
Motorola HC12

CPU Awareness and
True-Time Simulation

 Revised 07/17/2003

Metrowerks, the Metrowerks logo, and CodeWarrior are registered trademarks of Metrowerks Corp. in the US and/or
other countries. All other tradenames and trademarks are the property of their respective owners.

Copyright © Metrowerks Corporation. 2003. ALL RIGHTS RESERVED.

The reproduction and use of this document and related materials are governed by a license agreement media,
it may be printed for non-commercial personal use only, in accordance with the license agreement related to the
product associated with the documentation. Consult that license agreement before use or reproduction of any
portion of this document. If you do not have a copy of the license agreement, contact your Metrowerks repre-
sentative or call 800-377-5416 (if outside the US call +1-512-996-5300). Subject to the foregoing non-commercial
personal use, no portion of this documentation may be reproduced or transmitted in any form or by any means,
electronic or mechanical, without prior written permission from Metrowerks.

Metrowerks reserves the right to make changes to any product described or referred to in this document without further
notice. Metrowerks makes no warranty, representation or guarantee regarding the merchantability or fitness of its prod-
ucts for any particular purpose, nor does Metrowerks assume any liability arising out of the application or use of any
product described herein and specifically disclaims any and all liability. Metrowerks software is not authorized for
and has not been designed, tested, manufactured, or intended for use in developing applications where the fail-
ure, malfunction, or any inaccuracy of the application carries a risk of death, serious bodily injury, or damage
to tangible property, including, but not limited to, use in factory control systems, medical devices or facilities,
nuclear facilities, aircraft navigation or communication, emergency systems, or other applications with a simi-
lar degree of potential hazard.

USE OF ALL SOFTWARE, DOCUMENTATION AND RELATED MATERIALS ARE SUBJECT TO THE
METROWERKS END USER LICENSE AGREEMENT FOR SUCH PRODUCT.

How to Contact Metrowerks

Corporate Headquarters Metrowerks Corporation
7700 West Parmer Lane
Austin, TX 78729
U.S.A.

World Wide Web http://www.metrowerks.com

Sales Voice: 800-377-5416
Fax: 512-996-4910
Email: sales@metrowerks.com

Technical Support Voice: 800-377-5416
Email: support@metrowerks.com

http://www.metrowerks.com

Table of Contents

1 Introduction 5
Read the Release Notes. . 5

Simulator Target Component . 5

Introduction . 5

Simulator Setup . 5

Simulator Target Component Features. 7

 Default Memory Configuration File 13

HC12 Simulator Specifics. 14

HC12 Registers . 14

Special Environment Variable . 15

Sample12 I/O Simulation . 15

Introduction . 16

Simulated I/O . 16

Loading the I/O Simulation Component 20

Programming in Bank Windows 21

Simulated I/O Ports of the MC68HC12A4 CPU 23

Register Block . 23

Lite Integration Module . 23

Serial Communication Interface SCI 26

Serial Peripheral Interface SPI . 29

Key Wakeups . 30

Memory-Mapped Page Registers 31

Current Non-Supported Modules 32

Register Block Address Map . 32

Related Documentation . 34

I/O Simulation HC12DA128 / HC12DG128 34

Introduction . 34

Simulated HC12DA/DG128 I/O 34

Displaying Special Registers . 39

Index 41
3Simulator

Table of Contents
4 Simulator

1
Introduction

This manual explains the Metrowerks target software simulator.

Read the Release Notes
Before you use your CodeWarriorTM IDE simulator, you should read its product
release notes. The release notes include important last-minute information about new
features, problem workarounds, or incompatibilities that may not be included in this
manual.

Simulator Target Component
This section helps you start using the Simulator Target Component.

Introduction
Simulator software simulates a target system. The simulator consists of a CPU
simulator, a memory simulator, and several simulated I/O devices. The simulator lets
you set the simulated environment: memory, I/O-device placement, code, and so forth.

The simulator includes a universal timing facility that components can use to simulate
realistic timing conditions. This facility lets components take control after a certain
number of clock cycles or processor instructions.

You load the simulator driver as part of loading the simulator target component.

Simulator Setup
This section explains how to load the Simulator target.
5Simulator

Introduction
Simulator Target Component
Default Target Setup
As with any other target, you can load the simulator target component from the
CodeWarrior IDE Target menu. Alternatively, you can use the PROJECT.INI file
(Listing 1.1 on page 6) to set the simulator target component as the default target.

Listing 1.1 Example of PROJECT.INI File

[HI-WAVE]
Window0=Source 0 0 60 30
Window1=Assembly 60 0 40 30
Window2=Procedur 0 30 60 25
Window3=Register 60 30 40 30
Window4=Memory 60 60 40 40
Window5=Data 0 55 60 23
Window6=Data 0 78 60 22
Target=Sim

NOTE The HI-WAVE User’s Guide has additional information about the
PROJECT.INI file.

Loading the Simulator Target
The PROJECT.INI file line Target=Sim sets the target to be the simulator
target component.

If the PROJECT.INI file does not set a target, or if it sets a different target, you can
use the main menu to select the simulator. Select Component > Set Target... , as
Figure 1.1 depicts. Choose Simulator from the list of possible targets.

Figure 1.1 The Component Menu

After loading, the Simulator (Figure 1.2 on page 7) replaces the Target menu.
6 Simulator

Introduction
Simulator Target Component
Figure 1.2 The Simulator Menu

The HI-WAVE Status Bar for the Simulator
Once you have loaded the Simulator Target Component, the HI-WAVE status bar
(Figure 1.3) shows status and other information. As well as execution status, it
includes a context-sensitive menu help line, and target- specific information like the
number of CPU cycles (64 bits) since the application started.

Figure 1.3 The Debugger Status Bar

Simulator Target Component Features
This section explains the major features of the Simulator Target Component.

Introduction
The memory configuration facility is an integral part of HI-WAVE’s advanced target
configuration possibilities. The memory is divided into blocks. Amemory manager
handles the list of memory blocks. The memory configuration facility offers you some
degree of automation, but does not restrict the flexibility of manual adjustment. The
memory configuration facility lets you specify types and properties of memory blocks,
such as RAM, ROM, and so forth.

The memory configuration facility uses a binary file format to read and set the target
configuration. The extension for binary files is .mem; the default memory file is
default.mem. (The subsection “Format of the Default Memory Configuration
File” includes Listing 1.2 on page 14, the EBNF-syntax definition of the file format.)
7Simulator

Introduction
Simulator Target Component
Memory Configuration Dialog Box Features
The memory configuration dialog box (Figure 1.4 on page 8) lets you perform these
memory-block operations interactively:

• Select the configuration mode for simulation

• Define a memory block name

• Define how the simulator verifies the memory

• Set the type of the memory: RAM, ROM, FLASH, EEPROM or I/O

• Define start and end addresses

• Define the wait state (the time for each read or write access)

• Set the width of the bus that accesses the memory

• Set access details like:

– auto configure: automatically computing read and write access

– misaligned access: allowing misaligned access on words and longs

• Open and save memory configuration

• Add, delete, or update memory blocks

Figure 1.4 The Memory Configuration Dialog Box
8 Simulator

Introduction
Simulator Target Component
Memory Configuration Modes
Use the Memory Configuration dialog box to select the memory configuration mode:
auto configuration on access, auto configuration on load, or user defined.
Depending on your settings, the the simulator target component initializes target
memory as Table 1.1 explains.

Memory Configuration Settings

Depending on the configuration mode, the Memory Configuration dialog box lets you
redefine memory settings within certain limits. You always must set I/O devices
manually.

Standard Configuration: Auto on Access: The Memory Configuration dialog box
contains a single RAM entry with unspecified (*) starting and ending addresses. You
cannot modify these addresses. You can adjust wait states, and other such settings,
only for the whole RAM block.

Auto Configuration on Load: Initially, the dialog box lists a single RAM and a single
ROM block, with unspecified (*) starting and ending addresses. You can adjust wait
states, and other such settings, separately for RAM and ROM blocks.

For the ELF/DWARF Object file format, the Memory Configuration dialog box lists
separate RAM and ROM blocks for each data and code segment in the absolute file,
once an application has been loaded. The segmane addresses and lengths determine
the starting and ending addresses of each block; you cannot modify these addresses.

Table 1.1 Memory Configuration Modes

Mode Description

Auto Configuration on
Access (Standard
Configuration)

Defines target memory as RAM of unlimited size. The Mode
combo box displays auto on access.

Auto Configuration on
Load (default)

Defines target memory as RAM and ROM, according to the code
and data area defined in a loaded absolute file. Defines code
segments as ROM. Defines data segments as RAM. (Memory
outside these segments is not implemented; access to not-
implemented locations result in error messages.) The Mode
combo box displays auto on load.

Manual Configuration:
(User Defined)

Defines target memory as RAM, ROM, non-volatile RAM, ... ,
depending on your configuration. You construct this definition
interactively with the Memory Configuration dialog box, or read it
in from a file. The Mode combo box displays user defined.
9Simulator

Introduction
Simulator Target Component
Initial attributes of each code and data block come from the corresponding initial
RAM and ROM blocks; you can modify these attributes independently.

Manual Configuration: The Memory Configuration dialog box lists an entry for each
memory block. You can modify such entries without restriction.

NOTE To simulate an absolute file generated in HIWARE object file
format, you must open the Memory Configuration dialog box, set the
“auto on load” mode, then add a new RAM segment. The start and
end addresses of this segment must match the associated .prm file.
Once you close the dialog box, you can load your application and
start a simulation.

Open Memory Block
Click the Open button to load a memory blocks file. The Open Memory blocks
standard dialog box appears. Select a memory map file, then click the OK button. The
dialog box closes, and the system loads the memory blocks file.

The Mode combo box changes to indicate the mode contained in the memory map file.

The list box lists the memory blocks loaded from the file, selecting the first memory
block. Appropriate data appears in the fields Name, Type, Start, End, Wait state,
Bus width and Access Details.

Save Memory Block

Click the Save button to store the current memory blocks configuration. The Save
Memory blocks standard dialog box appears. Enter a file name, then click the OK
button. The dialog box closes, and the system stores the memory block configuration
into the file.

Memory Check Options

The Memory Check group box consists of three checkboxes, all checked when you
bring up the Memory Configuration dialog box:

• Stop if no memory — Check this box to have the simulator stop upon an access to
non-existent memory. (If you do not want the simulator to stop, clear this
checkbox.)

• Stop on read undefined — Check this box to have the simulator stop upon a read
of undefined memory. (If you do not want the simulator to stop, clear this
checkbox.)
10 Simulator

Introduction
Simulator Target Component
• Stop on write protected — Check this box to have the simulator stop upon a write
to read-only (write-protected) memory. (If you do not want the simulator to stop,
clear this checkbox.)

Memory Configuration Module Startup
Memory configuration is a dynamically loaded facility. That is, the new entry
Configure... appears in the Simulator menu upon loading of the target (the Simulator
dll). Selecting Configure... opens the Memory Configuration dialog box, so that you
can configure memory.

Memory Block Setting
You must set memory blocks within the available memory; each block must cover a
certain range. The start address and end address define each memory block.

Memory Block Properties

 Table 1.2 lists the properties you may specify for a memory block:

Table 1.2 The Memory Block Properties

Item Description

name Name of the memory block.

type RAM, ROM, FLASH, EEPROM or I/O

start Start address of the memory block

end End address of the memory block

wait state Time used for reading or writing a specific number of bytes

bus width Width of the bus that accesses the memory

read access Table that defines read-access details on Byte, Word, Word
misaligned, Long, and Long misaligned

write access Table that defines write-access details on Byte, Word, Word
misaligned, Long, and Long misaligned

auto configure Flag that directs automatic computation of read and write accesses
11Simulator

Introduction
Simulator Target Component
Memory Configuration Command Buttons

The command buttons of this dialog box are:

• Add — Fills a new memory block according to the current data of the Name,
Type, Start, End, Bus width, and Access Details controls. This new memory
block appears at the end of the list box. If there are any errors in this new block
(such as an improper field value), the system generates a message box that
informs you of the problem.

• Update — Updates the current memory block according to the current data of
the Name, Type, Start, End, Bus width, and Access Details controls.

• Delete — Removes the currently selected memory block from the list box. The
list box contents adjust, to reflect this deletion.

• OK — Closes the dialog box and validates the list of modified memory blocks.
The parent class can access this list, updating its own list.

• Cancel — Closes the dialog box, canceling your modifications.

• Help — Opens the dialog-box help file.

Access Details Dialog Box Features
Figure 1.5 shows the Access Details dialog box, which lets you change read and write
access values for seven types.

allow misaligned
access

Flag that allows Word misaligned and Long misaligned

block type USER_DEF (block you define), AUTO_GEN (block automatically
generated), AUTO_MEM (master block for standard configuration),
AUTO_RAM (RAM master block for auto configuration), or
AUTO_ROM (ROM master block for auto configuration)

Table 1.2 The Memory Block Properties

Item Description
12 Simulator

Introduction
Simulator Target Component
Figure 1.5 Access Dialog Window

Follow this guidance to use the Access Details dialog box::

• To modify the value of each read or write type, change the value of the associated
spin box.

• The lowest possible value is -1.

• The highest possible value is 100.

• To store changes into the currently selected memory block, click the OK button.
The Access Details dialog box disappears, and the system clears the Auto
Configure checkbox.

• To abandon your changes, click the Cancel button. The Access Details dialog
box disappears; the system discards your changes.

• To bring up appropriate help information, click the Help button.

Output
You can save the current memory configuration into the file you defined at the outset.

 Default Memory Configuration File
Listing 1.2 shows the format of the Default Memory Configuration File, in EBNF
notation.
13Simulator

Introduction
HC12 Simulator Specifics
Listing 1.2 Format: Default Memory Configuration File.

memConfFile = head mode numberBlocks data
head = number
mode = STD_MODE | AUTO_MODE | MAN_MODE
numberBlocks = number
data = {memoryBlock}
memoryBlock = name type start end waitState busWidth accessRead
accessWrite autoConfigure allowMisalignedAccess blockType
name = string
type = string
start = number
end = number
waitState = number
busWidth = number
accessRead = array of number
accessWrite = array of number
autoConfigure = boolean
allowMisalignedAccess = boolean
blockType = USER_DEF | AUTO_GEN | AUTO_MEM | AUTO_RAM | AUTO_ROM

HC12 Simulator Specifics
This section introduces HC12 Simulator features.

HC12 Registers
The Register Components window (Figure 1.6) displays the HC12 processor
registers. Values can be in any of five formats: hexadecimal, binary, octal, decimal, or
unsigned decimal.
14 Simulator

Introduction
Sample12 I/O Simulation
Figure 1.6 The HC12 Register Components Window

• D: 16-bit general accumulator value

• A and B: General 8-bit purpose accumulator register values

• IX and IY: Index register values

• PC: 16-bit program counter register value

• SP : 16-bit stack pointer register value

• CCR : 8-bit condition code register value

NOTE For more information, see the Motorola HC12 reference manual.

Special Environment Variable
If changes to local variables or parameters free any space on the stack, the system
marks such space as undefined (current feature). The instruction LDS is an exception:
if any byte allows initialization of the stack pointer without influencing the old or new
stack pointer, the system does not mark that byte undefined.

If you wish to disable this feature, assign the value OFF to the environment variable
UNDEFSTACK, in the project.ini file, or your defined project (.ini) file in
the project directory.

Sample12 I/O Simulation
You can load this I/O Simulation component in HI-WAVE to simulate the I/O
mechanisms of HC12 derivatives. Sample12 is a free I/O component that includes
advanced HC12-derivative features.
15Simulator

Introduction
Sample12 I/O Simulation
Introduction
This chapter explains the simulated mechanisms and implemented features that match
the HC12 derivatives. It also explains simulation limitations. (For technical
specifications of all I/O mechanisms, please see the Motorola Microcontrollers
Technical Summary of your specific HC12 derivative.)

Simulated I/O

Register Block (A4, B32, D60, DA/DG128)
You can reassign the 1-kilobyte register block to any 2-kilobyte boundary within the
standard 64-kilobyte address space.

Related register:
INITRG Initialization of Internal Register Position Register, simulated.

Memory Expansion Registers (A4, DA/DG128)
The system fully simulates the Program Page mechanism within CALL and RTC
instructions for banked memory model; Data Page and Extra Page simulated.

NOTE Also see the Programming in Bank Windows section of this manual
for application programs creation/adaptation.

Related register:
Program Page Registers DPAGE, PPAGE, EPAGE, and WINDEF (sample12 is A4
oriented).

Lite Integration Module (A4, B32, D60, DA/DG128)
The LIM device contains the clock functions Computer Operating Properly (COP) and
Real Time Interrupt (RTI).
16 Simulator

Introduction
Sample12 I/O Simulation
Related registers:
CLKCTL:
The MCSA and MCSB bit of the Clock Control Register determine the clock that such
I/O devices as the SCIs, RTI, and COP use. The system does not simulate the PLL
functionalities.

bit 7..2 Not simulated.
bit 1 MCSBModule Clock Select, Simulated
bit 0 MCSAModule Clock Select, Simulated

RTICTL: Real Time Control Register

bit 7 RTIEReal Time Interrupt Enable, Simulated
bit 6 RSWAIRTI and COP Stop While in Wait, Not simulated
bit 5 RSBCKRTI and COP Stop While in BDM, Not simulated
bit 4 unused
bit 3 RTBYBReal Time Interrupt Divider Chain Bypass, Simulated
bit 2..0Real Time Interrupt Rate Select (RTR2..0), Simulated

RTIFLG: Real Time Interrupt Flag Register

bit 7 RTIFReal Time Interrupt Flag, Simulated
bit 6..0 unused

COPCTL: COP Control Register. Clock Monitor Not simulated.
bit 7 CMEClock Monitor Enable, Not simulated
bit 6 FCMEForce Clock Monitor Enable, Not simulated
bit 5 FCMForce Clock Monitor Reset, Not simulated
bit 4 FCOPForce COP Reset, Simulated
bit 3 DISRDisable Resets from COP and Clock Monitor, Simulated
bit 2..0 COP Watchdog Timer Rate select bits, Simulated

COPRST: The ARM/Reset COP TIMER Reset register is Simulated.

HPRIO: Highest Priority I Interrupt, Simulated

INTCR: Interrupt Control Register
bit 7 IRQEIRQ Select Edge Sensitive Only, Not simulated
bit 6 IRQENExternal IRQ Enable, not simulated
bit 5 DLYEnable Oscillator Start-up Delay, Not simulated
17Simulator

Introduction
Sample12 I/O Simulation
Serial Communication Interface (A4, B32, D60, DA/
DG128)
This I/O Device simulates the two SCI signals SCI0 and SCI1. The non-memory-
mapped registers SCIInput/SCIInputH and SerialInput send characters to the SCI
Module. The non-memory-mapped registers SCIOutput/SCIOutputH and
SerialOutput contain the characters sent from to the SCI Module.

Related registers:

SC0BDH/SC1BDH: SCI Baud Rate Register High

bit 7 BTST Reserved for test functions, Not simulated

bit 6 BSPL Reserved for test functions, Not simulated

bit 5 BRLD Reserved for test functions, Not simulated

bit 4..0 SBR SCI Baud Rate, Simulated

SC0BDL/SC1BDL: SCI Baud Rate Register Low

bit 7..0 SBR SCI Baud Rate, Simulated

SC0CR1/SC1CR1: SCI Control Register 1

bit 7 LOOPS LOOP Mode, Not simulated

bit 6 WOMS Wired Or Mode, Not simulated

bit 5 RSRC Receiver Source, Not simulated

bit 4 M Mode, Simulated

bit 3 WAKE Wakeup by Address Mark/Idle, Not simulated

bit 2 ILT Idle Line Type, Simulated

bit 1 PE Parity Enabled, Not simulated

bit 0 PT Parity Type, Not simulated

SC0CR2/SC1CR2: SCI Control Register 2

bit 7 TIE Transmit Interrupt Enable, Simulated

bit 6 TCIE Transmit Complete Interrupt Enable, Simulated

bit 5 RIE Receive Interrupt Enable, Simulated

bit 4 ILIE Idle Line Interrupt Enable, Simulated

bit 3 TE Transmitter Enable, Simulated
18 Simulator

Introduction
Sample12 I/O Simulation
bit 2 RE Receiver Enable, Simulated

bit 1 RWU Receiver Wake Up Control, Not simulated

bit 0 SBK Send Break, Simulated

SC0SR1/SC1SR1: SCI Status Register 1

bit 7 TDRE Transmit Data Register Empty Flag, Simulated

bit 6 TC Transmit Complete Flag, Simulated

bit 5 RDRF Receive Data Register Full Flag, Simulated

bit 4 IDLE Idle Line Detection Flag, Simulated

bit 3 OR Overrun Error Flag, Simulated

bit 2 NF Noise Error Flag, Not simulated

bit 1 FE Framing Error Flag, Not simulated

bit 0 PF Parity Error Flag, Not simulated

SC0SR2/SC1SR2: SCI Status Register 2

bit 7..1 unused

bit 0 RAF Receiver Active Flag, Simulated

SC0DRH/SC1DRH: SCI Data Register High

bit 7 R8 Receive Bit 8, Simulated

bit 6 T8 Transmit Bit 8, Simulated

SC0DRL/SC1DRL: SCI Data Register Low, contains the Receive-/Transmit Data
Bits 7..0.

SCIInput:

This is a non-memory-mapped register that sends a character to the SCI. A read access
to the SCDR can read this value. The system takes the ninth bit from the SCIInputH
register. A read access to SCIInput has no specified meaning.

bit 7..0 character send to the SCI

SCIInputH:

This is a non-memory-mapped register that sends a character, the ninth bit, to the SCI.
You must write this register value before you write the SCIInput register value. A read
access to SCIInputH has no specified meaning.

bit 7..1 unused
19Simulator

Introduction
Sample12 I/O Simulation
bit 0 ninth bit send to the SCI

SCIOutput:

This is a non-memory-mapped register that receives a character sent from the SCI. A
write access to the SCDR triggers the value that the SCIOutput receives. The
SCIOutputH register receives the nint bit. A write access to SCIOutput has no
specified meaning.

bit 7..0 character send from the SCI

SCIOutputH:

This is a non-memory-mapped register that receives a character, the ninth bit, sent
from the SCI. A write access to SCIOutput has no specified meaning.

bit 7..1 unused

bit 0 ninth bit send from the SCI

SerialInput:

This non-memory-mapped register is an alias for the SCIInput register. It connects the
SCI to the terminal window, but does not support the ninth bit. A read access to
SerialInput has no specified meaning.

bit 7..0 data from terminal window to SCI

SerialOutput:

This non-memory-mapped register is an alias for the SCIOutput register. It connects
the SCI to the terminal window, but does not support the ninth bit. A write access to
SerialOutput has no specified meaning.

bit 7..0 data sent from SCI to terminal window

Loading the I/O Simulation Component
You can load I/O Simulation components from within a command, from a HI-WAVE
system command file (such as STARTUP.CMD), or from any command file.

Use the command OPENIO <ioname> to load the I/O component in HI-WAVE. For
example, writing:

OPENIO SAMPLE12

in STARTUP.CMD loads this I/O when you start HI-WAVE. Do not use the “.IO”
extension.
20 Simulator

Introduction
Sample12 I/O Simulation
Another way to load an I/O component is selecting Simulator> Load IOs... ,
from the HI-WAVE main menu, then choosing the I/O component from the list that
appears.

Refer to the HI-WAVE main Manual for further details.

Programming in Bank Windows

Assembler Programming
If you program in assembler, implement your code in sections to be mapped to the
appropriate page, in the .PRM file. Your source file code should have the structure that
Listing 1.3 shows.

Listing 1.3 Example of Assembler Source Code for Programming in Bank
Windows

XDEF Func1, Func2, main

Page1Code: section
Func1:
 ...
 RTS

Page2Code: section
Func2:
 ...
 RTS

UnpagedCode: section
main:
 ...
 CALL Func1,PAGE(Func1)
 CALL Func2,PAGE(Func2)
 ...
 ...

Assemble your file with the Code Generation option Banked Memory Model. As
Listing 1.4 shows, the system places the Page1Code and Page2Code sections in the
PAGE_1 and PAGE_2 bank windows of the .PRM file.
21Simulator

Introduction
Sample12 I/O Simulation
Listing 1.4 Example of Parameter File for Programming in Bank Windows

LINK my_appli.abs
NAMES
 my_appli.o
END

SECTIONS
 MY_RAM = READ_WRITE 0x2010 TO 0x23FF;
 MY_STK = READ_WRITE 0x2400 TO 0x24FF;
 NO_BANKED_ROM = READ_ONLY 0xC000 TO 0xFEFF;
 PAGE_1 = READ_ONLY 0x18000 TO 0x1BFFF;
 PAGE_2 = READ_ONLY 0x28000 TO 0x2BFFF;
PLACEMENT
 .data INTO MY_RAM;
 .text INTO NO_BANKED_ROM;
 .stack INTO MY_STK;
 Page1Code INTO PAGE_1;
 Page2Code INTO PAGE_2;
 UnpagedCode INTO NO_BANKED_ROM;
END
INIT main
VECTOR ADDRESS 0xFFFE main

C/C++ Programming
If you program in C/C++, compile your file with the Code Generation option
Banked Memory Model, and link your application with the ansib.lib and
start12b.o libraries (for the banked memory model). For C++, you also must link
the cppb.lib library. Listing 1.5 shows a .PRM file for HC12DG128 application,
where the default ROM is in page 2 and page 4, using the banked memory model. For
any application, be sure to locate your code properly in a Flash address range.

Listing 1.5 Example PRM File for HC12DG128

LINK my_appli.abs

NAMES my_appli.o ansib.lib cppb.lib start12b.o END
SECTIONS
 MY_RAM = READ_WRITE 0x2010 TO 0x23FF;
 MY_ROM = READ_ONLY 0xC000 TO 0xFEFF;
 PAGE_2 = READ_ONLY 0x28000 TO 0x2BFFF;
 PAGE_4 = READ_ONLY 0x48000 TO 0x4BFFF;
PLACEMENT
22 Simulator

Introduction
Simulated I/O Ports of the MC68HC12A4 CPU
 _PRESTART, STARTUP,
 ROM_VAR, STRINGS,
 NON_BANKED, COPY INTO MY_ROM;
 DEFAULT_RAM INTO MY_RAM;
 MyPage, DEFAULT_ROM INTO PAGE_2, PAGE_4;
END
STACKSIZE 0x50
VECTOR ADDRESS 0xFFFE _Startup /* set reset vector IN FLASH on _Startup
*/

Simulated I/O Ports of the MC68HC12A4
CPU

This section explains the simulated features of the MC68HC12A4 CPU in HIWAVE.
The simulator implements all features according to [1].

Register Block
Table 1.3 shows the register block functionality. You can move all I/O registers,
according to the INITRG (Register Block Mapping) at offset $11 inside of the register
block.

Table 1.3 MC68HC12A4 Register Block

Lite Integration Module
The simulator simulates many functions of the Lite Integration Module (LIM),
including:

• Interrupt handling

• Watchdog

• Periodic Interrupt

General restrictions:

Register Name Register Address Initial Value Remarks
INITRG 0x0011 0x00
23Simulator

Introduction
Simulated I/O Ports of the MC68HC12A4 CPU
• The simulator does not distinguish normal from special mode. Accordingly, it
allows all write accesses, as if the chip were in special mode.

• Table 1.4 on page 24 includes restrictions relative to special registers and single
bits of registers.

LIM Simulated Registers
 Table 1.4 on page 24 shows the LIM Simulated Registers.

Table 1.4 LIM Simulated Registers

Standard Timer Module (TIM)
All functions of the timer module TIM are simulated.

General restrictions:

• The HPRIO register [$001F] may be written to if the I mask in the CPU condition
code register CCR is set. This fact is not simulated.

• The external timer output occurs at the PORTT register. This is done for testing
purposes only and will be disabled in future versions.

Register
Name

Register
Address

Initial
Value Remarks

CLKCTL 0x0047 0x00 LCKF, PLLON, PLLS, BCSC, BCSB, BCSA: These CLKCTL
bits control settings of the PLL. But the simulator does not
simulate the PLL, so values of these bits have no effect.

RTICTL 0x0014 0x00 RSWAI: The simulator does not support the CPU Clock stop,
so this bit of the RTICTL register has no effect.
RSBCK: The simulator does not simulate background mode,
so this bit of the RTICTL register has no effect.

RTIFLG 0x0015 0x00

COPCTL 0x0016 0x0F CME, FCME, FCM: The simulator does not support these
COPCTL bits; writing to these bits has no effect.

COPRST 0x0017 0x00

INTCR 0x001E 0x60 The simulator does not distinguish normal from special
mode.
IRQE: The implementation allows any write access.
In normal mode, there should be only one write to this
register.
In special mode, the system should ignore the first write
access.

HPRIO 0x001F 0xF2 The system may write to the HPRIO register if the I mask in
the CPU condition code register CCR is set. The simulator
does not simulate this fact.
24 Simulator

Introduction
Simulated I/O Ports of the MC68HC12A4 CPU
• Restrictions considering special registers and single bits of registers are
mentioned in Table 1.5.

For descriptions of all simulated actions, see [1], chapter 13.

TIM Simulated Registers
 Table 1.5 shows all TIM Simulated Registers

Table 1.5 TIM Simulated Registers
Register

Name
Register
Address

Initial
Value Remarks

TIOS 0x0080 0x00

CFORC 0x0081 0x00

OC7M 0x0082 0x00

OC7D 0x0083 0x00

TCNT_H 0x0084 0x00

TCNT_L 0x0085 0x00

TSCR 0x0086 0x00 TSWAI: The simulator does not support the CPU Clock stop,
so setting this bit has no effect.
TSBCK: The simulator does not simulate background mode,
so this bit of the TSCR register has no effect.

TQCR 0x0087 0x00

TCTL1 0x0088 0x00

TCTL2 0x0089 0x00

TCTL3 0x008A 0x00

TCTL4 0x008B 0x00

TMSK1 0x008C 0x00

TMSK2 0x008D 0x30 TPU: This bit controls a pull-up resistor or a pin. But the
simulator does not have real pins, so setting this bit has no
effect.
TDRB: This bit controls the output drive of a pin. But the
simulator does not have real pins, so setting this bit has no
effect.

TFLG1 0x008E 0x00

TFLG2 0x008F 0x00

TC0_H 0x0090 0x00
25Simulator

Introduction
Simulated I/O Ports of the MC68HC12A4 CPU
Serial Communication Interface SCI
You should implement the SCI module as a separate class, because there are several
almost-identical instances of this class.

Supported Features
Table 1.6 shows the SCI supported features.

TC0_L 0x0091 0x00

TC1_H 0x0092 0x00

TC1_L 0x0093 0x00

TC2_H 0x0094 0x00

TC2_L 0x0095 0x00

TC3_H 0x0096 0x00

TC3_L 0x0097 0x00

TC4_H 0x0098 0x00

TC4_L 0x0099 0x00

TC5_H 0x009A 0x00

TC5_L 0x009B 0x00

TC6_H 0x009C 0x00

TC6_L 0x009D 0x00

TC7_H 0x009E 0x00

TC7_L 0x009F 0x00

PACTL 0x00A0 0x00

PAFLG 0x00A1 0x00

PACNT_H 0x00A2 0x00

PACNT_L 0x00A3 0x00

TIMTST 0x00AD 0x00 TCBYP, PCBYP: The simulator does not support these
TIMTST bits; writing to them has no effect. (These bits have
meaning only for chip testing in special mode.)

PORTT 0x00AE 0x00

DDRT 0x00AF 0x00

Register
Name

Register
Address

Initial
Value Remarks
26 Simulator

Introduction
Simulated I/O Ports of the MC68HC12A4 CPU
Table 1.6 SCI Supported Features
Abbr Full Name Implemented Meaning

Baud Rate Control

SBRx Baud Rate Bit transmittal follows current baud rate settings

BTST Reserved for internal tests Ignored

BSPL Reserved for internal tests Ignored

BRLD Reserved for internal tests Ignored

Control Register

LOOP LOOP Mode The LOOP mode determines SCI connection to the outer world.
As this SCI is simulated, there is no connection to simulate.

WOM
S

Wired Or Mode Special feature of LOOP mode, not simulated

RSRC Receiver Source Special feature of LOOP mode, not simulated

M
Mode

8 or 9 data bits Supported (different timing, 9th bit)

WAKE Wakeup by Address Mark/
Idle

Not supported

ILT Idle Line Type Considered in the Idle Line Detection

PE Parity Enabled Not simulated

PT Parity Type Not simulated

TIE Transmit Interrupt Enable Supported

TCIE Transmit Complete
Interrupt Enable

Supported

RIE Receive Interrupt Enable Supported

ILIE Idle Line Interrupt Enable Supported

TE Transmitter Enable Transmission process stops if this bit is clear

RE Receiver Enable Receive process stops if this bit is clear. As the input register is
not part of the simulation, it still receives stimuli.

RWU Receiver Wake Up Control Not supported

SBK Send Break Upon the first set of the SBK Flag, the transmitter starts sending
10 (11 if M bit is set) 0 values. The counter will be set only if the
flag was cleared previously. After the counter sends the required
number of 0 bits, it continues send 0 bits as long as the SBK flag
remains set.

Status Registers

TDRE Transmit Data Register
Empty Flag

The system sets this flag upon the move of the value to be
transmitted from the transmit data register to the serial shift
register.
27Simulator

Introduction
Simulated I/O Ports of the MC68HC12A4 CPU
The simulator use non-memory-mapped registers to simulate SCI connection to the
outer world. The simulator buffers all values sent to the input registers, then simulates
receipt from another SCI (with maximum speed and no transmission errors). If the
buffer contains no values, the simulator simulates an empty input line. All these sent
values are available in the output registers, which Table 1.7 on page 28 lists. Other
modules can subscribe to these registers to receive the sent values.

Table 1.7 Input, Output, Serial Output Registers
.

TC Transmit Complete Flag The system sets this flag if the transmission of one value ends,
but no other value is yet in the transmit data register.

RDRF Receive Data Register Full
Flag

The system sets this flag upon the complete read of a value and
the clearing of RDRF.

IDLE Idle Line Detection Flag The system sets this flag after a period without any input as
stated in [3]. The system considers the ILT flag.

OR Overrun Error Flag The system sets this flag if the receipt of value ends, but the
processor has not yet read the value.

NF Noise Error Flag Not supported, as no physical transmission takes place.

FE Framing Error Flag Not supported, as no physical transmission takes place.

PF Parity Error Flag Not supported, as no physical transmission takes place.

RAF Receiver Active Flag Supported and cleared only when going into idle mode.
Detection of a false start bit does not clear this flag, as no
physical transmission takes place.

Data Register

R8 Receive Bit 8 Supported

T8 Transmit Bit 8 Supported

Rx/Tx Receive/Transmit Bit x Supported, with autoclear feature

Name Meaning Comment
Input Adds a value to be received. The system takes the 9th bit

from the last value written to InputH.
Read has no specified meaning

InputH 9th Input bit; must be written before Input.
Read has no specified meaning

Output Contains the last value sent. A notification is sent every time
a new value is written.
Write has no specified meaning

OutputH 9th Output bit. Must be read immediately after Output.
Write has no specified meaning

Abbr Full Name Implemented Meaning
28 Simulator

Introduction
Simulated I/O Ports of the MC68HC12A4 CPU
Serial Peripheral Interface SPI
 Table 1.8 describes the SPI interface.

Table 1.8 SPI interface

SerialInput Alias for Input for SCI 0; connects SCI 0 to terminal window.
Only supports 8 bits.

Only available in SCI 0.

SerialOutput Alias for Output for SCI 0; connects SCI 0 to terminal
window. Only support 8 bits.

Only available in SCI 0

Abbr. Full Name Implemented Meaning
Control Register 1

SPIE Interrupt Enable Implemented

SPE System Enable If set, the simulator supports SPI functions

SWOM Port S Wired-OR Mode Not simulated, as no physical transmission takes place.

MSTR Master Slave Mode Select Master or Slave mode select

CPOL Clock Polarity Not simulated, as no physical transmission takes place.

CPHA Clock Phase Not simulated, as no physical transmission takes place.

SSOE Slave Select Output Enable Not simulated, as no physical transmission takes place.

LSBF LSB First Enable Not simulated, as no physical transmission takes place.

Control Register 2

PUPS Pull Up Port S Enable Not simulated, as no physical transmission takes place.

RDS Reduce Drive of Port S Not simulated, as no physical transmission takes place.

SPC0 Serial Pin Control 0 Selects Normal or Bidirectional transmission mode

Baud Rate Register

SPRx Baud Rate Register Baud rate of the SPI transmission

Status Register

SPIF Interrupt Request System sets SPIF after the eighth SCK cycle in a data transfer
and clearing by reading the Status Register, followed by a
read or write access to the SPI data register.

WCOL Write Collision Status
Register

System sets this flag upon the writing of new data to the Data
Register, during a serial data transfer.

MODF Mode Error Interrupt Status
Flag

Not simulated, as no physical transmission takes place.

Name Meaning Comment
29Simulator

Introduction
Simulated I/O Ports of the MC68HC12A4 CPU
Virtual register Value simulates the data register of a second SPI device. This permits
simulate communication with a second SPI device. The transmission can be in Normal
or a Bidirectional Mode; the device can be set as Master or Slave. See also “Technical
Summary MC68HC812A4” page 84, figure 24.

Key Wakeups
 Table 1.9 on page 30 defines the Key Wakeups.

Table 1.9 Key Wakeups

Data Register

SP0DR 8-bit Data Register for SPI data.

Port S

PORTS Port S Data Register Not simulated, as no physical transmission takes place.

Data Direction Register

DDRSx Data Direction for Port S Bit
x

Direction of Data. Only bits 4 and 5 have any effect.

Abbr. Full Name Implemented Meaning
Key Wakeups Registers

PORTD Port D Register Implemented

DDRD Port D Data Direction
Register

Implemented

KWIED Port D Interrupt Enable
Register

Implemented

KWIFD Port D Flag Register A falling edge on the associated pin sets each flag,
provided that the corresponding DDRD Register bit is
reset. To clear the flag, write one to the corresponding bit
of the KWIFD register.

PORTH Port H Register Implemented

DDRH Port H Data Direction
Register

Implemented

KWIEH Port H Interrupt Enable
Register

Implemented

KWIFH Port H Flag Register A falling edge on the associated pin sets each flag,
provided that the corresponding DDRH Register bit is
reset. To clear the flag, write one to the corresponding bit
of the KWIFH register.

Abbr. Full Name Implemented Meaning
30 Simulator

Introduction
Simulated I/O Ports of the MC68HC12A4 CPU
The simulator does not implement Port-D register mapping in wide expanded modes.
The simulator does not implement this mapping in special expanded narrow mode
with MODE Register bit EMD set.

Memory-Mapped Page Registers
 Table 1.10 describes the Memory-Mapped Page Registers.

Table 1.10 Memory Mapped Page Registers

PORTJ Port J Register Implemented

DDRJ Port J Data Direction Register Implemented

KWIEJ Port J Interrupt Enable
Register

Implemented

KWIFJ Port J Flag Register A falling edge on the associated pin sets each flag,
provided that the corresponding DDRJ Register bit is
reset. To clear the flag, write one to the corresponding bit
of the KWIFJ register.

KPOLJ Port J Polarity Register Implemented

PUPSJ Port J Pull-Up/Pulldown
Select Register

Not simulated, as there are no physical outputs.

PULEJ Port J Pull-Up/Pulldown
Enable Register

Not simulated, as there are no physical outputs.

Abbr. Full Name Implemented Meaning
Port F Register

CS Chip Select / General Purpose IO (Bit 0-
6)

Not implemented, as there are no physical
outputs.

Port G Register

ADDR Memory Expansion / General Purpose
IO (Bit 0-5)

Not implemented, as there are no physical
outputs.

Port F Data Direction Register

DDRF Data Direction Register Port F (Bit 0-6) Not implemented, as there are no physical
outputs.

Port G Data Direction Register

DDRG Data Direction Register Port G (Bit 0-5) Not implemented, as there are no physical
outputs.

Data Page Register

PDA Data Page Selects the data page

Abbr. Full Name Implemented Meaning
31Simulator

Introduction
Simulated I/O Ports of the MC68HC12A4 CPU
Current Non-Supported Modules

Non-Supported Modules
• A/D Converter Device

Register Block Address Map
 Table 1.11 shows the mapping of the Register Block Address.

Table 1.11 Register Block Address Map

Program Page Register

PPA Program Page Selects the program page

Extra Page Register

PEA Extra Page Selects the extra page

Window Defition Register

DWEN Data Window Enable Enables paging of data space

PWEN Program Window Enable Enables paging of program space

EWEN Extra Window Enable Enables paging of extra space

Memory Expansion Assignment Register

A21E-
A16E

Memory Expansion Assignment/
General Purpose IO

Not simulated, as there are no physical outputs.

Register
Block

Address Description Remarks
$0000-$000D Port access Not simulated: memory configuration controls correct timing

of memory accesses

$000E-$000F Reserved

$0010 Internal RAM mapping Register not simulated. Use the memory configuration
dialog box to specify simulated memory configuration.

0x0011 Register Block mapping Completely simulated

$0012-$0013 ROM/EEPROM
mapping

Registers not simulated. Use the memory configuration
dialog box to specify simulated memory configuration.

$0014-$0017 Clock Function Control Completely simulated

Abbr. Full Name Implemented Meaning
32 Simulator

Introduction
Simulated I/O Ports of the MC68HC12A4 CPU
$001E-$001F Interrupt Control &
Highest Priority I
Interrupt

Completely simulated

$0020-$002E Key Wakeup Control Completely simulated

$002F Reserved

$0030-$0033 Port Registers Currently not simulated

$0034-$0038 PAGE & memory
configuration Registers

Page Registers are simulated

$0039-$003B Reserved

$003C-$003F Chip select control
registers

Currently not simulated

$0040-$0043 PLL divider registers Currently not simulated

$0044-$0046 reserved

$0047 Clock Control Register Completely simulated

$0048-$005F Reserved

$0060-$0069 Analog to Digital
Converter

Currently not simulated

$006A-$006E Reserved

$006F PORTAD Currently not simulated

$0070-$007F ADRxH/reserved Currently not simulated

$0080-$009F Timer Registers Completely simulated

$00A0-$00A3 Pulse Accumulator
Control Registers

Completely simulated

$00A4-$00AC Reserved

$00AD-$00AF Timer Test, Timer Port Completely simulated

$00B0-$00BF reserved

$00C0-$00C7 SCI0 Completely simulated

$00C8-$00CF SCI1 Completely simulated

$00D0-$00D3 SPI Completely simulated

$00D4 Reserved

$00D5-$00D7 SPI, PORTS Completely simulated

$00D8-$00EF Reserved

$00F0-$00F3 EEPROM Control Currently not simulated

Register
Block

Address Description Remarks
33Simulator

Introduction
I/O Simulation HC12DA128 / HC12DG128
Related Documentation
The following documents are available from Motorola:

• MOTOROLA SEMICONDUCTOR TECHNICAL DATA, MC68HC812A4,
Technical Summary 16-Bit Microcontroller 1996

• CPU12 Reference Manual, Preliminary draft 15 July 95, AMCU Division, 1995,
MOTOROLA

I/O Simulation HC12DA128 / HC12DG128

Introduction
You can load this I/O Simulation component in HI-WAVE to simulate the I/O
mechanisms of HC12 derivatives HC12DA128 / HC12DG128.

This chapter explains derivative simulated mechanisms and implemented features that
match the real HC12 derivatives. It also explains simulation limitations. (For technical
specifications of all I/O mechanisms, please see MOTOROLA MC68HC912DA128/
MC68HC912DG128
16-Bit Microcontroller Technical Summary from MOTOROLA INC., 1997, 27
August 1997, rev1.0.)

Simulated HC12DA/DG128 I/O

Register Block
You can reassign the 1-kilobyte register block to any 2-kilobyte boundary within the
standard 64-kilobyte address space.

Related register:
INITRG Initialization of Internal Register Position Register, simulated.

$00F3-$01FF Reserved

Register
Block

Address Description Remarks
34 Simulator

Introduction
I/O Simulation HC12DA128 / HC12DG128
Memory Expansion Register
The system fully simulates this mechanism within CALL and RTC instructions for
banked memory model.

NOTE Also see the Programming in Bank Windows section of this
manual for application programs creation/adaptation.

Related register:
Program Page Register PPAGE: PIX2/PIX1/PIX0 bits memory defined but NOT
updated for HI_WAVE 5.x version of this I/O.

Enhanced Capture Timer
16-Bit Modulus Down-Counter Simulated.

8 Input Capture/Output Compare channels: all channels are NON-BUFFERED
and identical, except channel 7 with TCRE (Timer Counter Reset Enable) also
implemented.

You may configure PORTT pins individually as standard, parallel-port I/O pins, or as
timer pins. For standard parallel I/O pins, reading and writing are transparen, behavin
like reading/writing in typical RAM. For this configuration, assign the value 1 to the
channel x bit IOSx, in the TIOS register (for compare mode). Assign the value 0 to the
OMx and OLx bits of the TCL1 or TCTL2 register for Timer disconnected from
output pin logic mode/output action.

Capture Stimulation on PORTT. You can simulate rising- and falling-edge input
signals on PPORT with the Stimulat component (I/O Stimulation). In this case,
PORTT is bit accessible via non-memory-mapped I/O registers PORTTBit0 through
PORTTBit7.

The stimulation example below periodically stimulates the PORTT bit 5 to simulate an
input capture.
35Simulator

Introduction
I/O Simulation HC12DA128 / HC12DG128
def a = TIMER.PORTTBit5;

PERIODICAL 4000, 500:

 1000 a = 1;

 3000 a = 0;

END

Other user-designed I/O components also can set the PORTT bit value. Use
OP_SetValue(“RegisterBlock.PORTTBit5”,¶meter, NO_UPDATE);
function (with parameter.n = 0 | 1).

16-Bit Modulus Down-Counter

Related registers:

MCCTL: (16-bit modulus down counter control register) All bits simulated except
ICLAT bit.

MCCNT: (modulus down-counter count register) Fully simulated.

Capture / Compare Timer

TIOS: (timer input capture/output compare select) Simulated.

CFORC: (timer compare force register) Simulated.

TCNT: (timer count register) Simulated.

TCTL1 and TCTL2: (timer control register - output) Simulated.

TCTL3 and TCTL4: (timer control register - input) Simulated.

TMSK1: (timer interrupt mask) Simulated.

TMSK2: (timer interrupt mask) Simulated bits: TOI (overflow interrupt), TCRE
(timer counter reset enable), PR2,PR1,PR0 (prescaler)

TFLG1: (main timer interrupt flag) Simulated.

TFLG2: (main timer interrupt flag) Simulated.

TC0 to TC7: (timer input capture/output compare registers) Simulated.

Serial Communication Interface (SCI)
This I/O Device simulates the two SCI signals SCI0 and SCI1. The non-memory-
mapped registers SCIInput/SCIInputH and SerialInput send characters to the SCI
36 Simulator

Introduction
I/O Simulation HC12DA128 / HC12DG128
Module. The non-memory-mapped registers SCIOutput/SCIOutputH and
SerialOutput contain the characters sent from the SCI Module.

Related registers:
SC0BDH/SC1BDH: SCI Baud Rate Register High

bit 7 BTST Reserved for test functions, Not simulated

bit 6 BSPL Reserved for test functions, Not simulated

bit 5 BRLD Reserved for test functions, Not simulated

bit 4..0 SBR (SCI Baud Rate) Simulated

SC0BDL/SC1BDL: SCI Baud Rate Register Low

bit 7..0 SBR SCI Baud Rate, Simulated

SC0CR1/SC1CR1: SCI Control Register 1

bit 7 LOOPS LOOP Mode, Not simulated

bit 6 WOMS Wired Or Mode, Not simulated

bit 5 RSRC Receiver Source, Not simulated

bit 4 M Mode, Simulated

bit 3 WAKE Wakeup by Address Mark/Idle, Not simulated

bit 2 ILT Idle Line Type, Simulated

bit 1 PE Parity Enabled, Not simulated

bit 0 PT Parity Type, Not simulated

SC0CR2/SC1CR2: SCI Control Register 2

bit 7 TIE Transmit Interrupt Enable, Simulated

bit 6 TCIE Transmit Complete Interrupt Enable, Simulated

bit 5 RIE Receive Interrupt Enable, Simulated

bit 4 ILIE Idle Line Interrupt Enable, Simulated

bit 3 TE Transmitter Enable, Simulated

bit 2 RE Receiver Enable, Simulated

bit 1 RWU Receiver Wake Up Control, Not simulated

bit 0 SBK Send Break, Simulated
37Simulator

Introduction
I/O Simulation HC12DA128 / HC12DG128
SC0SR1/SC1SR1: SCI Status Register 1

bit 7 TDRE Transmit Data Register Empty Flag, Simulated

bit 6 TC Transmit Complete Flag, Simulated

bit 5 RDRF Receive Data Register Full Flag, Simulated

bit 4 IDLE Idle Line Detection Flag, Simulated

bit 3 OR Overrun Error Flag, Simulated

bit 2 NF Noise Error Flag, Not simulated

bit 1 FE Framing Error Flag, Not simulated

bit 0 PF Parity Error Flag, Not simulated

SC0SR2/SC1SR2: SCI Status Register 2

bit 7..1 unused

bit 0 RAF Receiver Active Flag, Simulated

SC0DRH/SC1DRH: SCI Data Register High

bit 7 R8 Receive Bit 8, Simulated

bit 6 T8 Transmit Bit 8, Simulated

SC0DRL/SC1DRL: SCI Data Register Low, contains the Receive-/Transmit Data
Bits 7..0.

SCIInput:

This is a non-memory-mapped register that sends a character to the SCI. A read access
to the SCDR can read this value. The system takes the ninth bit from the SCIInputH
register. A read access to SCIInput has no specified meaning.

bit 7..0 character send to the SCI

SCIInputH:

This is a non-memory-mapped register that sends a character, the ninth bit, to the SCI.
You must write this register value before you write the SCIInput register value. A read
access to SCIInputH has no specified meaning.

bit 7..1 unused

bit 0 ninth bit send to the SCI

SCIOutput:
38 Simulator

Introduction
I/O Simulation HC12DA128 / HC12DG128
This is a non-memory-mapped register that receives a character sent from the SCI. A
write access to the SCDR triggers the value that the SCIOutput receives. The
SCIOutputH register receives the ninth bit. A write access to SCIOutput has no
specified meaning.

bit 7..0 character send from the SCI

SCIOutputH:

This is a non-memory-mapped register that receives a character, the ninth bit, sent
from the SCI. A write access to SCIOutput has no specified meaning.

bit 7..1 unused

bit 0 ninth bit send from the SCI

SerialInput:

This non-memory-mapped register is an alias for the SCIInput register. It connects the
SCI to the terminal window, but does not support the ninth bit. A read access to
SerialInput has no specified meaning.

bit 7..0 data from terminal window to SCI

SerialOutput:

This non-memory-mapped register is an alias for the SCIOutput register. It connects
the SCI to the terminal window, but does not support the ninth bit. A write access to
SerialOutput has no specified meaning.

bit 7..0 data sent from SCI to terminal window

Displaying Special Registers
To visualize registers that the debugger Register component does not display, use
either of two methods:

• Displaying Registers with the RD Command.

• Displaying Registers with the Visualization Tool Component.

Displaying Registers with the RD Command.
Open the debugger Command Line component and use the RD command:
39Simulator

Introduction
I/O Simulation HC12DA128 / HC12DG128
Example:

in > RD PC
in>PC=0x450

NOTE For more information about the RD command, please see to the True
Time Simulator and real Time Debugger manual.

Displaying Registers with the Visualization Tool
Component.
Open the debugger Visualization Tool, then:

1. Create a new instrument (such as, value as text)

2. Set kind of port to Register

3. Set port to display to your register (for example, PC)

NOTE For more information about the Visualization Tool, please see to the
Visualization Tool manual.
40 Simulator

Index

Numerics
16-Bit Modulus Down-Counter 35, 36

A
Assembler Programming 21
auto configure 8
Auto on Access 9
Auto on Load 9

B
Banked Memory Model 21
banked memory model 16, 35
Banks 35
BRLD 18, 37
BSPL 18, 37
BTST 18, 37

C
C/C++ Programming 22
CALL 16, 35
Capture 35
Capture / Compare Timer 36
Capture Stimulation 35
CFORC 36
CLKCTL 17
Code Generation 21
Compare 35
COP 16
COPCTL 17
COPRST 17
CPU cycles (64 bits) 7

D
default.mem 7
Display of special register 39
Down-Counter 35
DPAGE 16

E
Enhanced Capture Timer 35
EPAGE 16

F
FE 19, 38

H
HPRIO 17

I
I/O loading 20
ICLAT 36
IDLE 19, 38
ILIE 18, 37
ILT 18, 37
IMPORTANT NOTICE 5
INITRG 16, 34
Input 35
INTCR 17

L
LIM 16
Lite Integration Module 16
Load IOs... 21
Loading the I/O 20
LOOPS 18, 37

M
M 18, 37
Manual Configuration 10
MCCNT 36
MCCTL 36
Memory Configuration Modes 9
Memory Expansion Register 16, 35
memory model 16, 35
misaligned access 8
Modulus Down-Counter 36

N
NF 19, 38

O
OP_SetValue 36
Open Memory Block 10
41Simulator

OPENIO 20
OR 19, 38
Output 35

P
PE 18, 37
PF 19, 38
pins 35
PIX0 35
PIX1 35
PIX2 35
PORTT 35
PORTTBitx 35
PPAGE 16, 35
PR0 36
PR1 36
PR2 36
Programming 21
Programming in Bank 21
PT 18, 37

R
R8 19, 38
RAF 19, 38
RDRF 19, 38
RE 19, 37
Register Block 16, 34
Release notes 5
RIE 18, 37
RSRC 18, 37
RTC 16, 35
RTICTL 17
RTIFLG 17
RWU 19, 37

S
Save Memory Block 10
SBK 19, 37
SBR 18, 37
SC0BDH 18, 37
SC0BDL 18, 37
SC0CR1 18, 37
SC0CR2 18, 37
SC0DRH 19, 38
SC0DRL 19, 38
42 Simulator

SC0SR1 19, 38
SC0SR2 19, 38
SC1BDH 18, 37
SC1BDL 18, 37
SC1CR1 18, 37
SC1CR2 18, 37
SC1DRH 19, 38
SC1DRL 19, 38
SC1SR1 19, 38
SC1SR2 19, 38
SCI 18
SCIInput 18, 19, 36, 38
SCIInputH 18, 19, 36, 38
SCIOutput 20, 38
SCIOutputH 20, 39
Serial Communication Interface 18, 36
SerialInput 18, 20, 36, 39
SerialOutput 20, 39
STARTUP.CMD 20
Stimulation 35

T
T8 19, 38
TC 19, 38
TCIE 18, 37
TCNT 36
TCRE 35, 36
TCTL1 36
TCTL2 36
TCTL3 36
TCTL4 36
TCx 36
TDRE 19, 38
TE 18, 37
TFLG1 36
TFLG2 36
TIE 18, 37
Timer 35, 36
TIOS 36
TMSK1 36
TMSK2 36
TOI 36

U
UNDEFSTACK 15
43Simulator

W
WAKE 18, 37
WINDEF 16
WOMS 18, 37
44 Simulator

	Introduction
	Read the Release Notes
	Simulator Target Component
	Introduction
	Simulator Setup
	Default Target Setup
	Loading the Simulator Target
	The HI-WAVE Status Bar for the Simulator

	Simulator Target Component Features
	Introduction
	Memory Configuration Dialog Box Features
	Access Details Dialog Box Features
	Output

	Default Memory Configuration File

	HC12 Simulator Specifics
	HC12 Registers
	Special Environment Variable

	Sample12 I/O Simulation
	Introduction
	Simulated I/O
	Register Block (A4, B32, D60, DA/DG128)
	Memory Expansion Registers (A4, DA/DG128)
	Lite Integration Module (A4, B32, D60, DA/DG128)
	Serial Communication Interface (A4, B32, D60, DA/ DG128)

	Loading the I/O Simulation Component
	Programming in Bank Windows
	Assembler Programming
	C/C++ Programming

	Simulated I/O Ports of the MC68HC12A4 CPU
	Register Block
	Lite Integration Module
	LIM Simulated Registers
	Standard Timer Module (TIM)
	TIM Simulated Registers

	Serial Communication Interface SCI
	Supported Features

	Serial Peripheral Interface SPI
	Key Wakeups
	Memory-Mapped Page Registers
	Current Non-Supported Modules
	Non-Supported Modules

	Register Block Address Map
	Related Documentation

	I/O Simulation HC12DA128 / HC12DG128
	Introduction
	Simulated HC12DA/DG128 I/O
	Register Block
	Memory Expansion Register
	Enhanced Capture Timer
	16-Bit Modulus Down-Counter
	Serial Communication Interface (SCI)

	Displaying Special Registers
	Displaying Registers with the RD Command.
	Displaying Registers with the Visualization Tool Component.

