

Copyright © 2003 – Feaser LLC

Getting started with the Motorola HCS12
family using Metrowerks CodeWarrior
Application Note AN1002

Author Frank Voorburg
Contact voorburg@feaser.com
Date 8-Aug-03
Version 1.00
Status Released
Abstract The goal of this application note is to help you get started with software

development for your Motorola HCS12 family microcontroller using
Metrowerks CodeWarrior development environment. I will describe three
commonly used approaches ranging from low cost software development
using the D-BUG12 serial monitor to a more powerful configuration using
P&E’s CABLE12 background debug mode (BDM) interface to allow source
level debugging.

Table of Contents

1 Overview .. 3

1.1 Document History .. 3
1.2 Introduction .. 3

2 Software Development in RAM using D-BUG12 .. 5

2.1 Step 1 – Building the S-record ... 5
2.2 Step 2 – Downloading using D-BUG12 ... 6
2.3 Step 3 – Running the example application ... 7
2.4 A closer look... 7

2.4.1 Project files.. 7
2.4.2 Memory configuration... 7
2.4.3 Entry point... 8
2.4.4 Limitations .. 8

3 Software Development in ROM using P&E’s CABLE12 ... 10

3.1 Step 1 – Building the executable .. 10
3.2 Step 2 – Flash programming using CABLE12 ... 11
3.3 Step 3 – Running and debugging the example application... 12
3.4 A closer look... 13

3.4.1 Project files.. 13
3.4.2 Memory configuration... 13
3.4.3 Limitations .. 14

4 Software Development in RAM using P&E’s CABLE12 ... 15

4.1 Flash programming the interrupt vector jump table using CABLE12.............................. 15

2

Application Note AN1002

Getting started with the Motorola HCS12 family
using Metrowerks CodeWarrior

4.2 Step 1 – Building the executable .. 15
4.3 Step 2 – Downloading using CABLE12... 16
4.4 Step 3 – Running and debugging the example application... 17
4.5 A closer look... 17

4.5.1 Project files.. 17
4.5.2 Memory configuration... 17
4.5.3 Vector tables.. 17
4.5.4 Limitations .. 18

5 Conclusion .. 19

References.. 20

3

Application Note AN1002

Getting started with the Motorola HCS12 family
using Metrowerks CodeWarrior

1 Overview

1.1 Document History

Version Date Author Description
1.00 16-Jun-03 Frank Voorburg Creation

1.2 Introduction
The goal of this application note is to help you get started with software development for your
Motorola HCS12 family microcontroller using Metrowerks CodeWarrior development
environment. I will describe three commonly used approaches ranging from low cost software
development using the D-BUG12 serial monitor to a more powerful configuration using P&E’s
CABLE12 background debug mode (BDM) interface to allow source level debugging. For each
approach, I will explain how to get an example application running on your microcontroller board
by going through a few simple steps. Once completed, we will look into how it all works so you
can start using it for your own projects as soon as possible.

From my own experience I know that it can be overwhelming at first to get into microcontroller
programming. Especially if you’re looking for a low cost development environment, you have to
do a significant amount of research and studying to find out what you need and how it all fits in
the big picture. When creating this application note, I did this research and studying for you and
together with a handful of simple examples, I will explain to you how to get started quickly. Using
this application note I hope to spark your interest and increase your enthusiasm for
microcontrollers.

The software development environment that is used in this application note is Metrowerks
CodeWarrior for HC12 targets version 2.0. Starting with this release, a Special Edition is available
for free, enabling students, hobbyists and professionals to use this high quality software package to
develop their own HC12 applications in the C-language. The Special Edition can be downloaded
from their website (http://www.metrowerks.com). The only two limitations of the Special Edition
are that your software program can’t be larger than 12 kilobytes and your project can’t have more
than 32 files associated with it.

Besides having Metrowerks CodeWarrior for the HC12 installed on your computer, you will also
need a Motorola HCS12DP256 based evaluation board with either the D-BUG12 monitor
programmed in the internal flash or the CABLE12 BDM interface from P&E Micro
(http://www.pemicro.com) to be able to use some of the examples.

Each described software development approach is located in a separate section and has the same
structure. First an overview of the approach is given, followed by a step-by-step explanation of
how to get the example application running. After this, a more in-depth description is given. All
the example applications for the HCS12DP256 are the same in functionality. They toggle an LED,
connected to an output port of the microcontroller, on and off every 1 second. The evaluation
board I used for this was the MiniDRAGON from EVBplus (http://www.evbplus.com), which has
an external crystal of 16MHz and an LED (actually, a 7-segment display) connected to PORTH
that I use in the example applications. It is not necessary to have the same evaluation board. If you
have a different evaluation board, just keep in mind that you might have to modify the examples if

4

Application Note AN1002

Getting started with the Motorola HCS12 family
using Metrowerks CodeWarrior

you have an LED connected to a different port pin and that the blink rate might not be 1 second if
you have a different external crystal frequency.

Figure 1 - Installing the examples

Together with this application note, you should have received a zip-file named “AN1002.zip”.
This file contains the files that belong to the examples. In order to setup the examples, use your
favorite ZIP program and extract the files to a folder of your choice.

5

Application Note AN1002

Getting started with the Motorola HCS12 family
using Metrowerks CodeWarrior

2 Software Development in RAM using D-BUG12
In this configuration, no additional development hardware is required besides an HCS12DP256
based evaluation board. It does however assume that a monitor program called D-BUG12 is
present in the flash memory of the HCS12DP256. D-BUG12 is a popular monitor program written
by Gordon Doughman, who in my eyes is the HC12 guru at Motorola. Because of its ease of use
and powerful features, most HCS12 evaluation board manufacturers pre-program this monitor
program into the flash memory before shipping it to you. In case you’re still looking for an
HCS12DP256 evaluation board and don’t want to purchase additional hardware for your software
development, pay attention that D-BUG12 is resident in the flash memory of the evaluation board,
so you can use the low cost approach for software development as described in this section of the
application note.

D-BUG12 allows you to communicate with the evaluation board by using a simple terminal
program. In order to use D-BUG12, you have to connect your evaluation board to one of your
PC’s COM ports using a serial cable. If your evaluation board ships with D-BUG12 pre-
programmed, chances are that this serial cable is part of the shipment. Under MS Windows, you
can use the terminal program HyperTerminal, which comes for free with MS Windows, or you can
use any other terminal program. The one I prefer is called MiniIDE and can be downloaded from
http://www.mgtek.com/miniide/. This is the terminal program you will see in the screenshots in
this document.

All sounds good, huh? Great low cost solution and no additional development hardware required.
You might wonder, what’s the catch? Well, the catch is that D-BUG12 only allows you to
download and debug your software applications in RAM and/or EEPROM, not into flash memory.
Is this a problem? Nope, because the HCS12DP256 has 12 kilobytes of RAM available and this is
exactly the size limitation of the free Special Edition of Metrowerks CodeWarrior for the HC12.
Besides this we also don’t have to worry about the interrupt vectors. D-BUG12 reroutes all
interrupt vectors to RAM locations, meaning interrupts can still be used.

2.1 Step 1 – Building the S-record
First the example project should be opened up in CodeWarrior. To do this, find the file
“Hcs12dp256.mcp” in the “.\Example1”-subfolder and double-click it. This should launch
CodeWarrior and open up the example project. Before the example application can be downloaded
to your board, the source files need to be compiled into object files and then the object files need
to be linked together to create the so-called S-Record. This is easier than it sounds. In
CodeWarrior, click on the green “Play”-button:

Figure 2 - Output Window

6

Application Note AN1002

Getting started with the Motorola HCS12 family
using Metrowerks CodeWarrior

Figure 3 - Building the S-record

After this you should see the following screen and a file called “Hcs12dp256.s19” appeared in the
“bin”-subdirectory. This file is the S-record that I mentioned earlier.

2.2 Step 2 – Downloading using D-BUG12
You are now ready to download the S-record “Hcs12dp256.s19” to your board. I will demonstrate
this using MiniIDE. Note that any other terminal program can be used aswell. Launch MiniIDE
and connect to the terminal. Now reset your evaluation board and verify that you see the DBug12
prompt. At the prompt type “LOAD” followed by an <enter> and then select to download the
“Hcs12dp256.s19” file.

Figure 4 - Downloading using D-BUG12

7

Application Note AN1002

Getting started with the Motorola HCS12 family
using Metrowerks CodeWarrior

2.3 Step 3 – Running the example application
The example application is now downloaded to RAM and is waiting there for you to give the
command to start running. Type in “G 1829” followed by an <enter> to start the example
application. You should see the LED toggle on and off every second. That’s it!

2.4 A closer look

2.4.1 Project files
Figure 5 provides an overview of the files that are in the project for the example application. The
actual example application is implemented in “main.c” and “main.h”. “vectors.c” contains a table
with elements that are linked to the interrupt vectors (remapped by D-BUG12 to RAM).
“start12.c” is a compiler specific file that makes sure the microcontroller is initialized before
function main() is called.

Figure 5 - Project files

The “Ram_Dbug12”.prm file is used to explain to the CodeWarrior linker where the compiled
code should be located in the memory of the HCS12. More about this in the next section. The
compiler libraries are also specific for the CodeWarrior compiler. “6812dp256.h” for example,
contains definitions for all the HCS12 registers on your HCS12DP256 based evaluation board. Just
keep them in your project and they’ll make your life as a software developer easier.

2.4.2 Memory configuration
CodeWarrior for the HC12 can be used for any HC12 derivative. You are using the HCS12DP256
with the DBug12 program installed in the flash memory. DBug12 allows you to download your
applications (S-records) into the RAM memory and allows you to do some simple debugging.
How the board is configured has to be explained to CodeWarrior, otherwise it would create an
invalid S-record. This configuration is done through the “Ram_Dbug12.prm” file. I configured it
for you in the following way:

8

Application Note AN1002

Getting started with the Motorola HCS12 family
using Metrowerks CodeWarrior

Type Start (hex) End (hex) Size (bytes)
RAM 0x1000 0x16FF 1792
Stack 0x1700 0x17FF 256
ROM 0x1800 0x3BFF 9216
Vectors1 0x3E00 0x3E7F 128

I would recommend that if you are new to software development on the HCS12DP256, that you
keep these settings for now. You can of course modify these to your liking, as long as you don’t
cross the physical boundaries of the RAM on the HCS12DP256. Keep in mind that D-BUG12 uses
a small amount of RAM between 0x3E80 and 0x3FFF that you shouldn’t use. Also keep in mind
that these memory types refer to sections read by the linker. Physically, the ROM section is also in
RAM on the HCS12DP256 in this configuration.

2.4.3 Entry point
After downloading your application you need to tell DBug12 what the start address of your
application is if you want to run it. The start of your application is always the address of the
function “_Startup”. The address of this function can be found in the so-called MAP file.

Figure 6 - Start address in MAP file

This is a report generated by the CodeWarrior linker that you can use as a reference to find out
where the linker located your variables and functions. For the example project, the MAP file is
called “Hcs12dp256.map” and can be found in the “bin”-subdirectory.

2.4.4 Limitations
Two limitations exist when it comes to using CodeWarrior for an evaluation board that has
DBug12. The first one is that the source level debugger cannot be used, because unfortunately
there is no support for communication between CodeWarrior’s debugger and DBug12 (in both
EVB and POD mode).

The second limitation is that the S-record produced by CodeWarrior’s linker is valid, but cannot be
used by DBug12. The first line in an S-Record starts with “S0”, followed by more characters. This
“S0”-line contains so-called header information. The header information that CodeWarrior adds to
the S-Record is sometimes too long for DBug12 to interpret. For this reason I created a small
command line converter program called “SRecChgHdr.exe” that is located in the “cmd”-subfolder.
This program reads the S-Record generated by CodeWarrior’s linker, replaces the “S0”-line with a
shorter one, and then writes it to a different output file.

It is possible to have CodeWarrior automatically call this program if you configure your project
settings similar to what is shown in the illustration below. The *.sx file is the S-Record generated
by CodeWarrior and the *.s19 file is the S-Record generated by my SRecChgHdr.exe program and

1 Configured in “vectors.c”.

9

Application Note AN1002

Getting started with the Motorola HCS12 family
using Metrowerks CodeWarrior

can be used for downloading using DBug12. Note that if you change the name of the *.sx file
generated by CodeWarrior, you must manually adjust this in your project settings as well.

Figure 7 - Invoking the converter program automatically

10

Application Note AN1002

Getting started with the Motorola HCS12 family
using Metrowerks CodeWarrior

3 Software Development in ROM using P&E’s CABLE12
As mentioned in the previous chapter, using the D-BUG12 serial monitor has some limitations.
You can’t program your application in the flash memory of the HCS12DP256 and you can’t use
the source level debugger that comes with the Metrowerks CodeWarrior development
environment. If these limitations bother you and you are able to invest in a background debug
mode (BDM) interface, then the configuration described in this chapter is of interest to you.

The configuration is as follows. Instead of using a serial cable to connect your evaluation board to
your PC, you use P&E Micro’s CABLE12 BDM interface and connect it to the parallel port (LPT1
or 2) of your PC. You will also no longer use a terminal program but the full featured source level
debugger that is part of the Metrowerks CodeWarrior development environment.

The main advantage of this approach is that debugging your software application becomes easier
are more visual. You can set breakpoints on a line of C-source code, use step instructions, watch
variable values, etc. In addition to this you also have access to all of the microcontroller’s
memory: RAM, EEPROM, and flash memory.

3.1 Step 1 – Building the executable
First the example project should be opened up in CodeWarrior. To do this, find the file
“Hcs12dp256.mcp” in the “.\Example2”-subfolder and double-click it. This should launch
CodeWarrior and open up the example project. Before the example application can be downloaded
to your board, the source files need to be compiled into object files and then the object files need
to be linked together to create the executable of your software application. In CodeWarrior, you do
this using the “Make” command. You can find this in the “Project”-menu in CodeWarrior or you
can click the button as illustration in Figure 8.

Figure 8 - Building the executable

After this you should see the following screen and a file called “Hcs12dp256.abs” appeared in the
“bin”-subdirectory. This file is the executable, which we will program into the flash memory in the
following step.

11

Application Note AN1002

Getting started with the Motorola HCS12 family
using Metrowerks CodeWarrior

Figure 9 - Output Window

3.2 Step 2 – Flash programming using CABLE12
The next step is to program your software application in the flash memory of your HCS12DP256
evaluation board. The source level debugger that is part of the Metrowerks CodeWarrior
environment includes functionality to do flash programming when using the P&E Micro
CABLE12 BDM interface. This has to be configured in the project settings and through the usage
of several external files (debugger command files). The good thing for you is that I have already
done this for you in the example project. You only have to verify one thing. The actual flash
erasing and programming requires certain delay times on the microcontroller while performing
these operations. You don’t have to do anything for this. However, the time reference for this
delaying is derived from the crystal clock frequency of the microcontroller. The crystal clock
frequency of the evaluation board I used in this example is 16MHz. If yours is different, you have
to modify this in file “erase_unsecure_hcs12.cmd”, which you can find the “.\cmd”-subfolder of
the example. You have to change the line with “define CLKDIV 0x49”, by changing it to a value
as described in the comments above this line in the same file. This only has to be done once. To
start with the actual flash programming using CodeWarrior’s debugger, all you have to do is click
on the green play-button as illustrated in Figure 102.

Figure 10 - Flash programming your application

2 A word of caution before you start the flash programming. The entire flash memory will be
erased. This means that if you have D-BUG12 programmed in the flash memory, this will be
erased. If it turns out that for some reason you’re having problems with flash programming your
HCS12DP256 and the flash was already erased, this means you won’t be able to use your
microcontroller until you solve these problems.

12

Application Note AN1002

Getting started with the Motorola HCS12 family
using Metrowerks CodeWarrior

3.3 Step 3 – Running and debugging the example application
At this point you should be in the debugger window and your software application is programmed
into the flash memory of the microcontroller on your evaluation board. This means everything is
ready to start running your software application. In order to do this, click the “RUN”-button on the
debugger’s toolbar (Figure 11).

Figure 11 - Running and stopping your software application

When using D-BUG12, the monitor program lost control of the software application once started.
When using the debugger, this is luckily not the case. You can stop (and even start) your software
as often as you want using the “STOP”-button.

If you want the debugger to automatically stop the software application for you when it’s at a
certain point, you can use a breakpoint. For demonstration purposes, let’s assume that you want to
stop the example software application every time the RTI cycle time elapses, which is every
4.096ms right before “rtiCnt” is incremented. This piece of code is in the “main.c” source file. If
your software application is running, first stop it. If the source code shown in the source window
of the debugger is not “main.c”, then use your mouse to right-click in the debugger’s source
window and select “Open Source File…” from the popup menu and select “main.c”. Now use your
mouse to right-click in the debugger’s source window on the line that says “rtiCnt++;”. This is
where the code is located that increments the “rtiCnt” and this is where we want to set the
breakpoint. From the popup menu select option “Set Breakpoint”. You should now see a red arrow
in front of this line, which represents the breakpoint. In case you want to remove the breakpoint,
you can follow the same steps and select “Delete Breakpoint” from the popup menu. Now hit the
“RUN”-button and you will see that shortly after this, the debugger stopped the application. In the
data window, the debugger automatically added a watch for the “rtiCnt”-variable. If you hit the
F11-key on your keyboard, the debugger will do a Single Step operation, meaning that it will
execute the source code on the line where to application currently is. Note that in the data window
you can see that the value of the “rtiCnt”-variable incremented. These operations are the basics of
debugging and will make your life as a software engineer a lot easier!

Figure 12 - Using breakpoints and variable watches

13

Application Note AN1002

Getting started with the Motorola HCS12 family
using Metrowerks CodeWarrior

3.4 A closer look

3.4.1 Project files
The project files for this example are similar to the ones described in section 2.4.1, with the
addition of the debugger command files. These files are used by the debugger to perform
microcontroller specific actions during the flash programming of your software application. In the
example they are already setup for you. If you followed all the instructions in this chapter up to
now, you won’t have to touch these files.

The “erase_unsecure_hcs12.cmd” is by far the most important file. The flash of the HCS12 family
microcontrollers can be secured and unsecured. When the flash is secured you won’t be able to use
CABLE12 to program the flash memory anymore. The flash is automatically secured when the
entire flash is erased. In order to unsecure the flash memory again a certain value has to be written
to a specific location in flash memory. This is automatically done for you by the
“erase_unsecure_hcs12.cmd” file during the flash programming operation.

Figure 13 - Project files

3.4.2 Memory configuration
How the memory on your evaluation board is configured has to be explained to CodeWarrior,
otherwise it would create an invalid executable. This configuration is done through the
“Rom_Cable12.prm” file for this example. I configured it for you as show in the following table. I
would recommend that if you are new to software development on the HCS12DP256, that you
keep these settings for now. You can of course modify these to your liking, as long as you don’t
cross the boundaries of the RAM and the ROM.

14

Application Note AN1002

Getting started with the Motorola HCS12 family
using Metrowerks CodeWarrior

Type Start (hex) End (hex) Size (bytes)
RAM 0x1000 0x3EFF 12032
Stack 0x3F00 0x3FFF 256
ROM1 0x4000 0x7FFF 16384
ROM2 0xC000 0xFEFF 16128
Vectors3 0xFF80 0xFFFF 128

Note that there is not just one ROM part, but two (ROM1 and ROM2). This is because I
configured the example to the use the unbanked flash pages on the HCS12DP256. There are two
unbanked flash pages on the HCS12DP256, one starting at 0x4000 and one starting at 0xC000.
The interrupt vectors are located at the end of the latter one.

3.4.3 Limitations
The approach described in this chapter has no limitations. However, the project configuration that
I created for you in the example has one limitation. Only the unbanked flash pages can be used,
meaning that your software application can’t use more that 32 kilobytes of flash memory, even
though the HCS12DP256 has 256 kilobytes of flash memory. I have done this on purpose, because
it saves overhead of explaining the idea behind memory paging on the HCS12 family
microcontrollers. This application note is also written from the point of view that the reader only
has access to the Special Edition of Metrowerks CodeWarrior. This one has a ROM limitation of
12 kilobytes for your software application. Since this easily fits on the 2 unbanked flash pages,
there is no need to use memory paging. If you do prefer to use memory paging in your software
application, you can still use this example as a starting point. Refer to CodeWarrior’s
documentation to find more information on how to use memory paging.

3 Configured in “vectors.c”.

15

Application Note AN1002

Getting started with the Motorola HCS12 family
using Metrowerks CodeWarrior

4 Software Development in RAM using P&E’s CABLE12
Using the configuration described in the previous chapter doesn’t have any limitations. You can
program the entire flash memory of the microcontroller. There is a downside to this. Programming
the flash memory takes time. Using the configuration described in this chapter you’ll develop
your software application in RAM instead of flash memory, allowing you to skip the flash
programming sequence every time and instead do a fast download to RAM. The limitation to this
approach is that you’re of course limited to the 12 kilobytes of available RAM memory on the
HCS12DP256. Again, when using the Special Edition of Metrowerks CodeWarrior, this is not a
problem since the Special Edition has a 12 kilobyte limit for your software application as well.

Before using this configuration, you have to prepare the HCS12DP256 on your evaluation board.
This preparation consists of programming an interrupt vector jump table into the flash memory
once. This jump table redirects all interrupt vectors to a fixed location in RAM. You software
application can then use a special pseudo vector table that is downloaded to RAM together with
your software application. More about the interrupt vector jump table can be found in the
following section.

4.1 Flash programming the interrupt vector jump table using CABLE12
First the example project should be opened up in CodeWarrior. To do this, find the file
“Hcs12dp256.mcp” in the “.\Example3”-subfolder and double-click it. This should launch
CodeWarrior and open up the example project. Before the example application can be downloaded
to your board, the source files need to be compiled into object files and then the object files need
to be linked together to create the executable of your software application. Follow the instructions
in sections 3.1 and 3.2 and apply them to the “Example 3”-project to flash program4 the interrupt
vector jump table.

4.2 Step 1 – Building the executable
First the example project should be opened up in CodeWarrior. To do this, find the file
“Hcs12dp256.mcp” in the “.\Example4”-subfolder and double-click it. This should launch
CodeWarrior and open up the example project. Before the example application can be downloaded
to your board, the source files need to be compiled into object files and then the object files need
to be linked together to create the executable of your software application. In CodeWarrior, you do
this using the “Make” command. You can find this in the “Project”-menu in CodeWarrior or you
can click the button as illustration in Figure 15.

Figure 14 - Output Window

4 A word of caution before you start the flash programming. The entire flash memory will be
erased. This means that if you have D-BUG12 programmed in the flash memory, this will be
erased. If it turns out that for some reason you’re having problems with flash programming your
HCS12DP256 and the flash was already erased, this means you won’t be able to use your
microcontroller until you solve these problems.

16

Application Note AN1002

Getting started with the Motorola HCS12 family
using Metrowerks CodeWarrior

After this you should see the screen as in Figure 14 and a file called “Hcs12dp256.abs” appeared
in the “bin”-subdirectory. This file is the executable with we will download into the RAM in the
following step.

Figure 15 - Building the executable

4.3 Step 2 – Downloading using CABLE12
The next step is to download your software application into the RAM of your HCS12DP256
evaluation board. The source level debugger that is part of the Metrowerks CodeWarrior
environment includes functionality to do RAM downloading when using the P&E Micro
CABLE12 BDM interface. This has to be configured in the project settings and through the usage
of several external files (debugger command files). The good thing for you is that I have already
done this for you in the example project. To start with the actual downloading using
CodeWarrior’s debugger, all you have to do is click on the green play-button as illustrated in
Figure 16.

Figure 16 - Downloading your application to RAM

17

Application Note AN1002

Getting started with the Motorola HCS12 family
using Metrowerks CodeWarrior

4.4 Step 3 – Running and debugging the example application
Once your application is downloaded to the internal RAM of your microcontroller using
CodeWarrior’s debugger, the actual running and debugging is exactly the same as described in the
previous chapter. Refer to section 3.3 for more information.

4.5 A closer look

4.5.1 Project files
The project files for this example are similar to the ones described in section 3.4.1. There is only
one difference, which can be found in the debugger command files. Since this configuration only
downloads your software application to RAM, everything related to erasing, programming, and
unsecuring the flash memory is stripped out. In the example the remaining debugger command
files are already setup for you.

4.5.2 Memory configuration
How the memory on your evaluation board is configured has to be explained to CodeWarrior,
otherwise it would create an invalid executable. This configuration is done through the
“Ram_Cable12.prm” file for this example. I configured it for you as show in the table below. I
would recommend that if you are new to software development on the HCS12DP256, that you
keep these settings for now. You can of course modify these to your liking, as long as you don’t
cross the physical boundaries of the RAM on the HCS12DP256.

Type Start (hex) End (hex) Size (bytes)
RAM 0x1000 0x1EFF 3840
Stack 0x1F00 0x1FFF 256
ROM 0x2000 0x3F3F 8000
Vectors5 0x3F40 0x3FFF 192

4.5.3 Vector tables
The figure on the right graphically illustrates how the interrupt vector tables are used in this
configuration. Normally, only one interrupt vector
table is present and it’s located at the bottom of
the memory map, from address 0xFF80 to
0xFFFF. This is predetermined by the hardware of
the HCS12DP256. If this wasn’t the case you
could simply change some sort of setting on the
microcontroller and move it to wherever we want,
which is somewhere in RAM for this
configuration. This is not possible and therefore a
workaround has to be used in order to develop
your software application from RAM without
having to program the vector table into the flash
memory every time.

The workaround I created involves the usage of a second vector table, which I refer to as the
pseudo vector table. I located it at the end of the RAM. Let’s look at what happens when an

5 Configured in “vectors.c”.

18

Application Note AN1002

Getting started with the Motorola HCS12 family
using Metrowerks CodeWarrior

interrupt occurs. The microcontroller will read the 2-byte address associated with the interrupt that
occurred. For demonstration purposes, assume that the interrupt that occurred was an RTI
interrupt. The vector for the RTI interrupt is located at address 0xFFF0. The microcontroller would
then read the 2-byte address of the interrupt service routine (ISR) function from 0xFFF0 to
0xFFF1 and would jump to this address automatically. In our configuration, we don’t know yet if
we want to use the RTI interrupt and in case we chose to, it shouldn’t be necessary to re-flash the
vector table just for this. Using the workaround, instead of jumping to the ISR directly, a jump is
performed to a predetermined address in the pseudo vector table. At this location in the pseudo
vector table, information is stored about where the actual ISR for the RTI is located, if used.
Because the addresses in the pseudo vector table are predetermined, we only have to flash the
actual vector table once into flash memory. Whenever we want to change the usage of an ISR we
can do this in the pseudo vector table, which is part of the software application in RAM. Problem
solved!

Figure 17 - Pseudo vector table functionality

Figure 17 graphically illustrated the functionality of the pseudo vector table at described for the
RTI interrupt example. First the interrupt occurs, and the microcontroller will start executing code
at the address that is stored at the RTI vector (0x3FE8). The code that the microcontroller finds
there instructs it to jump to address 0x207B. This is the actual location of the ISR, which is of
course ended with an “rti”-assembly instruction, indicating to the microcontroller that it is
returning from an ISR and not a regular function. A little tricky, however, it is all preconfigured
for you in the examples 3 and 4. When you need to use an ISR, all you do is add the function name
of the ISR to the pseudo vector table in the “vectors.c”-file in Example 4.

4.5.4 Limitations
The only limitation is this configuration is that your software application has to be smaller that 12
kilobytes in total.

19

Application Note AN1002

Getting started with the Motorola HCS12 family
using Metrowerks CodeWarrior

5 Conclusion
The information in this document provides a good overview of commonly used software
development techniques for the Motorola HCS12 family of microcontrollers. I selected the
Metrowerks CodeWarrior software development environment for usage in the examples because
that way I could give you a more hands on explanation on how to get started. In addition to that
it’s a high quality development environment that’s available for free (Special Edition).

Configuration Cost Ease of use Memory restrictions Speed
RAM using DBUG12 ���� ���� ���� ����
ROM using CABLE12 ���� ���� ���� ����
RAM using CABLE12 ���� ���� ���� ����

The comparison table summarizes the pros and cons of each configuration. The one that works
best for you depends on your personal preference and balance regarding cost, ease of use, memory
restrictions, and speed. Knowing that, you can use this table to pick the configuration that fits your
needs. My personal preference is the last one (“RAM using CABL12”). If you have financial
resources available to invest in the BDM interface and the 12 kilobytes of RAM are plenty for
your software application, I can highly recommend this one to you.

20

Application Note AN1002

Getting started with the Motorola HCS12 family
using Metrowerks CodeWarrior

References

G. Doughman
 “Reference Guide For D-Bug12 Version 4.x.x”
 April 5, 2002
 Motorola Semiconductor

Motorola
 “MC9S12DP256 – Advance Information”
 December 1, 2000
 MC9S12DP256/D
 Motorola Semiconductor

