithmetic OR I+

Arithmetic XOR Ix, IX
Directives

Table C.2 on page 430 enumerates the directives that are supported by the Macro
Assembler for compatibility with MASM:

Table C.2 Supported MASM directives

Operator Notation Description

RMB DS Define storage for a variable. Argument
specifies the byte size

RMD DS 2* Define storage for a variable. Argument
specifies the number of 2-byte blocks

RMQ DS 4* Define storage for a variable. Argument
specifies the number of 4-byte blocks

ELSEC ELSE Alternate of conditional block

ENDC ENDIF End of conditional block

NOL NOLIST Specify that all subsequent instructions must

not be inserted in the listing file.

TTL TITLE Define the user defined title for the
assembler listing file.

430 HC(S)12 Assembler Manual

MASM Compatibility
Operators

Table C.2 Supported MASM directives (continued)

Operator Notation Description

GLOBAL XDEF Make a symbol public (Visible from outside)

PUBLIC XDEF Make a symbol public (Visible from outside)

EXTERNAL XREF Import reference to an external symbol.

XREFB XREF.B Import reference to an external symbol
located on the direct page.

SWITCH Allows the switching to a section which has
been defined previously.

ASCT Creates a predefined section which name id
ASCT.

BSCT Creates a predefined section which name id
BSCT. Variable defined in this section are
accessed using the direct addressing mode.

CSCT Creates a predefined section which name id
CSCT.

DSCT Creates a predefined section which name id
DSCT.

IDSCT Creates a predefined section which name id
IDSCT.

IPSCT Creates a predefined section which name id
IPSCT.

PSCT Creates a predefined section which name id
PSCT.

HC(S)12 Assembler Manual

431

MASM Compatibility
Operators

432 HC(S)12 Assembler Manual

D
MCUasm Compatibility

The Macro Assembler has been extended to ensure compatibility with the MCUasm
Assembler.

MCUasm compatibility mode can be activated, specifying the -MCUasm option.
This chapter covres the following topics:

e “Labels” on page 433
e “SET directive” on page 433

e “Obsolete directives” on page 434

Labels

When MCUasm compatibility mode is activated, labels must be followed by a colon, even
when they start on column 1.

When MCUasm compatibility mode is activated, following portion of code generate an
error message, because the label ‘label’ is not followed by a colon (Listing D.1 on

page 433).

Listing D.1 Erroneous label for MCUasm compatibility

label DC.B 1

When MCUasm compatibility mode is not activated, the previous portion of code does not
generate any error message.

SET directive

When MCUasm compatibility mode is activated, relocatable expressions are also allowed
in a SET directive.

When MCUasm compatibility mode is activated, the following portion of code does not
generate any error messages (Listing D.2 on page 434):

HC(S)12 Assembler Manual 433

MCUasm Compatibility
Obsolete directives

Listing D.2 SET directive

label: SET *

When MCUasm compatibility mode is not activated, the previous portion of code
generates an error message because the SET label can only refer to absolute expressions.

Obsolete directives

Table D.1 on page 434 enumerates the directives, which are not recognized any longer

when the MCUasm compatibility mode is switched ON.:

Table D.1 Obsolete directives

Operator Notation Description

RMB DS Define storage for a variable

NOL NOLIST Specify that all subsequent instructions must not
be inserted in the listing file.

TTL TITLE Define the user-defined title for the assembler
listing file.

GLOBAL XDEF Make a symbol public (Visible from the outside)

PUBLIC XDEF Make a symbol public (Visible from the outside)

EXTERNAL XREF Import reference to an external symbol.

434

HC(S)12 Assembler Manual

E
Semi-Avocet Compatibility

The Macro Assembler has been extended to ensure compatibility with the Avocet
assembler.

Avocet compatibility mode can be activated, specifying the -C=SAvocet: Switch Semi-
Compatibility with Avocet Assembler ON on page 132 assembler option. The
compatibility does not cover all specific Avocet features but only some of them.

3

* “Directives’” on page 435

e “Section Definition” on page 437

3

¢ “Macro parameters” on page 439
¢ “Support for Structured Assembly” on page 439.

Directives

Table E.1 on page 435 enumerates the directives which are supported when the Avocet
Assembler compatibility mode is activated.

Table E.1 Avocet Assembler directives

Directive Notation Description
DEFSEG Segment definition (See the “Section
Definition” section below).
ELSEIF Conditional directive, checking a specific
condition.
IF ((labell & label2) != 0)

LDD #labell
ELSIF (labell = 0)
LDD #label2

ELSE
LDD #0
ENDIF

HC(S)12 Assembler Manual 435

Semi-Avocet Compatibility
Directives

Table E.1 Avocet Assembler directives (continued)

Directive Notation Description

EXITM MEXIT Define an exit condition for a macro.
Copy MACRO source, dest

IFB "source"
EXITM
ENDIF
LDD source
STD dest
ENDM

IFB Param IFC Param, ““ Test if a macro parameter is empty. The

syntax is IFB "param".
Copy MACRO source, des
IFB "source"
LDD #0
STD dest
ELSE
LDD source
STD dest
ENDIF
ENDM

IFNB Param IFNC Param ““ | Test if a macro parameter is not empty. The

syntax is IFNB "param"
Copy MACRO source, dest

IFNB "source"
LDD source
STD dest

ELSE
LDD #0
STD dest

ENDIF

ENDM

NOSM MLIST OFF Do not insert the macro expansion in the
listing file.

SEG SWITCH Switch to a previously defined segment. See
the “Section Definition on page 437" section
below.

SM MLIST ON Insert the macro expansion in the listing file.

436

HC(S)12 Assembler Manual

Semi-Avocet Compatibility
Section Definition

Table E.1 Avocet Assembler directives (continued)

Directive Notation Description

SUBTITLE Defines a subtitle for the input file. This
subtitle is written to the listing file.
SUBTITLE title2: Main File

TEQ SET Define a constant, which value may be
modified in the source file.

Section Definition

Section definition is performed using the DEFSEG directive. The correct syntax for a
DEFSEG directive is:

DEFSEG <name> [START=<start address>] [<section qualifier>]
where:

* name: is the name of the section

* start address: is the start address for the section. This parameter is optional.

* section qualifier:is the qualifier which applies to the section. This
parameter is optional and may take the value:

Table E.2 section qualifiers

Qualifier Meaning

PAGEO for a data section located on the direct page
DATA for a data section

CODE for a code section

Some examples of the DEFSEG directive are shown in Listing E.1 on page 437.

Listing E.1 DEFSEG examples

DEFSEG myDataSection
DEFSEG D_ATC_TABLES START=$0EAQ
DEFSEG myDirectData PAGEOQ

HC(S)12 Assembler Manual 437

Semi-Avocet Compatibility
Section Definition

NOTE Because of an incompatibility in the object file format, an absolute section
implementation must reside entirely in a single assembly unit. You cannot split
the code from an absolute section over several object files. An absolute section
is a section associated with a start address.

NOTE In order to split a section over different assembly units, you should define the
section as relocatable (without START) and specify the address where you
want to load the section in the linker PRM file.

The assembly source code in Listing E.2 on page 438 relates to a possible allocation of
memory as shown in Listing E.3 on page 438.

Listing E.2 Example assembly code

DEFSEG D_ATC_TABLES ; START=$0EA0Q

Listing E.3 Portion of a linker parameter file

SECTION
MY_TABLE = READ_WRITE Ox0EA0 TO OxOEFF;
PLACEMENT

D_ATC_TABLES INTO MY_TABLE:

The SEG directive is then used to activate the corresponding section in the assembly
source file.

The name specified in a SEG directive was previously specified in a DEFSEG directive.
The following syntax is acceptable for using the SEG directive:

SEG <name>

where:

name: is the name of the section, which was previously defined in a DEFSEG directive
(Listing E.4 on page 439).

438 HC(S)12 Assembler Manual

Semi-Avocet Compatibility
Macro parameters

Listing E.4 Example of using the SEG directive

SEG myDataSection

Macro parameters

When Avocet Compatibility is switched ON, names can be associated with macro
parameters. A macro definition could be as in Listing E.5 on page 439:

Listing E.5 Example macro definition

Copy MACRO source, destination
LDD source
STD destination
ENDM

Support for Structured Assembly

When the Avocet compatibility is switched ON, SWITCH, or FOR construct are available
in Macro Assembler.

SWITCH block

The SWITCH directive evaluates an expression and assembles the code following the
particular CASE statement which satisfies the switch expression. If no CASE statement
corresponds to the value of the expression, the code following the DEFAULT (if present) is
assembled.

ENDSW terminates the SWITCH directive.
The expression specified in a SWITCH directive must be an absolute expression (Listing

E.6 on page 439).

Listing E.6 Example of using a SWITCH block

XXX equ 5

SWITCH xxx
CASE O
LDD #1

HC(S)12 Assembler Manual 439

Semi-Avocet Compatibility
Support for Structured Assembly

CASE 1
LDD 2
CASE 3
LDD #6
DEFAULT
LDD #0
ENDSW

The instructions in Listing E.7 on page 440 are generated by the code in Listing E.6 on
page 439. (Assuming that the value for xxx was still 5 when the SWITCH statement was
encountered) there was no particular result for xxx equal to 5, so the result for the
DEFAULT CASE ensues -

LDD #0.

Listing E.7 Result of the SWITCH statement when xxx =5

XXX equ 5

LDD #0

FOR Block

In the Avocet compatibility mode, the FOR - Repeat assembly block on page 307
assembler directive is supported (Listing E.8 on page 440).

Listing E.8 Example

FOR 1=2 TO 6
NOP
ENDFOR

The following instructions (Listing E.9 on page 440) are generated by the code segment in
Listing E.8 on page 440.

Listing E.9

NOP
NOP
NOP
NOP

440 HC(S)12 Assembler Manual

Semi-Avocet Compatibility
Support for Structured Assembly

NOP

HC(S)12 Assembler Manual 441

Semi-Avocet Compatibility
Support for Structured Assembly

442 HC(S)12 Assembler Manual

Index

Symbols
$0 99

${} 99
%(ENV) 126
%" 126

%’ 126

%E 125

%oe 126

%t 126

%N 125

%n 125

%p 125

* 272

.abs 120
.asm 119
.dbg 121
.hidefaults 97, 98
.Ainc 119

.ini 79

st 121

.0 120

.s1 120

.s2 120

.83 120

.sx 120
{Compiler} 99
{Project} 99
{System} 99

A
About Box 92
ABSENTRY 63,278
Absolute Expression 272,273
Absolute Section 226, 231
ABSPATH 88, 104, 120
Addressing Mod 247
Addressing Mode
Direct 249
Extended 250
Global 258
Immediate 248

Indexed 16-bit Offset 253
Indexed 5-bit Offset 251
Indexed 9-bit Offset 252

Indexed Accumulator Offset 257
Indexed Indirect 16-bit Offset 253

Indexed Indirect D Accumulator Offset 257

Indexed PC, Indexed PC Relative 258
Indexed post-decrement 255
Indexed post-increment 256

Indexed pre-decrement 254
Indexed pre-increment 255
Inherent 248
Relative 250
Addressing Modes 246
ALIGN 284,301, 318
ASMOPTIONS 105
Assembler
Configuration 79
Error Feedback 93
Input File 92
Menu 80
Menu Bar 78
Messages 89
Option 89
Options Setting Dialog 89
Output Files 119
Status Bar 78
Tool Bar 77

Assembler Option Settings dialog box 41, 68

assembler-output listing file 36
Avocet
Directive
DEFSEG 435, 436
ELSEIF 435
EXITM 436
SEG 436
SUBTITLE 437
TEQ 437
Macro Parameters 439
Section Definition 437
Structured Assembly 439

HC(S)12 Assembler Manual

443

B

BASE 279, 285
Build Tool Utilities 18

C
-C=SAvocet 132
-Ci 133
CLIST 279
-CMacAngBrack 135
-CMacBrackets 136
CODE 125,177
Code Section 225
CodeWarrior 86
CodeWarrior Development Studio 18
CodeWarrior project window 27
color 196, 197, 198, 199, 200
COM 86
Comment 259
-Compat 137
Complex Relocatable Expression 272
Constant
Binary 262,429
Decimal 262, 429
Floating point 263
Hexadecimal 262,429
Integer 262
Octal 262, 429
String 263
Constant Section 225
Context menu 45
COPYRIGHT 106
-CpuHC12 143
-CpuHCS12 143
-CpuHCS12X 143
CTRL-S 88
Current Directory 98, 107
CurrentCommandLine 415

Debug File 121,314
Default Directory 401
DEFAULTDIR 107, 119
DefaultDir 401
DEFSEG 435,436
Directive 246
ABSENTRY 278
ALIGN 284,301, 318
BASE 279, 285
CLIST 279
DC 288
DCB 290
DS 278,292
ELSE 294
ELSEC 430
END 296
ENDC 430
ENDFOR 279, 297
ENDIF 281,297, 298, 308
ENDM 280, 320
EQU 277, 300
EVEN 301
EXTERNAL 431,434
FAIL 279, 303
FOR 307
GLOBAL 431,434
IF 309, 311
IFC 281,311
IFDEF 281, 312
IFEQ 281, 311
IFGE 281, 311
IFGT 281, 311
IFLE 281,311
IFLT 281,311
IFNC 281, 311
IFNDEF 281, 312
IFNE 281, 311
INCLUDE 313
LIST 279,314

D LLEN 316

D 146 LONGEVEN 279,318

Data Section 226 Macro 319

DC 288 MEXIT 320

DCB 290 MLIST 322

444 HC(S)12 Assembler Manual

NOL 430, 434

NOLIST 280, 325

NOPAGE 280, 327

OFFSET 328

ORG 330

PAGE 280, 332

PLEN 334

PUBLIC 431,434

RADS50 278,335

RMB 430, 434

Section 277, 338

SET 340

SPC 341

TABS 342

TITLE 343

TTL 430, 434

XDEF 344

XREF 261,278, 345

XREFB 278, 346,431
DS 278,292

E
Editor 409
Editor_Exe 405,411
Editor_Name 405,410
Editor_Opts 406, 412
EditorCommandLine 424
EditorDDEClientName 425
EditorDDEServiceName 427
EditorDDETopicName 426
EditorType 423
EDOUT 121
ELSE 294
ELSEC 430
ELSEIF 435
END 296
ENDC 430
ENDFOR 279, 297
ENDIF 281,297, 298, 308
ENDM 280, 320
-ENV 148
ENVIRONMENT 108
Environment

ABSPATH 104, 120

ASMOPTIONS 105
COPYRIGHT 106
DEFAULTDIR 107, 119
ENVIRONMENT 108
ENVIRONMENT 97, 98
ERRORFILE 109
File 97
GENPATH 112,119, 313
HIENVIRONMENT 108
INCLUDETIME 113
OBJPATH 114, 120
TEXTPATH 116
TMP 117
Variable 97
Environment Variable 103
ABSPATH 120
SRECORD 120
Environment Variables 88, 97
EQU 277,300
Error File 121
Error Listing 121
ERRORFILE 109
EVEN 301
EXITM 436
Explorer 98
Expression 272
Absolute 272,273
Complex Relocatable 272
Simple Relocatable 272,274
EXTERNAL 431,434
External Symbol 261

F

-F2 149

-F20 149

-FA2 149

-FA20 149

FAIL 279,303

-Fh 149

Fibonacci series 19

File
Debug 121,314
Environment 97
Error 121

HC(S)12 Assembler Manual

445

Include 119 L

Listing 120, 121,279,314 L 153

Object 120 Label 234

PRM 227,229, 230 LANGUAGE 125

Source 119 _Lasmc 156
File Manager 98 _Lasms 159
Floating-Point Constant 263 Le 161
FOR 307 -Ld 164

-Le 167
G -Li 170
GENPATH 48,71,88,112, 119,313 LIBPATH 88
GLOBAL 431,434 -Lic 172,174
Group 400 -LicA 173
groups, CodeWarrior 27,31, 32 -LicWait 176
GUI Graphic User Interface 73 Line Continuation 102
Linker map file 36

H Linker PRM file 50, 54
-H 151 LIST 279,314
HC(S)12 Simulator 59 Listing File 120, 121,279, 314
HIENVIRONMENT 108 LLEN 316
HIGH 262 LONGEVEN 279, 318
HOST 125 LOW 262
1 M
1152 Macro 246,319
IDF 98 -MacroNest 178
IF 309,311 -Mb 177
IFC 281,311 -MCUasm 179
IFDEF 281, 312 MCUTOOLS.INI 99, 107
TIFEQ 281,311 MESSAGE 125
IFGE 281,311 Message Settings 89
IFGT 281,311 MEXIT 320
IFLE 281,311 -MI 177, 362
IFLT 281,311 MLIST 322
IFNC 281,311 -Ms 362
IFNDEF 281, 312 -Mx 362
IFNE 281,311
INCLUDE 313 N
Include Files 119 -N 180
INCLUDETIME 113 New dialog box 20
Instruction 234 New Project Wizard 19
Integer Constant 262 -NoBeep 181

-NoDebuglInfo 182

446 HC(S)12 Assembler Manual

-NoEnv 183

NOL 430, 434
NOLIST 280, 325
NOPAGE 280, 327

(0]

Object File 120

-ObjN 184

OBJPATH 88,114, 120

OFFSET 328

Operand 246

Operator 263, 430
Addition 263,271,275
Arithmetic AND 430
Arithmetic Bit 275
Arithmetic OR 430
Arithmetic XOR 430
Bitwise 266
Bitwise (unary) 267
Bitwise AND 272
Bitwise Exclusive OR 272
Bitwise OR 272
Division 264,271,275
Force 270
HIGH 262, 269
Logical 267
LOW 262,269
Modulo 264,271,275
Multiplication 264, 271,275
PAGE 262,270
Precedence 271
Relational 268, 272
Shift 265,272,275
Shift left 430
Shift right 430
Sign 265,271,275
Subtraction 264,271,275

Option
CODE 125,177
HOST 125
LANGUAGE 125
MESSAGE 125
OUTPUT 125
VARIOUS 125

Options 401, 422
ORG 63, 330
OUTPUT 125

P

PAGE 262, 280, 332
PATH 114

Path 400

Path List 101

PLEN 334

PRM File 227,229,230
-Prod 186

project.ini 101
PUBLIC 431, 434

R

RADS0 278,335
RecentCommandLine 414
Relocatable Section 228
Reserved Symbol 262

RGB 196, 197, 198, 199, 200
RMB 430,434

S

SaveAppearance 402
SaveEditor 403
SaveOnExit 402
SaveOptions 403
Section 277, 338
Absolute 226,231
Code 225
Constant 225
Data 226
Relocatable 228
Sections 225
SEG 436

Select File to Assemble dialog box 44, 69

Select File to Link dialog box 57
SET 340

SHORT 339

ShowTipOfDay 421

Simple Relocatable Expression 272,274

Source File 119

HC(S)12 Assembler Manual

SPC 341 WindowPos 418

Special Modifiers 125 Windows 98
S-Record File 36 WinEdit 110
Starting 73 -Wmsg8x3 194
startup 101 -WmsgCE 196
StatusbarEnabled 416 -WmsgCF 197
String Constant 263 -WmsgCI 198
-Struct 187 -WmsgCU 199
SUBTITLE 437 -WmsgCW 200
Symbol 260 -WmsgFb 94
External 261 -WmsgFbiv 204
Reserved 262 -WmsgFbm 201
Undefined 261 -WmsgFbv 201
User Defined 260 -WmsgFi 94, 195
-WmsgFim 204
T -WmsgFob 206
TABS 342 -WmsgFoi 208
TEQ 437 -WmsgFonp 203, 205, 207, 209, 211, 212, 213
TEXTPATH 88, 116 -WmsgNe 214,218
Tip of the Day 73 -WmsgNi 214, 215
TipFilePos 420 -WmsgNu 216
TITLE 343 -WmsgNw 214, 215, 218
TMP 117 -WmsgSd 219
ToolbarEnabled 417 -WmsgSe 220
TTL 430, 434 -WmsgSi 221
-WmsgSw 222
U -WOutFile 223
Undefined Symbol 261 -WStdout 224
UNIX 98
User Defined Symbol 260 X
XDEF 344
Vv XREF 261, 278, 345
-V 188 XREFB 278, 346, 431
Variable

Environment 97
VARIOUS 125
-View 189

w

-W1 191

-W2 192
-WErrFile 193
WindowFont 419

448 HC(S)12 Assembler Manual

	Using the HC(S)12 Assembler
	Highlights
	Structure of this document
	Working with the Assembler
	Programming Overview
	Project directory
	External Editor

	Using CodeWarrior to manage an assembly language project
	The New Project Wizard

	Analysis of groups and files in the project window
	CodeWarrior groups

	Writing your assembly source files
	Analyzing the project files
	Assembling your source files
	Assembling with CodeWarrior
	Assembling with the Assembler

	Linking the application
	Linking with CodeWarrior
	Linking with the Linker

	Directly generating an ABS file
	Using CodeWarrior to generate an ABS file

	Using the Assembler for absolute assembly

	Assembler Graphical User Interface
	Starting the Assembler
	Assembler main window
	Window title
	Content area
	Toolbar
	Status bar
	Assembler menu bar
	File menu
	Assembler menu
	View menu

	Editor Settings dialog box
	Global Editor (shared by all tools and projects)
	Local Editor (shared by all tools)
	Editor started with the command line
	Editor started with DDE
	CodeWarrior with COM
	Modifiers

	Save Configuration dialog box
	Environment Configuration dialog box

	Option Settings dialog box
	Message Settings dialog box
	Changing the class associated with a message

	About... dialog box
	Specifying the input file
	Use the command line in the toolbar to assemble
	Use the File > Assemble... entry
	Use Drag and Drop

	Message/Error feedback
	Use information from the assembler window
	Use a user-defined editor

	Environment
	Current directory
	Environment macros
	Global initialization file - mcutools.ini (PC only)
	Local configuration file (usually project.ini)
	Paths
	Line continuation
	ABSPATH: Absolute file path
	ASMOPTIONS: Default assembler options
	COPYRIGHT: Copyright entry in object file
	DEFAULTDIR: Default current directory
	ENVIRONMENT: Environment file specification
	ERRORFILE: Filename specification error
	GENPATH: Search path for input file
	INCLUDETIME: Creation time in the object file
	OBJPATH: Object file path
	SRECORD: S-Record type
	TEXTPATH: Text file path
	TMP: Temporary directory
	USERNAME: User Name in object file

	Files
	Input files
	Source files
	Include files

	Output files
	Object files
	Absolute files
	S-Record Files
	Listing files
	Debug listing files
	Error listing file

	File Processing

	Assembler Options
	Types of assembler options
	Assembler Option details
	Using special modifiers

	List of assembler options
	Detailed listing of all assembler options
	-C=SAvocet: Switch Semi-Compatibility with Avocet Assembler ON
	-Ci: Switch case sensitivity on label names OFF
	-CMacAngBrack: Angle brackets for grouping Macro Arguments
	-CMacBrackets: Square brackets for macro arguments grouping
	-Compat: Compatibility modes
	-CpDirect: Define DIRECT register value
	-Cpu (-CpuCPU12, -CpuHCS12, -CpuHCS12X): Derivative
	-D: Define Label
	-Env: Set environment variable
	-F (-Fh, -F2o, -FA2o, -F2, -FA2): Output-file format
	-H: Short Help
	-I: Include file path
	-L: Generate a listing file
	-Lasmc: Configure listing file
	-Lasms: Configure the address size in the listing file
	-Lc: No Macro call in listing file
	-Ld: No macro definition in listing file
	-Le: No Macro expansion in listing file
	-Li: Not included file in listing file
	-Lic: License information
	-LicA: License information about every feature in directory
	-LicBorrow: Borrow license feature
	-LicWait: Wait until floating license is available from floating License Server
	-M (-Ms, -Mb, -Ml): Memory Model
	-MacroNest: Configure maximum macro nesting
	-MCUasm: Switch compatibility with MCUasm ON
	-N: Display notify box
	-NoBeep: No beep in case of an error
	-NoDebugInfo: No debug information for ELF/DWARF files
	-NoEnv: Do not use environment
	-ObjN: Object filename specification
	-Prod: Specify project file at startup
	-Struct: Support for structured types
	-V: Prints the Assembler version
	-View: Application standard occurrence
	-W1: No information messages
	-W2: No information and warning messages
	-WErrFile: Create "err.log" error file
	-Wmsg8x3: Cut filenames in Microsoft format to 8.3
	-WmsgCE: RGB color for error messages
	-WmsgCF: RGB color for fatal messages
	-WmsgCI: RGB color for information messages
	-WmsgCU: RGB color for user messages
	-WmsgCW: RGB color for warning messages
	-WmsgFb (-WmsgFbv, -WmsgFbm): Set message file format for batch mode
	-WmsgFi (-WmsgFiv, -WmsgFim): Set message file format for interactive mode
	-WmsgFob: Message format for batch mode
	-WmsgFoi: Message format for interactive mode
	-WmsgFonf: Message format for no file information
	-WmsgFonp: Message format for no position information
	-WmsgNe: Number of error messages
	-WmsgNi: Number of Information messages
	-WmsgNu: Disable user messages
	-WmsgNw: Number of Warning messages
	-WmsgSd: Setting a message to disable
	-WmsgSe: Setting a message to Error
	-WmsgSi: Setting a message to Information
	-WmsgSw: Setting a Message to Warning
	-WOutFile: Create error listing file
	-WStdout: Write to standard output

	Sections
	Section attributes
	Code sections
	Constant sections
	Data sections

	Section types
	Absolute sections
	Relocatable sections

	Relocatable vs. absolute sections
	Modularity
	Multiple developers
	Early development
	Enhanced portability
	Tracking overlaps
	Reusability

	Assembler Syntax
	Comment line
	Source line
	Label field
	Operation field
	Operand field: Addressing modes
	Comment field

	Symbols
	User-defined symbols
	External symbols
	Undefined symbols
	Reserved symbols

	Constants
	Integer constants
	String constants
	Floating-Point constants

	Operators
	Addition and subtraction operators (binary)
	Multiplication, division and modulo operators (binary)
	Sign operators (unary)
	Shift operators (binary)
	Bitwise operators (binary)
	Bitwise operators (unary)
	Logical operators (unary)
	Relational operators (binary)
	HIGH operator
	PAGE operator
	Force operator (unary)
	Operator precedence

	Expression
	Absolute expression
	Simple relocatable expression
	Unary operation result
	Binary operations result

	Translation limits

	Assembler Directives
	Directive overview
	Section-Definition directives
	Constant-Definition directives
	Data-Allocation directives
	Symbol-Linkage directives
	Assembly-Control directives
	Listing-File Control directives
	Macro Control directives
	Conditional Assembly directives

	Detailed descriptions of all assembler directives
	ABSENTRY - Application entry point
	ALIGN - Align Location Counter
	BASE - Set number base
	CLIST - List conditional assembly
	DC - Define Constant
	DCB - Define Constant Block
	DS - Define Space
	ELSE - Conditional assembly
	END - End assembly
	ENDFOR - End of FOR block
	ENDIF - End conditional assembly
	ENDM - End macro definition
	EQU - Equate symbol value
	EVEN - Force word alignment
	FAIL - Generate Error message
	FOR - Repeat assembly block
	IF - Conditional assembly
	IFcc - Conditional assembly
	INCLUDE - Include text from another file
	LIST - Enable Listing
	LLEN - Set Line Length
	LONGEVEN - Forcing Long-Word alignment
	MACRO - Begin macro definition
	MEXIT - Terminate Macro Expansion
	MLIST - List macro expansions
	NOLIST - Disable Listing
	NOPAGE - Disable Paging
	OFFSET - Create absolute symbols
	ORG - Set Location Counter
	PAGE - Insert Page break
	PLEN - Set Page Length
	RAD50 - Rad50-encoded string constants
	SECTION - Declare Relocatable Section
	SET - Set Symbol Value
	SPC - Insert Blank Lines
	TABS - Set Tab Length
	TITLE - Provide Listing Title
	XDEF - External Symbol Definition
	XREF - External Symbol Reference
	XREFB - External Reference for Symbols located on the Direct Page

	Macros
	Macro overview
	Defining a macro
	Calling macros
	Macro parameters
	Macro argument grouping

	Labels inside macros
	Macro expansion
	Nested macros

	Assembler Listing File
	Page header
	Source listing
	Abs.
	Rel.
	Loc
	Obj. code
	Source line

	Mixed C and Assembler Applications
	Memory models
	Parameter passing scheme
	Return Value
	Accessing assembly variables in an ANSI-C source file
	Accessing ANSI-C variables in an assembly source file
	Invoking an assembly function in an ANSI-C source file
	Example of a C file

	Support for structured types
	Structured type definition
	Types allowed for structured type fields
	Variable definition
	Variable declaration
	Accessing a structured variable
	Structured type: Limitations

	Make Applications
	Assembly applications
	Directly generating an absolute file
	Mixed C and assembly applications

	Memory maps and segmentation

	How to ...
	How to work with absolute sections
	Defining absolute sections in an assembly source file
	Linking an application containing absolute sections

	How to work with relocatable sections
	Defining relocatable sections in a source file
	Linking an application containing relocatable sections

	How to initialize the Vector table
	Initializing the Vector table in the linker PRM file
	Initializing the Vector table in a source file using a relocatable section
	Initializing the Vector table in a source file using an absolute section

	Splitting an application into different modules
	Example of an assembly file (Test1.asm)
	Corresponding include file (Test1.inc)
	Example of an assembly File (Test2.asm)

	Using the direct addressing mode to access symbols
	Using the direct addressing mode to access external symbols
	Using the direct addressing mode to access exported symbols
	Defining symbols in the direct page
	Using the force operator
	Using SHORT sections

	Appendices
	Global Configuration File Entries
	[Installation] Section
	Path
	Group

	[Options] Section
	DefaultDir

	[XXX_Assembler] Section
	SaveOnExit
	SaveAppearance
	SaveEditor
	SaveOptions
	RecentProject0, RecentProject1, ...

	[Editor] Section
	Editor_Name
	Editor_Exe
	Editor_Opts

	Example

	Local Configuration File Entries
	[Editor] Section
	Editor_Name
	Editor_Exe
	Editor_Opts

	[XXX_Assembler] Section
	RecentCommandLineX, X= integer
	CurrentCommandLine
	StatusbarEnabled
	ToolbarEnabled
	WindowPos
	WindowFont
	TipFilePos
	ShowTipOfDay
	Options
	EditorType
	EditorCommandLine
	EditorDDEClientName
	EditorDDETopicName
	EditorDDEServiceName
	Example

	MASM Compatibility
	Comment Line
	Constants (Integers)
	Operators
	Directives

	MCUasm Compatibility
	Labels
	SET directive
	Obsolete directives

	Semi-Avocet Compatibility
	Directives
	Section Definition
	Macro parameters
	Support for Structured Assembly
	SWITCH block
	FOR Block

	Index

