
CodeWarrior®

Debugger

Because of last-minute changes to CodeWarrior, some of the information in this
manual may be inaccurate. Please read the Release Notes on the CodeWarrior

CD for the latest up-to-date information.

Revised: <9/2/03>

©Metrowerks, Inc., 1993, 2003; All Rights Reserved.

Documentation stored on the compact disks may be printed by licensee for personal use.
Otherwise, no part of this documentation may be reproduced or transmitted in any form by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage and retrieval system, without permission in writing from Metrowerks, Inc.

Metrowerks, the Metrowerks logo, and CodeWarrior are registered trademarks of Metrowerks,
Inc.

All other trademarks belong to their respective owners.

How to Contact Metrowerks:

U.S.A. Metrowerks Corporation
9801 Metric Blvd., Suite #100
Austin, TX 78758 - U.S.A.

Europe Metrowerks Europe
Riehenring 175 - CH-4058 Basel (Switzerland)

ASIA/PACIFIC Metrowerks Japan - Shibuya Mitsuba Building 5F - Udagawa-cho
20-11, Shibuya-ku - Tokyo 150-0042 Japan

World Wide Web http://www.metrowerks.com

Registration Information http://www.metrowerks.com/register
mailto:register@metrowerks.com

Desktop Technical Support http://www.metrowerks.com/support/desktop/
mailto:cw_support@metrowerks.com

Embedded Technical Support http://www.metrowerks.com/support/embedded/
U.S.A: mailto:cw_emb_support@metrowerks.com
Europe: mailto:support_europe@metrowerks.com
Asia/Pac mailto:j-emb-sup@metrowerks.com

Sales, Marketing, & Licensing mailto:sales@metrowerks.com

Ordering Voice: (800) 377–5416
Fax: (512) 873–4901

Table of Contents
Table of Contents

1 Important Notice 17
Copyrights . 17
Trademarks . 17
Warranty . 18

2 Overview 19
About This Guide . 19
Highlights . 20
Read the Release Notes . 20
Document Conventions . 20

3 Introduction 23
What Is the Simulator/Debugger? 23
What Is a Simulator/Debugger Application? 24
What Is a Simulator/Debugger Execution Framework? 25
Understanding the Simulator/Debugger Concept 26

The Simulator/Debugger Execution Framework 26
Objects and Services . 27
Framework Components . 27
Demo Version Limitations Components 28

4 Simulator/Debugger User Interface 29
Introduction. 29
Application Programs . 30
Start the Debugger . 30

Start the debugger from the IDE 30
Starting the Debugger from a Command Line 31

Simulator/Debugger Main Menu Bar 33
Simulator/DebuggerSimulator/Debugger Toolbar 33
Simulator/Debugger Status Bar 34
Object Info Bar of the Simulator/Debugger Components 34
Function of the Main Menu Bar 35

File Menu . 36
Debugger Manual DM–5

Table of Contents
View Menu . 39
Run Menu . 42
Target Menu . 45
Simulator Menu . 48
Component Menu . 56
Window Menu . 57
Help Menu . 58

Component Associated Menus 61
Component Main Menu . 61
Component Popup Menu . 61

Highlights of the User Interface 62
Smart User Interface: Activating Services with Drag and Drop 62
To Drag and Drop an Object 64
Drag and Drop Combinations 65
Selection Dialog Box . 69

5 Framework Components 71
Component Introduction . 71

CPU component . 71
Window components. 71
Target components . 72

Components Window . 72
General Component . 73

Adc_Dac component. 74
Assembly Component . 80
Command Line Component 86
Coverage Component . 91
DAC Component . 96
Data Component . 98
Memory Component . . 111
IT_Keyboard . . 122
Keyboard . 126
LCD Display Component 130
Monitor components . . 137
Push Buttons components 141
MicroC Component . 144
Module Component . 149
DM–6 Debugger Manual

Table of Contents
Procedure Component . 151
Profiler Component . 154
Programmable IO_Ports . 159
Recorder Component . 162
Register Component . . 166
Seven segments display component 171
SoftTrace Component . 175
Source Component . 178
Stimulation Component . 192
TestTerm Component . 195
Terminal Component . 201
Wagon Component . 205

Visualization Utilities . . 208
Analog Meter Component 209
Inspector Component . 211
IO LED Component . . 220
LED Component . 222
The Phone Component . . 224
VisualizationTool . 227

6 Control Points 244
Control points introduction . . 244
Breakpoints setting dialog . 246

Breakpoint Symbols . . 246
Description of the Dialog 247
Multiple selections in the dialog 248
Checking condition in dialog 248
Saving Breakpoints . 249

Define Breakpoints . . 251
Identify all Positions Where a Breakpoint Can Be Defined 251
Define a Temporary Breakpoint 252
Define a Permanent Breakpoint 253
Define a Counting Breakpoint 253
Define a Conditional Breakpoint 255
Delete a Breakpoint . 256
 Associate a Command with a Breakpoint 257

Watchpoints setting dialog . 259
Debugger Manual DM–7

Table of Contents
Description of the Dialog 259
Multiple selections in the dialog 260
Checking condition in the dialog 261

General Rules for Halting on a Control Point. 261
Define Watchpoints. . 262

Defining a Read Watchpoint 262
Defining a Write Watchpoint 263
Defining a Read/Write Watchpoint 264
Defining a Counting Watchpoint 264
Defining a Conditional Watchpoint 265
Deleting a Watchpoint . 267
Associate a Command with a Watchpoint 268

7 Debugger Commands 269
Simulator/Debugger Commands. 269

List of Available Commands 270
Definitions of Terms Commonly Used in Command Syntaxes 280
A . 282
ACTIVATE . 283
ADDCHANNEL . 283
ADCPORT . 284
ADDXPR . 284
ATTRIBUTES . 284
AT . . 296
AUTOSIZE . 297
BASE . 297
BC . . 298
BCKCOLOR. . 299
BD. . 300
BS . . 300
CALL . 303
CD. . 303
CF . . 304
CLOCK. . 307
CLOSE . . 307
COPYMEM . 307
CMDFILE. . 308
DM–8 Debugger Manual

Table of Contents
CPORT . . 308
CR . . 309
CYCLE . . 309
DASM . 310
DB. . 311
DDEPROTOCOL . . 312
DEFINE . 313
DELCHANNEL . 314
DETAILS . 315
DL . . 315
DUMP . 316
DW . 316
E . 317
ELSE. . 318
ELSEIF . . 318
ENDFOCUS . . 319
ENDFOR . 319
ENDIF . 320
ENDWHILE . . 320
EXECUTE . 321
EXIT . . 321
FILL . 321
FILTER . . 322
FIND . . 322
FINDPROC . 323
FOCUS . . 323
FOLD . 324
FONT . 325
FOR . 325
FPRINTF . 326
FRAMES . 326
G . 327
GO. . 327
GOTO . 328
GOTOIF . 328
GRAPHICS . 329
HELP . 329
Debugger Manual DM–9

Table of Contents
IF . 330
INSPECTOROUTPUT . . 331
INSPECTORUPDATE . . 331
ITPORT. . 332
ITVECT . 332
KPORT . . 333
LCDPORT . 333
LINKADDR . . 334
LF . . 334
LOAD . 335
LOADCODE . 337
LOADMEM . . 337
LOADSYMBOLS . 338
LOG . 338
LS . . 342
MEM. . 343
MS. . 344
NB. . 345
NOCR . 347
NOLF . 347
OPEN . 347
OPENFILE . 348
OPENIO . 348
OUTPUT . 349
P . 349
PAUSETEST. . 351
PBPORT . 351
PORT . 352
PRINTF. . 352
PTRARRAY . . 352
RD. . 353
RECORD . 354
REGBASE . 354
REGFILE . 355
REPEAT . 355
RESET . 355
RESETCYCLES . 356
DM–10 Debugger Manual

Table of Contents
RESETMEM. . 357
RESETRAM . . 358
RESETSTAT . . 358
RESTART . . 358
RETURN . 359
RS . . 359
S . 360
SAVE. . 361
SAVEBP . 361
SEGPORT. . 362
SET . 363
SETCOLORS . 363
SETCONTROL . 364
SETCPU . 364
SHOWCYCLES . 365
SLAY . 366
SLINE . 366
SMEM . 367
SMOD . 367
SPC . 368
SPROC . . 369
SREC . 369
STEPINTO . 370
STEPOUT. . 371
STEPOVER . 371
STOP. . 372
T . 373
TESTBOX . 373
TUPDATE. . 374
UNDEF . . 374
UNFOLD . 377
UNTIL . 377
UPDATERATE . . 378
VER . 378
WAIT . 379
WB . 380
WHILE . . 380
Debugger Manual DM–11

Table of Contents
WL . 381
WPORT. . 382
WW . 382
ZOOM . 383

8 True Time I/O Stimulation 384
Stimulation Program examples 384

Running an Example Program Without Stimulation 384
Example Program with Periodical Stimulation of a Variable 387
Example Program with Stimulated Interrupt 388
Example of a Larger Stimulation File 390

Stimulation Input File Syntax 393

9 Real Time Kernel Awareness 396
Real Time Kernel Awareness Introduction 396

Inspecting the state of a task 397
Task description language . 398
 Example of application . 400
Inspecting data structures of the Kernel 401
Register assignments for the RTK awareness. 402
OSEK Kernel Awareness . 402

OSEK ORTI . . 403
OSEK RTK Inspector component. 405

10 Environment 412
Debugger environment . 412

The Current Directory . 413
Global Initialization File (MCUTOOLS.INI) (PC only) 414

Local Configuration File (usually project.ini) 415
Configuration of the Default Layout for the Simulator/Debugger: the
PROJECT.INI File . 416
Paths . . 420
Environment Variable Details 422

ABSPATH . 423
ABSPATH: Absolute Path 423

DEFAULTDIR . 424
DEFAULTDIR: Default Current Directory 424

ENVIRONMENT . 425
ENVIRONMENT: Environment File Specification 425
DM–12 Debugger Manual

Table of Contents
GENPATH . 426
GENPATH: #include “File” Path 426

LIBRARYPATH . . 427
LIBRARYPATH: ‘include <File>’ Path 427

OBJPATH . 428
OBJPATH: Object File Path 428

TMP . 429
TMP: Temporary directory 429

USELIBPATH. . 430
USELIBPATH: Using LIBPATH Environment Variable 430

Searching order for sources files 431
Searching Order in the Simulator/Debugger for C source files (*.c, *.cpp). 431
Searching Order in the Simulator/Debugger for Assembly source files (*.dbg)
431
Searching Order in the Simulator/Debugger for object files (HILOADER) 431

Files of the Simulator/Debugger. 432

11 How To ... 435
How To Configure the Simulator/Debugger 435

How To Configure the Simulator/Debugger for Use from Desktop on Win 95,
Win 98,Win NT4.0 or Win2000 436

How To Start the Simulator/Debugger 436
How To Start the Simulator/Debugger from WinEdit 436

Automating startup of the Simulator/Debugger 437
How To Load an Application 439
How To Start an Application . 440
How To Stop an Application . 440
How To Step in the Application 441

How to step on Source Level 441
How to Step on Assembly Level 443

How To Work on Variables. . 443
How to Display Local Variable from a Function 444
How to Display Global Variable from a Module 444
How to Change the Format for the Display of Variable Value 445
How to Modify a Variable Value 446
Modify a Variable Value . 446
How to Get the Address Where a Variable is Allocated 447
How to Inspect Memory starting at a Variable Location Address 447
Debugger Manual DM–13

Table of Contents
How to Load an Address Register with the Address of a variable 447
How To Work on Register . 448

How to Change the Format of the Register display 448
How to Modify a Register Content 448
How to Get a Memory Dump starting at the Address where a Register is
pointing . . 450

How to Modify the content of a Memory Address 451
How to Consult Assembler Instructions Generated by a Source Statement . . 451
How To view Code . . 452
How to Communicate with the Application 453
About startup.cmd, reset.cmd, preload.cmd, postload.cmd 453

12 CodeWarrior Integration 455
Requirements . 455
Debugger Configuration . . 455

13 Debugger DDE capabilities 457
Debugger DDE Server . 457

DDE introduction . . 457
Debugger DDE implementation 457

14 Synchronized debugging through DA-C IDE 459
Requirements . 459
Configuring DA-C IDE for Metrowerks Tool Kit 459

Creating a new project . 460
Configure the working directories 460

Debugger Interface . . 471
Principle of Communication between DA-C IDE and Simulator/Debugger 472

Synchronized debugging. . 477
Troubleshooting . 477

15 Full Chip Simulation 505
Introduction. . 505
Supported Derivatives. . 507
Communication Modules . 514

BF (Byteflight) . . 514
BLCD (J1850 Bus) . 514
MSCAN (Motorola Scalable CAN) 514
IIC (Inter-IC Bus) . . 514
DM–14 Debugger Manual

Table of Contents
SCI (Serial Communication Interface) 514
SPI (Serial Peripheral Interface) 517

Converter Modules . . 517
ATD (Analog to Digital Converter) 517

Memory Modules . 519
EETS (EEPROM) . . 519
FTS (Flash) . 519

Misc. Modules . 519
VREG (Voltage Regulator) 519

Port I/O Modules . 520
MEBI (Multiplexed External Bus Interface) 520
PIM (Port Integration Module) 520

Timer Modules . 520
CRG (Clock and Reset Generator) 520
ECT (Enhanced Capture Timer) 522
Not memory mapped registers 525
PWM (Pulse Width Modulator) 526
TIM (Timer Module) . 528

16 Full Chip Simulation Tutorials 529
Guess the number . 529

Step 1 - Environment setup 529
Step 2 - Creating the project 529
Step 3 - ‘Target CPU’ window 531
Step 4 - ‘Bean Selector’ window 532
Step 5 - ‘Project Panel’ window 532
Step 6 - ‘Bean Inspector AS1:AsynchroSerial’ window 533
Step 7 - Generation of driver code 534
Step 8 - Verification of the files created 534
Step 9 - Entering the user code 535
Step 10 - Run . 536

PWM Channel 0 . . 537
Step 1 - Environment setup 537
Step 2 - Creating the project 537
Step 3 - ‘Target CPU’ window 538
Step 4 - Creating the PWM Bean 538
Step 5 - ‘Project Panel’ window 538
Debugger Manual DM–15

Table of Contents
Step 6 - ‘Bean Inspector PWM8.PWM. 539
Step 7 - Generation of driver code 539
Step 8 - Verification of the files created 539
Step 9 - Entering the user code 540
Step 10 - Run . 540

17 Scripting 543
The Component Object Model Interface 543

Parameters: . 543
Return Values: . 544

Manual Registration . 544
Scripting Example . 544
Remote Scripting another HI-WAVE 545

COM_START . 545
COM_EXIT . 545
COM_EXE . 546

18 Appendix 547
Messages in Status Bar . 547

Status Messages . 547
Stepping, Breakpoint and Watchpoints Messages 548
 CPU Specific Messages . 549
Target Specific Messages 550
More Simulator Peculiar Messages: Memory Access Messages 551

EBNF Notation . 552
Introduction to EBNF . 552
“Expression” Definition in EBNF 554

Constant Standard Notation . 557
Register Description File . 558
OSEK ORTI File Sample . 561
Bug Reports . 568
Technical Support . 571

E-mail . 571
FAX . 571
Support by MAIL . . 571
Internet . 572

Index 573
DM–16 Debugger Manual

1
Important Notice

This chapter provides information about Copyright, Trademarks and
warranty.

Click any of the following links to jump to the corresponding section of
this chapter:

• Copyrights

• Trademarks

• Warranty

Copyrights
Metrowerks CodeWarrior copyright ©1993–2003 by Metrowerks, Inc. and
its licensors.

All rights reserved.

Documentation stored on the compact disk(s) may be printed by licensee
for personal use. Except for the foregoing, no part of this documentation
may be reproduced or transmitted in any form by any means, electronic or
mechanical, including photocopying, recording, or any information storage
and retrieval system, without permission in writing from Metrowerks, Inc.

Trademarks
Metrowerks, the Metrowerks logo, CodeWarrior, PowerPlant, and
Metrowerks University are registered trademarks of Metrowerks Inc.
CodeWarrior Constructor, Geekware, PowerParts, and Discover
Programming are trademarks of Metrowerks Inc.

All other trademarks and registered trademarks are the property of their
respective owners.

Important Notice
Warranty
ALL SOFTWARE AND DOCUMENTATION ON THE COMPACT
DISK(S) ARE SUBJECT TO THE LICENSE AGREEMENT.

Warranty
While every effort has been made to ensure the accuracy of all information
in this document, Metrowerks assumes no liability to any party for any loss
or damage caused by errors or omissions or by statements of any kind in
the Simulator/Debugger user’s guide, its updates, supplements, or special
editions, whether such errors are omissions or statements resulting from
negligence, accident, or any other cause. Metrowerks further assumes no
liability arising out of the application or use of any product or system
described here; nor any liability for incidental or consequential damages
arising from the use of this document and the related product.

Metrowerks disclaims all warranties regarding the information contained
herein, whether expressed, implied or statutory, including implied
warranties of merchantability or fitness for a particular purpose.

Metrowerks reserves the right to make changes without further notice to
any products herein to improve reliability, function or design.
DM–18 Debugger Manual

2
Overview

This chapter provides an overview of the structure from the debugger
documentation.

About This Guide
This document includes information to become familiar with the
Simulator/Debugger, to use all functions and help you understand how to
use this environment. This document is divided into the following chapters:

• The Introduction chapter introduces the Simulator/Debugger concept.

• The Simulator/Debugger User Interface chapter provides all details
about the Simulator/Debugger user interface environment i.e., menus,
toolbars, status bars and drag and drop facilities.

• The Framework Components chapter contains descriptions of each
basic component and visualization utility.

• The Debugger Commands chapter describes and provides examples of
all Commands line Commands.

• The True Time I/O Stimulation chapter explains the principle and
provides examples on the Stimulation component.

• The Real Time Kernel Awareness chapter contains descriptions of the
Real Time concept and related applications.

• The Environment chapter contains information for defining the
application environment.

• The Control Points chapter is dedicated to the control points and
associated dialogs.

• The How To ... chapter provides answers for common questions and
describes how to use advanced features of the Simulator/Debugger.

• The CodeWarrior Integration chapter explains how to configure the
Simulator/Debugger for use with CodeWarrior.

• The Debugger DDE capabilities describe the debugger DDE features.

• The Synchronized debugging through DA-C IDE chapter explains the
use of tools with the DA-C IDE from RistanCase

Overview
Highlights
• The Appendix contains information about all the Simulator/Debugger
messages, the EBNF notation and how to get Technical Support.

• The “Index” contains all keywords for the Simulator/Debugger.

Highlights
• True 32-bit application

• Powerful features for embedded debugging

• Special features for real time embedded debugging

• Powerful features for True Time Simulation

• Various and Same look Target Interfaces

• User Interface

• Versatile and intuitive drag and drop functions between components

• Folding and unfolding of objects like functions, structures, classes

• Graphical editing of user defined objects

• Visualization functions

• Smart interactions with objects

• Extensibility function

• Both Powerful Simulation & Debugger

• Show Me How Tool

• GUI (graphical user interface) version including command line

• Context sensitive help

• Configurable GUI with Tool Bar

• Smooth integration into third party tools

• Supports HIWARE and ELF/Dwarf Object File Format and Motorola
S-Records

Read the Release Notes
Before you use a tool such as the Debugger, read the release notes. They
contain important last-minute information about new features and technical
issues or incompatibilities that may not be included in the documentation.

Document Conventions
In this section, you will find terms and styles used in this document.
DM–20 Debugger Manual

Overview
Document Conventions
General terms

• Choose.

This term is used to select an item from a menu or a list/combo box.

• Check.

This term is used to select a check box item.

• Uncheck.

This term is used to deselect a selected check box item.

All keyboard keys are given as , , , , ,
etc.

Also the left mouse button is and considered as a key.

• Key1 + Key2.

When you have to press two keys at the same time. The “+ “ sign means
that Key1 is held down while Key2 is pressed. Example: +

 , + .

Mouse operations

• Click

The word “click” means click the left mouse button once.

• Right-click

This “click” operation is done with the right mouse button.

• Double-click

This is a double “click” operation.

• + Key, example: + .

This means that you press and hold down the left mouse button while you
press the specified key. When the key has been pressed, you can unclick.

• Drag.
Debugger Manual DM–21

Overview
Document Conventions
This means that you press and hold down the left mouse button while you
drag the mouse. If you perform this operation on an object that has been
designed to be dragged, this object will move with the mouse arrow and
drop when you unclick the mouse.

• Unclick.

When you release the left mouse button after a drag operation or when you
have completed a “ + Key” operation.

Font styles

• Bold

Words in bold are menu items and entries.

• Courier

This font is used for filenames and pathnames, commands, command
syntaxes and examples.

Examples

C:\HIWAVE\PROJECT.INI

 in>Memory < ADR on

Menu Paths

When asked to follow specific selections/entries in menus and submenus,
the following selections are given in a list of items separated by the “>”
separator. Example: Choose Window > Options > Autosize. Here you
click Window in the Simulator/Debugger main menu bar, drag the mouse
to the Options submenu then check or uncheck Autosize.

Others

NOTE Notes provide important and helpful information on any subject.
DM–22 Debugger Manual

3
Introduction

This chapter is an introduction to the Simulator/Debugger from
Metrowerks used in 8/16 bit embedded applications.

Click any of the following links to jump to the corresponding section of
this chapter:

• What Is the Simulator/Debugger?

• What Is a Simulator/Debugger Application?

• What Is a Simulator/Debugger Execution Framework?

• Understanding the Simulator/Debugger Concept

What Is the Simulator/Debugger?
The Simulator/Debugger is a member of the tool family for Embedded
Development. It is a Multipurpose Tool that you can use for various tasks
in the embedded system and industrial control world. Some typical tasks
are:

• Simulation and debugging of an embedded application.

• Simulation and debugging of real time embedded applications.

• Simulation and/or cross-debugging of an embedded application.

• Multi-Language Debugging: Assembly, C and C++

• True Time Stimulation

• User Components creation with the Peripheral Builder

• Simulation of a hardware design (e.g., board, processor, I/O chip).

• Building a target application using an object oriented approach.

• Building a host application controlling a plant using an object oriented
approach.

Introduction
What Is a Simulator/Debugger Application?
What Is a Simulator/Debugger Application?
A Simulator/DebuggerSimulator/Debugger Application contains the
Simulator/Debugger Engine and a set of debugger components bound to
the task that they should perform (for example a simulation and debugging
session). The Simulator/Debugger Engine is the heart of the system. It
monitors and coordinates the tasks of the components. Each Simulator/
Debugger Component has its own functionality (e.g., source level
debugging, profiling, I/O stimulation).

You can adapt your Simulator/Debugger application to your specific needs.
Integrating or removing the Simulator/Debugger Components is very easy.
You can also choose a default configuration, refer to Figure 3.1.

You can add additional Simulator/Debugger Components (for example, for
simulation of a specific I/O peripheral chip) and integrate them with your
Simulator/Debugger Application.

You can also open several components of the same type.
DM–24 Debugger Manual

Introduction
What Is a Simulator/Debugger Execution Framework?
Figure 3.1 Example of Simulator/Debugger Application for Simulation and
Debugging

What Is a Simulator/Debugger Execution
Framework?

Since the Simulator/Debugger is a Multipurpose Tool you have to use the
components according to the task you want to run. In other words, you
either build a Simulator/Debugger Execution Framework or use a default
one.

Each Execution Framework is built with selected components. Since the
Simulator/Debugger is an open and extendable system, you can write and
add your own debugger components if needed (for example a debugger
component for a specific I/O simulation).
Debugger Manual DM–25

Introduction
Understanding the Simulator/Debugger Concept
Understanding the Simulator/Debugger Concept
This section provides an overview of the Simulator/Debugger concept.

The Simulator/Debugger Execution Framework

Any Simulator/Debugger based task you create (for example: testing and
debugging a target application, running a visualization application), has a
specific debugger “Execution Framework”. A Simulator/Debugger
Execution Framework is a set of user selected and configured Framework
Components, such as shown in Figure 3.2 and Figure 3.3. The debugger
engine is always present.

Figure 3.2 Example of Execution Framework for Simulation.
DM–26 Debugger Manual

Introduction
Understanding the Simulator/Debugger Concept
Figure 3.3 Example of Execution Framework for Cross Debugging.

Objects and Services

An object provides one or more services. For example an object of a
variable type holds values in a specific range. An object like the Bus
Analyzer component graphically displays the bus state. An I/O Simulation
object provides the behavior of the corresponding hardware peripheral.
Providing services is the ultimate goal of objects and that is why they are
created and used. An object has a state, behavior and identity.

Framework Components

A Simulator/Debugger Framework Component is an object that you can
integrate or remove from an Execution Framework. Each Framework
component belongs to a service class.

Examples of Framework Components:

• Simulator/Debugger Engine

• CPU Simulator

• Source Level Debug Component

• Assembly Debug Component

• Profiler

• Bus Analyzer

• I/O Simulation Components

• True Time Stimulation Components
Debugger Manual DM–27

Introduction
Understanding the Simulator/Debugger Concept
If any hardware component is present (e.g., target board, I/O peripheral,
emulators), it is also considered to be a Framework component.

Demo Version Limitations Components

When the Simulator/Debugger is started in demo mode or with an invalid
engine license, then all components that are protected with FLEXlm are in
demo mode. The limitations of all components are described in their
respective chapter.
DM–28 Debugger Manual

4
Simulator/Debugger User
Interface

This chapter describes the Simulator/Debugger User Interface.

Click any of the following links to jump to the corresponding section of
this chapter:

• Introduction

• Application Programs

• Start the Debugger

• Simulator/Debugger Main Menu Bar

• Simulator/Debugger Status Bar

• Simulator/Debugger Status Bar

• Object Info Bar of the Simulator/Debugger Components

• Function of the Main Menu Bar

• Component Associated Menus

• Highlights of the User Interface

Introduction
The Simulator/Debugger main window acts as a container for windows of
all other components. Additionally, it provides a global menu bar, a tool
bar, a status bar for status information, and object information bars for
several components.

The main window manages the layout of the different component windows
(Window menu of the Simulator/Debugger application). Component
windows are organized as follows:

• Tiled arrangement

Simulator/Debugger User Interface
Application Programs
• Auto tiled, component windows are automatically resized when the
main window is resized

• Overlapped

• Icon (windows that are currently minimized).

Application Programs
After installation, all executable programs are placed in the `prog'
subdirectory, e.g. if you installed the software in `C:\Metrowerks' on a
PC, all program files are located in C:\Metrowerks\PROG (for details
refer to installation guide).

The following list provides an overview of the files used for C/C++
debugging.

hiwave.exe Debugger executable file

hibase.dll Debugger main function dll

elfload.dll Debugger loader dll

*.wnd Debugger component

*.tgt Debugger target file

*.cpu Debugger CPU awareness file

Start the Debugger
This section explains how to start the debugger from the IDE or a
command line.

Start the debugger from the IDE

You can start the debugger from the IDE by clicking the Debug button
(Figure 4.1) from the project window.
DM–30 Debugger Manual

Simulator/Debugger User Interface
Start the Debugger
Figure 4.1 IDE Debug button.

Starting the Debugger from a Command Line

You can start the HI-WAVE debugger from a (DOS) command line. The
command syntax is shown below:

HIWAVE.EXE [<AbsFileName> {-<options>}]

where AbsFileName is the name of the application to load in the debugger.
Options may be introduced by a minus character.

Options are:

• -T=<time>: test mode. The debugger will terminate after the specified
time (in seconds). The default value is 300 seconds, e.g:

c:\Metrowerks\prog\hiwave.exe -T=10

The debugger will terminate after 10 seconds.

• -Target=<targetname> sets the specified target, e.g.:

C:\Metrowerks\prog\hiwave.exe
c:\Metrowerks\demo\hc12\sim\fibo.abs -w -Target=sim

Starts the debugger, sets the simulator target, and loads fibo.abs file.

• -W: wait mode - will wait even when a <exeName> is specified, e.g. -
W

• -Instance=%currentTargetName: defines a build instance name.
When a build instance is defined, the same one will be used e.g.

 c:\Metrowerks\prog\hiwave.exe -Instance=%currentTargetName

now if you attempt to start the debugger again, the existing instance of the
debugger is brought to the foreground.
Debugger Manual DM–31

Simulator/Debugger User Interface
Start the Debugger
• -Prod: specifies the project directory and/or project file to be used at
start-up: -Prod = <fileName> e.g.

c:\Metrowerks\prog\hiwave.exe -Prod=c:\demoproject\test.pjt

• -Nodefaults: will not load the default layout (see section 4 of the
Project file Activation) e.g.

c:\Metrowerks\prog\hiwave.exe -nodefaults

• -Cmd specifies a command to be executed at start-up: -cmd = '"'
{characters} e.g.

c:\Metrowerks\prog\hiwave.exe -cmd="open recorder"

• -C: specifies a command file to be executed at start-up: -c <cmdFile>
e.g.

c:\Metrowerks\prog\hiwave.exe -c c:\temp\mycommandfile.txt

• -ENVpath: "-Env" <Environment Variable> "=" <Variable Setting>,
this option sets an environment variable. This environment variable
may be used to overwrite system environment variables e.g.

c:\Metrowerks\prog\hiwave.exe -EnvOBJPATH=c:\sources\obj

NOTE Options are not case sensitive.

Order of commands

Commands specified by options are executed in the following order:

1. Load (activate) the project file (see below). If the project file is not
specified, “project.ini”is used by default.

2. Load <exeFile> if available and start* running unless option |(W)
was specified

3. Execute command file <cmdFile> if specified

4. Execute command if specified

5. *Start running unless option |(W) was specified
DM–32 Debugger Manual

Simulator/Debugger User Interface
Simulator/Debugger Main Menu Bar
NOTE * In version 6.0 of the debugger, the loaded program is started after all
command and command files are executed.

WARNING! The function Open in the File menu will interpret any file without an
.ini extension as a command file and not a project file.

Example

C:\Metrowerks\PROG \DEMO\TEST.ABS -w -d

Simulator/Debugger Main Menu Bar
This Menu Bar, shown in Figure 4.2 is associated with the main function of
the debugger application, target, and selected windows.

Figure 4.2 Debugger Main Menu Bar

NOTE You can select menu commands by pressing the ALT key to select the
menu bar and press the key corresponding to the underlined letter in the
menu command.

Simulator/DebuggerSimulator/Debugger Toolbar
This toolbar is the default toolbar. Most menu commands have a related
shortcut icon on the debugger toolbar.

Figure 4.3 identifies each default icon.
Debugger Manual DM–33

Simulator/Debugger User Interface
Simulator/Debugger Status Bar
Figure 4.3 The Debugger Toolbar

A tool tip is available when you point the mouse at an icon.

Simulator/Debugger Status Bar
The status bar at the bottom of the debugger window, shown in Figure 4.4
contains a context sensitive help line for target specific information, e.g.,
number of CPU cycles for the Simulator target and execution status. All
messages that appear in the status bar are described in Messages in Status
Bar.

Figure 4.4 The Debugger Status Bar

Object Info Bar of the Simulator/Debugger
Components

The object info bar of the debugger window, as shown in Figure 4.5,
provides information about the selected object.
DM–34 Debugger Manual

Simulator/Debugger User Interface
Function of the Main Menu Bar
Figure 4.5 Object Info Bar of Debugger Window Components

Function of the Main Menu Bar
Table 4.7 describes menus entries available in the menu bar (Figure 4.6).

Figure 4.6 Debugger Main Menu

Table 4.1 Description of the Main Menu Entries

Menu entry Description

File Contains entries to manage debugger
configuration files.

View Contains entries to configure the toolbar.

Run Contains entries to monitor a simulation or
debug session.

Target Contains entries to select the debugger
target.

Component Contains entries to select and configure
extra component window

Data Contains entries to select Data component
functions.

Window Contains entries to set the component
windows.
Debugger Manual DM–35

Simulator/Debugger User Interface
Function of the Main Menu Bar
File Menu

The File menu shown in Table 4.8 is dedicated to the debugger project.

Figure 4.7 File Menu

Table 4.2 describes File Menu entries.

Table 4.2 File Menu Description

Help A standard Windows Help menu.

Menu entry Description

Menu entry Description

New Creates a new project.

Load
Application

Loads an executable file (or debugger target if
nothing is selected).
DM–36 Debugger Manual

Simulator/Debugger User Interface
Function of the Main Menu Bar
You can shortcut some of these functions by clicking toolbar icons (refer to
the Simulator/DebuggerSimulator/Debugger Toolbar section).

Preferences dialog

With this dialog (Figure 4.8) it is possible to set up environment variables
for the current project. New variables will be saved in the current project
file after clicking the OK button.

...\restart.abs

...\await.abs

...

Recent applications list

Open
Configuration

Opens the debugger project window. You can
load a project file .PJT or .INI. Additionally
you can load an existing .HWC file
corresponding to a debugger configuration file.
You can load a project .INI file containing
component names, associated window
positions and parameters, window parameters
(fonts, background colors, etc.), target name
e.g., Simulator and the .ABS application file to
load.

Save
Configuration

Saves the project file

Save Project As Opens the debugger project window to save the
project file under a different path and name,
and format (PJT; INI...).

Configuration Opens the Preferences dialog to set
environment variables for current project.

1.Project.ini
2.Test.ini
3...

Recent project file list

Exit Quits the Simulator/Debugger.

Menu entry Description
Debugger Manual DM–37

Simulator/Debugger User Interface
Function of the Main Menu Bar
NOTE The corresponding menu entry (File>Configuration) is only
enabled if a project file is loaded.

Figure 4.8 Preferences Dialog

The preference panel contains the following controls:

• A list box containing all environment variables, you can select a
variable with the mouse or Up/Down buttons.

• Command Line Arguments: Command line options are displayed. You
can add, delete, or modify options, and specify a directory with the
browse button (...).

• A second list box containing all variables defined in the corresponding
Environment section. Select a variable with the mouse or Up/Down
buttons.

• OK: Changes are confirmed and saved in current project file.

• Cancel: Closes dialog box without saving changes.

• Help: Opens the help file.
DM–38 Debugger Manual

Simulator/Debugger User Interface
Function of the Main Menu Bar
View Menu

In this menu (Figure 4.9) you can choose to show or hide the toolbar, status
bar, window component titles and headlines (headlines are also called
Object Info Bar of the Simulator/Debugger Components in this document).
You can select smaller window borders and customize the toolbar. Table
4.3 describes the View Menu entries.

Figure 4.9 View Menu

Table 4.3 View Menu Description

Menu entry Description

Toolbar Check / uncheck Toolbar if you want to
display or hide it.

Status Bar Check / uncheck Status Bar if you want to
display or hide it.

Hide Tile Check / uncheck Hide Title if you want to hide
or display the window title.

Hide Headline Check / uncheck Hide Headline if you want to
hide or display the headline.

Small Borders. Check / uncheck Small Border if you want to
display or hide small window borders.

Customize Opens the debugger Customize Toolbar
window.
Debugger Manual DM–39

Simulator/Debugger User Interface
Function of the Main Menu Bar
Customizing the Toolbar

You can customize the toolbar of the Simulator/Debugger, adding and
removing component shortcuts and action shortcuts. You can also insert
separators to separate icons. Almost all functions in View, Run and
Window menus are available as shortcut buttons, as shown in Figure 4.10.

Figure 4.10 Customize Toolbar Dialog

Select the desired shortcut button in the Available buttons list box and
click Add to install it in the toolbar.

Select a button in the Toolbar buttons list box and click Remove to
remove it from the toolbar.

Demo Version Limitations

The default toolbar cannot be configured.

Examples of view menu options

Figure 4.11 shows a Typical component window display.
DM–40 Debugger Manual

Simulator/Debugger User Interface
Function of the Main Menu Bar
Figure 4.11 Typical component window display

Figure 4.12 shows a component window without a title and headline.

Figure 4.12 Component window without title and headline

Figure 4.13 shows a component window without a title and headline, and
with a small border.
Debugger Manual DM–41

Simulator/Debugger User Interface
Function of the Main Menu Bar
Figure 4.13 Component window without title and headline, and with small
border

Figure 4.14 shows a component window without headline and small border

Figure 4.14 Component window without headline and small border

Run Menu

This menu, shown in Figure 4.15 is associated with the simulation or a
debug session. You can monitor a simulation or debug session from this
menu. Run menu entries are described in Table 4.4.
DM–42 Debugger Manual

Simulator/Debugger User Interface
Function of the Main Menu Bar
Figure 4.15 Run Menu

Table 4.4 Run Menu Description
.

Menu entry Description

 Start/Continue Starts or continues execution of the loaded application from the
current program counter (PC) until a breakpoint or watchpoint
is reached, runtime error is detected, or user stops the
application by selecting Run -> Halt.

Shortcut:

 Restart Starts execution of the loaded application from its entry point.

Shortcut: + +

 Halt Interrupts and halts a running application. You can examine the
state of each variable in the application, set breakpoints,
watchpoints, and inspect source code.

Shortcut:
Debugger Manual DM–43

Simulator/Debugger User Interface
Function of the Main Menu Bar
 Single Step If the application is halted, this command performs a single step
at the source level. Execution continues until the next source
reference is reached. If the current statement is a procedure call,
the debugger “steps into” that procedure. The Single Step
command does not treat a function call as one statement,
therefore it steps into the function.

Shortcut:

 Step Over Similar to the Single Step command, but does not step into
called functions. A function call is treated as one statement.

Shortcut:

 Step Out If the application is halted inside of a function, this command
continues execution and then stops at the instruction following
the current function invocation. If no function calls are present,
then the Step Out command is not performed.

Shortcut: +

 Assembly Step If the application is halted, this command performs a single step
at the assembly level. Execution continues for one CPU
instruction from the point it was halted. This command is
similar to the Single Step command, but executes one machine
instruction rather than a high level language statement.

Shortcut: +

 Assembly Step Over Similar to the Step Over command, but steps over subroutine
call instructions.

Shortcut: +

Menu entry Description
DM–44 Debugger Manual

Simulator/Debugger User Interface
Function of the Main Menu Bar
You can provide shortcuts for some of these functions using the toolbar
(refer to Simulator/DebuggerSimulator/Debugger Toolbar section and
Customizing the Toolbar section).

You can set breakpoints and watchpoints in Source and Assembly
component windows.

NOTE For more information about breakpoints and watchpoints, refer to the
Control Points chapter.

Target Menu

This menu entry (Figure 4.16) appears between the Run and Component
menus when no target is specified in the PROJECT.INI file and no target
has been set. The Target name is replaced by an actual target name when
the target is set. To set the target, select Component>Set Target... Refer to
the Component Menu section.

 Assembly Step Out If the application is halted inside a function, this command
continues execution and stops on the CPU instruction following
the current function invocation. This command is similar to the
Step Out command, but stops before the assignment of the
result from the function call.

Shortcut: +: +

 Breakpoints... Opens the Breakpoints Setting dialog and displays the list of
breakpoints defined in the application (refer to Control Points
chapter).

 Watchpoints... Opens the Watchpoints Setting dialog box and displays the list
of watchpoints defined in the application (refer to Control
Points chapter).

Menu entry Description
Debugger Manual DM–45

Simulator/Debugger User Interface
Function of the Main Menu Bar
Figure 4.16 Target Menu

Table 4.5 describes the Target Menu entries.

Table 4.5 Target Menu Description

Loading a Target

Use the Target menu to load a debugger target.

1. Choose Target>Load...

The message shown in Figure 4.17 is displayed:

Figure 4.17 Load Target Dialog

At this point, the target is not set and you cannot load any application
(.ABS) file.

2. Click Yes to install a target in the debugger.

The debugger searches for all targets installed. The dialog shown in Figure
4.18 is opened. Click Cancel to stop the process and skip target detection.

Menu entry Description

 Load Loads a Simulator/Debugger target.

 Reset Resets the current Simulator/Debugger target.
DM–46 Debugger Manual

Simulator/Debugger User Interface
Function of the Main Menu Bar
Figure 4.18 Scan Target Dialog

The Set Target dialog shown in Figure 4.19 is opened.

Figure 4.19 Set Target Dialog

3. Use the Processor list popup to select the desired processor.

4. Use the Target Interface list popup to select the desired target.

A text panel displays information about the selected Target.

WARNING! When a target can not be loaded, the combo box displays the path where
you should install missing dll.

5. Click Ok to load target in debugger.
Debugger Manual DM–47

Simulator/Debugger User Interface
Function of the Main Menu Bar
NOTE For more information about which target to load and how to set/reset a
target, refer to the Simulator/Debugger target manuals e.g., “SIMULATOR
Target, CPU Awareness & True-Time Simulation”.

Targets file

All targets are associated with a window file with .tgt extension.

Example: The Simulator Target

The default target of the Simulator/Debugger is the Simulator (in
Configuration of the Default Layout for the Simulator/Debugger: the
PROJECT.INI File: TARGET=SIM). However, choose Component>Set
Target... if you want to open the dialog to set a different target.

Simulator Menu

This menu, shown in Figure 4.20 is associated with the simulator target,
and allows you to load an application in the Simulator/Debugger. Table 4.6
describes the Simulator menu entries.

Figure 4.20 Simulator Menu

Table 4.6 Simulator Menu Description

Menu entry Description

 Load Opens the Load Executable Window menu.
DM–48 Debugger Manual

Simulator/Debugger User Interface
Function of the Main Menu Bar
Simulators File

The simulator is associated with a window with a .sim extension.

Load Executable File dialog

Choose Simulator>Load... to open the Load Executable File window,
shown in Figure 4.21, then set the load options and choose a Simulation
Execution Framework (a .ABS application file).

 Reset Resets the simulator target.

Configure Opens the Memory Configuration Window.

Reset Ram Resets the RAM to `undefined'

Reset Mem Resets all configured memory to `undefined'

Reset Statistic Resets the statistical data

Load I/Os Opens I/O components

Close I/Os Closes I/O components

Command Files Opens the Command File Dialog

Menu entry Description
Debugger Manual DM–49

Simulator/Debugger User Interface
Function of the Main Menu Bar
Figure 4.21 Load Executable File dialog

Description of the Load Options.

These three Radio buttons allow you to select which part of the executable
file will be loaded:

• Load Code + Symbols. This will load the application code followed by
the debug information (symbols) to allow debugging of the application.

• Load Symbols only. If this option is selected, only debugging
information is loaded. This can be used if the code is already loaded
into the target system or programmed into a non-volatile memory
device (ROM/FLASH).

• Load Code only. Only the application code will be loaded into the
target system. This option can be used if no debugging is needed.

Description of the Code Verifications Options.

These four Radio buttons allow you to choose between four levels of code
verification.

• None. The loader does not verify anything. The loader behaves the
same as previous versions of the debugger.
DM–50 Debugger Manual

Simulator/Debugger User Interface
Function of the Main Menu Bar
• First bytes. The loader reads back a maximum of the first four bytes of
a block that have been written to memory. This option is not as secure
as the next option but is faster.

• All bytes. The loader reads back all bytes of a block that have just been
written to memory. File loading is almost twice as long. However,
verification is done on the whole file.

• Read back only. With this option the loader does not load data to
memory. However, it reads back the current data matching the same
areas from the target memory and compares all data with the data from
the selected file.

NOTE If "Load Symbols only" is selected, verification radio buttons are grayed
and NO verification is performed.

TIP If verification fails, a message is displayed, giving the address where a
difference occurred.

For more details on the Simulator functions, consult the True Time
Simulator Manual.

Dialog Load I/Os

This dialog box, shown in Figure 4.22 allows you to open an I/O device
(peripheral) simulation. The Browse button allows you to specify a
location for the I/O.

Figure 4.22 Open IO Dialog
Debugger Manual DM–51

Simulator/Debugger User Interface
Function of the Main Menu Bar
NOTE I/O simulation components are either designed by Metrowerks and
delivered with the tool-kit installation or designed by the user with the
Peripheral Builder.

Target Interface Command File Dialog

Each page of this property sheet dialog, shown in Figure 4.23 corresponds
to an event on which a command file (refer toAbout startup.cmd,
reset.cmd, preload.cmd, postload.cmd)can be automatically run from the
Simulator/Debugger: Startup Command File,Reset Command File, Preload
Command File, Postload Command File, Setcpu Command File, Vppon
Command File and Vppoff Command File.

Figure 4.23 Target Interface Command File Dialog

The command file in the edit box is executed when the corresponding
event occurs.

Click the Browse button to set the path and name of the command file.

The Enable Command File check box allows you to enable/disable a
command file on an event. By default, all command files are enabled:

• the default Startup command file is STARTUP.CMD,

• the default Reset command file is RESET.CMD,

• the default Preload command file is PRELOAD.CMD,

• the default Postload command file is POSTLOAD.CMD.
DM–52 Debugger Manual

Simulator/Debugger User Interface
Function of the Main Menu Bar
• the default Setcpu command file is SETCPU.CMD.

• the default Vppon command file is VPPON.CMD.

• the default Vppoff command file is VPPOFF.CMD.

NOTE Startup settings performed in this dialog are stored for subsequent
debugging sessions in the [Simulator] section of the PROJECT file using
the variable CMDFILE0.

TIP When a CPU is set, the settings performed in this dialog are stored for
subsequent debugging sessions in the [Simulator XXX] (where XXX is
the processor) section of the PROJECT file using variables CMDFILE0,
CMDFILE1,... CMDFILEn.

Startup Command File

The Startup command file is executed by the Simulator/Debugger after
the Target Interface has been loaded.

The Startup command file full name and status (enable/disable) can be
specified either with the CMDFILE STARTUP Command Line
command or using the Startup property page of the Target Interface
Command File Dialog dialog.

By default the STARTUP.CMD file located in the current project directory
is enabled as the current Startup command file.

Reset Command File

The Reset command file is executed by the Simulator/Debugger after the
reset button, menu entry or Command Line command has been selected.

The Reset command file full name and status (enable/disable) can be
specified either with the CMDFILE RESET Command Line command or
using the Reset property page of the Target Interface Command File
Dialog dialog.

By default the RESET.CMD file located in the current project directory is
enabled as the current Reset command file.
Debugger Manual DM–53

Simulator/Debugger User Interface
Function of the Main Menu Bar
Preload Command File

The Preload command file is executed by the Simulator/Debugger before
an application is loaded to the target system through the Target Interface.

The Preload command file full name and status (enable/disable) can be
specified either with the CMDFILE PRELOAD Command Line
command or using the Preload property page of the Target Interface
Command File Dialog dialog.

By default the PRELOAD.CMD file located in the current project directory
is enabled as the current Preload command file.

Postload Command File

The Postload command file is executed by the Simulator/Debugger after
an application has been loaded to the target system through the Target
Interface.

The Postload command file full name and status (enable/disable) can be
specified either with the CMDFILE POSTLOAD Command Line
command or using the Postload property page of the Target Interface
Command File Dialog dialog.

By default the POSTLOAD.CMD file located in the current project
directory is enabled as the current Postload command file.

Setcpu Command File

The Setcpu command file is executed by the Simulator/Debugger after a
CPU has been set or modified in the simulator (this occurs when the setcpu
command is used or when a file is loaded in the simulator and the
corresponding cpu is not set).

The Setcpu command file full name and status (enable/disable) can be
specified either with the CMDFILE SETCPU Command Line command
or using the Setcpu property page of the Target Interface Command File
Dialog.

By default the SETCPU.CMD file located in the current project directory is
enabled as the current Setcpu command file.
DM–54 Debugger Manual

Simulator/Debugger User Interface
Function of the Main Menu Bar
Vppon Command File

The Vppon command file is executed by the Simulator/Debugger before
"Non Volatile Memory" is erased or before a file is programmed in "Non
Volatile Memory" to the target system through the target interface Non
Volatile Memory Control dialog (Flash... menu entry) or FLASH
PROGRAM/ERASE commands from Flash Programming utilities.

The Vppon command file full name and status (enable/disable) can be
specified either with the CMDFILE VPPON Command Line command or
using the Vppon property page of the Target Interface Command File
Dialog dialog.

By default the VPPON.CMD file located in the current project directory is
enabled as the current Vppon command file.

This command file can be used, for example, to enable a programming
voltage by software.

NOTE This command file is not available for all target interfaces.

Vppoff Command File

The Vppoff command file is executed by Simulator/Debugger after a "Non
Volatile Memory" has been erased or after a file has been programmed in
"Non Volatile Memory" to the target system through the target interface
Non Volatile Memory Control dialog (Flash... menu entry) or FLASH
PROGRAM/ERASE commands from Flash Programming utilities.

The Vppoff command file full name and status (enable/disable) can be
specified either with the CMDFILE VPPOFF Command Line command
or using the Vppoff property page of the Target Interface Command File
Dialog dialog.

By default the VPPOFF.CMD file located in the current project directory is
enabled as the current Vppoff command file.

NOTE This command file is not available for all target interfaces.
Debugger Manual DM–55

Simulator/Debugger User Interface
Function of the Main Menu Bar
Component Menu

Select Component>Open... to load an extra component window, shown in
Figure 4.24, that has not been loaded by the Simulator/Debugger at startup.
The popup dialog presents a set of different components that are introduced
in Framework Components.

Figure 4.24 Component Menu

Table 4.7 describes the Component Menu entries.

Table 4.7 Component Menu Description

Menu entry Description

Open Loads an extra component window that has
not been loaded by the Simulator/Debugger at
startup. The popup dialog presents a set of
different components that are introduced in
Components Window.

Set Target Sets the Simulator/Debugger target e.g.,
Simulator.

 Fonts Opens a standard Font Selection dialog, where
you can set the font used by Simulator/
Debugger components.

 Background
Color

Opens a standard Color Selection dialog,
where you can set the background color used
by the Simulator/Debugger component
windows.
DM–56 Debugger Manual

Simulator/Debugger User Interface
Function of the Main Menu Bar
TIP For a readable display, we recommend using a proportional font (e.g.,
Courier, Terminal, etc.).

Demo Version Limitations

Only 2 I/O components can be loaded at a time.

Window Menu

In this menu, shown in Figure 4.25, you can set the component windows
general arrangement. The Submenu Window>Options is shown in Figure
4.26 and the Submenu Window>Layout in Figure 4.27.

Figure 4.25 Window Menu

Figure 4.26 Window>Options SubMenu

Figure 4.27 Window>Layout SubMenu

Table 4.8 specifies the Window Menu entries.
Debugger Manual DM–57

Simulator/Debugger User Interface
Function of the Main Menu Bar
Table 4.8 Window Menu Description

NOTE Autosize and Component Menu are checked by default.

Help Menu

This is the debugger help menu (Figure 4.28). Table 4.9 shows menu
entries.

Figure 4.28 Help Menu

Menu entry Description

Cascade Option to arrange all open windows in cascade
(so they overlap).

Tile Option to display all open windows in tile
format (non overlapping).

Arrange Icons Arranges icons at the bottom of windows.

 Options -
Autosize

Component windows always fit into the
debugger window whenever you modify the
debugger window size.

Options -
Component
Menu

When a component window is selected, the
associated menu is displayed in the main
menu. For example if you select the Source
window, the Source menu is displayed in the
main menu.

Layout - Load/
Store

Option to Load / Store your arrangements
from a .HWL file.
DM–58 Debugger Manual

Simulator/Debugger User Interface
Function of the Main Menu Bar
Table 4.9 Help Menu Description

About Box

Select Help>about to display the about box, shown in Figure 4.29. The
about box lists directories for the current project, system information,
program information, version number and copyright. It contains
information to send for Registration: you can copy this information and
send to license@metrowerks.com.

Menu entry Description

Help Topics Choose Help Topics in the menu for online
help or if you need specific information about a
Simulator/Debugger topic.

About HI-
WAVE

Information about the debugger version and
copyright, and license information is displayed.
Debugger Manual DM–59

Simulator/Debugger User Interface
Function of the Main Menu Bar
Figure 4.29 About Box

For more information on all components, click on the Extended
Information button.

Two hypertext links allow you to send an E-mail for a license request or
information, and open the Metrowerks internet home page.

Click on OK to close this dialog.
DM–60 Debugger Manual

Simulator/Debugger User Interface
Component Associated Menus
Component Associated Menus
Each component loaded by default or that you have loaded has two menus.
One menu is in the Simulator/Debugger main menu and the other one is a
popup menu (also called “Associated Popup Menu”) that you can open by
right-clicking in a window component. Note that before right-clicking, the
component window has to be active.

Component Main Menu

This menu, shown in Figure 4.30 is always between the Component entry
and the Window entry of the Simulator/Debugger main menu. It contains
general entries of the current active component. You can hide this menu by
unchecking Window>Options>Component Menu.

Figure 4.30 Example of Component Main Menu

Components File

Each component is a windows file with a .wnd extension

Component Popup Menu

The popup menu is a dynamic context sensitive menu. It contains entries
for additional facilities available in the current component. Depending on
Debugger Manual DM–61

Simulator/Debugger User Interface
Highlights of the User Interface
the position of the mouse in the window and what is being pointed to,
popup menu entries will differ.

Figure 4.31 Example of Component Popup Menu

For example, if you point the mouse to a breakpoint, menu options allow
you to delete, enable, or disable the breakpoint.

However some entries are identical with entries in the main menu.

Highlights of the User Interface
This section describes the main features of the Debugger user interface.

Smart User Interface: Activating Services with
Drag and Drop

You can activate services by dragging objects from one component to
another. This is known as drag and drop, an example is shown in Figure
4.32.
DM–62 Debugger Manual

Simulator/Debugger User Interface
Highlights of the User Interface
Figure 4.32 Drag and Drop Example

When the destination of a dragged item is not possible, the following
cursor symbol is displayed:

Example:

You can activate the display of coverage information on assembler and C
statements by dragging the chosen procedure name from the Coverage
Component to the Source and Assembly components (Figure 4.33).

Figure 4.33 Dragging the chosen procedure name from the “Coverage
Component,” to the Source.

You can display the memory layout corresponding to the address held in a
register by dragging the address from the Register Component to the
Memory Component.
Debugger Manual DM–63

Simulator/Debugger User Interface
Highlights of the User Interface
To Drag and Drop an Object
1. Select the component containing the object you want to drag.

2. Make sure the destination component where you want to drag the
object is visible.

3. Select the object you want.

4. Press and hold the left mouse button, drag the object onto the
destination component and then release the mouse button.
DM–64 Debugger Manual

Simulator/Debugger User Interface
Highlights of the User Interface
Drag and Drop Combinations

Dragging and dropping objects is possible between different component
windows and are introduced in each component description section.

See below, the possible combinations of drag and drop between
components and associated actions. When additional components are
available, new combinations might be possible and described in the
component’s information manual.

Dragging from the Assembly Component

Table 4.10 summarizes dragging from the Assembly Component.

Table 4.10 Dragging from the Assembly Component

Dragging from the Data Component

Table 4.11 summarizes dragging from the Data Component.

Table 4.11 Dragging from the Data Component

Destination
compo.

Action

Command Line The Command Line component appends the address of the
pointed to instruction to the current command.

Memory Dumps memory starting at the selected instruction PC. The
PC location is selected in the memory component.

Register Loads the destination register with the PC of the selected
instruction.

Source Source component scrolls up to the source statements and
highlights it.
Debugger Manual DM–65

Simulator/Debugger User Interface
Highlights of the User Interface
NOTE It is not possible to drag an expression defined with the Expression Editor.
The “forbidden” cursor is displayed.

Destination
compo.

Action

Command Line Dragging the name appends the address range of the variable to
the current command in the Command Line Window. Dragging
the value appends the variable value to the current command in
the Command Line Window.

Memory Dumps memory starting at the address where the selected
variable is located. The memory area where the variable is
located is selected in the memory component.

Register Dragging the name loads the destination register with the
address of the selected variable. Dragging the value loads the
destination register with the value of the variable.

Source Dragging the name of a global variable in the source Windows
display the module where the variable is defined and the source
text is searched for the first occurrence of the variable and
highlighted.
DM–66 Debugger Manual

Simulator/Debugger User Interface
Highlights of the User Interface
Dragging from the Source component

Table 4.12 summarizes dragging from the Source Component.

Table 4.12 Dragging from the Source component

Dragging from the Memory component

Table 4.13 summarizes dragging from the Memory Component.

Table 4.13 Dragging from the Memory component

Destination
compo.

Action

Assembly Displays disassembled instructions starting at the first high
level language instruction selected. The assembler instructions
corresponding to the selected high level language instructions
are highlighted in the Assembly component

Register Loads the destination register with the PC of the first
instruction selected.

Memory Displays the memory area corresponding with the high level
language source code selected. The memory area
corresponding to the selected instructions are greyed in the
memory component.

Data A selection in the Source window is considered an expression
in the Data window, as if it was entered through the Expression
Editor of the Data component. (please see Data Component and
Expression Editor)

Destination
component.

Action

Assembly Displays disassembled instructions starting at the first address
selected. Instructions corresponding to the selected memory
area are highlighted in the Assembly component.
Debugger Manual DM–67

Simulator/Debugger User Interface
Highlights of the User Interface
Dragging from the Procedure component

Table 4.14 summarizes dragging from the Procedure Component.

Table 4.14 Dragging from the Procedure component

Dragging from the Register component

Table 4.15 summarizes dragging from the Register Component.

Command Line Appends the selected memory range to the Command Line
window

Register Loads the destination register with the start address of the
selected memory block.

Source Displays high level language source code starting at the first
address selected. Instructions corresponding to the selected
memory area are greyed in the source component.

Destination
component.

Action

Destination
compo.

Action

Data > Local Displays local variables from the selected procedure in the data
component

Source Displays source code of the selected procedure. Current
instruction inside the procedure is highlighted in the Source
component.

Assembly The current assembly statement inside the procedure is
highlighted in the Assembly component.
DM–68 Debugger Manual

Simulator/Debugger User Interface
Highlights of the User Interface
Table 4.15 Dragging from the Register component

Dragging from the Module component

Table 4.16 summarizes dragging from the Register Component.

Table 4.16 Dragging from the Module component

Selection Dialog Box

This dialog box is used in the Simulator/Debugger for opening general
components or source files. You can select the desired item with the arrow
keys or mouse and then the OK button to accept or CANCEL to ignore
your choice. The HELP button opens this section in the Help File.

This dialog box is used for the following selections:

Destination
compo.

Action

Assembly Assembly component receives an address range, scrolls to the
corresponding instruction and highlights it.

Memory Dumps memory starting at the address stored in the selected
register. The corresponding address is selected in the memory
component.

Destination
compo.

Action

Data > Global Displays global variables from the selected module in the data
component

Memory Dumps memory starting at the address of the first global
variable in the module. The memory area where this variable is
located is selected in the memory component.

Source Displays source code from selected module.
Debugger Manual DM–69

Simulator/Debugger User Interface
Highlights of the User Interface
Set Target

Open IO component

Open Source File

Open Module

Components Window
DM–70 Debugger Manual

5
Framework Components

This Chapter introduces the concepts of the Debugger Components.

Click any of the following links to jump to the corresponding section of
this chapter:

• Component Introduction

• Components Window

• General Component

• Visualization Utilities

Component Introduction
The Simulator/Debugger kernel includes various components.

CPU component

CPU components handle processor specific properties such as register
naming, instruction decoding (disassembling), stack tracing, etc. A specific
implementation of the CPU module has to be provided for each processor
type that is supported in the simulator/debugger. The CPU related
component is not introduced in this section. However, this system
component is reflected in the Register component, Memory component,
and all other Target dependent components. The appropriate CPU
component is automatically loaded when loading a framework (.ABS file).
Therefore it is possible to mix frameworks for different MCUs. The
Simulator/Debugger automatically detects the MCU type and loads the
appropriate CPU component, if available on your environment.

Window components

The Simulator/Debugger window components are small applications
loaded into the debugger framework at run-time. Window components can

Framework Components
Components Window
access all global facilities of the debugger engine, such as the target
interface (to communicate with different targets), and the symbol table.
The Simulator/Debugger window components are implemented as
dynamic link libraries (DLLs) with extension.WND. These components
are introduced in this section.

Target components

Different debugger targets are available. For example, you can set a CPU
Simulator to simulate your .ABS application files, and also set a
background debugger.

One target shall be loaded at any time. Either a simulator or a driver
implements the link to the target system. The simulator implements the
CPU and memory simulation and may be extended by I/O simulation.
Different targets are available to connect the target system (hardware) to
the Simulator/Debugger on the Host computer. For example, the target
may be connected using an Emulator, a ROM monitor or any other
supported device.

NOTE Target components are introduced in their respective manual.

Components Window
Use the Component menu to load all framework components.

1. Choose Component>Open...

2. In the dialog shown in Figure 5.1, select the desired component.
DM–72 Debugger Manual

Framework Components
General Component
Figure 5.1 Open Window Component Dialog

TIP To open more than one component, select multiple components.

3. Click OK to open the selected component.

The Icon panel shows you components with large icons.

The List panel shows you components with small icons.

The Details panel shows you components with their description.

Demo Version Limitations

Maximum number of components opened at a time is limited to 8.

General Component
This chapter describes features of the debugger components.
Debugger Manual DM–73

Framework Components
General Component
Adc_Dac component

The Adc_Dac component window, shown in Figure 5.2 consists of a
Digital to Analogic and an Analogic to Digital converter.

Figure 5.2 Adc_Dac Component

Description

This component is made of 4 units as shown in Figure 5.3:

• A signal generator

• An analogic to digital converter (ADC)

• A digital to analogic converter (DAC)

• A visualization unit
DM–74 Debugger Manual

Framework Components
General Component
Figure 5.3 Internal converter module organization and coupler
connections.

The 4th unit shows the value of the initial analogic signal and value of the
DAC output analogic signal.

Communication with the mainframe is done through 3 parallel ports of 8
bits:

• a port with 1 significant bit to indicate the conversion state.

• an input port to recover the ADC values

• an output port to send values to the DAC in order to visualize them

The signal generator

It only generates a sinus signal. The generator output is connected to the
ADC visualization screen.

The visualization screen

A 200 point horizontal resolution screen. The sinus signal period is
deployed by default in red, in the upper part of the screen, and the signal
generated by the DAC is displayed in blue in the lower part.
Debugger Manual DM–75

Framework Components
General Component
The ADC

An 8 bit resolution converter generating unsigned values. As we can see in
the figure below, its entry is directly connected to the signal generator. On
the other hand, the conversion order will be given by a timer not connected
to the data bus (it can not be set by software).

At the end of a conversion, it sets the state bit. This bit is automatically
reset after read.

The DAC

Also an 8 bit resolution converter whose output is connected to the
visualization screen.

Its use is simplified, we only have to send a byte into its data port to have
its conversion displayed on the visualization screen. This screen only has a
200 point resolution; it is useless to send more than 200 bytes to the
converter.

Menu

The Adc-Dac menu shown in Figure 5.4 contains all functions associated
with the Adc-Dac component. These entries are described in Table 5.1.

Figure 5.4 Adc-Dac menu

Table 5.1 Adc-Dac Menu Description

Menu entry Description

Setup Opens the dialog box allowing you to set the
port addresses.
DM–76 Debugger Manual

Framework Components
General Component
Adc_Dac Setup dialog

This dialog shown in Figure 5.5 allows you to define the port and address
or select one port of the five proposed. These are used when this
component functions with the Programmable IO_Ports component.

Figure 5.5 Adc-Dac Setup dialog

Adc_Dac Conversion parameters dialog

This dialog box shown in Figure 5.6 allows you to choose the analogic
signal frequency generated by the sinusoïdal generator and the sampling
frequency.

Reset This function erases the visualization screen
and re-initializes the display properties.

Conversion
parameters

Opens the dialog box allowing you to set the
signal frequency

Start
conversion

Runs the conversion process

Display
properties

Opens the dialog box allowing you to set the
display properties

Menu entry Description
Debugger Manual DM–77

Framework Components
General Component
The choice of these two frequencies will internally initialize the timer,
which will give the conversion orders.

Figure 5.6 Adc_Dac Conversion parameters dialog

Now you can start the conversion with Start conversion menu entries.

Adc_Dac Display properties dialog

This dialog box shown in Figure 5.7 allows you to modify the display
properties form the Adc_Dac component. The Up and Down buttons allow
you to define the vertical position of the input and output curves. Two
control buttons allow you to change the axes scales.
DM–78 Debugger Manual

Framework Components
General Component
Figure 5.7 Adc_Dac Display properties dialog

Operations

To convert a signal from an example application:

1. Load the application and the Adc_Dac component.

2. Choose the ports address

3. Define the input signal frequency

4. Define the sampling frequency

5. Start the application

6. Choose Start Conversion

Drag out

Nothing can be dragged out.

Drag into

Nothing can be dragged in.

Demo Version Limitations

No limitations
Debugger Manual DM–79

Framework Components
General Component
Associated Commands

Following commands are associated with the Adc_Dac component:

ADCPORT, LINKADDR

Assembly Component

The Assembly component window, shown in Figure 5.8 displays program
code in disassembled form.

Description

The Assembly component has a function very similar to that of the Source
component window but on a much lower abstraction level. Thus it is
therefore possible to view, change, monitor and control the current location
of execution in a program.

Figure 5.8 Assembly Component

The window contains all on-line disassembled instructions generated by
the loaded application. Each displayed disassembled line in the window
can show the following information: the address, machine code, instruction
and absolute address in case of a branch instruction. By default, the user
can see the instruction and absolute address.

If breakpoints have been set in the application, they are marked in the
Assembly component with a special symbol, depending on the kind of
breakpoint.
DM–80 Debugger Manual

Framework Components
General Component
If execution has stopped, the current position is marked in the Assembly
component by highlighting the corresponding instruction.

The Object Info Bar of the Simulator/Debugger Components contains the
procedure name, which contains the currently selected instruction. When a
procedure is double clicked in the Procedure component, the current
assembly statement inside this procedure is highlighted in the Assembly
component.

Setting Breakpoints

Breakpoints can be set, edited and deleted when using the popup menu.
Right-click on any statement in the Source component window, then
choose Set Breakpoint, Delete Breakpoint, etc., as explained below.

NOTE For information on using breakpoints, see Define Breakpoints chapter.

Menu

The Assembly menu shown in Figure 5.9 contains all functions associated
with the assembly component. Theses entries are described in Table 5.2.

Figure 5.9 Assembly Menu

Table 5.2 Assembly Menu Description

Menu entry Description

Address... Opens a dialog box prompting for an address:
Show PC.
Debugger Manual DM–81

Framework Components
General Component
Show PC Dialog

If an hexadecimal address is entered in the Show PC Dialog shown in
Figure 5.10, memory contents are interpreted and displayed as assembler
instructions starting at the specified address.

Figure 5.10 Show PC Dialog

Associated Popup Menu

To open the popup menu right-click in the text area. The popup menu
contains default menu entries for Assembly component (see above). It also
contains some context dependent menu entries described in Table 5.3;
depending on the current state of the simulator/debugger.

Display Code Displays machine code in front of each
disassembled instruction.

Display
Symbolic

Displays symbolic names of objects.

Display
Address

Displays the location address at the beginning
of each disassembled instruction.

Display
Absolute
Address

In a branch instruction, displays the absolute
address at the end of the disassembled
instruction.

Menu entry Description
DM–82 Debugger Manual

Framework Components
General Component
Table 5.3 Assembly Popup Menu Description

Menu entry Description

Set Breakpoint Appears only in the popup menu if no
breakpoint is set or disabled on the pointed to
instruction. When selected, sets a permanent
breakpoint on this instruction. When program
execution reaches this instruction, the program
is halted and the current program state is
displayed in all window components.

Delete
Breakpoint

Appears in popup menu if a breakpoint is set
or disabled on the specified instruction. When
selected, deletes this breakpoint.

Enable
Breakpoint

Appears only in popup menu if a breakpoint is
disabled on an instruction. When selected,
enables this breakpoint.

Disable
Breakpoint

Appears in the popup menu if a breakpoint is
set on an instruction. When selected, disables
this breakpoint.

Run To Cursor When selected, sets a temporary breakpoint on
a specified instruction and continues execution
of the program. If there is a disabled
breakpoint at this position, the temporary
breakpoint will also be disabled and the
program will not halt. Temporary breakpoints
are automatically removed when they are
reached.

Show
Breakpoints

Opens the Breakpoints setting dialog box and
displays list of breakpoints defined in the
application (refer to Control Points).
Debugger Manual DM–83

Framework Components
General Component
 Retrieving Source Statement

• Point to an instruction in the Assembly component window, drag and
drop it into the Source component window. The Source component
window scrolls to the source statement generating this assembly
instruction and highlights it.

• + : Highlights a code range in the Assembly component

window corresponding to the first line of code selected in the Source
component window where the operation is performed. This line or code
range is also highlighted.

Drag Out

Table 5.4 shows the drag and drop actions possible from the Assembly
component.

Show Location When selected, highlights the source statement
that generated the pointed to assembler
instruction. The assembler instruction is also
highlighted. The memory range corresponding
to this assembler instruction is also highlighted
in the memory component.

Menu entry Description
DM–84 Debugger Manual

Framework Components
General Component
Table 5.4 Drag and Drop possible from the Assembly Component.

Drop Into

Table 5.5 shows the drag and drop actions possible in the Assembly
component

Table 5.5 Drop Into Assembly Component

Destination
component

Action

Command Line The Command Line component appends the address of the
pointed to instruction to the current command.

Memory Dumps memory starting at the selected instruction PC. The PC
location is selected in the memory component.

Register Loads the destination register with the PC of the selected
instruction.

Source Source component scrolls to the source statements and
highlights it.

Source
component

Action

Source Displays disassembled instructions starting at the first high level
language instruction selected. The assembler instructions
corresponding to the selected high level language instructions
are highlighted in the Assembly component

Memory Displays disassembled instructions starting at the first address
selected. Instructions corresponding to the selected memory
area are highlighted in the Assembly component.

Register Displays disassembled instructions starting at the address stored
in the source register. The instruction starting at the address
stored in the register is highlighted.
Debugger Manual DM–85

Framework Components
General Component
Demo Version Limitations

No limitation

Associated Commands

Following commands are associated with the Assembly component:

ATTRIBUTES, SMEM, SPC.

Command Line Component

The Command component shown in Figure 5.11 interprets and executes all
Simulator/Debugger commands and functions. The command entry always
occurs in the last line of the Command component. Characters can be input
or pasted on the edit line.

Figure 5.11 Command Line Component

Description

This section explains functions of the Command component.

Command key in.

You can type Simulator/Debugger commands after the “in>” terminal
prompt in the Command Line Component window.

Procedure The current assembly statement inside the procedure is
highlighted in the Assembly component.

Source
component

Action
DM–86 Debugger Manual

Framework Components
General Component
Recalling a line from the Command Line history.

To recall a command in the DOS window use either , , (to
retype the previous command).

Scrolling the Command Component Window Content

Use and to move the cursor on the line, to move the

cursor to the beginning of the line, to move the cursor to the end of

the line.

NOTE To scroll a page, use the PgDn (scroll down a page) or PgUp keys (scroll
up a page).

Clear the line or a character of the Command Line

Selected text can be deleted by pressing .

To clear the current line type .

Command interpretation

The component executes the command entered, displays results or error

messages, if any. Ten previous commands can be recalled using to

scroll up or to scroll down. Commands are displayed in blue.

Prompts and command responses are displayed in black. Error messages

are displayed in red.

When a command is executed and running from the Command Line
component, the component cannot be closed. In this case, if the Command
Line component is closed with the window close button (X) or with the
Close entry of the system menu, the following message is displayed:

“Command Component is busy. Closing will be
delayed”
Debugger Manual DM–87

Framework Components
General Component
The Command Line component is closed as soon as command execution is
complete. If the CLOSE command is applied to this Command Line
component (for example, from another Command Line component), the
component is closed as soon as command execution is finished.

Variable checking in the Command Line

When specifying a single name as an expression in the command line, this
expression is first checked as a local variable in the current procedure. If
not found, it is checked as a global variable in the current module. If not
found, it is checked as a global variable in the application. If not found, it is
checked as a function in the current module. If not found, it is checked as a
function in the application, finally if not found an error is generated.

Closing the Command Line during an execution

When a command is executed from a Command Line component, it cannot
be closed. If the Command Line component is closed with the close button
or with the 'Close' entry of the system menu, the following message is
displayed 'Command Component is busy. Closing will be
delayed' and the Command component is closed as soon as command
execution is complete. If the 'Close' command is applied to this Command
component, the Command component is closed as soon as command
execution is complete.

Menu and popup menu

Figure 5.12 shows the Command component menu and popup menu.

Figure 5.12 Command Component Menu and popup menu

Clicking Execute File opens a dialog where you can select a file
containing Simulator/Debugger commands to be executed. Theses files
generally have a .cmd default extension.

Selected text in the Command Line window can be copied to the clipboard
by:
DM–88 Debugger Manual

Framework Components
General Component
• selecting the menu entry Command>Copy.

• pressing + .

• clicking the button in the toolbar.

The Command>Copy menu entry and the button are only enabled if
something is selected in the Command Line window.

The first line of text contained in the clipboard can be pasted where the
caret is blinking (end of current line) by:

• selecting the menu entry Command>Paste

• pressing + .

• clicking the button in the toolbar.

Cache Size

Select Cache Size in the menu to set the cache size in lines for the
Command Line window, as shown in Figure 5.13.

Figure 5.13 Cache Size Dialog

This Cache Size dialog is the same for the Terminal Component and the
TestTerm Component.

Drag Out

Nothing can be dragged out.
Debugger Manual DM–89

Framework Components
General Component
Drop Into

Memory range, address, and value can be dropped into the Command Line
Component window, as described in Table 5.6. The command line
component appends corresponding items of the current command.

Table 5.6 Drop Into the Command Component

Demo Version Limitations

Only 20 commands can be entered and then command component is closed
and it is no longer possible to open a new one in the same Simulator/
Debugger session.

Command files with more than 20 commands cannot be executed.

Associated Commands

BD, CF, E, HELP, NB, LS, SREC, SAVE.

NOTE For more details about commands, refer to Debugger Commands.

Source
component

Action

Assembly The Command Line component appends the address of the
pointed to instruction to the current command.

Data Dragging the name appends the address range of the variable to
the current command in the Command Line Window. Dragging
the value appends the variable value to the current command in
the Command Line Window.

Memory Appends the selected memory range to the Command Line
window

Register The address stored in the pointed to register is appended to the
current command.
DM–90 Debugger Manual

Framework Components
General Component
Coverage Component

The Coverage component window, shown in Figure 5.14 contains source
modules and procedure names as well as percentage values representing
the proportion of executed code in a given source module or procedure.

Figure 5.14 Coverage Component

Description

The Coverage component window contains percentage numbers and
graphic bars. From this component, you can split views in the Source
component window and Assembly component window, as shown in Figure
5.15. A mark is displayed in front of each source or assembler
instruction that has been executed. Split views are removed when the
Coverage component is closed or selecting Delete in the split view popup
menu.

Figure 5.15 Coverage Splitting views
Debugger Manual DM–91

Framework Components
General Component
Operations

Click the folded/unfolded icons to unfold/fold the source module
and display/hide the functions defined.

Menu

The coverage menu is shown in Figure 5.16 and submenus in Figure 5.17
and Figure 5.18.

Figure 5.16 Coverage Menu

Figure 5.17 Coverage Details Submenu

Figure 5.18 Coverage Output File Submenu

Table 5.7 Coverage Menu Description

Menu entry Description

Reset Resets all simulator statistic information.

Details Opens a split view in the chosen component
(Source or Assembly).

Graphics Toggles the graphic bars.
DM–92 Debugger Manual

Framework Components
General Component
Output File

You can redirect Coverage component results to an output file by selecting
Output File...> Save As... in the menu or popup menu.

Output File Filter

Select Output Filter... to display the dialog shown in Figure 5.19. Select
what you want to display, i.e. modules only, modules and functions, or
modules, functions and code lines. You can also specify a range of
coverage to be logged in your file.

Figure 5.19 Output File Filter

Output File Save

The Save As... entry opens a Save As dialog where you can specify the
output file name and location, an example is shown in Listing 5.1.

Timer Update Switches the periodic update on/off. If
activated, statistics are updated each second.

Output File Opens the Output File options.

Menu entry Description
Debugger Manual DM–93

Framework Components
General Component
Listing 5.1 Example of an output file with modules and functions:

--
Coverage: Item:
--
 94.4 % Application
 FULL fibo.c
 FULL Fibonacci()
 FULL main()
 86.0 % startup.c
 80.5 % Init()
 FULL _Startup()

Associated Popup Menu

Identical to menu.

Split view associated Popup Menu

The popup menu for the split view (Figure 5.20) contains the Delete entry,
which is used to remove the split view.

Figure 5.20 Coverage Split view associated Popup Menu

Drag Out

All displayed items can be dragged into a Source or Assembly component.
Destination component displays marks in front of the executed source or
assembler instruction.

Drop Into

Nothing can be dropped into the Coverage Component window.
DM–94 Debugger Manual

Framework Components
General Component
Demo Version Limitations

Only modules are displayed and the Save function is disabled.

Associated Commands

DETAILS, FILTER, GRAPHICS, OUTPUT, RESET, TUPDATE
Debugger Manual DM–95

Framework Components
General Component
DAC Component

The DAC component shown in Figure 5.21 is an interface module between
the DA-C IDE.

Figure 5.21 DAC Component

Description

The DAC component is an interface module between the DA-C IDE
(Development Assistant for C - from RistanCASE GmbH) allowing
synchronized debugging features.

Operation

When the DAC component is loaded, communication is established with
DA-C (if open) in order to exchange synchronization information.

The Setup entry of the DA-C Link main menu allows you to define the
connection parameters.

NOTE For related information refer to the Chapter Synchronized debugging
through DA-C IDE.

Menu

Figure 5.22 DAC Menu

Table 5.8 DAC Menu Description

Menu entry Description

Setup Opens the connection setup Window.
DM–96 Debugger Manual

Framework Components
General Component
Connection Specification

In the dialog shown in DAC Connection Specification, you can set the DA-
C debugger name.

Figure 5.23 DAC Connection Specification

The DA-C debugger name must be the same as the one selected in the DA-
C IDE. Check the “Show Protocol" checkbox to display the
communication protocol in the Command component of the Simulator/
Debugger. To validate the settings, click the OK button. A new connection
is established and the "Connection Specification" is saved in the current
Project.ini file. The HELP button opens the help topic for this dialog.

NOTE If problems exist, refer to the Troubleshooting section in the DA-C
documentation.

Drag Out

Nothing can be dragged out.

Drop Into

Nothing can be dropped into the DAC Component window.

Demo Version Limitations

None.
Debugger Manual DM–97

Framework Components
General Component
Data Component

The Data Component window shown in Figure 5.24 contains the names,
values and types of global or local variables.

Figure 5.24 Data Component

Description

The Data Component window shows all variables present in the current
source module or procedure. Changed values are in red.

The Object Info Bar of the Simulator/Debugger Components contains the
address and size of the selected variable. It also contains the module name
or procedure name where the displayed variables are defined, the display
mode (automatic, locked, etc.), the display format (symbolic, hex, bin,
etc.), and current scope (global, local or user variables).

Various display formats, such as symbolic representation (depending on
variable types), and hexadecimal, octal, binary, signed and unsigned
formats may be selected.

Structures can be expanded to display their member fields.

Pointers can be traversed to display data they are pointing to.

Watchpoints can be set in this component. Refer to Control Points chapter.

Operations

• Double-click a variable line to edit the value.
DM–98 Debugger Manual

Framework Components
General Component
• Click the folded/unfolded bitmaps to unfold/fold the structured
variable.

• Double-click a blank line: Opens the Expression editor to insert an
expression in the Data Component window.

• Select a variable in the Data component, and + to set a

“Read” watchpoint on the selected variable. A green vertical bar is
displayed on the left side of the variables on which a read watchpoint
has been defined. If a read access on the variable is detected during
execution, the program is halted and the current program state is
displayed in all window components.

• Select a variable in the Data component, and + to set a

“Write” watchpoint on the selected variable. A red vertical bar is
displayed on the left side of the variables on which a write watchpoint
has been defined. If write access is detected on the variable during
execution, the program is halted and the current program state is
displayed in all window components.

• Select a variable in the Data component, and + to set a

“Read/Write” watchpoint on the selected variable. A yellow vertical
bar is displayed for the variables on which a read/write watchpoint has
been defined. If the variable is accessed during execution, the program
is halted and the current program state is displayed in all window
components.

• Select a variable on which a watchpoint was previously defined in the

Data component, and + to delete the watchpoint on the

selected variable. The vertical bar previously displayed for the
variables is removed.

• Select a variable in the Data component, and + to set a

watchpoint on the selected variable. The Watchpoints Setting dialog
box is opened. A grey vertical bar is displayed for the variables on
which an watchpoint has been defined.

Expression Editor

To add your own expression (EBNF Notation) double-click a blank line in
the Data component window to open the Edit Expression dialog shown in
Figure 5.26, or point to a blank line as shown below and right-click to
select Add Expression... in the popup menu shown in Figure 5.25.
Debugger Manual DM–99

Framework Components
General Component
Figure 5.25 Expression Editor Dialog

You may enter a logical or numerical expression in the edit box, using the
Ansi-C syntax. In general, this expression is a function of one or several
variables from the current Data component window.

NOTE The definition of expression and examples are in the Appendix EBNF
Notation
DM–100 Debugger Manual

Framework Components
General Component
Figure 5.26 Edit Expression Dialog

Example: with 2 variables variable_1, variable_2;

expression entered: (variable_1<<variable_2)+ 0xFF) <= 0x1000 will
result in a boolean type.

expression entered: (variable_1>>~variable_2)* 0x1000 will result in an
integer type.

NOTE It is not possible to drag an expression defined with the Expression Editor.
The “forbidden” cursor is displayed.

Expression Command file

This file is automatically generated when a new application is loaded or
exiting from the Simulator/Debugger. User defined expressions are stored
in this command file. The name of the expression command file is the
name of the application with a .xpr extension (.XPR file). When loading a
new user application, the debugger executes the matching expression
command file to load the user defined expression into the data component.

Example: When loading fibo.abs, the debugger executes Fibo.xpr

Menu

Figure 5.27 shows the Data component menu, the Data Scope submenu is
shown in Figure 5.28, the Data Format submenu in Figure 5.29, the Data
Debugger Manual DM–101

Framework Components
General Component
Mode submenu in Figure 5.30 and the Data Options submenu in Figure
5.31. Menu entries are described in Table 5.9.

Figure 5.27 Data Menu

Figure 5.28 Data Scope Submenu

Figure 5.29 Data Format Submenu

Figure 5.30 Data Mode Submenu
DM–102 Debugger Manual

Framework Components
General Component
Figure 5.31 Data Options Submenu

Table 5.9 Data Menu Description

Scope Submenu

The Table 5.10 describes the Scope submenu entries.

Table 5.10 Data Scope Submenu

Menu entry Description

Zoom in Zooms in the selected structure. The member
field of the structure replaces the variable list.

Zoom out Returns to the previous level of development.

Scope... Opens a variable display submenu.

Format... Symb, Hex (hexadecimal), Oct (octal), Bin
(binary), Dec (signed decimal), UDec
(unsigned decimal) display format.

Mode... Switches between Automatic, Periodical,
Locked, and Frozen update mode.

Options... Opens an options menu for data, for example,
Pointer as Array facility.

Menu entry Description

Global Switches to Global variable display in the Data
component.

Local Switches to Local variable display in the Data
component.
Debugger Manual DM–103

Framework Components
General Component
NOTE If the data component mode is not automatic, entries are greyed (because it
is not allowed to change the scope).

In Local Scope, if the Data component is in Locked or Periodical mode,
values of the displayed local variables could be invalid (since these
variables are no longer defined in the stack).

Format Submenu

Table 5.11 describes the Data Format submenu entries.

Table 5.11 Data Format Sub Menu

User Switches to User variable display in the Data
component. Displays user defined expression
(variables are erased).

Menu entry Description

Menu entry Description

Symbolic Select the Symbolic (display format depends
on the variable type) display format. This is the
default display.

Hex Select the hexadecimal data display format

Bin Select the binary data display format

Oct Select the octal data display format

Dec Select the signed decimal data display format

UDec Select the unsigned decimal data display
format

Bit Reverse Select the bit reverse data display format (Each
bit is reversed).
DM–104 Debugger Manual

Framework Components
General Component
Mode Sub Menu

The Table 5.12 describes the Data Mode Sub Menu entries.

Table 5.12 Data Mode Sub Menu

NOTE In Locked and Frozen mode, variables from a specific module are
displayed in the data component. The same variables are always displayed
in the data component.

Update Rate window

This dialog box shown in Figure 5.32 allows you to modify the default
update rate by steps of 100 ms.

Menu entry Description

Automatic Switches to Automatic mode (default),
variables are updated when the target is
stopped. Variables from the currently executed
module or procedure are displayed in the data
component.

Periodical Switches to Periodical mode: variables are
updated at regular time intervals when the
target is running. The default update rate is 1
second, but can be modified by steps of up to
100 ms using the associated dialog box (see
below).

Locked Switches to Locked mode, value from
variables displayed in the data component are
updated when the target is stopped.

Frozen Switches to Frozen mode: value from
variables displayed in the data component are
not updated when the target is stopped.
Debugger Manual DM–105

Framework Components
General Component
Figure 5.32 Update Rate Dialog

Pointer as Array option

In the Data component menu or popup menu, choose Options...>Pointer
as Array... to open the dialog shown in Figure 5.33.

Figure 5.33 Pointer as Array Dialog

Within this dialog, you can display pointers as arrays, assuming that the
pointer points to the first item (pointer[0]). Note that this setup is valid for
all pointers displayed in the Data window. Check the Display Pointer as
Array checkbox and set the number of items that you want to be displayed
as array items.

Name Width Option

Choose Options... > Name Width... to open the window shown in Figure
5.34.
DM–106 Debugger Manual

Framework Components
General Component
Figure 5.34 Edit Name Width Dialog

This dialog allows you to adjust the width of the variable name displayed
in the Data window. This string will be cut off if it is longer than 16
characters. Thus, by enlarging the value you can adapt the window to
longer names.

Associated Popup Menu

Table 5.13 specifies the Data Popup Menu entries.

Table 5.13 Data Popup Menu

Menu entry Description

Open Module... Opens the dialog Open Module.

Set Watchpoint Appears only in the popup menu if no
watchpoint is set or disabled on the pointed to
variable. When selected, sets a read/write
watchpoint on this variable. A yellow vertical
bar is displayed for the variables on which a
read/write watchpoint has been defined. If the
variable is accessed during execution, the
program is halted and the current program state
is displayed in all window components.

Delete
Watchpoint

Appears only in the popup menu if a
watchpoint is set or disabled on the pointed to
variable. When selected, deletes this
watchpoint.
Debugger Manual DM–107

Framework Components
General Component
SUBMENU Open Module

The dialog shown in Figure 5.35 lists all source files bound to the
application. Global variables from the selected module are displayed in the
data component. This is only supported when the component is in Global
scope mode.

Figure 5.35 Open Modules Dialog

Enable
Watchpoint

Appears only in the popup menu if a
watchpoint is disabled on the pointed to
variable. When selected, enables this
watchpoint.

Disable
Breakpoint

Appears only in the popup menu if a
breakpoint is set on the pointed to instruction.
When selected, disables this watchpoint.

Show
Watchpoints

Opens the Watchpoints Setting dialog box and
allows you to view the list of watchpoints
defined in the application. (Refer to Control
Points).

Show location Forces all open components to display
information about the pointed to variable (e.g.,
the Memory component selects the memory
range where the variable is located).

Menu entry Description
DM–108 Debugger Manual

Framework Components
General Component
Drag Out

Table 5.14 describes the Drag and Drop actions possible from the Data
component.

Table 5.14 Dragging Data Out

WARNING! It is important to distinguish between dragging a variable name and
dragging a variable value. Both operations are possible. Dragging the name
drags the address of the variable. Dragging the variable value drags the
value.

NOTE Expressions are evaluated at run time. They do not have a location address,
so you cannot drag an expression name into another component. Values of
expressions can be dragged to other components.

Destination
compo.

Action

Command Line Dragging the name appends the address of the variable to the
current command in the Command Line Window. Dragging the
value appends the variable value to the current command in the
Command Line Window.

Memory Dumps memory starting at the address where the selected
variable is located. The memory area where the variable is
located is selected in the memory component.

Source Dragging the name of a global variable in the source Window
displays the module where the variable is defined and first
occurrence of the variable is highlighted.

Register Dragging the name loads the destination register with the
address of the selected variable. Dragging the value loads the
destination register with the value of the variable.
Debugger Manual DM–109

Framework Components
General Component
Drop Into

Table 5.15 describes the Drag and Drop actions possible in the Data
component.

Table 5.15 Drop Into Data

Demo Version Limitations

Only 2 variables can be displayed.

Only 2 members of a structure are visible when unfolded.

Only 1 expression can be defined.

Associated Commands

ADDXPR, ATTRIBUTES, DUMP, PTRARRAY, SMOD, SPROC,
UPDATERATE, ZOOM.

Source
component

Action

Source A selection in the Source window is considered an expression in
the Data window, as if it was entered through the Expression
Editor of the Data component. Refer to Data Component,
Expression Editor.

Module Displays the global variables from the selected module in the
data component.
DM–110 Debugger Manual

Framework Components
General Component
Memory Component

The Memory Component window shown in Figure 5.36 displays
unstructured memory content or memory dump, i.e. continuous memory
words without distinction between variables.

Figure 5.36 Memory Component

Description

Various data formats (byte, word, double) and data displays (hexadecimal,
binary, octal, decimal, unsigned decimal) can be specified for the display
and edition of memory content.

Watchpoints can be defined in this component.

NOTE Refer to Watchpoints setting dialog for more information about
watchpoints.

A memory area can be initialized with a fill pattern using the Fill Memory
Dialog box.

An ASCII dump can be added/removed on the right side of the numerical
dump when checking/unchecking ASCII in the Display menu entry.

The location address may also be added/removed on the left side of the
numerical dump when checking/unchecking Address in the Display menu
entry.

To specify the start address for the memory dump use the Address menu
entry.
Debugger Manual DM–111

Framework Components
General Component
The Object Info Bar of the Simulator/Debugger Components contains the
procedure or variable name, structure field and memory range matching the
first selected memory word.

"uu" memory value means: not initialized.

"--" memory values mean: not configured (no memory available)

TIP Memory values that have changed since the last refresh status are displayed
in red. However, if a memory item is edited or rewritten with the same
value, the display for this memory item remains black.

Operations

• Double-click a memory position to edit it. If the memory is not
initialized, this operation is not possible.

• Drag the mouse in the memory dump to select a memory range.

• + to jump to a memory address. The pointed to value is

interpreted as an address and the memory component dumps memory
starting at this address.

• Select a memory range, and + to set a “Read” watchpoint

for the selected memory area. Memory ranges where a read watchpoint
has been defined are underlined in green. If read access on the memory
area is detected during execution, the program is halted and the current
program state is displayed in all window components.

• Select a memory range, and + to set a “Write” watchpoint

on the selected memory area. Memory ranges where a write watchpoint
has been defined are underlined in red. If write access on the memory
area is detected during execution, the program is halted and the current
program state is displayed in all window components.

• Select a memory range, and + to set a “Read/Write”

watchpoint on the selected memory area. Memory ranges where a read/
write watchpoint has been defined are underlined in black. If the
memory area is exceeded during execution, the program is halted and
the current program state is displayed in all window components.
DM–112 Debugger Manual

Framework Components
General Component
• Select a memory range on which a watchpoint was previously defined,

and + to delete the watchpoint on the selected memory

area. The memory area is no longer underlined.

• Select a memory range, and + to set a watchpoint on the

selected memory area. The Watchpoints Setting dialog box is opened.
Memory ranges where a watchpoint has been defined are underlined in
black.

Menus

The Memory Menu shown in Figure 5.37 provides access to memory
commands. Table 5.16 describes the menu entries.

Figure 5.37 Memory Menu

Table 5.16 Memory Menu Description

Menu entry Description

Word size Opens a submenu to specify the display unit
size.

Format Opens a submenu to select the format to
display items.

Mode Opens a submenu to choose the update mode.

Display Opens a submenu to toggle the display of
addresses and ASCII dump.
Debugger Manual DM–113

Framework Components
General Component
Word Size Submenu

With the Word Size submenu shown in Figure 5.38, you can set the
memory display unit. Table 5.17 describes the menu entries.

Figure 5.38 Word Size Submenu

Table 5.17 Word Size Submenu Description

Format Submenu

With the Format Submenu shown in Figure 5.39, you can set the memory
display format. Table 5.18 describes the menu entries.

Fill... Opens the Fill Memory Dialog to fill a memory
range with a bit pattern.

Address... Opens the memory dialog and prompts for an
address.

CopyMem Opens the CopyMem dialog that allows you to
copy memory range values to a specific
location.

Menu entry Description

Menu entry Description

Byte Sets display unit to byte size.

Word Sets display unit to word size (=2 bytes).

Lword Sets display unit to Lword size (=4 bytes).
DM–114 Debugger Manual

Framework Components
General Component
Figure 5.39 Format Submenu

Table 5.18 Format Submenu Description

Mode Submenu

With the Mode submenu shown in Figure 5.40, you can set the memory
mode format. Table 5.19 describes the menu entries.

Figure 5.40 Mode Submenu

Menu entry Description

Hex Selects the hexadecimal memory display
format

Bin Selects the binary memory display format

Oct Selects the octal memory display format

Dec Selects the signed decimal memory display
format

UDec Selects the unsigned decimal memory display
format

Bit Reverse Selects the bit reverse memory display format
(each bit is reversed).
Debugger Manual DM–115

Framework Components
General Component
Table 5.19 Mode Submenu Description

Displays Submenu

With the Displays submenu shown in Figure 5.41, you can set the memory
display (address/ascii). Table 5.20 describes the menu entries.

Figure 5.41 Displays Submenu

Table 5.20 Displays Submenu Description

Menu entry Description

Automatic Selects Automatic mode (default), memory
dump is updated when the target is stopped.

Periodical Selects the Periodical mode, memory dump is
updated at regular time intervals when the
target is running. The default update rate is 1
second, but it can be modified by steps of up to
100 ms using the associated dialog box (see
below).

Frozen Selects the Frozen mode, memory dump
displayed in the memory component is not
updated when the target is stopped.

Menu entry Description

Address Allows you to toggle the display of address
dump.

ASCII Allows you to toggle the display of ASCII
dump.
DM–116 Debugger Manual

Framework Components
General Component
Fill Memory Dialog

This dialog shown in Figure 5.42 allows you to fill a memory range (from
Address edit box and to Address edit box) with a bit pattern (value edit
box).

Figure 5.42 Fill Memory Dialog

NOTE If “Hex Format” is checked, numbers and letters are interpreted as
hexadecimal numbers. Otherwise, expressions can be typed and Hex
numbers should be prefixed with “Ox” or “$”. Refer to Constant Standard
Notation.

Display Address Dialog

With the dialog shown in Figure 5.43, the memory component dumps
memory starting at the specified address.

Figure 5.43 Display Address Dialog
Debugger Manual DM–117

Framework Components
General Component
NOTE The Show PC dialog box is the same as the Display Address dialog box. In
this dialog, the Assembly component dumps assembly code starting at the
specified address.

CopyMem Dialog

The dialog shown in Figure 5.44 allows you to copy a memory range to a
specific address.

Figure 5.44 CopyMem Dialog

To copy a memory range to a specific address, enter the source range and
the destination address. Press the OK button to copy the specified memory
range. Press the Cancel button to close the dialog without changes. Press
the Help button to open the help file associated with this dialog.

If "Hex Format" is checked, all given values are in Hexadecimal Format.
You don't need to add "0x". For instance type 1000 instead of 0x1000.

WARNING! If you try to read or write to an unauthorized memory address, an error
dialog box appears.

Update Mode

This dialog box shown in Figure 5.45 allows you to modify the update rate
in steps of 100ms.
DM–118 Debugger Manual

Framework Components
General Component
Figure 5.45 Update Mode

NOTE Periodical mode is not available for all hardware targets or some additional
configuration may be required in order to make it work.

Associated Popup Menu

The memory popup menu shown in Table 5.21 allows you to execute
memory associated commands.

Table 5.21 Memory Associated Popup Menu Description

Menu entry Description

Set/Delete
Watchpoint

Appears only in the Popup Menu if no
watchpoint is set or disabled on the selected
memory range. When selected, sets a Read/
Write watchpoint at this memory area. Memory
ranges where a read/write watchpoint has been
defined are underlined in yellow. If the
memory area is accessed during execution of
the application, the program is halted and the
current program state is displayed in all
window components.

Delete
Watchpoint

Appears in the Popup Menu if a watchpoint is
set or disabled on the selected memory range.
When selected, deletes this watchpoint.

Enable
Watchpoint

Appears in the Popup Menu if a watchpoint is
disabled on the selected memory range. When
selected, enables this watchpoint.
Debugger Manual DM–119

Framework Components
General Component
Drag Out

Table 5.22 Drag and Drop describes the actions possible from the Memory
component.

Table 5.22 Drag and Drop possible from the Memory component.

Disable
Breakpoint

Appears in the Popup Menu if a breakpoint is
set on the selected memory range. When
selected, disables this watchpoint.

Show
Watchpoints

Opens the Watchpoints Setting dialog box and
allows you to view the list of watchpoints
defined in the application and modify their
properties (See “Control Points” chapter).

Show location Forces all opened windows to display
information about the selected memory area.

Menu entry Description

Destination
compo.

Action

Assembly Displays disassembled instructions starting at
the first address selected. The instructions
corresponding to the selected memory area are
highlighted in the Assembly component.

Command Line Appends the selected memory range to the
Command Line window

Register Loads the destination register with the start
address of the selected memory block.

Source Displays high level language source code
starting at the first address selected.
Instructions corresponding to the selected
memory area are greyed in the source
component.
DM–120 Debugger Manual

Framework Components
General Component
Drop Into

Table 5.22 shows the Drag and Drop actions possible in the Memory
component.

Table 5.23 Drag and Drop into the Memory component.

Demo Version Limitations

No limitation

Associated Commands

ATTRIBUTES, FILL, SMEM, SMOD, SPC, UPDATERATE.

Source comp. Action

Assembly Dumps memory starting at the selected PC
instruction. The PC location is selected in the
memory component.

Data Dumps memory starting at the address where
the selected variable is located. The memory
area where the variable is located is selected in
the memory component.

Register Dumps memory starting at the address stored in
the selected register. The corresponding
address is selected in the memory component.

Module Dumps memory starting at the address of the
first global variable in the module. The
memory area where this variable is located is
selected in the memory component.
Debugger Manual DM–121

Framework Components
General Component
IT_Keyboard

The IT_Keyboard component shown in Figure 5.46 is a 20 key keyboard
that generates an interruption when a key is pressed.

Figure 5.46 IT_Keyboard Component

Description

The IT_Keyboard consists of a 20 key keyboard, as shown in Figure 5.47.
These 20 keys are positioned at the intersection of the five lines X0 to X4
and the 4 columns Y0 to Y3. The resistor R connected to the positive
supply gives a logical level 1 when there is no connection (key not
pressed). The activation of a line (or column) will give a logical level 0,
and a key pressed on this line (or column) will place the column (or the
line) corresponding on the low level. For example, if line X2 is activated,
column Y3 will decrease from logical level 1 to logical level 0 when the «
B » key is pressed.

An interruption is raised when an active key (line or column activated) is
pressed.
DM–122 Debugger Manual

Framework Components
General Component
Figure 5.47 IT_Keyboard constitution

Scanning is one method to read such keyboards. Typically, we can proceed
as follows (the line being in output and the column in input):

• Put a 0 at line X4 (X3, X2, X1, X0 being at 1).

• Read the column successively, from Y3 to Y0.

• Put a 0 at line X3 (X4, X2, X1, X0 being at 1).

• Read the column again from Y3 to Y0.

• ...till the last column of the last line, and restart at the beginning

All keyboard keys are scanned until we find one that is activated. During
the scanning process, it is easy to update a counter representing the number
of the key pressed. Raising an interruption when a key is pressed is
interesting when scanning. This one could work only when a key is
activated and not continually.

Menu

Figure 5.48 shows the IT_Keyboard menu and described in Table 5.24.

Figure 5.48 IT_Keyboard menu
Debugger Manual DM–123

Framework Components
General Component
Table 5.24 IT_Keyboard Menu Description

Interrupt keyboard setup dialog

This dialog shown in Figure 5.49 allows you to set the address of the lines
port, the columns port and the number of the interruption vector.

Figure 5.49 IT_Keyboard Setup

In the Port address section, for each two ports you can insert an address
(in hexadecimal) in the Lines field or select one of the five ports listed in
the Columns field. These are used when the component works with the
Programmable IO_Ports component.

The Vector number filed allows you to specify an interruption vector
number (in hexadecimal).

The Keys label buttons permit you to change the symbols displayed on the
keyboard keys.

Menu entry Description

Setup Opens the Interrupt keyboard setup dialog.
DM–124 Debugger Manual

Framework Components
General Component
Drag Out

Nothing can be dragged out.

Drop Into

Nothing can be dropped into the IT_Keyboard Component window.

Demo Version Limitations

No limitations

Associated Commands

Following commands are associated with the IT_Keyboard component:

ITPORT, ITVECT, LINKADDR
Debugger Manual DM–125

Framework Components
General Component
Keyboard

The Keyboard component shown in Figure 5.50 is a 20 key keyboard.

Figure 5.50 Keyboard Component

Description

The Keyboard consists of a 20 key keyboard, as shown in Figure 5.47.
These 20 keys are positioned at the intersection of the five lines X0 to X4
and the 4 columns Y0 to Y3. The resistor R connected to the positive
supply gives a logical level 1 when there is no connection (key not
pressed). The activation of a line (or column) will give a logical level 0,
and a key pressed on this line (or column) will have the effect of placing
the column (or line) corresponding with the low level. For example, if line
X2 is activated, column Y3 will decrease from logical level 1 to logical
level 0 when the « B » key is pressed.
DM–126 Debugger Manual

Framework Components
General Component
Figure 5.51 Keyboard constitution

Scanning is one method to read such keyboards. Typically, we can proceed
as follows (the line being in output and the column in input):

• Put a 0 at the line X4 (X3, X2, X1, X0 being at 1).

• Read the column successively, from Y3 to Y0.

• Put a 0 at the line X3 (X4, X2, X1, X0 being at 1).

• Read again the column from Y3 to Y0.

• ...till the last column of the last line, and restart at the beginning

All keyboard keys are scanned until we find one that is activated. During
the scanning process, it is easy to update a counter representing the number
of the key pressed. Raising an interruption when a key is pressed is
interesting for scanning. This one could work only when a key is activated
and not continually.

Menu

Figure 5.52 shows the Keyboard menu and its entry is described in Table
5.25.
Debugger Manual DM–127

Framework Components
General Component
Figure 5.52 Keyboard menu

Table 5.25 Keyboard Menu Description

keyboard setup dialog

This dialog shown in Figure 5.49 allows you to set the address of the lines
port and columns port.

Figure 5.53 Keyboard Setup

In the Ports address section, for each two ports you can insert an address
(in hexadecimal) in the Lines field or select one of the five ports listed in
the Columns field. These are used when the component works with the
programmable Programmable IO_Ports component.

Drag out

Nothing can be dragged out.

Menu entry Description

Setup Opens the Keyboard setup dialog.
DM–128 Debugger Manual

Framework Components
General Component
Drop Into

Nothing can be dropped into the Keyboard Component window.

Demo Version Limitations

No limitations

Associated Commands

Following commands are associated with the Keyboard component:

KPORT, LINKADDR
Debugger Manual DM–129

Framework Components
General Component
LCD Display Component

The LCD Display component shown in Figure 5.54 is the LCD display
utility, which can display 1 or 2 lines of 16 characters and show or hide the
position cursor.

Figure 5.54 LCD Display Component

Description

The display module consists of 2 eight-bit-width parallel couplers: a data
port and a control port, as shown in Figure 5.55. These ports communicate
with the mainframe.

Figure 5.55 The LCD display module ports

The bits d7-d0 represent an ASCII code to display characters or an
instruction code. The RS bit defines the status of bits d7-d0.

Operation

The LCD Display device can display 1 or 2 lines of 16 characters and show
or hide the position cursor.
DM–130 Debugger Manual

Framework Components
General Component
To manage the display, this device contains a controller: the DDRAM
(Display Data RAM). The DDRAM stores the ASCII codes of characters
written during a write operation. Only two lines of 16 characters each can
be displayed but up to 64 characters can be stored.

This RAM can be seen as organized in 2 lines: the first one starting at the
address 00h, ending at 1Fh and the second one starting at 40h, ending at
5Fh. Figure 5.56 illustrates this arrangement.

Figure 5.56 .The DDRAM controller

The Address Counter (AC) is an internal register of the display controller
pointing at the current address. In the default configuration AC is
initialized at 00h and is increased when an ASCII character is stored at the
address AC is pointing to. When AC is equal to 1Fh, the next increased
value will not be 20h but 40h.

For example, if we send a 48 character string after initialization, the bytes
will be stored at addresses 00h to 1Fh and 40h to 4Fh.

NOTE Only characters having their ASCII codes in the visible interval of the 16
characters (positions 1 to 16) of RAM are displayed.

Sending information to the display

Two steps are necessary to send a character to the display:

1. Put the bits E and RS at 1 and the bit R/W at 0 (control word
00000100b)

2. Write the character ASCII code on the data port. Put bit E at 0 (this
validates bits d7-d0)
Debugger Manual DM–131

Framework Components
General Component
For an instruction, only step 2 is different: the Byte to write on the data port
is the instruction code the display controller should execute.

Instruction listing

Figure 5.57 lists the instructions available for the LCD Display
Component.

Figure 5.57 LCD Component Instruction listing

Instruction description

Clear Display

• Completely fills the DDRAM with the code 20h (space character)

• Puts the address 00h into AC (address counter)

• Re-initializes the display if shifts occurred.

• Puts the cursor in position 1 on the display first line.

 Return Home

• AC = 00h and re-initialize the display.

• Puts the cursor in position 1 on the display first line.

• The DDRAM is unchanged.
DM–132 Debugger Manual

Framework Components
General Component
Entry Mode Set

• Increases AC (if I/D = 1) or decreases AC (if I/D = 0) after an ASCII
code is written into RAM

• Moves the cursor to the right if ID = 1 or to the left if I/D = 0

Display On/Off Control

• - The display is on if D = 1 and off if D = 0 (data still stay in RAM)

• - If C = 1 the cursor will be shown.

Cursor or Display Shift

• Doesn't change the DDRAM content.

• AC is unchanged in case of a screen shift.

• Moves and/or shifts the cursor to the right or left. The cursor goes to the
second line if it exceeds the 32nd position of the first line. It also goes
to the first line when it exceeds the 32nd position of the second line.

• During a screen shift the two lines only move horizontally, the first line
will never pass to the second one.

Figure 5.58 describes how to choose the moving direction.

Figure 5.58 Left Right choice

Set DDRAM Address

• Puts the address indicated by a6a5a4a3a2a1a0 into AC.

• When the number of lines is 2, the address goes from 00h to 1Fh for the
1st line, and from 40h to 5Fh for the 2nd line.

• The a6 bit indicates the line: a6=0 to indicate the 1st line and 1 to
indicate the 2nd one.

Function Set

• If DL = 1, the data exchange is 8 bits wide.

• If N = 0, the display will take place on one line. If N = 1, the display
will take place on two lines.
Debugger Manual DM–133

Framework Components
General Component
The initialization step

Initialization needs essentially 7 steps.

The Function Set instruction must be sent 3 times successively to fix the
exchange data width, and a 4th time to fix the number of lines used.

The example shown in Figure 5.59 configures the display module in 8 bit
mode, 2 lines, with the cursor visible and an increase of AC (the cursor
moves to the right).

Figure 5.59 The LCD display initialization
DM–134 Debugger Manual

Framework Components
General Component
Menu

Figure 5.60 shows the LCD Display menu and its entry is described in
Table 5.29.

Figure 5.60 The LCD display menu

The 7-segments display menu contains the Setup function to launch the 7-
Segments Display dialog box.

Table 5.26 LCD display Menu Description

Lcd display dialog

This dialog shown in Figure 5.49 allows you to set the address of the lines
port and columns port.

Figure 5.61 LCD Setup

In the Ports address section, for each two ports you can insert an address
(in hexadecimal) in the Lines field or select one of the five ports listed in

Menu entry Description

Setup Opens the Lcd display dialog.
Debugger Manual DM–135

Framework Components
General Component
the Columns field. These are used when the component works with
Programmable IO_Ports.

Drag out

Nothing can be dragged out.

Drop Into

Nothing can be dropped into the Lcd display Component.

Demo Version Limitations

No limitations

Associated Commands

Following commands are associated with the Lcd display component:

LCDPORT, LINKADDR
DM–136 Debugger Manual

Framework Components
General Component
Monitor components

The Monitor component shown in Figure 5.67 is a basis oscilloscope that
can display the result of debugger objects.

Figure 5.62 Monitor Component

Description

The purpose of this component is to display in a graphical format (similar
to an oscilloscope) the results of debugger objects observation. The
monitor component can save the list of state modifications and associated
time in a file.

Menu

Figure 5.63 shows the Monitor menu and its entry is described in Table
5.29.

Figure 5.63 The monitor menu
Debugger Manual DM–137

Framework Components
General Component
Table 5.27 Monitor Menu Description

Add Channel dialog

This dialog shown in Figure 5.64 allows you to create a new Channel in the
monitor.

Figure 5.64 Add Channel dialog
.

In the text area Object to monitor, enter the object name and bit e.g
TIM12.PORTT bit 0 and click OK to validate or Cancel to exit.

Monitor Settings dialog

This dialog shown in Figure 5.65 allows you to change the time base.

Select the object name in the list, enter in the Ticks field a CPU timer
proportional value and a number of pixels in the Pixels field to define the
horizontal scale. Click OK to validate or Cancel to exit.

Menu entry Description

Add Channel Opens the dialog box to create a new Channel
in the Monitor.

Delete Channel Deletes the Selected Monitor Channel (click on
it in the monitor view)

Show Control Opens the Settings dialog box to change the
time base.

Change Colors Changes colors from the selected Channel.
DM–138 Debugger Manual

Framework Components
General Component
Figure 5.65 Settings dialog

Change colors dialog

This dialog shown in Figure 5.66 allows you to change the colors from the
selected Channel.

Figure 5.66 Change colors dialog

Select the intended element in the categories field and click Change to
open the standard color selection dialog, click on OK to validate or Cancel
to exit.

Drag out

Nothing can be dragged out.
Debugger Manual DM–139

Framework Components
General Component
Drop Into

Nothing can be dropped into the Monitor Component.

Demo Version Limitations

No limitations

Associated Commands

Following commands are associated with the Monitor component:

ADDCHANNEL, DELCHANNEL, SETCOLORS, SETCONTROL
DM–140 Debugger Manual

Framework Components
General Component
Push Buttons components

The Push Buttons component shown in Figure 5.67 is a basis input device.

Figure 5.67 Push Buttons Component

Menu

Figure 5.68 shows the LCD Display menu and its entry is described in
Table 5.29.

Figure 5.68 The Push Buttons menu

Table 5.28 The Push Buttons Menu Description

Push Buttons Setup dialog

This dialog shown in Figure 5.69 allows you to specify (in hexadecimal
format) the port address or select the port in the list.

Menu entry Description

Setup Opens the Push Buttons Setup dialog.
Debugger Manual DM–141

Framework Components
General Component
Figure 5.69 Push Buttons Setup dialog

NOTE The port should be an output port for the LEDs component.

Use with the IO_Ports

The address defined in the Push Buttons Setup dialog is used when the
component works with the Programmable IO_Ports.

Use with the Leds component

The Bytes sent to the LEDs component coming from the Push Button
component are described in Figure 5.70.

Figure 5.70 Push Buttons Input port

Value 1 for a bit, lights on the corresponding led on the LEDs device. For
example, if button 3 is pressed, a read access at the address of the
component port will return the value 00001000b (08h).

Drag out

Nothing can be dragged out.
DM–142 Debugger Manual

Framework Components
General Component
Drop Into

Nothing can be dropped into the Push Buttons Component.

Demo Version Limitations

No limitations

Associated Commands

Following commands are associated with the Push Buttons Component.

PBPORT, LINKADDR
Debugger Manual DM–143

Framework Components
General Component
MicroC Component

The MicroC component shown in Figure 5.71 is an interface module for
RHAPSODY in MicroC, the analysis, design and implementation tool for
embedded systems and software developers from I-LOGIX.

Figure 5.71 MicroC Component

Operations

The MicroC component establishes a communication with Rhapsody in
MicroC to activate its design-level debugging capabilities. Rhapsody in
MicroC drives its debugging animation that communicates with the
Simulator/Debugger environment over TCP/IP. This allows you to
execute, stop and run the application, to set step commands, breakpoints,
events, and idle states to perform control over the application.

Communication is realized by selecting the Connect entries of the MicroC
Link menu. The Setup entry allows you to define the connection
parameters.

The functions available allow you to start the currently loaded application,
to stop it, to execute a single step in the application, to set and clear a
breakpoint, to evaluate an expression and to quit the application interface.

NOTE For more information, refer to the RHAPSODY in MicroC documentation
from I-Logix.

WARNING! In order to work, MicroC needs to have a copy of the
amc_communication_dll.dll in the prog directory from the
current installation.

Menu

Figure 5.72 shows the MicroC menu and its entries are described in Table
5.29.
DM–144 Debugger Manual

Framework Components
General Component
Figure 5.72 MicroC Menu

Table 5.29 MicroC Menu Description

Communication Specification

Within this dialog shown in Figure 5.73, you can set the MicroC Host and
ID for communication between the Simulator/Debugger and RHAPSODY
in MicroC. A checkbox allows you to see the communication protocol.

Figure 5.73 MicroC Communication Specification

Drag Out

Nothing can be dragged out.

Drop Into

Nothing can be dropped into the MicroC Component window.

Menu entry Description

Setup Opens the communication setup Window.

Connect Establishes communication with RHAPSODY
in MicroC.
Debugger Manual DM–145

Framework Components
General Component
Demo Version Limitations

The MicroC Component is not available in demo mode.

MicroC Component DLLs

The RiMC (or MicroC.wnd) component has been updated to make use of
the new features that come of the latest release of the communication DLL
from I-Logix.

To ensure proper communication between Rhapsody in MicroC and the
external debugger/simulator (HI-WAVE) from Metrowerks (formerly
HIWARE), two files have to be installed in the 'prog' subdirectory of the
CodeWarrior installation:

microc.wnd

This is the HI-WAVE component that has to be loaded in order to
configure the communication parameters and mode of operation. This
component requires the amc_communication_dll.dll to be loaded properly
(if this DLL is missing, there will be an error message that a library is
missing).

amc_communication_dll.dll

This DLL implements the actual protocol (over TCP/IP). This DLL is
delivered together with the RiMC and has to be copied into the 'prog'
subdirectory of the CodeWarrior installation (this DLL will not be installed
with the CodeWarrior product).

The 'Product Version' of this DLL has to be 'RiMC 3.0' of higher.

Changes and new features

The new DLL from I-Logix allows now implementing the Graphical Back
Animation with fewer resources on the target system; so only one single
breakpoint is required in synchronous mode and even none in
asynchronous mode!

• There are now two modes of operation:

Synchronous

This mode corresponds to the legacy implementation and lets
RiMC update the state whenever a change of state is detected on the
target system. This is implemented by setting a breakpoint on the
target on a function that is called whenever that state of the
DM–146 Debugger Manual

Framework Components
General Component
application is changed. When hit, the state is sent to RiMC and the
application is resumed immediately. By concept, this procedure
will slow down execution of the target application dramatically.
Compared to the previous releases, only one single breakpoint is
required for this mode.

Asynchronous

This is a new mode introduced in this release. The state of the
application will only sampled from time to time. Thus, this mode
allows the application to run at full speed but will not update RiMC
about each change of state. Also, it does not require any resources
on the target system except that the target memory has to be
accessible while the application is running. The targets that support
this mode are the simulator and any Host Target Interface (HTI)
that uses the BDM of features dual-ported RAM.

• The Setup dialog was extended to reflect that additional modes:

Figure 5.74 Communication Specification

In Asynchronous mode, the interval for updating the state can be
specified in increments of 100ms. All the settings from this dialog
are saved in the current project file and will be used in future
sessions automatically.
Debugger Manual DM–147

Framework Components
General Component
• There are now command line commands to setup the communication
parameters:

MCPROTOCOL [ON|OFF]

Switched on and off the protocol to the Command window (when
open at all).

MCMODE (SYNC|ASYNC [interval])

Sets the reporting mode to synchronous or asynchronous. If
asynchronous is specified, the interval can be specified too. If the
interval is not specified, the previous value will be maintained.

MCCONNECT [HostName] [portNumber]

This command tries to connect to RiMC. The name of the computer
where RiMC is expected and/or its port number can be can be
specified. If not specified, the previous value will be used.

Each of these commands will close any pending communication
and re-establish communication with the new parameters.

• in the Synchronous mode, the states are reported not faster than every
10ms. This will avoid overruns in the communication to RiMC when
using the simulator as a target.
DM–148 Debugger Manual

Framework Components
General Component
Module Component

The module component shown in Figure 5.75 gives an overview of source
modules building the application.

Figure 5.75 Module Component

Description

The module component displays all source files (source modules) bound to
the application. The Module Component window displays all modules in
the order they appear in the absolute file.

Operations

Double-clicking a module name forces all open windows to display
information about the module: the Source Component window shows the
module's source and the global Data Component window displays the
module's global variables.

Menu

The Module Component window has no menu.
Debugger Manual DM–149

Framework Components
General Component
Drag Out

Table 5.30 shows the Drag and Drop actions possible from the Module
component.

Table 5.30 Drag and Drop possible from the Module component.
.

Drop Into

Nothing can be dropped into the Module Component window.

Demo Version Limitations

Only 2 modules are displayed

Destination compo. Action

Data > Global Displays the global variables from the selected module in the
data component

Memory Dumps memory starting at the address of the first global
variable in the module. The memory area where this variable is
located is selected in the memory component.

Source Displays the source code from the selected module.
DM–150 Debugger Manual

Framework Components
General Component
Procedure Component

The Procedure Component shown in Table 5.43 displays the list of
procedure or function calls that have been made so far (up to the moment
the program was halted). This list is known as the procedure chain or the
call chain.

Figure 5.76 Procedure Component

Description

In the Procedure Component, entries in the call chain are displayed in
reverse order from the last (most recent on top) call to the first call (initial
on bottom).

Types of procedure parameters are also displayed.

The Object Info Bar of the Simulator/Debugger Components contains the
source module and address of the selected procedure.

Operations

Double-clicking on a procedure name forces all open windows to display
information about that procedure: the Source Component window shows
the procedure's source, the local Data Component window displays the
local variables and parameters of the selected procedure. The current
assembly statement inside this procedure is highlighted in the Assembly
component.

NOTE When a procedure of a level greater than 0 (the top most) is double clicked
in the Procedure Component, the statement corresponding to the call of the
lower procedure is selected in the Source Window and Assembly
Component.
Debugger Manual DM–151

Framework Components
General Component
Menu

Figure 5.77 shows the Procedure menu and its entries are described in
Table 5.31.

Figure 5.77 Module Menu

Table 5.31 Module Menu Description

Associated Popup Menu

Identical to menu.

Drag Out

Table 5.32 shows Drag and Drop actions possible from the Procedure
component.

Table 5.32 Drag and Drop possible from the Procedure component.

Menu entry Description

Show Values Switches to the display of function parameter
values in the procedure component.

Show Types Toggles to the display of function parameter
types in the procedure component.

Destination
component

Action

Data > Local Displays the local variables from the selected
procedure in the data component

Source Displays source code of the selected procedure.
Current instruction inside the procedure is
highlighted in the Source component.
DM–152 Debugger Manual

Framework Components
General Component
Drop Into

Nothing can be dropped into the Procedure component.

Demo Version Limitations

Only the last two procedures are displayed.

Associated Commands

ATTRIBUTES, FINDPROC

Assembly The current assembly statement inside the
procedure is highlighted in the Assembly
component.

Destination
component

Action
Debugger Manual DM–153

Framework Components
General Component
Profiler Component

The Profiler Component shown in Figure 5.78 provides information on
application profile.

Figure 5.78 Profiler Component

Description

The Profiler component window contains source module and procedure
names and percentage values representing the time spent in each source
module or procedure. The Profiler component window contains
percentages and also graphic bars.

The Profiler component window can set a split view in the Source and
Assembly components (Figure 5.79).

Figure 5.79 The Profiler split view in the Source and Assembly components

Percentage values representing the time spent in each source or assembler
instruction are displayed on the left side of the instruction. The split view
can also display graphic bars. Split views are removed when the Coverage
DM–154 Debugger Manual

Framework Components
General Component
component is closed or if you open the split view Popup Menu and select
Delete.

The value displayed may reflect percentages from total code or percentages
from module code.

Operations

Click the fold/unfold icon to unfold/fold the source module.

Menu

Figure 5.80 shows the Profiler Menu entries, Figure 5.81 shows the Profiler
Details submenu, Figure 5.82 the Profiler Base submenu, and Figure 5.83
the Profiler Output File submenu, which are described in Table 5.33.

Figure 5.80 Profiler Menu

Figure 5.81 Profiler Details Submenu

Figure 5.82 Profiler Base Submenu

Figure 5.83 Profiler Output File Submenu
Debugger Manual DM–155

Framework Components
General Component
Table 5.33 Profiler menu entries Description
:

Split view associated Popup Menu

Figure 5.84 shows the Profiler popup menu, the Delete and Graphics
menu entries are described in Table 5.34.

Figure 5.84 Profiler Split view associated Popup Menu

Table 5.34 Profiler Split view associated Popup Menu Description

Menu entry Description

Reset Resets all statistics.

Details Sets a split view in the chosen component
(Source or Assembly)

Base Sets the base of percentage (total code or
module code).

Graphics Toggles the display from graphics bar.

Timer Update Switches on/off the periodic update of the
Coverage component. If activated, statistics are
updated each second.

Output File Setup the Profiler Output File functions.

Menu entry Description

Delete Removes the split view from the host
component.

Graphics Toggles the graphic bars display in the split
view.
DM–156 Debugger Manual

Framework Components
General Component
Profiler Output File functions

You can redirect the Profiler component results to an output file by
choosing Output File...> Save As... in the menu or popup menu.

Output File Filter

By choosing Output Filter..., the dialog shown in Figure 5.85 lets you
select what you want to display, i.e. modules only, modules and functions,
or modules and functions and code lines. You can also specify a range of
coverage to be logged in your file.

Figure 5.85 Output File Filter

Output File Save

The Save As... entry opens a Save As dialog where you can specify the
output file name and location.

Associated Popup Menu

Identical to menu.

Drag Out

All displayed items can be dragged out. Destination windows may display
information about the time spent in some codes in a split view.

Drop Into

Nothing can be dropped into the Profiler Component window.
Debugger Manual DM–157

Framework Components
General Component
Demo Version Limitations

Only modules are displayed and the Save function is disabled.

Associated Commands:

 GRAPHICS, TUPDATE, DETAILS, RESET, BASE.
DM–158 Debugger Manual

Framework Components
General Component
Programmable IO_Ports

The Programmable IO_Ports component shown in Figure 5.86 consists of 5
IO_Ports with 8 configurable bits in input or output. In the default
configuration all couplers are in input. The graphical interface suggests the
state of each one.

Figure 5.86 Programmable IO_Ports Component

Description

The data exchange between the processor and peripherals are done by the
intermediary of some circuits called «input / output couplers». The
peripherals are connected to the data bus and are in parallel in an electrical
point of view. A concerned output circuit will catch information on the data
bus and save it (in a latch) until the next data reception.

The input/output couplers are perceived by the processor as memory cases
with a wired fixed address. The capability exists to do input/output actions
at a known address. In the C language, access is done by forced pointers to
these addresses.

A read operation where the coupler is in input mode, activates this input
during all the read steps. A write operation where the coupler is in output
mode activates the output latch during all write steps.

The programmable IO_Ports allows you to define the coupler in input and
output. This configuration can be modified during program execution. The
first step in the test program is to configure the used couplers.

Menu

Figure 5.60 shows the Programmable IO_Ports menu and its entry is
described in Table 5.29.
Debugger Manual DM–159

Framework Components
General Component
Figure 5.87 The Programmable IO_Ports menu

Table 5.35 Programmable IO_Ports menu Description

Programmable IO_Ports Port Address dialog

This dialog shown in Figure 5.88 allows you to set the port address and
control port address.

Figure 5.88 Programmable IO_Ports Port Address dialog

You can enter the address for the 5 ports A,B,C,D,E and the address for the
Control port. Click OK to validate.

The coupler Control register allows you to configure the port type: for
each port, set a bit to 1 to configure the port as output and set to 0 to
configure the port as input, as shown in Figure 5.89.

Menu entry Description

Setup Opens the Programmable IO_Ports Port
Address dialog.
DM–160 Debugger Manual

Framework Components
General Component
Figure 5.89 Programmable IO_Ports Address dialog

Drag Out

Nothing can be dragged out.

Drop Into

Nothing can be dropped into the Programmable IO_Ports Component.

Demo Version Limitations

No limitations

Associated Commands:

CPORT, LINKADDR
Debugger Manual DM–161

Framework Components
General Component
Recorder Component

The Recorder component shown in Figure 5.90 provides record and replay
facilities for debug sessions.

Figure 5.90 Recorder Component

Description

The Recorder Component window enables the user to record and replay
command files. The recorded file may also contain the time at which the
command is executed.

Click the buttons to record, play, pause and stop.

 Play. Record.

 Stop. Pause.

An animation occurs during recording, replaying and pausing.

The current action (record, play or pause) and path of the involved file are
displayed in the Object Info Bar of the Simulator/Debugger Components.

Operations

When there is no record or play session (e.g., when the window is open),
only the record and play buttons are enabled.

When you click the record button, the debugger prompts you to enter a file
name. Then a record session starts and the stop button is enabled. Click the
stop button to end the record session.
DM–162 Debugger Manual

Framework Components
General Component
Clicking the replay button prompts for a file name. Command files have a
.rec default extension and can be edited. A replay session starts and only
the stop and pause buttons are enabled. When the pause button is clicked,
file execution stops and the play and stop buttons are enabled. When the
play button is clicked, file execution continues from the point it has been
stopped. When the stop button is clicked, the replay session stops.

Terminal and TestTerm record

Data typed in the Terminal component and TestTerm component is
recorded during a record session. The resulting file can be replayed only if
the time is also recorded (Record Time menu entry of the recorder has to
be checked before recording).

Menu

The recorder menu shown in Figure 5.91 changes according to the current
session. The menu items are described in Table 5.36.

Figure 5.91 Recorder Menu
Debugger Manual DM–163

Framework Components
General Component
Table 5.36 Recorder Menu Description

In Listing 5.2, a .abs file is loaded, a breakpoint is set, the assembly
component is configured to display the code and addresses. The Data1
component display is switched to local variables, and the application is
started and stopped at the breakpoint.

Listing 5.2 Record File example

at 4537 load C:\Metrowerks\DEMO\fibo.abs
at 9424 bs 0x1040 P
at 11917 Assembly < attributes code on
at 14481 Assembly < attributes adr on
at 20540 Data:1 < attributes scope local
at 24425 g
wait ;s

Drag Out

Nothing can be dragged out.

Drop Into

Nothing can be dropped into the Recorder Component window.

Menu entry Description

Record Starts recording from a debug session.

Replay Starts replaying from a debug session.

Pause Replay Suspends replay in a debug session.

End Replay Stops replay in a debug session.

End Record Stops recording from a debug session.

Record Time If set, the evolution time is also recorded. Instant 0 corresponds
to the beginning of the recording.
DM–164 Debugger Manual

Framework Components
General Component
Demo Version Limitations

Only 20 commands will be recorded and replayed.
Debugger Manual DM–165

Framework Components
General Component
Register Component

The Register Component window shown in Figure 5.92 displays the
content of registers and status register bits of the target processor.

Figure 5.92 Register Component

Description

Register values can be displayed in binary or hexadecimal format. These
values are editable.

Status register bits

Set bits are displayed dark, whereas reset bits are displayed grey. Double-
click a bit to toggle the bit.

During program execution, contents of registers that have changed since
the last refresh are displayed in red, except for status register bits.

The Object Info Bar of the Simulator/Debugger Components contains the
number of CPU cycles as well as the processor's name.
DM–166 Debugger Manual

Framework Components
General Component
Editing Registers

Double-click on a register to open an edit box over the register, so that the
value can be modified.

Press the key to ignore changes and retain previous content of the

register.

 If is pressed or clicking outside the edited register, the new

value is validated and the register content is changed.

If is pressed, the new value is validated and the register content

is changed. The next register value is selected and may be modified.

Double-clicking a status register bit toggles it.

 + : Contents of Source, Assembly and Memory components

change. The Source component shows the source code located at the

address stored in the register. The Assembly component shows the

disassembled code starting at the address stored in the register. The

Memory component dumps memory starting at the address stored in the

register.

Right-click: Opens the Register component Popup Menu.

Menu

The register menu contains the items shown in Figure 5.93. Table 5.37
describes the menu entries.
Debugger Manual DM–167

Framework Components
General Component
Figure 5.93 Register Menu

Table 5.37 Register Menu Description

Associated Popup Menu

Identical to menu.

Menu entry Description

Hex Selects the hexadecimal register display format

Bin Selects the binary register display format

Oct Selects the octal register display format

Dec Selects the signed decimal register display
format

UDec Selects the unsigned decimal register display
format

Float Selects the float register display format (all 32/
64 bit registers are displayed as floats, all others
as hex)

Auto Selects the auto register display format (all
floating point 32/64 bit registers are displayed
as floats, all others as hex)

Bit Reverse Selects the bit reverse data display format
(Each bit is reversed).
DM–168 Debugger Manual

Framework Components
General Component
Drag Out

Table 5.38 contains the Drag and Drop actions possible from the Register
component.

Table 5.38 Drag and Drop possible from the Register component.

Drop Into

Table 5.39 shows the Drag and Drop actions possible in the Register
component.

Table 5.39 Drag and Drop possible in the Register component.

Destination
component

Action

Assembly Assembly component receives an address range, scrolls up
to the corresponding instruction and highlights it.

Memory Dumps memory starting at the address stored in the selected
register. The corresponding address is selected in the
memory component.

Command Line The address stored in the pointed to register is appended to
the current command.

Source
component

Action

Assembler Loads the destination register with the PC of the
selected instruction.

Data Dragging the name loads the destination register with
the start address of the selected variable. Dragging the
value loads the destination register with the value of the
variable.

Source Loads the destination register with the PC of the first
instruction selected.
Debugger Manual DM–169

Framework Components
General Component
Demo Version Limitations

No limitation

Associated Commands

ATTRIBUTES.

Memory Loads the destination register with the start address of
the selected memory block.

Source
component

Action
DM–170 Debugger Manual

Framework Components
General Component
Seven segments display component

The Seven segments display component shown in Figure 5.94 consists of 8
"7-segment" display systems.

Figure 5.94 Seven segments display component

Description

Operation of the Seven segments display component is based on the
display scanning principle. Only one display can be activated
simultaneously for the purpose of limiting consumption of the set.

Common connection of the segments is the power of the component, the
other connections serve as code input, so the same code is applied to all
seven, as shown in Figure 5.95.

Scanning consists of selecting a display and activating its segments with
adequate code to the input terminals and then attend to the next display.
Debugger Manual DM–171

Framework Components
General Component
Figure 5.95 Seven segments display component constitution

Menu

Figure 5.96 shows the Seven segments display component menu and the
menu entry is described in Table 5.40.

Figure 5.96 Seven segments display component menu

Table 5.40 Seven segments display component Menu Description

Seven segments display component setup dialog

This dialog shown in Figure 5.97 allows you to select the display and
related value.

Menu entry Description

Setup Opens the Seven segments display component
setup dialog.
DM–172 Debugger Manual

Framework Components
General Component
Figure 5.97 Seven segments display component setup dialog

In the Select a display section, you can insert an address (in hexadecimal)
to select the display. In the Segment Activation field, you can set the value
of this display. The predefined port is the one used when the component
works with the Programmable IO_Ports.

Control bits configuration

The 2 bytes sent to the 7 segments must be composed as shown in Figure
5.98.

Figure 5.98 Seven segments display control bits

NOTE The Seven segments display component is much slower than its real
equivalent. So in simulation you don’t need to insert delays between each
display scan (for segments light on and observer eye perception).

Drag out

Nothing can be dragged out.
Debugger Manual DM–173

Framework Components
General Component
Drop Into

Nothing can be dropped into the Seven segments display Component
window.

Demo Version Limitations

No limitations

Associated Commands

Following commands are associated with the Seven segments display
Component:

SEGPORT, LINKADDR
DM–174 Debugger Manual

Framework Components
General Component
SoftTrace Component

The SoftTrace Component window shown in Figure 5.99 records and
displays instruction frames and time or cycles.

Figure 5.99 SoftTrace Component

Description

The Object Info Bar of the Simulator/Debugger Components displays the
number of recorded frames and the name of the function where the selected
frame is located.

Operations

Pointing at a frame and dragging the mouse forces all open windows to
show the corresponding code or location. Time and cycles of all other
frames are evaluated relative to this base.
Debugger Manual DM–175

Framework Components
General Component
 + sets the zero base frame to the pointed frame.

 + forces all open component windows to show the code

matching the pointed to frame.

Menu

The SoftTrace Menu shown in Figure 5.100 contains the functions
described in Table 5.41.

Figure 5.100 SoftTrace Menu

Table 5.41 SoftTrace Menu Description

Menu entry Description

Record Switches recording on and off.

Clock Speed Sets the clock frequency.

Max Frames Sets the maximum number of recorded frames.
Therefore you can minimize the amount of
memory required to display frames.

Cycles Displays cycles instead of time (in ms).

ms Displays time (in ms) instead of cycles.

Reset Removes all recorded frames.
DM–176 Debugger Manual

Framework Components
General Component
Associated Popup Menu

The SoftTrace popup menu shown in Figure 5.101 contains functions
(described in Figure 5.101) associated with the pointed to frame.

Figure 5.101 SoftTrace Associated Popup Menu

Table 5.42 SoftTrace Associated Popup Menu Description

Drag Out

Nothing can be dragged out.

Drop Into

Nothing can be dropped into the SoftTrace component window.

Demo Version Limitations

The number of frames is limited to 50.

Associated Commands

CLOCK, CYCLE, FRAMES, RECORD, RESET.

Menu entry Description

Set Zero Base Sets the zero base frame to the pointed to
frame.

Show Location Forces open component windows to show the
code corresponding to the pointed to frame.
Debugger Manual DM–177

Framework Components
General Component
Source Component

The Source Component window shown in Figure 5.102 displays the source
code of your program, i.e. your application file.

Figure 5.102 Source Component

Description

The Source Component allows you to view, change, monitor and control
the current execution location in the program. The text displayed in the
Source Component window is chroma-coded, i.e. language keywords,
comments and strings are emphasized with different colors (respectively
blue, green, red). A word can be selected by double-clicking it. A section
of code can be selected by + dragging the mouse.

The object info bar displays the line number in the source file of the first
visible line that is at the top of the source.

Source code can be folded and unfolded. Marks (places where breakpoints
may be set) can be displayed.
DM–178 Debugger Manual

Framework Components
General Component
The source statement matching the current PC is selected (e.g., in a C
source:). The matching assembler instruction in the
Assembler component window is also selected. This instruction is the next
instruction to be executed by the CPU.

If breakpoints have been set in the program, they will be marked in the
program source with a special symbol depending on the kind of breakpoint.

A temporary breakpoint has the following symbol:

A permanent breakpoint has the following symbol:

A disabled breakpoint looks like:

A counting breakpoint has the following symbol:

A conditional breakpoint has the following symbol:

If execution has stopped, the current position is marked in the source
component by highlighting the corresponding statement.

The complete path of the displayed source file is written in the Object Info
Bar of the Simulator/Debugger Components.

NOTE You cannot edit the visible text in the Source component window. This is a
file viewer only.

Tool Tips features

The Debugger source component provides tool tips to display variable
values. The tool tip is a small rectangular pop-up window that displays the
value of the selected variable (shown in Figure 5.103) or the parameter
value and address of the selected procedure. A parameter or procedure can
be selected by double-clicking it.
Debugger Manual DM–179

Framework Components
General Component
Figure 5.103 ToolTips features

Select ToolTips>Enable from the source menu entry to enable or disable
the tool tips feature.

Select ToolTips>Mode from the source menu entry to select normal or
details mode, which provides more information on a selected procedure.

Select ToolTips>Format from the source menu entry to select the tool tip
display format (Decimal, Hexadecimal, Octal, Binary or ASCII).

On Line Disassembling

For information about performing on line disassembly, refer to section
How to Consult Assembler Instructions Generated by a Source Statement.

• Select a range of instructions in the source component and drag it into
the assembly component. The corresponding range of code is
highlighted in the Assembly component window, as shown in Figure
5.104.

• + : Highlights a code range in the Assembly component

window corresponding to the first line of code selected in the Source
component window where the operation is performed. This line or code
range is also highlighted.
DM–180 Debugger Manual

Framework Components
General Component
Figure 5.104 On Line Disassembling

Setting Temporary Breakpoints

 For information on how to set breakpoints refer to sections in the Control
Points chapter.

• Point to an instruction in the Source component Window and click the
right mouse button. The Source Component popup menu is displayed.
Select Run To Cursor from the popup menu. The application
continues execution and stops at this location.

• + : Sets a temporary breakpoint at the nearest code position

(visible with marks) thereafter the program runs and breaks at this

location, as shown in Figure 5.105.
Debugger Manual DM–181

Framework Components
General Component
Figure 5.105 Setting Breakpoints

Setting Permanent Breakpoints

• Point to an instruction in the Source component Window and click the
right mouse button. The Source Component popup menu is displayed.
Select Set Breakpoint from the popup menu. The permanent
breakpoint icon is displayed in front of the pointed to source
statement.

• + : Sets a permanent breakpoint at the nearest code position

(visible with marks). The permanent breakpoint icon is
displayed in front of the pointed to source statement.

Folding and Unfolding

Use this feature to show or hide a section of source code (e.g., source code
of a function). For example, if a section is free of bugs, you can hide it. All
text is unfolded at loading.

Sections of code that can be folded are enclosed between and .

Sections of code that can be unfolded are hidden under .

• Double-click a folding mark or to fold the text located

between the marks.

• Double-click an unfolding mark to unfold the text that is hidden

behind the mark.
DM–182 Debugger Manual

Framework Components
General Component
Figure 5.106 and Figure 5.107 shows the functions associated with the
Source component. Table 5.43 describes these functions.

Figure 5.106 Source Associated Pop - Up Menu

Figure 5.107 Second Source Associated Pop - Up Menu
Debugger Manual DM–183

Framework Components
General Component
Table 5.43 Associated Pop - Up Menu Description

Menu entry Description

Set Breakpoint Appears only in the Popup Menu if no
breakpoint is set or disabled at the nearest code
position (visible with marks). When selected,
sets a permanent breakpoint at this position. If
program execution reaches this statement, the
program is halted and the current program state
is displayed in all window components.

Delete
Breakpoint

Appears only in the Popup Menu if a
breakpoint is set or disabled at the nearest code
position (visible with marks). When selected,
deletes this breakpoint.

Enable
Breakpoint

Appears only in the Popup Menu if a
breakpoint is disabled at the nearest code
position (visible with marks). When selected,
enables this breakpoint.

Disable
Breakpoint

Appears only in the Popup Menu if a
breakpoint is set at the nearest code position
(visible with marks). When selected, disables
this breakpoint.

Run To Cursor When selected, sets a temporary breakpoint at
the nearest code position and continues
program execution immediately. If there is a
disabled breakpoint at this position, the
temporary breakpoint will also be disabled and
the program will not halt. Temporary
breakpoints are automatically removed when
they are reached.

Show
Breakpoints

Opens the Breakpoints Setting dialog box and
allows you to view the list of breakpoints
defined in the application and modify their
properties (See Control Points chapter).
DM–184 Debugger Manual

Framework Components
General Component
Show Location Highlights a code range in the Assembly
component window matching the line or
selected source code. The line or the source
code range are highlighted as well.

 Open Source
File

Opens the Source File Dialog if a CPU is
loaded (see chapter below).

Copy
(CTRL+C)

Copies the selected area of the source
component into the clipboard. You can select a
word by double-clicking it. You can select a
text area with the mouse by moving the pointer
to the left of the lines until it changes to a right-
pointing arrow, and then drag up or down;
automatic scrolling is activated when the text is
not visible in the windows.

Go to Line Opens a dialog box to scroll the window to a
number line (see chapter below).

Find... Opens a dialog box prompting for a string and
then searches the file displayed in the source
component. To start searching, click Find
Next, the search is started at the current
selection or at the first line visible in the source
component (see chapter below).

Find Procedure Opens a dialog box for searching a procedure
(see chapter below).

Foldings Opens the folding window (see chapter below)

Marks Toggles the display of source positions where
breakpoints may be set. If this switch is on,
these positions are marked by small triangles.

ToolTips Allows you to enable or disable the source tool
tips feature, to set up the tool tip mode, and tool
tip format.

Menu entry Description
Debugger Manual DM–185

Framework Components
General Component
NOTE If some statements do not show marks although the mark display is
switched on, the following reasons may be the cause:
- The statement did not produce any code due to optimizations done by the
compiler.
- The entire procedure was not linked in the application, because it is never
used.

Open Source File Dialog

The Open Source File dialog shown in Figure 5.108 allows you to open
Source File (if a CPU is loaded). A source file is a file that has been used to
build the currently loaded absolute file. Assembly file (*.dbg) is searched
in the directory given by the OBJPATH and GENPATH variables. C, C++
files (*.c,*.cpp,*.h,...) are searched in the directories given by the
GENPATH variable.

Figure 5.108 Open Source File Dialog

Go to Line Dialog

This menu entry is only enabled if a source file is loaded. It opens the
dialog shown in Figure 5.109.

Enter the line number you want to go to in the source component, the
selected line will be displayed at the top of the source window. If the
number is not correct, a message is displayed.
DM–186 Debugger Manual

Framework Components
General Component
Figure 5.109 Go to Line Dialog

When this dialog is open, the line number of the first visible line in the
source is displayed and selected in the Enter Line Number edit box.

Find Dialog

The Find Dialog, shown in Figure 5.110 is used to perform find operations
for text in the Source component. Enter the string you want to search for in
the Find what edit box. To start searching, click Find Next, the search
starts at the current selection or first line visible in the source component,
when nothing is selected.

Use the Up / Down buttons to search backward or forward. If the string is
found, the source component selection is positioned at the string. If the
string is not found, a message is displayed.

Figure 5.110 Find Dialog

The dialog box allows you to specify the following options:

• Match whole word only: If this box is checked, only strings separated
by special characters will be recognized.

• Match case: If this box is checked, the search is case sensitive.
Debugger Manual DM–187

Framework Components
General Component
NOTE If an item (single word or source section) has been selected in the Source
component window before opening the Find dialog, the first line of the
selection will be copied into the “Find what” edit box.

Find Procedure Dialog

The Find Procedure dialog, shown in Figure 5.111 is used to find the
procedure name in the currently loaded application. Enter the procedure
name you want to search for in the Find Procedure edit box. To start
searching, click OK, the search starts at the current selection or at the first
line visible in the source component, when nothing is selected.

Figure 5.111 Find Procedure Dialog

If a valid procedure name is given as a parameter, the source file where the
procedure is defined is opened in the Source Component. The procedure’s
definition is displayed and the procedure’s title is highlighted.

The drop-down list allows you to access the last searched items (classified
from first to older input). Recent search items are stored in the current
project file.

Folding Menu

The Folding Menu shown in Figure 5.112 allows you to select the Fold
functions described in Table 5.44.
DM–188 Debugger Manual

Framework Components
General Component
Figure 5.112 Folding Menu

Table 5.44 Folding Menu Description

Drag Out

Table 5.45 shows the Drag and Drop actions possible from the Source
component.

Table 5.45 Drag and Drop possible from the Source component

Menu entry Description

Unfold Unfolds the displayed source code

Fold Folds the displayed source code

Unfold All Text Unfolds all displayed source code

Fold All Text Folds all displayed source code

All Text Folded
At Loading

 Folds all source code at load time

Destination
compo.

Action

Assembly Displays disassembled instructions starting at the first high
level language instruction selected. The assembler instructions
corresponding to the selected high level language instructions
are highlighted in the Assembly component
Debugger Manual DM–189

Framework Components
General Component
Register Loads the destination register with the PC of the first instruction
selected.

Data A selection in the Source window is considered as an
expression in the Data window, as if it was entered through the
Expression Editor of the Data component. (please see Data
Component or Expression Editor)

Destination
compo.

Action
DM–190 Debugger Manual

Framework Components
General Component
Drop Into

Table 5.46 shows the Drag and Drop actions possible into the Source
component.

Table 5.46 Drag and Drop possible into the Source component.

Demo Version Limitations

Only one source file of the currently loaded application can be displayed.

Associated Commands

ATTRIBUTES, FIND, FOLD, FINDPROC, SPROC, SMOD, SPC,
SMEM, UNFOLD.

Source compo. Action

Assembly Source component scrolls to the source statements
corresponding with the pointed to assembly instruction and
highlights it.

Memory Displays high level language source code starting at the first
address selected. Instructions corresponding to the selected
memory area are greyed in the source component.

Module Displays source code from the selected module.
Debugger Manual DM–191

Framework Components
General Component
Stimulation Component

The Simulator/Debugger also supports I/O Stimulation. Using this feature
you can generate (stimulate) interrupts or memory access generated by an
external I/O device.

Description

The Stimulation component shown in Figure 5.113 is a window component
that provides the basic functionality of the simulator debugger. It serves to
execute timed action and raise exception events. The Stimulation
component displays and executes I/O stimulation described in a text file.

Figure 5.113 Stimulation Component

Popup menu

Figure 5.114 shows functions associated with the Source component. Table
5.47 describes these functions.

Figure 5.114 Stimulation Popup menu

Table 5.47 Stimulation Popup menu

Menu entry Description

Open File Opens a dialog to load a stimulation file.
DM–192 Debugger Manual

Framework Components
General Component
Cache Size Dialog

This dialog shown in Figure 5.115, allows you to define the number of
lines displayed in the Stimulation component. If the 'Limited Size of
Cache' checkbox is unchecked, the number of lines is unlimited. If the
'Limited Size of Cache' check box is checked, the number of lines is
limited to the value displayed in the edit box. This value should be between
10 and 1000000. By default, the number of lines is 1000.

Figure 5.115 Cache Size Dialog

NOTE The bigger the cache size, the slower new lines are logged.

Example of a Stimulation File

Using an editor, open the file named IO_VAR.TXT located in the project
directory. Listing 5.3 is an example file.

Listing 5.3 Stimulation File example

def a = TargetObject.#210.B;

PERIODICAL 200000, 50:
 50000 a = 128;

Execute Starts execution of the input file.

Display Switches display of stimulated file on or
off.

Cache size Opens the 'Size of Cache' dialog.

Menu entry Description
Debugger Manual DM–193

Framework Components
General Component
 150000 a = 4;
END
10000000 a = 0;

In the first line, the stimulated object is defined. This object is located at
address 0x210 and is 1 byte wide.

Once 200000 cycles have been executed, the memory location 0x210 is
accessed periodically 50 times (line 3). First the memory location is set to
128 and then 100000 cycles latter, it is set to 4.

NOTE For more information about Stimulation, refer to the True Time
Stimulation document.

Drag Out

Nothing can be dragged out.

Drop Into

Nothing can be dragged into.

Demo Version Limitations

Only 15 interrupts and memory access will be generated.

Associated Commands

ATTRIBUTES, EXECUTE, OPENFILE,

For more information about commands, refer to Debugger Commands.
DM–194 Debugger Manual

Framework Components
General Component
TestTerm Component

The TestTerm component shown in Figure 5.116 is a user-friendly terminal
input/output. It provides a simple SCI (Serial Communication Interface)
interface, which is target independent.

Figure 5.116 TestTerm Component

The TestTerm component emulates a serial communication interface based
at the address 200 hex, therefore providing 5 simulated memory mapped
registers described in Table 5.48.

Table 5.48 TestTerm simulated memory mapped registers

In the Serial Communication Status Register, the bits used are described in
Table 5.49.

Table 5.49 TestTerm Serial Communication Status Register

Register Name Function Register Address

BAUD Baud Rate Control 0x0200

SCCR1 Serial Communication Control Register 0x0201

SCCR2 Serial Communication Control Register 0x0202

SCSR Serial Communication Status Register 0x0203

SCDR Serial Communication Data Register 0x0204

Bit Name (flag) Function Bit Mask Value

TDRE Transmit Data Register Empty 0x80

RDRF Receive Data Register Full 0x20
Debugger Manual DM–195

Framework Components
General Component
However, reading and writing in the BAUD, SCCR1, SCCR2 or SCSR
registers has no effect in the TestTerm component, but are required to
make the component compatible with specific SCI interfaces.

Simulated I/Os of the TestTerm component do not need initialization. In
the terminal interface file termio.c, BAUD and SCSR registers are
initialized to be compatible with real SCI interfaces.

NOTE See alsoTerminal Component section.

The SCDR register is valid for reading or writing data. When reading a
value from the SCDR register, the RDRF flag is cleared in the SCSR
register. Also when the user enters a character on the keyboard while
TestTerm is active, the RDRF flag is set in the SCSR register and the
ASCII code of the typed key is put into the SCDR register.

Conceptually when a new value is written in the SCDR register by the
target application, the TDRE flag is cleared in SCSR. When the
transmission is finished, the TDRE flag is set again. As TestTerm is only
an I/O emulation, no delay is simulated and writing into SCDR sets the
TDRE flag in the SCSR register.

Output Redirection

Outputs can be redirected to a TestTerm component window, a file, or to
both at the same time.

File output is monitored by the target system and cannot be specified
interactively.

Redirection is handled through “Escape” sequences of the output data
stream. Table 5.50 illustrates the different possible redirections and
associated Escape sequences:

Table 5.50 Redirections and associated Escape sequences

Escape Sequence Function

ESC “h” “1” Output to Terminal window only.

ESC “h” “2” filename Output to both Terminal window and file.

ESC “h” “3” filename Output to file only.
DM–196 Debugger Manual

Framework Components
General Component
where filename is a sequence of characters terminated by a control
character (e.g., CR) and is a valid filename.

ESC is the ESC character (ASCII code 27 decimal).

These commands can be used anywhere in the output stream.

How to redirect

By default, an output redirection is set to the TestTerm component
window.

The Term_Direct function declared in terminal.h is used to redirect
an output. The source code in terminal.c is given in Listing 5.4.

Listing 5.4 Term_Direct source code

void Term_Direct(int what, char *fileName)
{
 if (what < 1 && what > FROM_FILE) return;
 Write(ESC); Write('h');
 Write(what + '0');
 if (what != TO_WINDOW && what != FROM_KEYS) {
 PutString(fileName); Write(CR);
 }
}

where “what” is one of the following items: TERM_TO_WINDOW
(sends output to terminal window), TERM_TO_BOTH (send output to
file and window), TERM_TO_FILE (send output to file 'fileName'),
TERM_FROM_KEYS (read from keyboard), TERM_FROM_FILE
(read input from file 'fileName'), TERM_APPEND_BOTH (append
output to file and window), TERM_APPEND_FILE (append output to
file 'fileName'). See also terminal.h for more information.

ESC “h” “4” Read from keyboard

ESC “h” “5” filename Read input from file 'fileName'

ESC “h” “6” filename Output to Terminal window and append to file

ESC “h” “7” filename Append to file only

Escape Sequence Function
Debugger Manual DM–197

Framework Components
General Component
How to Use TestTerm

Listing 5.5 shows the functions defined in termport.h that can be called
to access the TestTerm component:

Listing 5.5 Functions to access the TestTerm component

char GetChar(void);
void PutChar(char ch);
void PutString(char *str);
void InitTermIO(void);

Source code for the functions in termport.c is given in Listing 5.6.

Listing 5.6 Source code of the functions to access the TestTerm
component in termport.c

typedef struct {
 unsigned char BAUD;
 unsigned char SCCR1;
 unsigned char SCCR2;
 unsigned char SCSR;
 unsigned char SCDR;
} SCIStruct;

#define SCI (*((SCIStruct*)(0x0200)))
char GetChar(void)
{
 while (!(SCI.SCSR & 0x20)); /* wait for input */
 return SCI.SCDR;
}

void PutChar(char ch)
{
 while (!(SCI.SCSR & 0x80)); /* wait for output buffer
 empty */
 SCI.SCDR = ch;
}

void PutString(char *str)
{
 while (*str) {
DM–198 Debugger Manual

Framework Components
General Component
 PutChar(*str);
 str++;
 }
}

void InitTermIO(void)
{
 SCI.BAUD = 0x30; /* baud rate 9600 at 8 MHz */
 SCI.SCCR2 = 0x0C; /* 8 bit, TE and RE set */
}

Example

The calc.abs example needs Terminal Component.

Menu

The TestTerm component menu and popup menu shown in Figure 5.117 let
you set the Cache Size in lines of the Testterm window in the dialog shown
in Figure 5.118.

Figure 5.117 TestTerm Menu

Select Cache Size in the menu.

Figure 5.118 TestTerm cache Size Dialog

Drag Out

Currently, nothing can be dragged out of the TestTerm component.
Debugger Manual DM–199

Framework Components
General Component
Drop Into

Currently, nothing can be dropped into the TestTerm component.

Demo Version Limitations

No limitation
DM–200 Debugger Manual

Framework Components
General Component
Terminal Component

The Terminal component shown in Figure 5.119 uses a SCI (Serial
Communication Interface) provided by the framework.

Figure 5.119 Terminal Component

The Terminal only works if a special SCI is present or if some other I/O
simulation components for input/output are present. Therefore the
Terminal component simulates I/Os with associated SCI tools.

The Terminal component accesses the target through the Object Pool
interface. Refer to How to Use Terminal for more information.

Output Redirection

Outputs can be redirected to a Terminal component window, a file, or both
at the same time.

The file output is monitored by the target system only and cannot be
specified interactively.

Redirection is handled through “Escape” sequences of the output data
stream. Table 5.51 illustrates the different possible redirections and
associated Escape sequences:

Table 5.51 Terminal Output Redirection

Escape Sequence Function

ESC “h” “1” Output to Terminal window only.

ESC “h” “2” filename Output to both Terminal window
and file.
Debugger Manual DM–201

Framework Components
General Component
where filename is a sequence of characters terminated by a control
character (e.g., CR) and is a valid filename.

ESC is the ESC Character (ASCII code 27 decimal).

These commands can be given anywhere in the output stream.

How to redirect

By default, output redirection is set to the Terminal component window
only.

The Term_Direct function declared in terminal.h is used to redirect
an output. The source code in terminal.c is given in Listing 5.7.

Listing 5.7 Term_Direct source code

void Term_Direct(int what, char *fileName)
{
 if (what < 1 && what > FROM_FILE) return;
 Write(ESC); Write('h');
 Write(what + '0');
 if (what != TO_WINDOW && what != FROM_KEYS) {
 PutString(fileName); Write(CR);
 }
}

where “what” is one of the following items: TERM_TO_WINDOW
(send output to terminal window), TERM_TO_BOTH (send output to file
and window), TERM_TO_FILE (send output to file 'fileName'),
TERM_FROM_KEYS (read from keyboard), TERM_FROM_FILE

ESC “h” “3” filename Output to file only.

ESC “h” “4” Read from keyboard

ESC “h” “5” filename Read input from file 'fileName'

ESC “h” “6” filename Output to Terminal window and
append to file.

ESC “h” “7” filename Append to file only.

Escape Sequence Function
DM–202 Debugger Manual

Framework Components
General Component
(read input from file 'fileName'), TERM_APPEND_BOTH (append
output to file and window), TERM_APPEND_FILE (append output to
file 'fileName'). See also terminal.h for further details.

How to Use Terminal

The Terminal component accesses the target through the Object Pool
interface.

To make the Terminal component work, the target must provide an object
with the name "Sci0".

If no Sci0 object is available, no input or output happens. It is possible to
check through the Inspector component if the environment currently
provides an Sci0 object.

TIP Only some specific simulator target components currently have a Sci0
object. For all other simulator target components, the Terminal component
does not work unless a user defined Sci0 object with the specified register
name is loaded.

Write access to the target application is done with the Object Pool function
"OP_SetValue" at the address "Sci0.SerialOutput".

Input from the target application is handled with a subscription to an
Object Pool register with the name Sci0.SerialInput. When this register
changes (sends a notification), a new value is received.

For implementations of this register with help of the "IOBase" class, the
flag "IOB_NotifyAnyChanges" should be used.

Otherwise only the first of two identical characters are received.

Example

Please refer to the Calc.abs and Term_demo.abs examples installed
with your Simulator/Debugger environment in the demo directory.
Debugger Manual DM–203

Framework Components
General Component
Other Information

Menu

The Terminal component menu and popup menu shown in Figure 5.120
allow you to set the Cache Size in lines in the dialog shown in Figure
5.121.

Figure 5.120 Terminal popup menu

Select Cache Size in the menu.

Figure 5.121 Terminal Cache Size Dialog

Drag Out

Currently, nothing can be dragged out of the Terminal component.

Drop Into

Currently, nothing can be dropped into the Terminal component.

Demo Version Limitations

No limitation
DM–204 Debugger Manual

Framework Components
General Component
Wagon Component

The Wagon component shown in Figure 5.119 simulates a tool machine
wagon functionality.

Figure 5.122 Wagon Component

Description

At first, the wagon is at the left border position, when you click the RUN
button, the wagon goes to the right side. Upon arriving at the right border,
the wagon returns to the left side. The RESET button also positions the
wagon at the left border. The STOP button stops the wagon at the current
position.

Menu

Figure 5.123 shows the Wagon menu and is described in Table 5.52.

Figure 5.123 Wagon menu

Table 5.52 Wagon Menu Description

Menu entry Description

Setup Opens the Wagon setup dialog shown in Figure
5.124.
Debugger Manual DM–205

Framework Components
General Component
Wagon setup dialog

Figure 5.124 Wagon setup dialog

In the Motor Port section, you can insert an address (in hexadecimal) to
select the Wagon direction, in the Sensor Port field you can insert an
address (in hexadecimal) to select the Wagon position. Predefined ports are
fixed when the component operates with the Programmable IO_Ports.

Control bits configuration

The 2 bytes sent to the 7 segments must be composed as shown in Figure
5.125.

Figure 5.125 Wagon Control bits Description

To move the wagon to the right, set bit r and to move the wagon to the left,
set bit l:

The sensor port sets the bl bit when the wagon is at the left border, sets bit
br when the wagon is at the right border; sets bit st when START button is
clicked with left mouse button, and sets stp when STOP button is clicked.
DM–206 Debugger Manual

Framework Components
General Component
Drag out

Nothing can be dragged out.

Drop Into

Nothing can be dropped into the Wagon Component.

Demo Version Limitations

No limitations

Associated Commands

Following commands are associated with the Wagon component:

WPORT, LINKADDR
Debugger Manual DM–207

Framework Components
Visualization Utilities
Visualization Utilities
Besides components that provide the Simulator/Debugger engine a well-
defined service dedicated to the task of application development, the
debugger component family includes utility components that extend to the
productive phase of applications, such as, the host application builder
components, process visualization components, etc.

Among these components, there are visualization utilities that graphically
display values, registers, memory cells, etc., or provide an advanced
graphical user interface to simulated I/O devices, program variables, and so
forth.

The following components of the continuously growing set of visualization
utilities belong to the standard Simulator/Debugger installation.
DM–208 Debugger Manual

Framework Components
Visualization Utilities
Analog Meter Component

The Analog Meter shown in Figure 5.126 is a template component that can
be used as a basis for user provided debugger extension components. It
displays several input and output controls that can be manipulated with the
mouse.

Figure 5.126 Analog Meter Component

Description

The Analog Meter contains four controls: an analog gauge in the middle, a
vertical level bar to the left, a horizontal level bar on top, and a turning
‘knob’ in the top left corner. Click in any of these controls to adjust the
value of the meter. The Analog Meter is assigned to address 0x210.

Operations

In the vertical bar, the value can be tracked vertically, in the gauge and
horizontal bar, the value can be tracked horizontally, and in the knob, the
value is adjusted when tracking the mouse around the center.

Menu

The Analog Meter does not have a menu.
Debugger Manual DM–209

Framework Components
Visualization Utilities
Drag Out

Nothing can be dragged out of the Analog Meter component.

Drop Into

Nothing can be dropped into the Analog Meter component.

Demo Version Limitations

No limitation.
DM–210 Debugger Manual

Framework Components
Visualization Utilities
Inspector Component

The Inspector shown in Figure 5.127 displays information about several
topics. It displays loaded components, the visible stack, pending events,
pending exceptions and loaded I/O devices.

Figure 5.127 Inspector Component

Description

The hierarchical content of the items is displayed in a tree structure. If any
item is selected on the left side, then additional information is displayed on
the right side.

In the figure above, for example, the Object Pool is expanded. The Object
Pool contains the TargetObject, which contains the Leds and Swap
peripheral devices. The Swap peripheral device is selected and registers of
the Swap device are displayed.

Components

When the components icon is selected, as shown in Figure 5.128, the right
side displays various information about all loaded components. A
Component is the “unit of dynamic loading”, therefore all windows, the
CPU, the target and maybe the target-simulator are listed.
Debugger Manual DM–211

Framework Components
Visualization Utilities
Figure 5.128 Inspector components icon

Stack

The Stack shown in Figure 5.129 displays the current stack trace. Every
function on the stack has a separate icon on the trace. In the stack-trace, the
content of a local variable is accessible.

Figure 5.129 Inspector Stack

Symbol Table

The symbol table shown in Figure 5.130 displays all loaded symbol table
information in raw format. There are no stack frames associated with
functions. Therefore the content of local variables is not displayed. Global
variables and their types are displayed.
DM–212 Debugger Manual

Framework Components
Visualization Utilities
Figure 5.130 Inspector Symbol Table

Events

The events icon shown in Figure 5.131 shows all currently installed events.
Events are handled by peripheral devices, and notified at a given time. The
Event display shows the name of the event and remaining time until the
event occurs.

Figure 5.131 Inspector Events

Events are only used in the Simulator. This information is used for
simulation I/O device development.

When simulating a watchdog/COP, an event with the remaining time is
displayed in the Event View.

Exceptions

The exception icon shown in Figure 5.132 shows all currently raised
exceptions. Exceptions are pending interrupts.
Debugger Manual DM–213

Framework Components
Visualization Utilities
Figure 5.132 Inspector Exceptions

Events are only used in the Simulator. This information is used for
simulation I/O device development.

Since interrupts are usually simulated immediately when they are raised,
the Exceptions are usually empty. Only when interrupts are disabled or an
interrupt is handled, something is visible in this item.

When simulating a watchdog/COP, an Exception is raised as soon as the
watchdog time elapses.

Object Pool

The Object Pool shown in Figure 5.133 is a pool of objects. It can contain
any number of Objects, which can communicate together and also with
other parts of the Simulator/Debugger.

Figure 5.133 Inspector Object Pool

The most common use of Objects is to simulate special hardware with the
I/O development package, however, other targets also use the Object Pool.
For example, the Terminal Component exchanges its input and output by
DM–214 Debugger Manual

Framework Components
Visualization Utilities
the Object Pool. The Terminal Component also operates with some
hardware targets.

For the Simulator, the Object Pool usually contains the TargetObject,
which represents the address space. All Objects that are loaded are
displayed in the Object Pool. The TargetObject additionally shows the
objects that are mapped to the address space.

Operations

Click the folded/unfolded icons to unfold/fold the tree and display/
hide additional information.

Click on any icon or name to see the corresponding information displayed
on the right side.

On the right side, some value fields can be edited by double clicking on
them. Only values that are accessible can be edited. Usually, if a value is
displayed, it can be changed. I/O Devices in the Object Pool do not accept
all new values, depending on the I/O Device. Values can be entered in
hexadecimal (with preceding 0x), in decimal, in octal (with preceding 0),
or in binary (with preceding &).

To see the IO_Led in the Inspector, as shown in Figure 5.134, open the
IO_Led with the context menu Component-Open and then open the
Inspector. If the Inspector is already loaded, select Update from the
context menu in the Inspector. Then click on the Components icon to see
the Component list, which now includes the “IO_Led” component.
Debugger Manual DM–215

Framework Components
Visualization Utilities
Figure 5.134 How to see the IO_Led in the Inspector

Expand Object Pool, to see the Leds icon. Click on the Leds icon. On the
right side, the Port_Register and Data_Direction_Register are displayed
with their current value. Double click on the values to change them (Figure
5.135).

Figure 5.135 Changing “Data_Direction_Register” value

Menu

The Inspector menu contains entries described in Table 5.53.
DM–216 Debugger Manual

Framework Components
Visualization Utilities
Table 5.53 Inspector Menu Entries:

Associated Popup Menu

Commands in the Inspector context menu depend on the selected item. It
can contain entries described in Table 5.54.

Table 5.54 Inspector Menu Entries Description

Drag Out

Items that can be dragged, depends on which icon is selected. Table 5.55
gives a brief description.

Menu entry Description

Update All displayed information is updated
Items that no longer exist are removed and new items are added.

Menu entry Context Description

Update all items All displayed information is updated
Items that no longer exist are
removed and new items are added.

Max.
Elements...

all items To display large arrays element by
element, the maximum number can
be configured. It is also possible to
display a dialog that prompts the
user.

Format all items Numerical values can be displayed
in different formats.

Close single
selected
Compone
nt only

Closes the corresponding component
Debugger Manual DM–217

Framework Components
Visualization Utilities
Table 5.55 Inspector Possible Drag Out

Drop Into

Nothing can be dropped into the Inspector Component window.

Demo Version Limitations

Only 5 items can be expanded at each location. For remaining items, an
icon with the text “Demo Limitation” is displayed, as shown in Figure
5.136.

Dragging
Item

Description

Components The components cannot be dragged

Stack The Stack Icon itself cannot be dragged.
All subitems can be dragged the same way as
the Symbol Table subitems, described below.

Symbol Table The Symbol Table icon cannot be dragged out.
Subitems can be dragged depending on their
type:
Modules: Modules can be dragged to the
source and global data window to specify a
specific module.
Functions: Functions can be dragged to display
the function or code range.
Variables: Variables can be dragged to display
their content in memory.
Indirections: Indirections can be dragged to
display their content in memory.
DM–218 Debugger Manual

Framework Components
Visualization Utilities
Figure 5.136 Inspector Demo Version Limitations
Debugger Manual DM–219

Framework Components
Visualization Utilities
IO LED Component

The IO LED Component shown in Figure 5.137 contains 8 leds used to
manipulate and display the values of memory at an address specified in the
related dialog box. Led colors are set at the PORT address (red or green)
and the leds states are switched on/off at the DDR address (symbolic
values).

Figure 5.137 IO LED Component

Description

When you change the state of leds in this window, the value of the
corresponding bit at the DDR address will change in the Memory
Component window.

Operations

By clicking and changing the state of one led will change the value of the
byte at the DDR address.

If you want to change the color of the leds, you must change the value of
the byte at the PORT address in the Memory Component window.

The location is specified with a string in the form object.value. Possible
objects and their values can be listed in the Inspector component.

Menu

The IO LED Menu shown in Figure 5.138 contains the Setup command.
This command opens the Led setup dialog shown in Figure 5.139 and
allows you to specify the PORT and DDR addresses.

Figure 5.138 IO LED Menu
DM–220 Debugger Manual

Framework Components
Visualization Utilities
Figure 5.139 IO LED Setup Dialog

Associated Popup Menu

Identical to menu.

Drag Out

Nothing can be drag out.

Drop Into

Nothing can be dropped into.

Associated Commands

.None.

Demo Version Limitations

No limitation
Debugger Manual DM–221

Framework Components
Visualization Utilities
LED Component

The LED component shown in Figure 5.140 is a visual utility that displays
an arbitrary 8 bit value by means of a LED bar.

Figure 5.140 LED Component

Description

The LED component displays the value in a bit-wise manner with the most
significant bit to the left, and the least significant bit to the right. Bits with
value 0 are shown using a green LED, and bits with value 1 use a red LED.
The user can click a LED to toggle its state. The underlying value is
changed accordingly.

Operations

If you click a LED, its state toggles between green (0) and red (1). The
corresponding bit in the underlying value is changed as well.
Right-click within the component, a popup menu appears with the same
menu entries as listed in the Led menu in the main menu bar.

Menu

The Led menu contains a single item Setup... that opens the Led Setup
Dialog shown in Figure 5.141.

Led Setup Dialog

Figure 5.141 Led Setup Dialog
DM–222 Debugger Manual

Framework Components
Visualization Utilities
In the text field, the user can specify which value should be displayed by
the LED bar. The location is specified with a string in the form
object.value. Possible objects and their values can be listed in the
Inspector Component.

Click OK to accept the specified location. Click Cancel to discard changes
and retain the previous location.

Example

If the specified location is TargetObject.#210 the LED bar displays the
memory byte at address 0x210.

Drag Out

Currently, nothing can be dragged out of the LED component.

Drop Into

Currently, nothing can be dropped into the LED component.

Demo Version Limitations

No limitation

Associated Command

PORT
Debugger Manual DM–223

Framework Components
Visualization Utilities
The Phone Component

The phone component shown in Figure 5.142 is an input utility that
provides a graphical keyboard pad that allows you to interactively modify
the value of a memory cell.

Figure 5.142 The Phone Component

Features

The phone component displays the front panel of a cellular phone with a
numeric keypad and LCD display. Keys on the keypad can be clicked to
store the corresponding value into the configured memory location. If the
mouse is on top of an active key, the arrow shape of the cursor changes to a
pointing hand. Currently, the LCD component is not operational.
DM–224 Debugger Manual

Framework Components
Visualization Utilities
Operations

Click a phone key and the matching ASCII character of the label on the key
is stored at the configured memory cell.

Right-click within the component to display a popup menu with the same
menu entries as the Phone menu in the main debugger menu.

Menu

The Led menu contains the Address... command, which opens the Phone
Address dialog shown in Figure 5.143.

Phone Address Dialog

In the text field, the user can specify the address of the memory cell where
keypad characters will be stored. The location is specified with a
hexadecimal number.

Figure 5.143 Phone Address Dialog

Click OK to accept the specified address. Click Cancel to discard changes
and retain the previous address.

Example

If the specified address is 210, the Phone component keypad is associated
with the memory byte at address 0x210.

Drag Out

Currently, nothing can be dragged out of the Phone component.

Drop Into

Nothing can be dropped into the Phone component.
Debugger Manual DM–225

Framework Components
Visualization Utilities
Demo Version Limitations

No limitation
DM–226 Debugger Manual

Framework Components
Visualization Utilities
VisualizationTool

The VisualizationTool is a very convenient tool to present your data. For
software demonstration, or for your own debugging session, take
advantage of all its virtual instruments.

Not only is the VisualizationTool fully configurable, but it is also very
easy to use. You can create your own visualization within a few minutes.

The tool consists of a plain workspace that can be equipped with many
different instruments (See Figure 5.144).

Figure 5.144 VisualizationTool

Edit Mode and Display Mode

The VisualizationTool may operate in two modes: Display mode or Edit
mode.

The Edit mode is for designing the workspace to suit your needs. In the
Display mode you can then use what you have done in the Edit mode, that
Debugger Manual DM–227

Framework Components
Visualization Utilities
is, to view values, interact with your application and instruments, press
buttons, etc.

To switch between these two modes, you can use the toolbar, the context
menu, or the shortcut Ctrl+E.

Add New Instrument

Use the context menu (see Menu) to add a new instrument.

Selection

The VisualizationTool allows several ways to select instruments.

You can select a single instrument by left clicking on it, and change the
selection by pressing the tab-key.

To make multiple selections, hold down the control key and left-click on
the desired instruments. You can also left click, hold and move to create a
selection rectangle.

Move

There are two ways to move instruments. First, make your desired
selection. You can then use the mouse to drag the instruments, or use the
cursor keys to move them step by step (hold down the control key to move
the instrument in steps of ten). The move process performed with the
mouse can be broken off by pressing the escape key.

Resize

When you select a instrument, sizing handles appear at the corners and
along the edges of the selection rectangle. You can resize an object by
dragging its sizing handles, or by using the cursor keys while holding down
the shift key. The resize process performed with the mouse can be broken
off by pressing the escape key. Only one instrument can be resized at a
time. Furthermore, each instruments has its own size minimum.

Menu

Once the Visualization Tool component has been launched, its menu
appears in the debugger menu bar.

The menu contains the entries described in Table 5.56.
DM–228 Debugger Manual

Framework Components
Visualization Utilities
Table 5.56 Visualization Tool Menu Description

Associated Popup Menu

The context menu of the VisualizationTool depends on the current
selection. It can contains the entries described in Table 5.57.

Table 5.57 VisualizationTool Popup Menu
:

Menu entry Description

Properties Displays the properties of the currently selected instrument.
Shortcut: <Ctrl+P>

Add New Instrument Enables to choose an instrument from the list and add it to the
view.

Paste Pastes an instrument that has been previously copied.
Shortcut: <Ctrl+V>

Select All Selects all the instruments of the view.
Shortcut: <Ctrl+A>

Edit mode Switches between Display mode and Edit mode. In Edit mode,
this entry is checked.
Shortcut: <Ctrl+E>

Load Layout Loads a VisualizationTool-Layout (*.vtl). The actual
instruments will not be removed.
Shortcut: <Ctrl+L>

Save Layout Saves the current layout to a file (*.vtl).
Shortcut: <Ctrl+S>

Menu entry Context Description

Edit mode always Switches between Display mode and Edit mode. In
Edit mode, this entry is checked.

 Setup always Shows the Setup dialog of the VisualizationTool.
Debugger Manual DM–229

Framework Components
Visualization Utilities
Load Layout Edit mode Loads a VisualizationTool-Layout (*.vtl).

Save Layout always Saves the current layout to a file (*.vtl).

Add New
Instrument

Edit mode Shows a new popup menu with all available
instruments.

Properties only one
instrument
selected

Shows up the property dialog box for the currently
selected instrument.
Shortcut: Ctrl + P

Remove at least one
selection

Removes all currently selected instruments.
Shortcut: Delete

Copy at least one
selection

Copies the data of the currently selected
instruments into the clipboard.
Shortcut: Ctrl + C

Cut at least one
selection

Cuts the currently selected instruments into the
clipboard.
Shortcut: Ctrl + X

Paste Edit mode Adds instruments, which are temporary stored in
the clipboard, to the workspace.
Shortcut: Ctrl + V

Send to Back at least one
selection

Sends the current instrument to the back of the Z-
order.

Send to Front at least one
selection

Brings the current instrument to the front of the Z-
order.

Clone Attributes more than one
selection

Clones the common attributes to all selected
instruments according to the last selected.
Shortcut: <Ctrl + Enter>

Align at least two
selections

Gives access to a new menu for alignment.

Top Align Aligns the instruments to the top line of the last
selected instrument.

Menu entry Context Description
DM–230 Debugger Manual

Framework Components
Visualization Utilities
VisualizationTool Properties

Like other instruments, the VisualizationTool itself has got Properties.
There are several configuration possibilities for the VisualizationTool,
shown in Table 5.58. To view the property dialog box of the
VisualizationTool, use the shortcut <CTRL-P> or double click on the
background.

Table 5.58 VisualizationTool Properties

Bottom Align Aligns the instruments to the bottom line of the last
selected instrument.

Left Align Aligns the instruments to the left line of the last
selected instrument.

Right Align Aligns the instruments to the right line of the last
selected instrument.

Size Align Makes the size of all selected instruments the same
as the last selected.

Vertical Size Align Makes the vertical size of all selected instruments
the same as the last selected.

Horizontal Size Align Makes the horizontal size of all selected
instruments the same as the last selected.

Menu entry Context Description

Menu entry Description

Edit mode Switches from Edit mode to Display mode.

Display Scrollbars Switches the scrollbars on, off, or sets it to automatic mode.

Display Headline Switches the headline on or off.

Backgroundcolor Specifies the background color of the VisualizationTool.
Debugger Manual DM–231

Framework Components
Visualization Utilities
Instruments

When you first add an instrument, it is in “move mode”. Place it at the
desired location on the workspace. All new instruments are set to their
default attributes. To configure an instrument, right-click on an instrument
and choose ’Properties’, or double click on it.

All instruments have these common attributes shown in Table 5.59.

Table 5.59 Instruments attributes
:

Grid Mode Specifies the grid mode. There are four possibilities: ’Off,’
’Show grid but no snap,’ ’Snap to grid without showing the
grid,’ or ’Show the grid and snap on it.’

Grid Size Specifies the distance between two grid points (vertical,
horizontal).

Grid Color Specifies the color of the grid points.

Refresh Mode Specifies the way the window will be refreshed. You may
choose between: “Automatic, Periodical, Each access, Cpu
Cycles”.

Menu entry Description

Attribute Description

X-Position Specifies the X-coordinate of the upper left corner.

Y-Position Specifies the Y-coordinate of the upper left corner.

Height Specifies the instruments height.

Width Specifies the instruments width.

Bounding Box Specifies the look of the bounding box.
Available displays are: No Box, Flat (outline only), Raised,
Sunken, Etched, and Shadowed.
DM–232 Debugger Manual

Framework Components
Visualization Utilities
Analog

The Analog instrument (Figure 5.145) represents the classical pointer
instrument, also known as speedometer, voltage meter...

Figure 5.145 Analog Instrument

Its attributes are shown in the Table 5.60.

Backgroundcolor Defines the color of the instrument’s background. The
checkbox enables to set a color or let the instrument be
transparent.

Kind of Port Specifies the kind of port to be used to get the value to display .
The location must be specified in the ’Port to Display’ field.

Port to Display Defines the location of the value be used for the instrument’s
visualization.
Here are some Examples:
Substitute: TargetObject.#210
Subscribe: TargetObject.#210
Subscribe: PORTB.PORTB (check exact spelling using
Inspector)
Variable: counter
Register: SP
Memory: 0x210

Size of Port If you use the Memory Port, you can also specify the width of
memory to display (up to 4 Bytes).

Attribute Description
Debugger Manual DM–233

Framework Components
Visualization Utilities
Table 5.60 Analog instruments attributes

Bar

Values are displayed by a bar strip. This instrument (See Figure 5.146)
may be used as a position state of a water tank.

Figure 5.146 Bar Instrument

Its attributes are shown in the Table 5.61

Table 5.61 Bar instruments attributes

Attribute Description

Low Display Value Defines the zero point of the indicator. The values below this
definition will not be displayed.

High Display Value Defines the highest position of the indicator. It defines the value
on which the indicator reads 100%.

Indicatorlength Defines the length of the small indicator. The minimal value is
set to 20.

Indicator Defines the color of the indicator. The default color is red.

Marks Defines the color of the marks. The default color is black.

Attribute Description

Low Display Value Defines the zero point of the indicator. The values below this
definition will not be displayed.

High Display Value Defines the highest position of the indicator. It defines the value
on which the indicator reads 100%.

Bardirection Sets the desired direction of the bar that displays the value.

Barcolor Specifies the color of the bar. Default color is red.
DM–234 Debugger Manual

Framework Components
Visualization Utilities
Bitmap

Use this instrument to give a special look to your visualization (Figure
5.147), or to display a warning picture.

Figure 5.147 Bitmap Instrument

Additionally, it can also be used as a bitmap animation. Its attributes are
shown in the Table 5.62

Table 5.62 Bitmap instruments attributes

In general, for showing the bitmap, following condition has to be true:
(port_memory & ANDmask) == EQUALmask

A practical example about using the AND and EQUAL masks is following
example:
You want to show in the visualisation a taillight of a car. for this you need
bitmaps (e.g. from a digital camera) of all possible states of the taillight
(e.g. flasher on, brake light on, etc). Usually the status of all lamps are
encoded into a port or memory cell in your application, and each bit in this
cell describes if a lamp is on or not. E.g. bit 0 says that the flasher is on,
where bit 1 says that the brake light is on. So for your simple application
you need following bitmaps with their settings:
- no lighs on bitmap: AND mask 3, EQUAL mask 0

Attribute Description

Filename Specifies the location of the bitmap. With the button behind,
you can browse for files.

AND Mask Performs a bitwise-AND operation with this value. AND the
value of the selected port. Default value is 0.

EQUAL Mask This value is compared to the result of the AND operation. The
bitmap is displayed only if both values are the same. Default
value is 0.
Debugger Manual DM–235

Framework Components
Visualization Utilities
- flasher on bitmap: AND mask 3, EQUAL mask 1
- brake light on bitmap: AND mask 3, EQUAL mask 2
- brake and flasher light on: AND mask 3, EQUAL mask 3

DILSwitch

This instrument is also known as Dual-in-Line Switch (Figure 5.148). It is
mainly used for configuration purpose.

You can use it for viewing or setting bits of one to four bytes.

Figure 5.148 DILSwitch Instrument

Its attributes are listed in the Table 5.63.

Table 5.63 DIL Switch instruments attributes

Knob

Normally known as an adjustment instrument, for example the volume
control of a radio (Figure 5.149).

Figure 5.149 Knob Instrument

Its attributes are shown in the Table 5.64

Attribute Description

Display 0/1 When enabled, displays the value of the bit under each plot of
the DILSwitch instrument.

Switch Color Specifies the color of the switch.
DM–236 Debugger Manual

Table 5.64 Knob instruments attributes

LED

This instrument is used for observing one definite bit of one byte (Figure
5.150). There are only two states: On and Off.

Figure 5.150 Led Instrument

Its attributes are shown in the Table 5.65

Table 5.65 LED instruments attributes

7 Segment Display

The well known display instrument for numbers and characters: it has
seven segments and one point. These eight units represent eight bits of one
byte (Figure 5.151).

Attribute Description

Low Display Value Defines the zero point of the indicator. The values below this
definition will not be displayed.

High Display Value Defines the highest position of the indicator. It defines the value
on which the indicator reads 100%.

Indicator Color Defines the color and the width of the pen used to draw the indi-
cator.

Knob Color Defines the color of the knob side.

Attribute Description

Bitnumber to Display Defines the bit of the given byte to be displayed.

Color if Bit = = 1 Defines the color if the given bit is set.

Color if Bit = = 0 Defines the color if the given bit is not set.

Framework Components
Visualization Utilities
Figure 5.151 7 Segment Instrument

 Its attributes are shown in the Table 5.66

Table 5.66 7 Segment Display instruments attributes
.

Switch

Use this instrument to set or view a definite bit (Figure 5.152). The switch
instrument also provides an interesting debugging feature: you can let it
simulate bounces, and thus check wether your algorithm is robust enough.
Four different looks of the switch are available: slide switch, toggle switch,
jumper or push button.

Attribute Description

Decimalmode Displays the first four or the second four bits of one byte in
hexadecimal mode. When it is switched off, each segment will
represent one bit of one byte.

Sloping Switches the sloping on or off.

Display Version Selects the appearance of the instrument. There are two
versions available.

Color if Bit = = 1 Defines the color of an activated segment. You may also set the
color to transparent.

Color if Bit = = 0 Defines the color of a deactivated segment. You may also set
the color to transparent.

Outlinecolor Defines the color of the segment outlines. You may also set the
color to transparent.
DM–238 Debugger Manual

Framework Components
Visualization Utilities
Figure 5.152 Switch Instrument

Its attributes are shown in Table 5.67.

Table 5.67 Switch instruments attributes.

Attribute Description

Bitnumber to Display Specifies the number of the bit you want to display.

Display 0/1 Enables to display the value of the bit in its upper left corner.

Top Position is Specifies if the 'up' position is either zero or one. Especially
useful to easily transform the push button into a reset button.

Kind of Switch Changes the look of the instrument. Following kinds of
switches are available: Slide Switch, Toggle Switch, Jumper,
Push Button.
The behavior of the Push Button slightly differs from the others,
since it returns to its initial state as soon as it has been released.

Switch Color Specifies the color of the switch.

Bounces If enabled, gives access to the following other attributes to
configure the way the switch will bounce.

Nb Bounces Specifies the number of bounces before stabilization.

Bounces on Edge Specifies wether the switch will bounce on falling, rising or
both edges.

Type of Unit Synchronizes the frequency of the bouncing either on the timer
of your host machine, or on CPU cycles.

Pulse Width (100ms) Defines the duration of one bounce. This attribute should be
filled in if you chose “Host Periodical” in the “Type of Unit”
attribute.
Debugger Manual DM–239

Framework Components
Visualization Utilities
Text Instrument

This instrument has several functions: Static Text, Value, Relative Value,
and Command (Figure 5.153).

Figure 5.153 Text Instrument

Please use ’Text Mode’ to switch between the five modes. Its common
attributes are shown in the Table 5.68

Table 5.68 Text instruments attributes

’Static Text’ is used for adding descriptions on the workspace. Its
attributes are shown in the Table 5.69

CPU Count This attribute represents the number of CPU cycles to reach
before the switch changes its state. It should be filled in if you
chose “CPU Cycles” in the “Type of Unit” attribute.

Attribute Description

Attribute Description

Text Mode Specifies the mode. Choose among four modes : Static Text,
Value, Relative Value, and Command

Displayfont Defines the desired font. All installed Windows fonts are
available.

Horiz. Text
Alignment

Specifies the desired horizontal alignment of the text in the
given bounding box.

Vert. Text Alignment Specifies the desired vertical alignment of the text in the given
bounding box.

Textcolor Defines the color of the given text.
DM–240 Debugger Manual

Framework Components
Visualization Utilities
Table 5.69 Static Text attributes

’Value’ is used for displaying a value in different ways (decimal,
hexadecimal, octal, or binary). Its attributes are shown in the Table 5.70

Table 5.70 Value attributes

’Relative Value’ is used for showing a value in a range of 0 up to 100% or
1000‰. Its attributes are shown in the Table 5.71

Table 5.71 Relative value attributes

Attribute Description

Field Description Contains the text to be displayed.

Attribute Description

Field Description Contains the additional description that will be displayed in
front of the value. Add a colon and/or space as you wish. The
default setting is "Value: "

Format mode Defines the format. Choose among this list: Decimal,
Hexadecimal, Octal, and Binary formats.

Attribute Description

Field Description Add the additional description text to be displayed in front of
the value. Add a colon and/or space if desired. The default
setting is "Value: "

Low Display Value Fixes the minimal value that will represent 0%. Values below
this definition will appear as an error: #ERROR.

High Display Value Fixes the maximal value that will represent 100%. Values
above this definition will appear as an error: #ERROR..

Relative Mode Switches between percent and permill.
Debugger Manual DM–241

Framework Components
Visualization Utilities
’Command’. With this instrument you can specify a command that will be
executed by clicking on this field. For more information about commands,
read the chapter ’Simulator/Debugger Commands’. Its attributes are shown
in the Table 5.72

Table 5.72 Command attributes

’CMD Callback’ The same as command, but with one difference: The
returned value will be shown as text instead of ’Field Description’. Its
attributes are shown in the Table 5.73

Table 5.73 CMD Callback attributes

Drop Into

In Edit mode, the drag and drop functionality supplies a very easy way to
automatically configure an instrument.

To assign a variable, simply drag it from the Data Window onto the
instrument.

The “kind of Port” is immediately set on “Memory” and the “Port to
Display” field contains now the address of the variable. Now repeat the
drag-and-drop on a bare portion of the VisualizationTool window: a new
text instrument is created, with correct port configuration.

Attribute Description

Field Description Contains the text that will be displayed on the button.

Command Contains the command-line command to be executed after
pressing the button.

Attribute Description

Field Description Warning: there is no use to fill out his field as the text will be
overwritten the first time you execute the specified command.

Command Contains the command line command to be executed after
pressing the button.
DM–242 Debugger Manual

Framework Components
Visualization Utilities
Some other components allow this operation:

• The memory window: select bytes and drag-and-drop them onto the
instrument.

• The Inspector component: pick an object from the object pool.

 Demo Version Limitations

If you work in demo mode, you will only be able to load one
VisualizationTool window. The number of instruments is limited to three.
Debugger Manual DM–243

6
Control Points

This chapter provides an overview of the debugger breakpoints and
watchpoints.

Click any of the following links to jump to the corresponding section of
this chapter:

• Control points introduction

• Breakpoints setting dialog

• Define Breakpoints

• Watchpoints setting dialog

• General Rules for Halting on a Control Point

• Define Watchpoints

Control points introduction
There are two kinds of control points: breakpoints and watchpoints (also
called data breakpoints). Breakpoints are located at an address,
watchpoints are located at a memory range. Watchpoints start from an
address, have a range, and a read and/or write state. Breakpoints have an
address and can be temporary or permanent. You can set or disable a
control point, set a condition and an optional command, and set the current
count and counting interval.

You can see and edit control point characteristics through two dialogs: The
first one is the “Breakpoints setting dialog” and the second is
the“Watchpoints setting dialog”. These two dialogs have common
properties that allow you to interactively perform the following operations
on control points:

• Selecting a single control point from a list box and clicking Delete.

• Selecting multiple control points from a list box and clicking Delete.

• Enabling/disabling a selected control point by checking/unchecking the
related checkbox.

Control Points
Control points introduction
• Enabling/disabling multiple control points by checking/unchecking the
related checkbox.

• Enter or modify the condition of a selected control point.

• Enabling/disabling the condition of a selected control point by
checking/unchecking the related checkbox.

• Enter or modify the command of a selected control point.

• Enabling/disabling the command of a selected control point by
checking/unchecking the related checkbox.

• Enabling/disabling multiple control point commands by selecting
control points and checking/unchecking the related checkbox.

• Modifying the counter and/or limit of a single control point.

With breakpoints, the following operations are also available:

• Enabling/disabling halting on a single temporary breakpoint by
checking/unchecking the matching checkbox.

• Enabling/disabling halting on multiple temporary breakpoints by
checking/unchecking the matching checkboxes.

With watchpoints, the following operations are also available:

• Enabling/disabling halting on a single read and/or write access by
checking/unchecking the corresponding checkboxes.

• Enabling/disabling halting on multiple read and/or write accesses by
checking/unchecking the corresponding checkboxes.

• Defining the memory range controlled by the watchpoint.
Debugger Manual DM–245

Control Points
Breakpoints setting dialog
Breakpoints setting dialog
The Breakpoints setting dialog is shown in Figure 6.1

Figure 6.1 Breakpoints setting dialog

Breakpoint Symbols

Temporary breakpoint symbol:

Permanent breakpoint symbol:

Disabled breakpoint symbol:

A counting breakpoint symbol:
DM–246 Debugger Manual

Control Points
Breakpoints setting dialog
Conditional breakpoint symbol:

Description of the Dialog

The Breakpoints setting dialog consists of:

• a list box that displays the list of currently defined breakpoints

• a “Breakpoint:” group box that displays the address of the currently
selected breakpoint, name of procedure in which the breakpoint has
been set, state of the breakpoint (disabled or not), and type of
breakpoint (temporary or permanent).

• a “Condition:” group box that displays the condition string to evaluate,
and the state of the condition (disabled or not).

• a “Command:” group box that displays the command string to execute
and the state of the command (disable or continue after command
execution).

• a “Counter:” group box that displays the current value of the counter
and interval value of the counter.

NOTE Current and Interval values are limited to 2,147,483,647; if entering a
number greater than this value, a beep occurs and the character is not
appended.

TIP When the Interval value is changed, the Counter value is automatically set
to the Interval value.

• a “Delete” button to remove the currently selected breakpoint.

• an Update button to Update all modifications in the dialog.

• an Add button to add new breakpoints; specify the Address (in
hexadecimal when Hex format is checked or as an expression when
Hex format is unchecked).

• an OK button to validate all modifications.

• a Cancel button to ignore all modifications.

• a Help button to open related help information.
Debugger Manual DM–247

Control Points
Breakpoints setting dialog
Multiple selections in the dialog

The list box allows you to select multiple consecutive breakpoints by

clicking the first breakpoint then + click the last breakpoint

you want to select.

The list box allows you to select multiple breakpoints that are not

consecutive by clicking the first breakpoint then + click

another breakpoint.

When multiple breakpoints are selected in the list box, the name of the
group box Breakpoint: is changed to Selected breakpoints:.

When selecting multiple breakpoints, the Address (hex), Name:,
Condition:, Disable for condition, Command, Current:, and Interval:
controls are disabled.

When multiple breakpoints are selected, the Disable and Temporary
controls in the Selected breakpoints: group box are enabled and Disable
in the Command: group box is enabled.

Checking condition in dialog

You can enter an expression in the condition edit box. The syntax of the
expression will be checked when you select another breakpoint in the list
box or click OK. The syntax is parameters = = expression. For a register
condition the syntax is $RegisterName = = expression.

If a syntax error has been detected, a message box is displayed:

“Incorrect Condition. Do you want to correct it?”.

If you click OK, correct the error in the condition edit box.

If you click Cancel, the condition edit box is cleared.
DM–248 Debugger Manual

Control Points
Breakpoints setting dialog
Saving Breakpoints

The Simulator/Debugger provides a way to store all defined breakpoints of
the currently loaded application (.ABS file) into the matching breakpoints
file. The matching file has the same name as the loaded .ABS file but its
extension is .BPT (for example, the FIBO.ABS file has a breakpoint file
called FIBO.BPT). This file is generated in the same directory as the
.ABS file. This is a text file, in which a sequence of commands is stored.
This file contains the following information.

• The Save & Restore on load flag (Save & Restore on load checkbox
in Breakpoints setting dialog): the SAVEBP command is used:
SAVEBP on when checked, SAVEBP off when unchecked.

NOTE See also SAVEBP command in Appendix.

• List of defined breakpoints: the BS command is used, as shown in
Listing 6.1.

Listing 6.1 .BPT File Syntax

BS address [P|T[state]][;cond=”condition”[state]]
[;cmd=”command”[state]][;cur=current[inter=interval]]
[;cdSz=codeSize[srSz=sourceSize]]

address is the address where the breakpoint is to be set. This address is
specified in ANSI C format. address can also be replaced by an
expression as shown in the example below.

P, specifies the breakpoint as a permanent breakpoint.

T, specifies the breakpoint as a temporary breakpoint. A temporary
breakpoint is deleted once it is reached.

state is E, D or C where E is for enabled (state is set by default to E if
nothing is specified), D is for disabled and C for Continue.

condition is an expression. It matches the Condition field in the
Breakpoints setting dialog, for conditional breakpoint.

command is any debugger command. It matches the Command field in
the Breakpoints setting dialog, for associated commands.
Debugger Manual DM–249

Control Points
Breakpoints setting dialog
current is an expression. It matches the Current field (Counter) in the
Breakpoints setting dialog, for counting breakpoints.

interval is an expression. It matches the Interval field (Counter) in the
Breakpoints setting dialog, for counting breakpoints.

codeSize is an expression. It is usually a constant number to specify (for
security) the code size of a function where a breakpoint is set. If the size
specified does not match the size of the function currently loaded in the
.ABS file, the breakpoint is set but it is disabled.

sourceSize is an expression. It is usually a constant number to specify (for
security) the source (text) size of a function where a breakpoint is set. If the
size specified does not match the size of the function in the source file, the
breakpoint is set but it is disabled.

• If Save & Restore on load is checked and the user quits the Simulator/
Debugger or loads another .ABS file, all breakpoints will be saved.

• If Save & Restore on load is unchecked (default), only this flag
(SAVEBP off) is saved.

Example

Case 1: if FIBO.ABS is loaded, and Save & Restore on load was
checked in a previous session of the same .ABS file, and breakpoints have
been defined, the FIBO.BPT looks as shown in Listing 6.2.

Listing 6.2 Example of Breakpoint file with Save & Restore on load
checked.

savebp on
BS &fibo.c:Fibonacci+19 P E; cond = "fibo > 10" E; cdSz = 47 srSz
= 0
BS &fibo.c:Fibonacci+31 P E; cdSz = 47 srSz = 0
BS &fibo.c:main+12 P E; cdSz = 42 srSz = 0
BS &fibo.c:main+21 P E; cond = "fiboCount==5" E; cmd = "Assembly < spc 0x800" E;
cdSz = 42 srSz = 0

Case 2: if FIBO.ABS is loaded, and Save & Restore on load was
unchecked in a previous session of the same.ABS file and breakpoints
have been defined, the FIBO.BPT looks as shown below:

savebp on
DM–250 Debugger Manual

Control Points
Define Breakpoints
Only the flag has been saved and breakpoints have been removed.

TIP If only one or few functions differ after a recompilation, not all BP will be
lost. To achieve that, BPs are disabled only if the size of a function has
changed. The size of a function is evaluated in bytes (when it is compiled)
and in characters (number of characters contained in the function source
text). When a .ABS file is loaded and the matching .BPT file exists, for
each BS command, the Simulator/Debugger checks if the code size (in
bytes) and the source size (in characters) are different in the matching
function (given by the symbol table). If there is a difference, the breakpoint
will be set and disabled. If there is no difference, the breakpoint will be set
and enabled.

NOTE For more information about this syntax, see BS and SAVEBP commands.

Define Breakpoints
Breakpoints are control points associated with a PC value (i.e. program
execution is stopped as soon as the PC reaches the value defined in a
breakpoint). The Simulator/Debugger supports different types of
Breakpoints:

• Temporary breakpoints, which are activated next time the instruction is
executed.

• Permanent breakpoints, which are activated each time the instruction is
executed.

• Counting breakpoints, which are activated after the instruction has been
executed a certain number of times.

• Conditional breakpoints, which are activated when a given condition is
TRUE.

Breakpoints may be set in a Source or Assembly component.

Identify all Positions Where a Breakpoint Can
Be Defined

When using a high level language some compound statements (statement
that can be split in several base instructions) can be generated, as shown in
the following example.
Debugger Manual DM–251

Control Points
Define Breakpoints
The Simulator/Debugger helps you detect all positions where you can set a
breakpoint.

1. Right-click in the Source component. The Source Popup Menu is
displayed on the screen.

2. Choose Marks from the Popup Menu. All statements where a

breakpoint can be set are identified by a special mark:

To remove the breakpoint marks, right-click in the Source component and
choose Marks again.

Define a Temporary Breakpoint

A temporary breakpoint is recognized by the following icon:

The Simulator/Debugger provides two ways to define a temporary
breakpoint:

• Use Popup Menu

1. Point at a C statement in the Source Component window and right-
click. The Source Popup Menu is displayed.

2. Choose Run To Cursor from the Popup Menu. The application
continues execution and stops before executing the statement.

• Use +
DM–252 Debugger Manual

Control Points
Define Breakpoints
1. Point at a C statement in the Source Component Window, and +

.

2. A temporary breakpoint is defined, the application continues
execution and stops before executing the statement.

Temporary breakpoints are automatically deleted once they have been
activated. If you continue program execution, it will no longer stop on the
statement that contained the temporary breakpoint.

Define a Permanent Breakpoint

A permanent breakpoint is recognized by the following icon:

The Simulator/Debugger provides two ways to define a permanent
breakpoint:

• Use Popup Menu

1. Point at a C statement in the Source Component Window and right-
click. The Source Popup Menu is displayed.

2. Select Set BreakPoint from the Popup Menu. A permanent breakpoint
mark is displayed in front of the selected statement.

• Use +

1. Point at a C statement in the Source Component window, and +

.

2. A permanent breakpoint mark is displayed in front of the selected
statement.

Once a permanent breakpoint has been defined, you can continue program
execution. The application stops before executing the statement.
Permanent breakpoints remain active until they are disabled or deleted.

Define a Counting Breakpoint

A Counting breakpoint is recognized by the following icon:
Debugger Manual DM–253

Control Points
Define Breakpoints
Counting breakpoints can only be set using the Breakpoints setting dialog.
There are currently three ways to open this dialog:

• Use +

1. Point at a C statement in the Source Component Window, and +

.

2. The Breakpoints setting dialog box is opened and a new breakpoint is
inserted in the list of breakpoints defined in the application.

• Use Source Popup Menu

1. Point at a C statement in the Source Component window and right-
click. The Source Popup Menu is displayed.

2. Choose Set BreakPoint from the Popup Menu. A breakpoint is defined
on the selected instruction.

3. Point in the Source Component window and right-click. The Source
Popup Menu is displayed on the screen.

4. Choose Show Breakpoints from the Popup Menu. The Breakpoints
setting dialog is displayed.

• Choose Run>Breakpoints ...

1. Point at a C statement in the Source Component window and right-
click. The Source Popup Menu is displayed on the screen.

2. Choose Set BreakPoint from the Popup Menu. A breakpoint is defined
on the selected instruction.

3. Choose Run>Breakpoints The Breakpoints setting dialog is
displayed.

Once the Breakpoints setting dialog is opened:

• You can select the breakpoint you want to modify by clicking on the
corresponding entry in the list of defined breakpoints.

• You can specify the interval for the breakpoint detection in the
Interval field.

• Then close the Breakpoints setting dialog box by clicking OK.

If you continue program execution, the content of the Current field is
decremented each time the instruction containing the breakpoint is reached.
When Current is equal to 0, the application stops. If the checkbox
DM–254 Debugger Manual

Control Points
Define Breakpoints
Temporary is unchecked (not a temporary breakpoint), Current is
reloaded with the value stored in interval in order to enable the counting
breakpoint again.

Define a Conditional Breakpoint

A conditional breakpoint is recognized by the following icon:

Conditional breakpoints can only be set using the Breakpoints setting
dialog. There are three ways to open this dialog:

• Use +

1. Point at a C statement in the Source Component window, and +

.

2. The Breakpoints setting dialog box is opened and a new breakpoint is
inserted in the list of breakpoints defined in the application.

• Use Source Popup Menu

1. Point at a C statement in the Source Component window and right-
click. The Source Popup Menu is displayed.

2. Select Set BreakPoint from the Popup Menu. A breakpoint is defined
on the selected instruction.

3. Point in the Source Component window and right-click. The Source
Popup Menu is displayed.

4. Select Show Breakpoints from the Popup Menu. The Breakpoints
Setting dialog is displayed.

• Choose Run>Breakpoints...

1. Point at a C statement in the Source Component window and right-
click. The Source Popup Menu is displayed.

2. Choose Set BreakPoint from the Popup Menu. A breakpoint is defined
on the selected instruction.

3. Choose Run>Breakpoints... The Breakpoints Setting dialog is
displayed.

Once the Breakpoints setting dialog is opened:
Debugger Manual DM–255

Control Points
Define Breakpoints
• You can select the breakpoint you want to modify by clicking on the
corresponding entry in the list of defined breakpoints.

• You can specify the condition for breakpoint activation in the field
Condition. The condition must be specified using the ANSI C syntax
(Example counter == 7). You can use register values in the breakpoint
condition field with the following syntax: $RegisterName (Example
$RX == 0x10)

• Then you can close the Breakpoints setting dialog box by clicking OK.

If you continue program execution, the condition will be evaluated each
time the instruction containing the conditional breakpoint is reached. When
the condition is TRUE, the application stops.

Delete a Breakpoint

The Simulator/Debugger provides four ways to delete a breakpoint:

• Use Delete Breakpoint from Popup Menu

1. In the Source component, point at a C statement where a breakpoint
has previously been defined and right-click. The Source Popup Menu
is displayed.

2. Choose Delete Breakpoint from the Popup Menu. The breakpoint is
deleted.

• Use +

1. In the Source Component, point at a C statement where a breakpoint

has previously been defined, and + .

2. The breakpoint is deleted.

• Choose Show Breakpoints... from Source Popup Menu

1. Point in the Source Component Window and right-click. The Source
Popup Menu is displayed.

2. Choose Show Breakpoints from the Popup Menu. The Breakpoints
Setting dialog is displayed.

3. In the list of defined breakpoints, select the breakpoint to delete.

4. Click Delete. The selected breakpoint is removed from the list of
defined breakpoints.

5. Click OK to close the Breakpoints Setting dialog box.
DM–256 Debugger Manual

Control Points
Define Breakpoints
• Choose Run>Breakpoints...

1. Choose Run>Breakpoints... The Breakpoints Setting dialog is
displayed.

2. Select the breakpoint to delete in the list of defined breakpoints.

3. Click Delete. The selected breakpoint is removed from the list of
defined breakpoints.

4. Click OK to close the Breakpoints setting dialog box. The icon
associated with the deleted breakpoint is removed from the source
component.

 Associate a Command with a Breakpoint

Each breakpoint (temporary, permanent, counting or conditional) can be
associated with a debugger command. This command can be specified in
the Breakpoints setting dialog box. There are two ways to open this dialog
box:

• Choose Show Breakpoints... from Source Popup Menu.

1. Point in the Source Component Window and right-click. The Source
Popup Menu is displayed.

2. Choose Show Breakpoints from the Popup Menu. The Breakpoints
setting dialog is displayed.

• Choose Run>Breakpoints...

1. Choose Run>Breakpoints... The Breakpoints setting dialog is
displayed.

2. Once the Breakpoints Setting dialog is opened:

– You can select the breakpoint to modify by clicking on the
corresponding entry in the list of defined breakpoints.

– You can enter the command in the Command field. The
command is a single debugger command (at this level, the
commands G, GO and STOP are not allowed). A command file
can be associated with a breakpoint using the command CALL
or CF (Example: CF breakCmd.cmd).

– Click OK to close the Breakpoints setting dialog box.

When the breakpoint is detected, the command is executed and the
application will stop.
Debugger Manual DM–257

Control Points
Define Breakpoints
The Continue check button allows the application to continue after the
command is executed.

Demo Version Limitations

Only 2 breakpoints can be set.
DM–258 Debugger Manual

Control Points
Watchpoints setting dialog
Watchpoints setting dialog
Figure 6.2 shows the dialog used to set Watchpoints.

Figure 6.2 Watchpoints setting dialog

Description of the Dialog

The Watchpoints Setting dialog is based on:

• a list box that displays the list of currently defined watchpoints.

• a “Watchpoint:” group box that displays the address of the currently
selected watchpoint, size of the watchpoint, name of the procedure or
variable on which the watchpoint has been set, state of the watchpoint
(disabled or not), read access of the watchpoint (enabled or not) and
write access of the watchpoint (enabled or not).
Debugger Manual DM–259

Control Points
Watchpoints setting dialog
• a “Condition:” group box that displays the condition string to evaluate
and the state of the condition (disabled or not).

• an Update button to Update all modifications in the dialog.

• a “Command:” group box that displays the command string to execute
and state of the command (disabled or continue after command
execution).

• Delete: Click delete button to remove currently selected watchpoint
and select the watchpoint that is below the removed watchpoint.

• OK: Click OK to validate all modifications.

• Add button: adds new watchpoints; specify the Address in
hexadecimal when Hex format is checked or as an expression when
Hex format is unchecked.

• Counter: group box that displays the current value of the counter and
interval value of the counter.

NOTE Current and Interval values are limited to 2,147,483,647. A beep occurs
and the character is not appended, if a number greater than this value is
entered.

TIP When the Interval value is changed, the Counter value is automatically set
to the Interval value.

• Cancel: Click cancel button to ignore all modifications.

• Help: Click help button to display help file and related help
information.

Multiple selections in the dialog

For breakpoints, you can do multiple selections with and

.

When multiple watchpoints in the list box are selected, the name of the
group box “Watchpoint:” is changed to “Selected watchpoints:”.

When multiple watchpoints are selected, the Address (hex), Size:, Name:,
Condition:, Disable for condition, Command, Current:, and Interval:
controls are disabled.
DM–260 Debugger Manual

Control Points
General Rules for Halting on a Control Point
When multiple watchpoints are selected in the list box, the Disable, Read
and Write controls in the Selected watchpoints: group box are enabled.

When multiple watchpoints are selected, Disable in the Command: group
box is enabled.

Click Delete when multiple watchpoints are selected to remove
watchpoints from the list box.

Checking condition in the dialog

You can enter an expression in the condition edit box. The syntax of the
expression will be checked when you select another watchpoint in the list
box or by clicking OK.

If a syntax error has been detected, a message box is displayed:

“Incorrect Condition. Do you want to correct it?”.

Click OK to correct the error in the condition edit box.

Click Cancel to clear the condition edit box.

Demo Version Limitations

Only 2 watchpoints can be set.

General Rules for Halting on a Control Point
Counting Control Point: If the interval property is greater than 1, a
counting control point has been defined. When the simulator is running,
each time the control point is reached, its current value is decremented and
the simulator will halt when the value reaches zero (0). When the simulator
stops on the control point, a command will be executed (if defined and
enabled).

Conditional Control Point: If a condition has been defined and enabled
for a control point that halts the simulator, a command will be executed (if
defined and enabled).

Control Point with command: When the simulator halts on the control
point, a specified command is executed.
Debugger Manual DM–261

Define Watchpoints
Watchpoints are control points associated with a memory range. Program
execution stops when the memory range defined by the watchpoint has
been accessed. The Simulator/Debugger supports different types of
watchpoints:

• Read Access Watchpoints, which are activated when a read access
occurs inside the specified memory range.

• Write Access Watchpoints, which are activated when a write access
occurs inside the specified memory range.

• Read/Write Access Watchpoints, activated when a read or write access
occurs inside the specified memory range.

• Counting watchpoint, activated after a specified number of accesses
occur inside the memory range.

• Conditional watchpoints, activated when an access occurs inside the
memory range and a given condition is TRUE.

Watchpoints may be set in a Data or Memory component.

NOTE Due to hardware restrictions, the watchpoint function might not be
implemented on hardware targets.

Defining a Read Watchpoint

A green vertical bar is displayed in front of a variable associated with a
read access watchpoint.

The Simulator/Debugger provides two ways to define a read access
watchpoint:

• Use Popup Menu

1. Point at a variable in the Data Component Window and right-click.
The Data Popup Menu is displayed.

2. Choose Set Watchpoint from the Popup Menu. A Read/Write
Watchpoint is defined.

3. Point in the Data Component Window and right-click. The Source
Popup Menu is displayed.

4. Choose Show WatchPoints from the Popup Menu. The Watchpoints
setting dialog is displayed.

Control Points
Define Watchpoints
5. Select the watchpoint you want to define as read access.

6. Select the Read type in the dropdown box.

7. A read access watchpoint is defined for the selected variable.

• Use +

1. Point at a variable in the Data Component Window and + .

2. A read access watchpoint is defined for the selected variable.

Once a read access watchpoint has been defined, you can continue program
execution. The application stops after detecting the next read access on the
variable. Read access watchpoints remain active until they are disabled or
deleted.

Defining a Write Watchpoint

A red vertical bar is displayed in front of a variable associated with a write
access watchpoint.

The Simulator/Debugger provides two ways to define a write access
watchpoint:

• Use Popup Menu

1. Point at a variable in the Data Component Window and right-click.
The Data Popup Menu is displayed.

2. Choose Set Watchpoint from the Popup Menu. A Read/Write
Watchpoint is defined.

3. Point in the Data Component Window and right-click. The Source
Popup Menu is displayed.

4. Choose Show WatchPoints from the Popup Menu. The Watchpoints
setting dialog is displayed.

5. Select the watchpoint you want to define as write access.

6. Select the Write type in the dropdown box.

7. A write access watchpoint is defined for the selected variable.

• Use +
Debugger Manual DM–263

Control Points
Define Watchpoints
1. Point at a variable in the Data Component Window and + .

2. A write access watchpoint is defined for the selected variable.

Once a write access watchpoint has been defined, you can continue
program execution. The application stops after the next write access on the
variable. Write access watchpoints remain active until they are disabled or
deleted.

Defining a Read/Write Watchpoint

A yellow vertical bar is displayed in front of a variable associated with a
read/write access watchpoint.

The Simulator/Debugger provides two ways to define a read/write access
watchpoint:

• Use Popup Menu

1. Point at a variable in the Data Component Window and right-click.
The Data Popup Menu is displayed.

2. Choose Set Watchpoint from the Popup Menu.

3. A read/write access watchpoint is defined for the selected variable.

• Use +

1. Point at a variable in the Data Component Window and + .

2. A read/write access watchpoint is defined for the selected variable.

Once a read/write access watchpoint has been defined, you can continue
program execution. The application stops after the next read or write access
on the variable. Read/write access watchpoints remain active until they are
disabled or deleted.

Defining a Counting Watchpoint

A counter can be associated with any type of watchpoint described
previously (read, write, read/write).

The Simulator/Debugger provides two ways to define a counting
watchpoint:
DM–264 Debugger Manual

Control Points
Define Watchpoints
• Use Popup Menu

1. Point at a variable in the Data Component Window and right-click.
The Data Popup Menu is displayed.

2. Choose Set Watchpoint from the Popup Menu. A Read/Write
Watchpoint is defined.

3. Point in the Data Component Window and right-click. The Source
Popup Menu is displayed.

4. Choose Show WatchPoints from the Popup Menu. The Watchpoints
setting dialog is displayed.

5. Select the watchpoint you want to define as a counting watchpoint.

6. From the dropdown box, select the type of access you want to track.

7. In the interval field, specify the interval count for the watchpoint.
Close the Watchpoints Setting dialog box by clicking OK.

8. A counting watchpoint is defined for the selected variable.

Choose +

1. Point at a variable in the Data Component Window and + .

The Watchpoints setting dialog is displayed.

2. Select the watchpoint you want to define as a counting watchpoint.

3. From the dropdown box, select the type of access you want to track.

4. In the interval field, specify the interval count for the watchpoint.
Close the Watchpoints setting dialog box by clicking OK.

5. A counting watchpoint is defined for the selected variable.

If you continue program execution, the Current field is decremented each
time an appropriate access on the variable is detected. When Current is
equal to 0, the application stops. Current is reloaded with the value stored
in the interval field to enable the counting watchpoint again.

Defining a Conditional Watchpoint

A condition can be associated with any type of watchpoint described
previously (read, write, read/write).
Debugger Manual DM–265

Control Points
Define Watchpoints
The Simulator/Debugger provides two ways to define a conditional
watchpoint:

• Use Popup Menu

1. Point at a variable in the Data Component Window and right-click.
The Data Popup Menu is displayed.

2. Choose Set Watchpoint from the Popup Menu. A Read/Write
Watchpoint is defined.

3. Point in the Data Component Window and right-click. The Source
Popup Menu is displayed.

4. Choose Show WatchPoints from the Popup Menu. The Watchpoints
setting dialog is displayed.

5. Select the watchpoint you want to define as a conditional watchpoint.

6. From the dropdown box, select the type of access you want to track.

7. Specify the condition for the watchpoint in the Condition field. The
condition must be specified using the ANSI C syntax (Example:
counter == 7). Close the Watchpoints setting dialog box by clicking
OK.

8. A conditional watchpoint is defined for the selected variable.

• Use +

1. Point at a variable in the Data Component Window and + .

The Watchpoints setting dialog is displayed.

2. Select the watchpoint you want to define as a conditional watchpoint.

3. From the dropdown box, select the type of access you want to track.

• Specify the condition for watchpoint activation in the Condition field.
The condition must be specified using the ANSI C syntax (Example:
counter == 7). You can use register values in the breakpoint condition
field with the following syntax: $RegisterName (Example $RX ==
0x10)

4. Close the Watchpoints setting dialog box by clicking OK.

5. A conditional watchpoint is defined for the selected variable.
DM–266 Debugger Manual

Control Points
Define Watchpoints
If you continue program execution, the condition will be evaluated each
time an appropriate access on the variable is detected. When the condition
is TRUE, the application stops.

Deleting a Watchpoint

The Simulator/Debugger provides four ways to delete a watchpoint:

• Use Delete Breakpoint from Popup Menu

1. In the Data Component, point to a variable where a watchpoint has
been defined and right-click. The Data Popup Menu is displayed.

2. Select Delete Watchpoint from the Popup Menu. The watchpoint is
deleted and the vertical bar in front of the variable is removed.

• Use +

1. In the Data Component, point at a variable where a watchpoint has

been defined and + .

2. The watchpoint is deleted and the vertical bar in front of the variable
is removed.

• Choose Show Watchpoints from Data Popup Menu

1. Point in the Data Component Window and right-click. The Data
Popup Menu is displayed.

2. Choose Show Watchpoints from the Popup Menu. The Watchpoints
setting dialog is displayed.

3. Select the watchpoint you want to delete.

4. Click Delete. The selected watchpoint is removed from the list of
defined watchpoints.

5. Click OK to close the Watchpoints setting dialog box. The watchpoint
is deleted and the vertical bar in front of the variable is removed.

• Choose Run>Watchpoints menu command

1. Choose Run>Watchpoints.... The Watchpoints setting dialog is
displayed.

2. Select the watchpoint you want to delete.

3. Click Delete. The selected watchpoint is removed from the list of
defined watchpoints.
Debugger Manual DM–267

Control Points
Define Watchpoints
4. Click OK to close the Watchpoints setting dialog box. The watchpoint
is deleted and the vertical bar in front of the variable is removed.

Associate a Command with a Watchpoint

Each watchpoint type (read, write, read/write, counting, or conditional) can
be associated with a debugger command. This command can be specified
in the Watchpoints setting dialog box. There are two ways to open this
dialog box:

• Choose Show Watchpoints... from Data Popup Menu

1. Point in the Data Component Window and right-click. The Data
Popup Menu is displayed.

2. Select Show Watchpoints from the Popup Menu. The Watchpoints
setting dialog is displayed.

• Choose Run>Watchpoints...

1. Choose Run>Watchpoints.... The Watchpoints setting dialog is
displayed.

2. Once the Watchpoints setting dialog is open:

3. Click on the corresponding entry in the list of defined breakpoints to
select the watchpoint you want to modify.

4. You can enter the command in the Command field. The command is a
single debugger command. At this level, the commands G, GO and
STOP are not allowed. A command file can be associated with a
breakpoint using the commands CALL or CF (Example CF
breakCmd.cmd).

5. Click OK to close the Watchpoints setting dialog box.

6. When the watchpoint is detected, the command will be executed and
the application will stop at this point. The Continue check button
allows the application to continue after command execution.
DM–268 Debugger Manual

7
Debugger Commands

The debugger supports scripting with the use of commands and command
files. When you script the debugger, you can automate repetitive, time-
consuming, or complex tasks.

Click any of the following links to jump to the corresponding section of
this chapter:

• Simulator/Debugger Commands

Simulator/Debugger Commands
You do not need to use or have knowledge of commands to run the
Simulator/Debugger. However these commands are useful for editing
debugger command files, for example, after a recording session, to
generate your own command files, or to set up your applications and
targets, etc.

This section provides a detailed list of all Simulator/Debugger commands.
All command names and component names are case insensitive. The
command EBNF syntax is:

component [:component number] <] command

where component is the name of the component that you can read in each
component window title. For example: Data, Register, Source, Assembly,
etc. Component number is the number of the component. This number
does not exist in the component window title if only one component of this
type is open. For example, you will read Register or Memory. If you open
a second Memory component, the initial one will be renamed Memory:1
and the new one will be called Memory:2. A number is automatically
associated with a component if there are several components of the same
type displayed.

Debugger Commands
Simulator/Debugger Commands
Example:

in>Memory:2 < SMEM 0x8000,8

‘<‘ redirects a command to a specific component (in this example:
Memory:2). Some commands are valid for several or all components and
if the command is not redirected to a specific component, all components
will be affected. Also, a mismatch could occur due to the fact that a
command’s parameters could differ for different components.

Syntax of Simulator/Debugger command

To display the syntax of a command, type the command followed by a
question mark.

Example:

in>printf?
PRINTF (<format>, <expression>, <expression>, ...)

List of Available Commands

Commands described on the following pages are sorted in 5 groups,
according to their specific actions or targets. However, these groups have
no relevance in the use of these commands. A list of all commands in their
respective group is given below:

Kernel Commands

Kernel commands are commands that can be used to build command
programs. They can only be used in a debugger command file, since the
Command Line component can only accept one command at a time. It is
possible to build powerful programs by combining Kernel commands with
Base commands, Common commands and Component specific commands.
Table 7.1 contains all available Kernel commands.

Table 7.1 List of Kernel Commands

Command, Syntax Short Description

A affects a value
DM–270 Debugger Manual

Debugger Commands
Simulator/Debugger Commands
AT sets a time delay for command execution

CALL fileName[;C][;NL] executes a command file

DEFINE symbol [=]
expression

defines a user symbol

ELSE other operation associated with IF command

ELSEIF condition other conditional operation associated with IF
command

ENDFOCUS resets the current focus (refer to FOCUS
command)

ENDFOR exits a FOR loop

ENDIF exits an IF condition

ENDWHILE exits a WHILE loop

FOCUS component sets the focus on a specified component

FOR [variable =]range [“,”
step]

FOR loop instruction

FPRINTF
(fileName,format,parameters)

FPRINTF instruction

GOTO label unconditional branch to a label in a command
file

GOTOIF condition Label conditional branch to a label in a command file

IF condition conditional execution

PAUSETEST displays a modal message box

PRINTF (“Text:,” value]) PRINT instruction

REPEAT REPEAT loop instruction

RETURN returns from a CALL command

Command, Syntax Short Description
Debugger Manual DM–271

Debugger Commands
Simulator/Debugger Commands
TESTBOX displays a message box with a string

UNDEF symbol | * undefines a userdefined symbol

UNTIL condition condition of a REPEAT loop

WAIT [time] [;s] command file execution pause

WHILE condition WHILE loop instruction

Command, Syntax Short Description
DM–272 Debugger Manual

Debugger Commands
Simulator/Debugger Commands
Base Commands

Base commands are used to monitor the Simulator/Debugger target
execution. Target input/output files, target execution control, direct
memory editing, breakpoint management and CPU register setup are
handled by these commands. Base commands can be executed independent
of components that are open. Table 7.2 contains all available Base
commands.

Table 7.2 Base Commands

Command, Syntax Short Description

BC address|* deletes a breakpoint (breakpoint clear)

BS address|function
[P|T[state]]

sets a breakpoint (breakpoint set)

CD [path] changes the current working directory

CR [fileName][;A] opens a record file (command records)

DASM

[address|range][;OBJ]

disassembles

DB [address|range] displays memory bytes

DL [address|range] displays memory bytes as longwords

DW [address|range] displays memory bytes as words

G [address] starts execution of the application currently
loaded

GO [address] starts execution of the application currently
loaded

LF [fileName][;A] opens a log file

LOG type [=] state {[,] type
[=] state}

enables or disables logging of a specified
information type

MEM displays the memory map
Debugger Manual DM–273

Debugger Commands
Simulator/Debugger Commands
MS range list sets memory bytes

NOCR closes the record file

NOLF closes the log file

P [address] single assembly steps into program

RESTART restart the loaded application

RD [list|*] displays the content of registers

RS
register[=]value{,register[=]va
lue}

sets a register

S stops execution of the loaded application

STEPINTO stepping to the next source instruction of the
loaded application

STEPOUT executes program out of a function call

STEPOVER stepping over the next source instruction of the
loaded application

STOP stops execution of the loaded application

SAVEBP on|off saves breakpoints

T [address][,count] traces program instructions at the specified
address

WB range list writes bytes

WL range lis writes longwords

WW range list writes words

Command, Syntax Short Description
DM–274 Debugger Manual

Debugger Commands
Simulator/Debugger Commands
Environment Commands

Simulator/Debugger environment commands are used to monitor the
debugger environment, specific component window layouts and
framework applications and targets. Table 7.3 contains all available
Environment commands.

Table 7.3 Environment Commands
t

Command, Syntax Short Description

ACTIVATE component activates a component window

AUTOSIZE on|off autosize windows in the main window layout

BCKCOLOR color set the background color

CLOSE component | * close a component

DDEPROTOCOL
ON|OFF|SHOW|HIDE|STATUS

configure the Debugger/Simulator DDE
protocol

FONT ‘fontName’
[size][color]

sets text font

LOAD applicationName load a framework application (code and debug
information)

LOADCODE
applicationName

load the code of a framework application

LOADSYMBOLS
applicationName

load debugging information of a framework
application

OPEN component [[x y width
height][;][i|max]]

open a Windows component

OPENIO Iocomponentname open an I/Os component

REGBASE <address> ;R set the base address of the I/O register

REGFILE filename load a registration entries file
Debugger Manual DM–275

Debugger Commands
Simulator/Debugger Commands
Component Commands

Component common commands are used to monitor component behaviors.
They are common to more than one component and for better usage, they
should be redirected (as explained in the introduction of Debugger
Commands). Table 7.4 contains all available Component commands.

Table 7.4 List of Component Command

SET targetName set a new target

SETCPU ProcessorName set a new cpu simulator

SLAY fileName save the general window layout

Command, Syntax Short Description

Command, Syntax Short Description

CMDFILE specify a command file state and full name

EXIT terminates the application

HELP displays a list of available commands

LOADMEM fileName loads a memory configuration file

RESET resets statistics

RESETCYCLES resets Simulator CPU cycles counter

RESETMEM resets all configured memory to ‘undefined’

RESETRAM resets RAM to ‘undefined’

RESETSTAT resets the statistical data

SHOWCYCLES returns executed Simulator CPU cycles

SMEM range shows a memory range
DM–276 Debugger Manual

Debugger Commands
Simulator/Debugger Commands
Component Specific Commands

Component specific commands are associated with specific components.
Table 7.5 contains all available Component Specific commands.

Table 7.5 Component Specific Commands

SMOD module shows module information in the destination
component

SPC address shows the specified address in a component
window

SPROC level shows information associated with the
specified procedure

VER displays version number of components and
engine

Command, Syntax Short Description

Command, Syntax Short Description

ADCPORT (address | ident) (
address | ident) (address |
ident)

sets the ports addresses used by the Adc_Dac
component.

ADDCHANNEL ("Name") creates a new channel "Name" for the Monitor
component.

ADDXPR “expression” adds a new expression in the data component

ATTRIBUTES list sets up the display inside a component window

BASE code | module sets the Profiler base

BD displays a list of all breakpoints

CF fileName [;C][;NL] executes a command file

CLOCK frequency sets the clock speed
Debugger Manual DM–277

Debugger Commands
Simulator/Debugger Commands
COPYMEM <Source addr
range> dest-addr

copy memory

CPORT (address | ident) (
address | ident) (address |
ident) (address | ident)(
address | ident)

sets the 5 port addresses and control port
address of the IO_Ports component

CYCLE on|off switches cycles and milliseconds

DELCHANNEL ("Name") deletes the channel "Name" from the Monitor
component

DETAILS assembly|source sets split view

DUMP displays data component content

E expression [;O|D|X|C|B] evaluates a given expression

EXECUTE fileName executes a stimulation file

FILL range value fills a memory range with a value

FILTER Options [<range>] Select the output file filter options

FIND “string” [;B] [;MC]
[;WW]

finds and highlights a pattern

FINDPROC ProcedureName opens a procedure file

FOLD [*] folds a source block

FRAMES number sets the maximum number of frames

GRAPHICS on|off switches graphic bars on/off

INSPECTOROUTPUT [name
{subname}]

prints content of Inspector to Command
window

INSPECTORUPDATE updates content of Inspector

ITPORT (address | ident) (
address | ident)

sets the line and column port addresses of the
IT_Keyboard component

Command, Syntax Short Description
DM–278 Debugger Manual

Debugger Commands
Simulator/Debugger Commands
ITVECT (address | ident) sets the interrupt vector port address of the
IT_Keyboard component.

KPORT (address | ident) (
address | ident)

sets the line and column port addresses of the
Keyboard component

LCDPORT (address | ident) (
address | ident)

sets the data port and the control port address
of the Lcd component

LINKADDR (address | ident)
(address | ident) (address |
ident)(address | ident)(
address | ident)

sets the components internal port addresses
used with the IO_Ports as memory buffers

LS [symbol | *][;C|S] displays the list of symbols

NB [base] sets the base of arithmetic operations

OPENFILE fileName opens a stimulation file

OUTPUT fileName redirects the coverage component results

PBPORT (address | ident) sets the port address of the Push_Buttons
component

PORT address sets the Led components port address

PTRARRAY on|off switches on /off the pointer as array display

RECORD on|off switches on/off the frame recorder

SEGPORT (address | ident) (
address | ident

set the display selection port and the segment
selection port addresses of the 7-Segments
display component.

SLINE linenumber shows the desired line number

SAVE range fileName
[offset][;A]

saves a memory block in S-Record format

SETCOLORS ("Name") (
Background) (Cursor) (Grid
) (Line) (Text)

changes the colors attributes of the "Name"
channel from the Monitor component

Command, Syntax Short Description
Debugger Manual DM–279

Debugger Commands
Simulator/Debugger Commands
Definitions of Terms Commonly Used in
Command Syntaxes

address is a number matching a memory address. This number
must be in the ANSI format (i.e. $ or 0x for hexadecimal value, 0 for octal,
etc.).

NOTE Please see also Constant Standard Notation.

Example: 255, 0377, 0xFF, $FF

NOTE address can also be an “expression” if “constant address” is not
specially mentioned in the command description. An “expression” can be:
Global variables of application, I/O registers defined in DEFAULT.REG,
definitions in the command line, numerical constants. See also section
EBNF Notation for “Expression” Definition in EBNF.

Example: DEFINE IO_PORT = 0x210

WB IO_PORT 0xFF

SETCONTROL ("Name") (
Ticks) (Pixels)

changes the number of ticks and pixels for the
"Name" channel from the Monitor component

SREC fileName [offset] loads a memory block in S-Record format

TUPDATE on|off switches on/off time update for statistics

UNFOLD [*] unfolds a source block

UPDATERATE rate sets the data and memory update mode

WPORT (address | ident) (
address | ident

sets the ports addresses of the Wagon
component

ZOOM address in|out zooms in/out a variable

Command, Syntax Short Description
DM–280 Debugger Manual

Debugger Commands
Simulator/Debugger Commands
range is composition of 2 addresses to define a range of memory
addresses. Syntax is shown below:

address..address

or

address, size

where size is an ANSI format numerical constant.

Example:

0x2F00..0x2FFF

refers to the memory range starting at 0x2F00 and ending at 0x2FFF (256
bytes).

Example:

0x2F00,256

refers to the memory range starting at 0x2F00, which is 256 bytes wide.
Both previous examples are equivalent.

fileName is a DOS file name and path that identifies a file and
its location. The command interpreter does not assume any file name
extension. Use backslash (\) or slash (/) as a directory delimiter.

The parser is case insensitive. If no path is specified, it looks for (or edits)
the file in the current project directory, i.e. when no path is specified, the
default directory is the project directory.

Example:

d:/demo/myfile.txt

Example:

layout.hwl

Example:
Debugger Manual DM–281

Debugger Commands
Simulator/Debugger Commands
d:/work/project.hwc

component is the name of a debugger component. A list of all
debugger components is given by choosing Component>Open... The
parser is case insensitive.

Example:

Memory

Example:

SoUrCe

About Module Names

Correct module names are displayed in the Module component window.
Make sure that the module name of a command that you implement is
correct:

If the .abs is in HIWARE format, some debug information is in the
object file (.o), and module names have a .o extension (e.g., fibo.o).

In ELF format, module name extensions are .c, .cpp or .dbg (.dbg for
program sources in assembler) (e.g., fibo.c), since all debugging
information is contained in the .abs file and object files are not used.

Please consider or adapt the examples given in Appendix with your .abs
application file format.

A
Description The A command assigns an expression to an existing variable. The quoted

expression must be used for string and enum expressions.

Usage A variable = value or A variable = "value"

Components Debugger engine.

Example:

 in>a counter=8

The variable counter is now equal to 8.
DM–282 Debugger Manual

Debugger Commands
Simulator/Debugger Commands
 in>A day1 = "monday_8U" (Monday_8U is defined in an Enum)

The variable day1 is now equal to monday_8U.

 in>A value = "3.3"

The variable value is now equal to 3.3

ACTIVATE
Description ACTIVATE activates a component window as if you clicked on its title

bar. The window is displayed in the foreground and its title bar is
highlighted. If the window is iconized, its title bar is activated and
displayed in the foreground.

Usage ACTIVATE component

Components Debugger engine.

Example:

in>ACTIVATE Memory

This command activates the Memory Component and brings the window to
the foreground.

ADDCHANNEL
Description The ADDCHANNEL command is used to create a new channel for the

Monitor component.

Usage ADDCHANNEL ("Name")

Name is the name for the new channel.

Components Monitor component.

Example:

in>ADDCHANNEL "Leds.Port_Register bit 0"

A new channel Leds.Port_Register bit 0 will be created in the Monitor
component.
Debugger Manual DM–283

Debugger Commands
Simulator/Debugger Commands
ADCPORT
Description The ADCPORT command is used to set the ports addresses used by the

Adc_Dac component.

Usage ADCPORT (address | ident) (address | ident) (address | ident)

Address locates the port address value of the component (many formats
are allowed), the default format is hexadecimal.

Ident is a known identifier, its content will define the port address.

Components ADC_DAC component.

Example:

in>ADCPORT 0x100 0x200 0x300

The ports of the ADC_DAC component are now defined at the addresses
0x100, 0x200 and 0x300.

ADDXPR
Usage ADDXPR “expression”

Where the parameter expression is an expression to be added and evaluated
in the data component.

Components Data component.

Description The ADDXPR command adds a new expression in the data component.

Example

in>ADDXPR “counter + 10”

The expression “counter +10” is added in the data component.

ATTRIBUTES

This command effective for various component is described in the next
section.
DM–284 Debugger Manual

Debugger Commands
Simulator/Debugger Commands
In the Command Component

Description The ATTRIBUTES command allows you to set the display and state
options of the Command component window. The CACHESIZE command
sets the cache size in lines for the Command Line window: The cache size
value is between 10 and 1000000.

NOTE Usually this command is not specified interactively by the user. However
this command can be written in a command file or a layout (".HWL") file
to save and reload component window layouts. An interactive equivalent
operation is typically possible, using Simulator/Debugger menus and
operations, drag and drops, etc., as described in the following sections in
“Equivalent Operations”.

Usage ATTRIBUTES list

where list=command{,command})

command=CACHESIZE value

Example

command < ATTRIBUTES 2000

In the Procedure Component

Description The ATTRIBUTES command allows you to set the display and state
options of the Procedure component window. The VALUES and TYPES
commands display or hide the Values or Types of the parameters.

Usage ATTRIBUTES list

where list=command{,command})

command=VALUES (ON|OFF)| TYPES (ON|OFF)

Example

Procedure < ATTRIBUTES VALUES ON,TYPES ON

In the Assembly Component

Description The ATTRIBUTES command allows you to set the display and state
options for the Assembly component window. The ADR command
Debugger Manual DM–285

Debugger Commands
Simulator/Debugger Commands
displays or hides the address of a disassembled instruction. ON | OFF is
used to switch the address on or off. SMEM (show memory range) and
SPC (show PC address) scroll the Assembly component to the
corresponding address or range code location and select/highlight the
corresponding assembler lines or range of code. The CODE command
displays or hides the machine code of the disassembled instruction. ON |
OFF is used to switch on or off the machine code. The ABSADR
command shows or hides the absolute address of a disassembled
instruction like ‘branch to’. ON | OFF is used to switch on or off the
absolute address. The TOPPC command scrolls the Assembly component
in order to display the code location given as an argument on the first line
of Assembly component window. The SYMB command displays or hides
the symbolic names of objects. ON | OFF is used to switch the symbolic
display on or off.

Usage ATTRIBUTES list

where list=command{,command}

command= ADR (ON|OFF) | SMEM range | SPC address |
CODE(ON|OFF) | ABSADR (ON|OFF) | TOPPC address | SYMB
(ON|OFF)

NOTE Also refer to SMEM and SPC command descriptions for more detail about
these commands. The SPC command is similar to the TOPPC command
but also highlights the code and does not scroll to the top of the component
window.

Equivalent Operations

ATTRIBUTES ADR ~ Select menu Assembly>Display Adr

ATTRIBUTES SMEM ~ Select a range in Memory component window
and drag it to the Assembly component window.

ATTRIBUTES SPC ~ Drag a register to the Assembly component
window.

ATTRIBUTES CODE ~ Select menu Assembly>Display Code

ATTRIBUTES SYMB ~ Select menu Assembly>Display Symbolic
DM–286 Debugger Manual

Debugger Commands
Simulator/Debugger Commands
Example

Assembly < ATTRIBUTES ADR ON,SYMB ON,CODE ON, SMEM 0x800,16

Addresses, hexadecimal codes, and symbolic names are displayed in the
Assembly component window, and assembly instructions at addresses
0x800,16 are highlighted.

In the Register Component

Description The ATTRIBUTES command allows you to set the display and state
options of the Register component window.

The FORMAT command sets the display format of register values.

The VSCROLLPOS command sets the current absolute position of the
vertical scroll box (the vposition value is in lines: each register and bitfield
have the same height, which is the height of a line). vposition is the
absolute vertical scroll position. The value 0 represents the first position at
the top.

The HSCROLLPOS command sets the position of the horizontal scroll
box (the hposition value is in columns: a column is about a tenth of the
greatest register or bitfield width). hposition is the absolute horizontal
scroll position. The value 0 represents the first position on the left.

The parameters vposition and hposition can be constant expressions or
symbols defined with the DEFINE command.

The COMPLEMENT command sets the display complement format of
register values: one sets the first complement (each bit is reversed), none
unselects the first complement.

An error message is displayed if:

• the parameter is a negative value

• the scroll box is not visible

If the given scroll position is bigger than the maximum scroll position, the
current absolute position of the scroll box is set to the maximum scroll
position.

Equivalent Operations

ATTRIBUTES FORMAT ~ Select menu Register>Options
Debugger Manual DM–287

Debugger Commands
Simulator/Debugger Commands
ATTRIBUTES VSCROLLPOS ~ Scroll vertically in the Register
component window.

ATTRIBUTES HSCROLLPOS ~ Scroll horizontally in the Register
component window.

ATTRIBUTES COMPLEMENT ~ Select menu Register>Options

Usage ATTRIBUTES list

where list=command{,command})

command= FORMAT (hex|bin|dec|udec|oct) | VSCROLLPOS
vposition | HSCROLLPOS hposition | COMPLEMENT(none|one)

Where vposition=expression and hposition=expression

Example

in>Register < ATTRIBUTES FORMAT BIN

Contents of registers are displayed in binary format in the Register
component window.

in>Register < ATTRIBUTES VSCROLLPOS 3

Scrolls 3 positions down. The third line of registers is displayed on the top
of the register component.

in>Register < ATTRIBUTES VSCROLLPOS 0

Returns to the default display. The first line of registers is displayed on the
top of the register component.

in>DEFINE vpos = 5
in>Register < ATTRIBUTES HSCROLLPOS vpos

Scrolls 5 positions right. The second column of registers is displayed on the
left of the register component.

in>Register < ATTRIBUTES HSCROLLPOS 0
DM–288 Debugger Manual

Debugger Commands
Simulator/Debugger Commands
Returns to the default display. The first column of registers is displayed on
the left of the register component.

in>Register < ATTRIBUTES COMPLEMENT One

Sets the first complement display option. All registers are displayed in
reverse bit.

In the Source Component

Description The ATTRIBUTES command allows you to set the display and state
options of the Source component window. The SMEM (show memory
range) command and SPC (show PC address) command loads the
corresponding module’s source text, scrolls to the corresponding text range
location or text address location and highlights the corresponding
statements. The SMOD (show module) command loads the corresponding
module’s source text. If the module is not found, a message is displayed in
the Object Info Bar of the Simulator/Debugger Components. The SPROC
(show procedure) command loads the corresponding module’s source text,
scrolls to the corresponding procedure and highlights the statement, that is
in the procedure chain of this procedure. The
numberAssociatedToProcedure is the level of the procedure in the
procedure chain. The MARKS command (ON or OFF) displays or hides
the marks.

NOTE Also refer to SMEM SPC, SPROC and SMOD command descriptions for
more detail about these commands.

Equivalent Operations

ATTRIBUTES SPC ~ Drag and drop from Register component to Source
component.

ATTRIBUTES SMEM ~ Drag and drop from Memory component to
Source component.

ATTRIBUTES SMOD ~ Drag and drop from Module component to
Source component.

ATTRIBUTES SPROC ~ Drag and drop from Procedure component to
Source component.
Debugger Manual DM–289

Debugger Commands
Simulator/Debugger Commands
ATTRIBUTES MARKS ~ Select menu Source>Marks.

Usage ATTRIBUTES list

where list=command{,command}

command= SPC address | SMEM range | SMOD module (without
extension) | SPROC numberAssociatedToProcedure | MARKS
(ON|OFF)

Example

in>Source < ATTRIBUTES MARKS ON

Marks are visible in the Source component window.

In the Data Component

Description The ATTRIBUTES command allows you to set the display and state
options of the Data component window. The FORMAT command selects
the format for the list of variables. The format is one of the following:
binary, octal, hexadecimal, signed decimal, unsigned decimal or symbolic.

Usage ATTRIBUTES list

where list=command{,command})

command=FORMAT(bin|oct|hex|signed|unsigned|symb)| SCOPE
(global|local|user) | MODE (automatic|periodical| locked|frozen) |
SPROC level | SMOD module | UPDATERATE rate |
COMPLEMENT(none|one)| NAMEWIDTH width

The MODE command selects the display mode of variables. In Automatic
mode (default), variables are updated when the target is stopped. Variables
from the currently executed module or procedure are displayed in the data
component.

In Automatic mode (default mode), variables are updated when target is
stopped.

In Locked and Frozen mode, variables from a specific module are
displayed in the data component. The same variables are always displayed
in the data component.
DM–290 Debugger Manual

Debugger Commands
Simulator/Debugger Commands
In Locked mode, values from variables displayed in the data component
are updated when the target is stopped.

In Frozen mode, values from variables displayed in the data component
are not updated when the target is stopped.

In Periodical mode, variables are updated at regular time intervals when
the target is running. The default update rate is 1 second, but it can be
modified by steps of up to 100 ms using the associated dialog box or the
UPDATERATE command.

The UPDATERATE command sets the variables update rate (see also
UPDATERATE command).

The SPROC (show procedure) and SMOD (show module) commands
display local or global variables of the corresponding procedure or module.

The SCOPE command selects and displays global, local or user defined
variables.

The COMPLEMENT command sets the display complement format of
Data values: one sets the first complement (each bit is reversed), none
unselects the first complement.

The NAMEWIDTH command sets the length of the variable name
displayed in the window.

NOTE Refer to SPROC, UPDATERATE and SMOD command descriptions for
more detail about these commands.

Equivalent Operations

ATTRIBUTES FORMAT ~ Select menu Data>Format...

ATTRIBUTES MODE ~ Select menu Data>Mode...

ATTRIBUTES SCOPE ~ Select menu Data>Scope...

ATTRIBUTES SPROC ~ Drag and drop from Procedure component to
Data component.

ATTRIBUTES SMOD ~ Drag and drop from Module component to Data
component.
Debugger Manual DM–291

Debugger Commands
Simulator/Debugger Commands
ATTRIBUTES UPDATERATE ~ Select menu Data>Mode>Periodical.

ATTRIBUTES COMPLEMENT ~ Select menu Data>Format...

ATTRIBUTES NAMEWIDTH ~ Select menu Data>Options...>Name
Width...

Example

Data:1 < ATTRIBUTES MODE FROZEN

In Data:1 (global variables), variables update is frozen mode. Variables
are not refreshed when the application is running.

In the Memory Component

Description The ATTRIBUTES command allows you to set the display and state
options of the Memory component window. The WORD command selects
the word size of the memory dump window. The word size number can be
1 (for “byte” format), 2 (for “word” format - 2 bytes) or 4 (for “long”
format - 4 bytes). The ADR command ON or OFF displays or hides the
address in front of the memory dump lines. The ASC command ON or
OFF displays or hides the ASCII dump at the end of the memory dump
lines. The ADDRESS command scrolls the corresponding memory dump
window and displays the corresponding memory address lines (memory
WORD is not selected). SPC (show pc), SMEM (show memory) and
SMOD (show module) scroll the Memory component accordingly, to
display the code location given as argument, and select the corresponding
memory area (SPC selects an address, SMEM selects a range of memory
and SMOD selects the module name whom global variable would be
located in the window).

The FORMAT command selects the format for the list of variables. The
format is one of the following: binary, octal, hexadecimal, signed decimal,
unsigned decimal or symbolic.

The COMPLEMENT command sets the display complement format of
memory values: one sets the first complement (each bit is reversed), none
unselects the first complement.

The MODE command selects the display mode of memory words. In
Automatic mode (default), memory words are updated when the target is
stopped. Memory words from the currently executed module or procedure
are displayed in the Memory component.
DM–292 Debugger Manual

Debugger Commands
Simulator/Debugger Commands
In Automatic mode (default mode), memory words are updated when
target is stopped.

In Frozen mode, value from memory words displayed in the Memory
component are not updated when the target is stopped.

In Periodical mode, memory words are updated at regular time intervals
when the target is running. The default update rate is 1 second, but it can be
modified by steps of up to 100 ms using the associated dialog box or
UPDATERATE command.

The UPDATERATE command sets the variables update rate (see also
UPDATERATE command).

NOTE Also refer to SMEM, SPC and SMOD command descriptions for more
detail about these commands.

Equivalent Operations

ATTRIBUTES FORMAT ~ Select menu Memory>Format

ATTRIBUTES WORD ~ Select menu Memory>Word Size

ATTRIBUTES ADR ~ Select menu Memory>Display>Address

ATTRIBUTES ASC ~ Select menu Memory>Display>ASCII

ATTRIBUTES ADDRESS ~ Select menu Memory>Address...

ATTRIBUTES COMPLEMENT ~ Select menu Memory>Format

ATTRIBUTES SMEM ~ Drag and drop from Data component (variable)
to Memory component.

ATTRIBUTES SMOD ~ Drag and drop from Source component to
Memory component.

ATTRIBUTES MODE ~ Select menu Memory>Mode...

ATTRIBUTES UPDATERATE ~ Select menu
Memory>Mode>Periodical

Usage ATTRIBUTES list
Debugger Manual DM–293

Debugger Commands
Simulator/Debugger Commands
where list=command{,command})

command=FORMAT(bin|oct|hex|signed|unsigned) | WORD number |
ADR (ON|OFF) | ASC (ON|OFF) | ADDRESS address | SPC address
| SMEM range | SMOD module | MODE (automatic|periodical| frozen)
| UPDATERATE rate | COMENT (NONE|ONE)

Example

Memory < ATTRIBUTES ASC OFF, ADR OFF

ASCII dump and addresses are removed from the Memory component
window.

In the Inspector Component

 Description The ATTRIBUTES command allows you to set the display and state of
the Inspector component window.

Usage ATTRIBUTES list

where list=command{,command})

command= COLUMNWIDTH columnname columnfield columnsize |
EXPAND [name {subname}] deep |
COLLAPSE name {subname}|
SELECT name {subname} |
SPLIT pos |
MAXELEM (ON | OFF) [number] |
FORMAT (Hex|Int)

The COLUMNWIDTH command sets the width of one column entry on
the right pane of the Inspector Window. The first parameter (columnname)
specifies which column. The following column names currently exist:

• Names - simple name list

• Interrupts - interrupt list

• SymbolTableFunction - function in the Symbol Table

• ObjectPoolObject - Object in Object Pool without additional
information

• Events - event list

• Components - component list

• SymbolTableVariable - variable or differentiation in the Symbol Table
DM–294 Debugger Manual

Debugger Commands
Simulator/Debugger Commands
• ObjectPoolIOBase - Object in Object Pool with additional information

• SymbolTableModules - non IOBase derived Object in the Object Pool

The column field is the name of the specific field, which is also displayed
in the Inspector Window.

The following commands set the width of the function names to 100:

inspect < ATTRIBUTES COLUMNWIDTH SymbolTableModules Name 100

NOTE Due to the “inspect <“ redirection, only the Inspector handles this
command.

The EXPAND command computes and displays all subitems of a specified
item up to a given depth. An item is specified by specifying the complete
path starting at one of the root items like “Symbol Table” or “Object Pool”.
Names with spaces must be surrounded by double quotes.

To expand all subitems of TargetObject in the Object Pool up to 4 levels,
the following command can be used:

inspect < ATTRIBUTES EXPAND “Object Pool” TargetObject 4

NOTE Because the name Object Pool contains a space, it must be surrounded by
double quotes.

TIP The symbol Table, Stack or other Items may have recursive information.
So it may occur that the information tree grows with the depth. Therefore,
specifying large expand values may use a large amount of memory.

The COLLAPSE command folds one item. The item name must be given.
The following command folds the TargetObject:

inspect < ATTRIBUTES COLLAPSE “Object Pool” TargetObject

The SELECT command shows the information of the specified item on
the right pane. The following command shows all Objects attached to the
TargetObject:
Debugger Manual DM–295

Debugger Commands
Simulator/Debugger Commands
inspect < ATTRIBUTES SELECT “Object Pool” TargetObject

The SPLIT command sets the position of the split line between the left and
right pane. The value must be between 0 and 100. A value of 0 only shows
the right pane, a value of 100 shows the left pane. Any value between 0 and
100 makes a relative split. The following command makes both panes the
same size:

inspect < ATTRIBUTES SPLIT 50

The MAXELEM command sets the number of subitems to display. After
the following command, the Inspector will prompt for 1000 subitems:

inspect < ATTRIBUTES MAXELEM ON 1000

The FORMAT command specifies whether integral values like addresses
should be displayed as hexadecimal or decimal. The following command
specifies the hexadecimal display:

inspect < ATTRIBUTES FORMAT Hex

Equivalent Operations

ATTRIBUTES COLUMNWIDTH ~ Modify column width with the
mouse.

ATTRIBUTES EXPAND ~ Expand any item with the mouse.

ATTRIBUTES COLLAPSE ~ Collapse the specified item with the mouse.

ATTRIBUTES SELECT ~ Click on the specified item to select it.

ATTRIBUTES SPLIT ~ Move the split line between the panes with the
mouse.

ATTRIBUTES MAXELEM ~ Select max. Elements... from the context
menu.

AT
Usage AT time
DM–296 Debugger Manual

Debugger Commands
Simulator/Debugger Commands
where time=expression and expression is interpreted in milliseconds.

Components Debugger engine.

Description The AT command temporarily suspends a command file from executing
until after a specified delay in milliseconds. The delay is measured from
the time the command file is started. In the event that command files are
chained (one calling another), the delay is measured from the time the first
command file is started.

NOTE This command can only be executed from a command file. The time
specified is relative to the start of command file execution.

Example

AT 10 OPEN Command

This command (in command file) opens the Command Line component
10 ms after the command file is executed.

AUTOSIZE
Description AUTOSIZE enables/disables windows autosizing. When on, the size of

component windows are automatically adapted to the Simulator/Debugger
main window when it is resized.

Usage AUTOSIZE on|off

Components Debugger engine.

Example

in>AUTOSIZE off

Windows autosizing is disabled.

BASE
Description In the Profiler component, the BASE command sets the profiler base to

code (total code) or module (each module code).

Usage BASE code|module
Debugger Manual DM–297

Debugger Commands
Simulator/Debugger Commands
Components Profiler component.

Example

in>BASE code

BC
Description BC deletes a breakpoint at the specified address. When * is specified, all

breakpoints are deleted.

You can point to the breakpoint in the Assembly or Source component
window, right-click and choose Delete Breakpoint in the popup menu, or
open the Breakpoints setting dialog and choose Show Breakpoint, select
the breakpoint and click Delete.

NOTE Correct module names are displayed in the Module component window.
Make sure that the module name of your command is correct: if the .abs
is in HIWARE format, some debug information is in the object file (.o),
and module names have a .o extension (e.g., fibo.o). In ELF format,
module name extensions are .c, .cpp or .dbg (.dbg for program
sources in assembler) (e.g., fibo.c), since all debugging information is
contained in the .abs file and object files are not used. Adapt the
following examples with your .abs application file format.

Usage BC address|*

address is the address of the breakpoint to be deleted. This address is
specified in ANSI C or standard Assembler format. address can also be
replaced by an expression as shown in the example below.

When * is specified all breakpoints are deleted.

Components Debugger engine.

Example

in>BC 0x8000

This command deletes the breakpoint set at the address 0x8000. The
breakpoint symbol is removed in the source and assembly window. The
breakpoint is removed from the breakpoint list.
DM–298 Debugger Manual

Debugger Commands
Simulator/Debugger Commands
Example

in>BC &FIBO.C:Fibonacci

In this example, an expression replaces the address. FIBO.C is the module
name and Fibonacci is the function where the breakpoint is cleared.

BCKCOLOR
Description BCKCOLOR sets the background color.

The background color defined with the BCKCOLOR command is valid for
all component windows. Avoid using the same color for the font and
background, otherwise text in the component windows will not be visible.
Also avoid using colors that have a specific meaning in the command line
window. These colors are:

Red: used to display error messages.

Blue: used to echo commands.

Green: used to display asynchronous events.

NOTE When WHITE is given as a parameter, the default background color for all
component windows is set, for example, the register component is
lightgrey.

Usage BCKCOLOR color

Where color can be one of the following: BLACK, GREY, LIGHTGREY,
WHITE, RED, YELLOW, BLUE, CYAN, GREEN, PURPLE,
LIGHTRED, LIGHTYELLOW, LIGHTBLUE, LIGHTCYAN,
LIGHTGREEN, LIGHTPURPLE

Components Debugger engine.

Example

in>BCKCOLOR LIGHTCYAN

The background color of all currently open component windows is set to
Lightcyan. To return to the original display, enter BCKCOLOR WHITE.
Debugger Manual DM–299

Debugger Commands
Simulator/Debugger Commands
BD
Description In the Command Line component, the BD command displays the list of all

breakpoints currently set with addresses and types (temporary, permanent).

Usage BD

Components Debugger engine.

Example

in>BD
Fibonacci 0x805c T
Fibonacci 0x8072 P
Fibonacci 0x8074 T
main 0x8099 T

One permanent and two temporary breakpoints are set in the function
Fibonacci, and one temporary breakpoint is set in the main function.

NOTE From the list, it is not possible to know if a breakpoint is disabled or not.

BS
Description BS sets a temporary (T) or a permanent (P) breakpoint at the specified

address. If no P or T is specified, the default is a permanent (P) breakpoint.

Equivalent Operation

You can point at a statement in the Assembly or Source component
window, right-click and choose Set Breakpoint in the popup menu, open
the Breakpoints setting dialog and choose Show Breakpoint, then select
the breakpoint and set its properties.

NOTE Correct module names are displayed in the Module component window.
Make sure that the module name of your command is correct:
If the .abs is in HIWARE format, some debug information is in the
object file (.o), and module names have a .o extension (e.g., fibo.o).
In ELF format, module name extensions are .c, .cpp or .dbg (.dbg for
program sources in assembler) (e.g., fibo.c), since all debugging
DM–300 Debugger Manual

Debugger Commands
Simulator/Debugger Commands
information is contained in the .abs file and object files are not used.
Adapt the following examples with .abs application file format.

Usage BS address| function [{mark}]

[P|T[state]][;cond=”condition”[state]]

[;cmd=”command”[state]][;cur=current[inter=interval]]

[;cdSz=codeSize[srSz=sourceSize]]

address is the address where the breakpoint is to be set. This address is
specified in ANSI C format. address can also be replaced by an
expression as shown in the example below.

function is the name of the function in which to set the breakpoint.

mark (displayed mark in Source component window) is the mark number
where the breakpoint is to be set. When mark is:

• > 0: the position is relative to the beginning of the function.

• = 0: the position is the entry point of the function (default value).

• < 0: the position is relative to the end of the function.

P, specifies the breakpoint as a permanent breakpoint.

T, specifies the breakpoint as a temporary breakpoint. A temporary
breakpoint is deleted once it is reached.

State is E or D where E is for enabled (state is set by default to E if nothing
is specified), and D is for disabled.

condition is an expression. It matches the Condition field in the
Breakpoints setting dialog for a conditional breakpoint.

command is any Debugger command (at this level, the commands G, GO
and STOP are not allowed). It matches the Command field in the
Breakpoints setting dialog, for associated commands. For the Command
function, the states are E (enabled) or C (continue).

current is an expression. It matches the Current field (Counter) in the
Breakpoints setting dialog, for counting breakpoints.
Debugger Manual DM–301

Debugger Commands
Simulator/Debugger Commands
interval is an expression. It matches the Interval field (Counter) in the
Breakpoints setting dialog, for counting breakpoints.

codeSize is an expression. It is usually a constant number to specify (for
security) the code size of a function where a breakpoint is set. If the size
specified does not match the size of the function currently loaded in the
.ABS file, the breakpoint is set but disabled.

sourceSize is an expression. It is usually a constant number to specify (for
security) the source (text) size of a function where a breakpoint is set. If the
size specified does not match the size of the function in the source file, the
breakpoint is set but disabled.

Components Debugger engine.

Example

in>BS 0x8000 T

This command sets a temporary breakpoint at the address 0x8000.

in>BS $8000

This command sets a permanent breakpoint at the address 0x8000.

BS &FIBO.C:Fibonacci

In this example, an expression replaces the address. FIBO.C is the
module name and Fibonacci is the function where the breakpoint is set.

More Examples:

in>BS &main + 22 P E ; cdSz = 66 srSz = 134

Sets a breakpoint at the address of the main procedure + 22, where the code
size of the main procedure is 66 bytes and its source size is 134 characters.

in>BS Fibo.c:main{3}

Sets a breakpoint at the 3rd mark of the procedure main, where main is a
function of the FIBO.C module.
DM–302 Debugger Manual

Debugger Commands
Simulator/Debugger Commands
in>BS &counter + 5; cond ="fib1>fib2";cmd="bckcolor red"

Sets a breakpoint at the address of the variable counter + 5, where the
condition is fib1 > fib2 and the command is "bckcolor red".

in>BS &Fibo.c:Fibonacci+13

Sets a breakpoint at the address of the Fibonacci procedure + 13, where
Fibonacci is a function of the FIBO.C module.

CALL
Description Executes command in the specified command file.

NOTE If no path is specified, the destination directory is the current project
directory.

Usage CALL FileName [;C][;NL]

Components Debugger engine.

Example

in>cf \util\config.cmd

Loads the config command file.

CD
Description The CD command changes the current working directory to the directory

specified in path. When the command is entered with no parameter, the
current directory is displayed.

The directory specified in the CD command must be a valid directory. It
should exist and be accessible from the PC. When specifying a relative
path in the CD command, make sure the path is relative to the project
directory.
Debugger Manual DM–303

Debugger Commands
Simulator/Debugger Commands
NOTE When no path is specified, the default directory is the project directory.
When using the CD command, all commands referring to a file with no
path specified could be affected.

Usage CD [path]

path: The pathname of a directory that becomes the current working
directory (case insensitive).

Components Debugger engine.

Example

in>cd..
C:\Metrowerks\demo
in>cd
C:\Metrowerks\demo
in>cd /Metrowerks/prog
C:\Metrowerks\prog

The new project directory is C:\Metrowerks\prog

CF
Description The CF command reads the commands in the specified command file,

which are then executed by the command interpreter. The command file
contains ASCII text commands. Command files can be nested. By default,
after executing the commands from a nested command file, the command
interpreter resumes execution of remaining commands in the calling file.
Any error halts execution of CF file commands. When the command is
entered with no parameter, the Open File dialog is displayed. The CALL
command is equivalent to the CF command.

NOTE If no path is specified, the destination directory is the current project
directory.

Usage CF fileName [;C][;NL]

Where fileName is a file (and path) containing Simulator/Debugger
commands.
DM–304 Debugger Manual

Debugger Commands
Simulator/Debugger Commands
;C specifies chaining the command file. This option is meaningful in a
nested command file only.

When the ;C option is given in the calling file, the command interpreter
quits the calling file and executes the called file. (i.e. in the calling file,
commands following the CF ... ;C command are never executed).

When the option is omitted, execution of the remaining commands in the
calling file is resumed after the commands in the called file have been
executed.

;NL: when set, the commands that are in the called file are not logged in
the Command Line window (and not to log file, when a file has been
opened with an LF command), even if the CMDFILE type is set to ON
(see LOG command).

Components Debugger engine.

Examples:

in>CF commands.txt

The COMMANDS.TXT file is executed. It should contain debugger
commands like those described in the Debugger Commands chapter.

without “;C” option:

if a command1.txt file contains:

bckcolor green
cf command2.txt
bckcolor white

if a command2.txt file contains:

bckcolor red

Execution:

in>cf command1.txt
executing command1.txt

!bckcolor green
!cf command2.txt
Debugger Manual DM–305

Debugger Commands
Simulator/Debugger Commands
executing command2.txt

1!bckcolor red
1!
1!
done command2.txt

!bckcolor white
!
done command1.txt

with “;C” option:

if a command1.txt file contains:

bckcolor green
cf command2.txt ;C
bckcolor white

if a command2.txt file contains:

bckcolor red

Execution:

in>cf command1.txt
executing command1.txt

!bckcolor green
!cf command2.txt ;C
executing command2.txt

1!bckcolor red
1!
1!
done command2.txt

done command1.txt
DM–306 Debugger Manual

Debugger Commands
Simulator/Debugger Commands
CLOCK
Description In the SoftTrace component, the CLOCK command sets the clock speed.

Usage CLOCK frequency

Where number is a decimal number, which is the CPU frequency in Hertz.

Components SoftTrace component.

Example

in>CLOCK 4000000

CLOSE
Description The CLOSE command is used to close a component.

Component names are: Assembly, Command, Coverage, Data, Inspect,
IO_Led, Led, Memory, Module, Phone, Procedure, Profiler, Recorder,
Register, SoftTrace, Source, Stimulation.

Usage CLOSE component | *

where * means “all components”.

Components Debugger engine.

Example

in>CLOSE Memory

The Memory component window is closed (unloaded).

COPYMEM
Description The COPYMEM command is used to copy a memory range to a

destination range defined by the beginning address. This command works
on defined memory only. The source range and destination range are tested
to ensure they are not overlayed.

Usage COPYMEM <Source address range> dest-address

Components Memory.
Debugger Manual DM–307

Debugger Commands
Simulator/Debugger Commands
Example

in>copymem 0x3FC2A0..0x3FC2B0 0x3FC300

The memory from 0x3FC2A0 to 0X3FC2B0 is copied to the memory at
0x3FC300 to 0x3FC310. This Memory range appears in red in the Memory
Component.

CMDFILE
Description The CMDFILE command allows you to define all target specific

commands in a command file. For example, startup, preload, reset, and
path of this file.

Usage CMDFILE <Command File Kind> ON|OFF ["<Command File Full
Name>"]

Components Simulator/target engine.

Example

in>cmdfile postload on "c:\temp\myposloadfile.cmd"

The myposloadfile command file will be executed after loading the absolute
file.

CPORT
Description The CPORT command is used to set the 5 coupler port addresses and the

control port address of the coupler component.

Usage CPORT (address | ident) (address | ident) (address | ident)...

Address locates the port address value of the component (many formats
are allowed), the default format is hexadecimal.

Ident is a known identifier, its content will define the port address.

Components Programmable parallel Couplers component.

Example:

in>CPORT 0x100 0x200 0x300
DM–308 Debugger Manual

Debugger Commands
Simulator/Debugger Commands
The ports of the Programmable parallel Couplers will be defined at
addresses 0x100, 0x200 and 0x300.

CR
Description The CR command initiates writing records of commands to an external

file.

Writing records continues until a close record file (NOCR) command is
executed.

NOTE Drag & drop actions are also translated into commands in the record file.

NOTE If no path is specified, the destination directory is the current project
directory.

Usage CR [fileName][;A]

If fileName is not specified, a standard Open File dialog is opened.

;A specifies to open a file fileName in append mode. Records are
appended at the end of an existing record file.

If the ;A option is omitted and fileName is an existing file, the file is
cleared before records are written to it.

Components Debugger engine.

Example

in>cr /Metrowerks/demo/myrecord.txt ;A

The myrecord.txt file is opened in “Append” mode for a recording
session.

CYCLE
Description In the SoftTrace component, the CYCLE command displays or hides

cycles. When cycle is off, milliseconds (ms) are displayed.

Usage CYCLE on|off
Debugger Manual DM–309

Debugger Commands
Simulator/Debugger Commands
Components Softtrace component.

Example

in>CYCLE on

DASM
Description The DASM command displays the assembler code lines of an application,

starting at the address given in the parameter. If there is no parameter, the
assembler code following the last address of the previous display is
displayed.

This command can be stopped by pressing the key.

Equivalent Operation

Right-click in the Assembly component window, select Address... and
enter the address to start disassembly in the Show PC dialog.

Usage DASM [address|range][;OBJ]

address: This is a constant expression representing the address where
disassembly begins.

range: This is an address range constant that specifies addresses to be
disassembled. When range is omitted, a maximum of sixteen instructions
are disassembled.

When address and range are omitted, disassembly begins at the address of
the instruction that follows the last instruction that has been disassembled
by the most recent DASM command. If this is the first DASM command of
a session, disassembly begins at the current address in the program counter.

;OBJ: Displays assembler code in hexadecimal.

Components Debugger engine.

Example for HC12

in>dasm 0x887
000887 LDD 2,SP
000889 CPD 0,SP
00088B BLS *-21 ;abs = 0876
00088D LDD 6,SP
DM–310 Debugger Manual

Debugger Commands
Simulator/Debugger Commands
00088F LEAS 10,SP
000891 RTS
000892 PSHD
000893 ANDCC #239
000895 CLRB
000896 CLRA
000897 STD 0x0802
00089A STD 0,SP
00089C LDD 0x0802
00089F ADDD #1
0008A2 STD 0x0802
0008A5 BSR *-66 ;abs = 0863

NOTE Depending on the target, the above code may vary.

Disassembled instructions are displayed in the Command Line component
window.

NOTE It is necessary to open the Command Line component before executing this
command to see the dumped code.

DB
Description The DB command displays the hexadecimal and ASCII values of the bytes

in a specified range of memory. The command displays one or more lines,
depending on the address or range specified. Each line shows the address
of the first byte displayed in the line, followed by the number of specified
hexadecimal byte values. The hexadecimal byte values are followed by the
corresponding ASCII characters, separated by spaces. Between the eighth
and ninth values, a hyphen (-) replaces the space as the separator. Each
non-displayable character is represented by a period (.).

This command can be stopped by pressing the key.

Usage DB [address|range]

When address and range are omitted, the first longword displayed is taken
from the address following the last longword displayed by the most recent
DB, DW, or DL command, or from address 0x0000 (for the first DB, DW,
DL command of a session).
Debugger Manual DM–311

Debugger Commands
Simulator/Debugger Commands
Components Debugger engine.

Examples:

in>DB 0x8000..0x800F

8000: FE 80 45 FD 80 43 27 10-35 ED 31 EC 31 69 70 83
þ_Eý_C'.5í1ì1ipƒ

Memory bytes are displayed in the Command Line component window,
with matching ASCII characters.

NOTE It is necessary to open the Command Line component before executing this
command to see the dumped code.

in>DB &TCR

0012: 5A Z

displays the byte that is at the address of the TCR I/O register. I/O registers
are defined in a DEFAULT.REG file.

DDEPROTOCOL
Description The DDEPROTOCOL command is used to configure the Debugger/

Simulator dynamic data exchange (DDE) protocol.

By default the DDE protocol is activated and not displayed in the
command line component.

Usage DDEPROTOCOL ON|OFF|SHOW|HIDE|STATUS

Where:

• ON enables the DDE communication protocol

• OFF disables the DDE communication protocol

• SHOW displays DDE protocol information in the command line
component

• HIDE hides DDE protocol information in the command line
component

• STATUS provides information if the DDE protocol is active (on or off)
and if display is active (Show or Hide)
DM–312 Debugger Manual

Debugger Commands
Simulator/Debugger Commands
Components Debugger engine.

Example

in>DDEPROTOCOL ON
in>DDEPROTOCOL SHOW
in>DDEPROTOCOL STATUS
DDEPROTOCOL ON - DISPLAYING ON

The DDE protocol is activated and displayed, and status is given in the
command line component.

NOTE For more information on Debugger/Simulator DDE implementation, please
refer to the chapter Debugger DDE capabilities.

DEFINE
Usage DEFINE symbol [=] expression

Components Debugger engine.

Description The DEFINE command creates a symbol and associates the value of an
expression with it. Arithmetic expressions are evaluated when the
command is interpreted. The symbol can be used to represent the
expression until the symbol is redefined, or undefined using the UNDEF
command. A symbol is a maximum of 31 characters long. In a command
line, all symbol occurrences (after the command name) are substituted by
their values before processing starts. A symbol cannot represent a
command name. Note that a symbol definition precedes (and hence
conceals) a program variable with the same name.

Defined symbols remain valid when a new application is loaded. An
application variable or I/O register can be overwritten with a DEFINE
command.

TIP This command can be used to assign meaningful names to expressions,
which can be used in other commands. This increases the readability of
command files and avoids re-evaluation of complex expressions.
Debugger Manual DM–313

Debugger Commands
Simulator/Debugger Commands
Example

in>DEFINE addr $1000
in>DEFINE limit = addr + 15

First addr is defined as a constant equivalent to $1000. Then limit is
defined and affected with the value ($1000 + 15)

A symbol defined in the loaded application can be redefined on the
command line using the DEFINE command. The symbol defined in the
application is not accessible until an UNDEF on that symbol name is
detected in the command file.

Example A symbol named ‘testCase’ is defined in the test application.

/* Loads application test.abs */
LOAD test.abs
/* Display value of testCase. */
DB testCase
/* Redefine symbol testCase. */
DEFINE testCase = $800
/*Display value stored at address $800.*/
DB testCase
/* Redefine symbol testCase. */
UNDEF testCase
/* Display value of testCase. */
DB testCase

NOTE Also refer to examples given for the command UNDEF.

DELCHANNEL
Description The DELCHANNEL command is used to delete a specific channel for the

Monitor component.

Usage DELCHANNEL ("Name")

Name is the name of the channel to delete.

Components Monitor component.
DM–314 Debugger Manual

Debugger Commands
Simulator/Debugger Commands
Example:

in>DELCHANNEL "Leds.Port_Register bit 0"

The channel Leds.Port_Register bit 0 will be deleted in the Monitor
component.

DETAILS
Description In the Profiler component, the DETAILS command opens a profiler split

view in the Source or Assembly component.

Usage DETAILS assembly|source

Components Profiler components.

Example

in>DETAILS source

DL
Description The DL command displays the hexadecimal values of the longwords in a

specified range of memory. The command displays one or more lines,
depending on the address or range specified. Each line shows the address
of the first longword displayed in the line, followed by the number of
specified hexadecimal longword values.

When a size is specified in the range, this size represents the number of
longwords that should be displayed in the command line window.

This command can be stopped by pressing the key.

NOTE Open the Command Line component before executing this command to see
the dumped code.

Usage DL [address|range]

When range is omitted, the first longword displayed is taken from the
address following the last longword displayed by the most recent DB, DW,
or DL command, or from address 0x0000 (for the first DB, DW, DL
command of a session).
Debugger Manual DM–315

Debugger Commands
Simulator/Debugger Commands
Components Debugger engine.

Example

in>DL 0x8000..0x8007

8000: FE8045FD 80432710

The content of the memory range starting at 0x8000 and ending at 0x8007
is displayed as longword (4-bytes) values.

in>DL 0x8000,2

8000: FE8045FD 80432710

The content of 2 longwords starting at 0x8000 is displayed as longword (4-
bytes) values.

Memory longwords are displayed in the Command Line component
window.

DUMP
Description The DUMP command writes everything visible in the Data component to

the command line component.

Usage DUMP

Components Data component.

Example

in> Data:1 < DUMP

DW
Description The DW command displays the hexadecimal values of the words in a

specified range of memory. The command displays one or more lines,
depending on the address or range specified. Each line shows the address
of the first word displayed in the line, followed by the number of specified
hexadecimal word values.

When a size is specified in the range, this size represents the number of
words that should be displayed in the command line window.
DM–316 Debugger Manual

Debugger Commands
Simulator/Debugger Commands
This command can be stopped by pressing the key.

NOTE Open the Command Line component before executing this command to see
the dumped code.

Usage DW [address | range]

When address is an address constant expression, the address of the first
word is displayed.

When address and range are omitted, the first word displayed is taken
from the address following the last word displayed by the most recent DB,
DW, or DL command, or from address 0x0000 (for the first DB, DW, DL
command of a session).

Components Debugger engine.

Example

in>DW 0x8000,4

8000: FE80 45FD 8043 2710

The content of 4 words starting at 0x8000 is displayed as word (2-bytes)
values.

Memory words are displayed in the Command Line component window.

E
Description The E command evaluates an expression and displays the result in the

Command Line component window. When the expression is the only
parameter entered (no option specified) the value of the expression is
displayed in the default number base. The result is displayed as a signed
number in decimal format and as unsigned number in all other formats.

Usage E expression[;O|D|X|C|B]

where:

;O: displays the value of expression as an octal (base 8) number.

;D: displays the value of expression as a decimal (base 10) number.
Debugger Manual DM–317

Debugger Commands
Simulator/Debugger Commands
;X: displays the value of expression as an hexadecimal (base 16) number.

;C: displays the value of expression as an ASCII character. The remainder
resulting from dividing the number by 256 is displayed. All values are
displayed in the current font. Control characters (<32) are displayed as
decimal.

;B: displays the value of expression as a binary (base 2) number.

NOTE Refer to “Expression” Definition in EBNF in Appendix for more detail
about expression.

Components Debugger engine.

Example

in>define a=0x12
in>define b=0x10
in>e a+b
in>=34

The addition operation of the two previously defined variables a and b is
evaluated and the result is displayed in the Command Line window. The
output can be redirected to a file by using the LF command (refer to LF
and LOG command descriptions).

ELSE
Description The ELSE keyword is associated with the LF command.

Usage ELSE

Components Debugger engine.

Example

if CUR_TARGET == 1000 /* Condition */
 set sim
else set bdi /* Other Condition */

ELSEIF
Description The ELSEIF keyword is associated with the IF command.
DM–318 Debugger Manual

Debugger Commands
Simulator/Debugger Commands
Usage ELSEIF condition

where condition is same as defined in “C” language.

Components Debugger engine.

Example

if CUR_TARGET == 1000 /* Simulator */
 set sim
elseif CUR_TARGET == 1001 /* BDI */
 set bdi

ENDFOCUS
Description The ENDFOCUS command resets the current focus. It is associated with

the FOCUS command. Following commands are broadcast to all currently
open components. This command is only valid in a command file.

Usage ENDFOCUS

Components Debugger engine.

Example

FOCUS Assembly
ATTRIBUTES code on
ENDFOCUS
FOCUS Source
ATTRIBUTES marks on
ENDFOCUS

The ATTRIBUTES command is first redirected to the Assembly
component by the FOCUS Assembly command. The code is displayed
next to assembly instructions. Then the Assembly component is released
by the ENDFOCUS command and the second ATTRIBUTES command is
redirected to the Source component by the FOCUS Source command.
Marks are displayed in the Source window.

ENDFOR
Description The ENDFOR keyword is associated with the FOR command.

Usage ENDFOR
Debugger Manual DM–319

Debugger Commands
Simulator/Debugger Commands
Components Debugger engine.

Example

for i = 1..5
 define multi5 = 5 * i
endfor

After the ENDFOR instruction, i is equal to 5.

ENDIF
Description The ENDIF keyword is associated with the IF command.

Usage ENDIF

Components Debugger engine.

Example

if (CUR_CPU == 12)
 DW &counter
else
 DB &counter
endif

ENDWHILE
Description The ENDWHILE keyword is associated with the WHILE command.

Usage ENDWHILE

Components Debugger engine.

Example

while i < 5
 define multi5 = 5 * i
 define i = i + 1
endwhile

After the ENDWHILE instruction, i is equal to 5
DM–320 Debugger Manual

Debugger Commands
Simulator/Debugger Commands
EXECUTE
Description In the Stimulation component, the EXECUTE command executes a file

containing stimulation commands. Refer to the I/O Stimulation document.

Usage EXECUTE fileName

Components Stimulation component.

Example

in>EXECUTE stimu.txt

EXIT
Description In the Command line component, the EXIT command closes the Debugger

application.

Usage EXIT

Components Debugger engine.

Example

in>EXIT

The Debugger application is closed.

FILL
Description In the Memory component, the FILL command fills a corresponding range

of Memory component with the defined value. The value must be a single
byte pattern (higher bytes ignored).

Usage FILL range value

the syntax for range is: LowAddress..HighAddress

Components Memory component.

Equivalent Operation

The File Memory dialog is available from the Memory popup menu and
by selecting Fill... or Memory>Fill... menu entry.
Debugger Manual DM–321

Debugger Commands
Simulator/Debugger Commands
Example

in>FILL 0x8000..0x8008 0xFF

The memory range 0x8000..0x8008 is filled with the value 0xFF.

FILTER
Description In the Memory component, with the FILTER command, you select what

you want to display, for example modules: modules only, functions:
modules and functions, or lines: modules and functions and code lines.
You can also specify a range to be logged in your file. Range must be
between 0 and 100.

Usage FILTER Options [<range>]

Options = modules|functions|lines

Components Coverage component.

Example

in>coverage < FILTER functions 25..75

FIND
Description In the Source component, the FIND command is used to search a specified

pattern in the source file currently loaded. If the pattern has been found, it
is highlighted. The search is forward (default), backward (;B), match case
sensitive (;MC) or match whole word sensitive (;WW). The operation
starts form the currently highlighted statement or from the beginning of the
file (if nothing is highlighted). If the item is found, the Source window is
scrolled to the position of the item and the item is highlighted in grey.

Equivalent Operation

You can select Source>Find... or open the Source popup menu and select
Find... to open the Find dialog.

Usage FIND “string” [;B] [;MC] [;WW]

Where string is the “pattern” to match. It has to be enclosed in double
quotes. See the example below.
DM–322 Debugger Manual

Debugger Commands
Simulator/Debugger Commands
;B the search is backwards, default is forwards.

;MC match case sensitive is set.

;WW match whole word is set.

Components Source component.

Example

in>FIND “this” ;B ;WW

The “this” string (considered as a whole word) is searched in the Source
component window. The search is performed backward.

FINDPROC
Description If a valid procedure name is given as parameter, the source file where the

procedure is defined is opened in the Source Component. The procedure’s
definition is displayed and the procedure’s title is highlighted.

Equivalent Operation

You can select Source>Find Procedure... or open the Source popup
menu and select Find Procedure... to open the Find Procedure dialog.

Usage FINDPROC procedureName

Components Source component.

Example

in>findproc Fibonacci

The “Fibonacci” procedure is displayed and the title is highlighted.

FOCUS
Description The FOCUS command sets the given component (component) as the

destination for all subsequent commands up to the next ENDFOCUS
command. Hence, the focus command releases the user from repeatedly
specifying the same command redirection, especially in the case where
command files are edited manually. This command is only valid in a
command file.
Debugger Manual DM–323

Debugger Commands
Simulator/Debugger Commands
NOTE It is not possible to visually notice that a component is “FOCUSed”.
However, you can use the ACTIVATE command to activate a component
window.

Usage FOCUS component

Components Debugger engine.

Example

FOCUS Assembly
ATTRIBUTES code on
ENDFOCUS
FOCUS Source
ATTRIBUTES marks on
ENDFOCUS

The ATTRIBUTES command is first redirected to the Assembly
component by the FOCUS Assembly command. The code is displayed
next to assembly instructions. Then the Assembly component is released
by the ENDFOCUS command and the second ATTRIBUTES command is
redirected to the Source component by the FOCUS Source command.
Marks are displayed in the Source window.

FOLD
Description In the Source component, the FOLD command hides the source text at the

program block level. Folded program text is displayed as if the program
block was empty. When the folded block is unfolded, the hidden program
text reappears. All text is folded once or (*) completely, until there are no
more folded parts.

Usage FOLD [*]

Where * means fold completely, otherwise fold only one level.

Components Source component.

Example

in>FOLD *
DM–324 Debugger Manual

Debugger Commands
Simulator/Debugger Commands
FONT
Description FONT sets the font type, size and color.

Equivalent Operation

The Font dialog is available by selecting the Component>Fonts... menu
entry.

Usage FONT ‘FontName’ [size][color]

Components Debugger engine.

Example

FONT ‘Arial’ 8 BLUE

The font type is “Arial” 8 points and blue.

FOR
Description The FOR loop allows you to execute all commands up to the trailing

ENDFOR a predefined number of times. The bounds of the range and the
optional steps are evaluated at the beginning. A variable (either a symbol
or a program variable) may be optionally specified, which is assigned to all
values of the range that are met during execution of the for loop. If a
variable is used, it must be defined before executing the FOR command,
with a DEFINE command.

Assignment happens immediately before comparing the iteration value
with the upper bound. The variable is only a copy of the internal iteration
value, therefore modifications on the variable don't have an impact on the
number of iterations.

This command can be stopped by pressing the key.

Usage FOR[variable =]range [“,” step]

Where variable is the name of a defined variable.

range: This is an address range constant that specifies addresses to be
disassembled.

step: constant number matching the step increment of the loop.
Debugger Manual DM–325

Debugger Commands
Simulator/Debugger Commands
Components Debugger engine.

Example

DEFINE loop = 0
FOR loop = 1..6,1
T
ENDFOR

The T Trace command is performed 6 times.

FPRINTF
Description FPRINTF is the standard ANSI C command: Writes formatted output

string to a file.

Usage FPRINTF (<filename>, <&format>, <expression>, <expression>, ...)

Components Debugger engine.

Example

fprintf (test.txt,"%s %2d","The value of the counter
is:",counter)

The content of the file test.txt is: The value of the counter is: 25

FRAMES
Description In the SoftTrace component, the FRAMES command sets the maximum

number of frame records.

Usage FRAMES number

Where number is a decimal number, which is the maximum number of
recorded frames. This number must not exceed 1000000.

Components SoftTrace component.

Example

FRAMES 10000
DM–326 Debugger Manual

Debugger Commands
Simulator/Debugger Commands
G
Description The G command starts code execution in the emulated system at the

current address in the program counter or at the specified address. You can
therefore specify the entry point of your program, skipping execution of the
previous code.

Usage G [address]

When no address is entered, the address in the program counter is not
altered and execution begins at the address in the program counter.

Alias GO

Components Debugger engine.

Example

G 0x8000

Program execution is started at 0x8000. RUNNING is displayed in the
status bar. The application runs until a breakpoint is reached or you stop the
execution.

GO
Description The GO command starts code execution in the emulated system at the

current address in the program counter or at the specified address. You can
therefore specify the entry point of your program, skipping execution of
previous code.

Usage GO [address]

When no address is entered, the address in the program counter is not
altered and execution begins at the address in the program counter.

Alias G

Components Debugger engine.

Example

in>GO 0x8000
Debugger Manual DM–327

Debugger Commands
Simulator/Debugger Commands
Program execution is started at address 0x8000. RUNNING is displayed in
the status bar. The application runs until a breakpoint is reached or you stop
execution.

GOTO
Description The GOTO command diverts execution of the command file to the

command line that follows the Label. The Label must be defined in the
current command file. The GOTO command fails, if the Label is not
found. A label can only be followed on the same line by a comment.

Usage GOTO Label

Components Debugger engine.

Example

GOTO MyLabel
...
...
MyLabel: // comments

When the instruction GOTO MyLabel is reached, the program pointer
jumps to MyLabel and follows program execution from this position.

GOTOIF
Description The GOTOIF command diverts execution of the command file to the

command line that follows the label if the condition is true. Otherwise, the
command is ignored. The GOTOIF command fails, if the condition is true
and the label is not found.

Usage GOTOIF condition Label

where condition is same as defined in “C” language.

Components Debugger engine.

Example

DEFINE jump = 0
...
DEFINE jump = jump + 1
...
GOTOIF jump == 10 MyLabel
DM–328 Debugger Manual

Debugger Commands
Simulator/Debugger Commands
T
...
MyLabel: // comments

The program pointer jumps to MyLabel only if jump equals 10. Otherwise,
the next instruction (T Trace command) is executed.

GRAPHICS
Description In the Profiler component, GRAPHICS switches the percentages display

in the graph bar on/off.

Usage GRAPHICS on|off

Components Profiler component.

Example

in>GRAPHICS off

HELP
Description In the Command line component, the HELP command displays all

available commands.

Subcommands from the ATTRIBUTES command are not listed.

Component specific commands, which are not open, will not be listed
either.

Usage HELP

Components Debugger engine.

Example

in>HELP

HI-WAVE Engine:
 VER
 LF
 NOLF
 CR
Debugger Manual DM–329

Debugger Commands
Simulator/Debugger Commands
 NOCR

IF
Description The conditional commands (IF, ELSEIF, ELSE and ENDIF) allow you to

execute different sections depending on the result of the corresponding
condition. The conditional command may be nested. Conditions of the IF
and ELSEIF commands, respectively, guard all commands up to the next
ELSEIF, ELSE or ENDIF command on the same nesting level. The
ELSE command guards all commands up to the next ENDIF command on
the same nesting level. Any occurrence of a subcommand not in sequence
of “IF, zero or more ELSEIF, zero or one ELSE, ENDIF” is an error.

Usage IF condition

Where condition is same as defined in “C” language.

Components Debugger engine.

Example

DEFINE jump = 0
...
DEFINE jump = jump + 1
...
IF jump == 10
 T
 DEFINE jump = 0
ELSEIF jump == 100
 DEFINE jump = 1
ELSE
 DEFINE jump = 2
ENDIF

The jump = = 10 condition is evaluated and depending on the test result,
the T Trace instruction is executed, or the ELSEIF jump = = 100 test is
evaluated.
DM–330 Debugger Manual

Debugger Commands
Simulator/Debugger Commands
INSPECTOROUTPUT
Description The Inspector dumps the content of the specified item and all computed

subitems to the command window. Uncomputed subitems are not printed.
To compute all information, the ATTRIBUTES EXPAND command is
used.

Usage INSPECTOROUTPUT [name {subname}]

The name specifies any of the root items. The subname specifies a
recursive path to subitems.

If a name contains a space, it must be surrounded by double quotes (").

Components Inspector component.

Example

in>loadio swap
in>Inspect<ATTRIBUTES EXPAND 3
in>INSPECTOROUTPUT “Object Pool” Swap

 Swap
 * Name Value Address Init...
 - IO_Reg_1 0x0 0x1000 0x0 ...
 - IO_Reg_2 0x0 0x1001 0x0 ...

INSPECTORUPDATE
Description The Inspector displays various information. Some types of information are

automatically updated. To make sure that displayed values correspond to
the current situation, the INSPECTORUPDATE command updates all
information.

Usage INSPECTORUPDATE

Components Inspector component.

Example

in>INSPECTORUPDATE
Debugger Manual DM–331

Debugger Commands
Simulator/Debugger Commands
ITPORT
Description The ITPORT command is used to set the line and column port addresses of

the IT_Keyboard component.

Usage ITPORT (address | ident) (address | ident) (address | ident)...

Address locates the port address value of the component (various formats
are allowed), the default format is hexadecimal.

Ident is a known identifier, its content will define the port address.

Components IT_Keyboard component.

Example:

in>ITPORT 0x100 0x200 0x300

Ports of the IT_Keyboard are now defined at addresses 0x100, 0x200 and
0x300.

ITVECT
Description The ITVECT command is used to set the interrupt vector port address of

the IT_Keyboard component.

Usage ITVECT (address | ident).

Address locates the port address value of the component (various formats
are allowed), the default format is hexadecimal.

Ident is a known identifier, its content will define the port address.

Components IT_Keyboard component.

Example:

in>ITVECT 0x400

The interrupt vector port address of the IT_Keyboard is now defined at
address 0x400.
DM–332 Debugger Manual

Debugger Commands
Simulator/Debugger Commands
KPORT
Description The KPORT command is used to set the line and column ports addresses of

the Keyboard component.

Usage KPORT (address | ident) (address | ident) (address | ident)...

Address locates the port address value of the component (many formats
are allowed), the default format is hexadecimal.

Ident is a known identifier, its content will define the port address.

Components Keyboard component.

Example:

in>KPORT 0x100 0x200 0x300

The ports of the Keyboard are now defined at addresses 0x100, 0x200 and
0x300.

LCDPORT
Description The LCDPORT command is used to set the data port and the control port

address of the Lcd component.

Usage LCDPORT (address | ident) (address | ident) (address | ident)...

Address locates the port address value of the component (many formats
are allowed), the default format is hexadecimal.

Ident is a known identifier, its content will define the port address.

Components Lcd component.

Example:

in>LCDPORT 0x100 0x200

The ports of the Lcd are now defined at addresses 0x100, 0x200 and
0x300.
Debugger Manual DM–333

Debugger Commands
Simulator/Debugger Commands
LINKADDR
Description The LINKADDR command is used to set the components internal ports

addresses used with the Programmable Couplers as memory buffers.

Usage LINKADDR (address | ident) (address | ident) (address | ident)...

Address locates the port address value of the component (many formats
are allowed), the default format is hexadecimal.

Ident is a known identifier, its content will define the port address.

Components Couplers, Adc_Dac, Keyboard, IT_Keyboard, IO_Led, Lcd,
Push_Buttons, 7-segments display, Wagon

Example:

in>LINKADDR 0x100 0x200 0x300 0x400 0x500

Now all components working with the Programmable Couplers have PortA
set to 0x100, PortB set to 0x200, PortC set to 0x300, PortD set to 0x400
and PortE set to 0x500.

LF
Description The LF command initiates logging of commands and responses to an

external file or device. While logging remains in effect, any line that is
appended to the command window is also written to the log file.

Logging continues until a close log file (NOLF) command is executed.
When the LF command is entered with no filename, the Open File Dialog
is displayed to specify a filename.

Use the logging option (LOG) command to specify information to be
logged.

If a path is specified in the file name, this path must be a valid path. When
a relative path is specified, ensure that the path is relative to the project
directory.

Usage LF [fileName][;A]

fileName is a DOS filename that identifies the file or device where the log
is written. The command interpreter does not assume a filename extension.
DM–334 Debugger Manual

Debugger Commands
Simulator/Debugger Commands
;A opens the file in append mode. Logged lines are appended at the end of
an existing log file.

If the ;A option is omitted and fileName is an existing file, the file is
cleared before logging begins.

Components Debugger engine.

Example

in>lf /mcuez/demo/logfile.txt ;A

The logfile.txt file is opened as a Log File in “append” mode.

NOTE If no path is specified, the destination directory is the current project
directory.

LOAD
Description The LOAD command loads a framework application (.abs file) for a

debugging session. When no application name is specified, the
LoadObjectFile dialog is opened.

If no target is installed, the following error message is displayed:

“Error: no target is installed”

If no target is connected, the following error message is displayed:

“Error: no target is connected”

Usage LOAD[applicationName] [CODEONLY|SYMBOLSONLY]
[NOPROGRESSBAR] [NOBPT] [NOXPR] [NOPRELOADCMD]
[NOPOSTLOADCMD] [DELAY]
[VERIFYFIRST|VERIFYALL|VERIFYONLY]
[VERIFYOPTIONS|SYMBOLSOPTIONS]

Where

• applicationName is the name of the application to load

• CODEONLY and SYMBOLSONLY loads only the code or symbols

• NOPROGRESSBAR loads the application without progress bar
Debugger Manual DM–335

Debugger Commands
Simulator/Debugger Commands
• NOBPT loads the application without loading breakpoints file (with
BPT extension)

• NOXPR loads the application without playing Expression file (with
XPR extension)

• NOPRELOADCMD loads the application without playing
PRELOAD file

• NOPOSTLOADCMD loads the application without playing
POSTLOAD file

• DELAY loads the application and waits one second

• VERIFYFIRST matches the "First bytes only" code verification
option.

• VERIFYALL matches the "All bytes" code verification option.

• VERIFYONLY matches the "Read back only" code verification
option.

• VERIFYOPTIONS displays the "Code Verification Options" group in
the "Load Executable File" dialog. If this option is missing, the group is
not displayed. However, the verification mode can still be specified
with options above.

• SYMBOLSOPTIONS displays the "Load Options" group in the
"Load Executable File" dialog. If this option is missing, the group is
not displayed. However, the code+symbols mode can still be specified
with options CODEONLY and SYMBOLSONLY.

NOTE By default, the LOAD command is "code+symbols" with no verification.

NOTE If the "SYMBOLSONLY" parameter is passed, verification parameters are
ignored and NO verification is performed.

Components Debugger engine.

Example

LOAD FIBO.ABS

The FIBO.ABS application is loaded.

NOTE If no path is specified, the destination directory is the current project
directory.
DM–336 Debugger Manual

Debugger Commands
Simulator/Debugger Commands
LOADCODE
Description This command loads code into the target system. This command can be

used if no debugging is needed. If no target is installed, the following error
message is displayed:

“Error: no target is installed”

If no target is connected, the following error message is displayed:

“Error: no target is connected”

Usage LOADCODE [applicationName]

Components Debugger engine.

Example

LOADCODE FIBO.ABS

Code of the FIBO.ABS application is loaded.

NOTE If no path is specified, the destination directory is the current project
directory.

LOADMEM
Description This command loads a memory configuration file.

Usage LOADMEM fileName

Components Simulator component.

Equivalent Operation

You can select the Open button in the Memory Configuration dialog box
to load a memory configuration file.

Example

in>LOAD DEFAULT.MEM

The memory configuration file DEFAULT.MEM is loaded.
Debugger Manual DM–337

Debugger Commands
Simulator/Debugger Commands
LOADSYMBOLS
Description This command is similar to the LOAD command but only loads debugging

information into the debugger. This can be used if the code is already
loaded into the target system or programmed into a non-volatile memory
device.

If no target is installed, the following error message is displayed:

“Error: no target is installed”

If no target is connected, the following error message is displayed:

“Error: no target is connected”

Usage LOADSYMBOLS [applicationName]

Components Debugger engine.

Example

LOADSYMBOLS FIBO.ABS

Debugging information of the FIBO.ABS application is loaded.

NOTE If no path is specified, the destination directory is the current project
directory.

LOG
Description The LOG command enables or disables logging of information in the

Command Line component window (and to logfile, when it as been opened
with an LF command). If LOG is not used, all types are ON by default i.e.
all information is logged in the Command Line component and log file.

NOTE - about RESPONSES: Responses are results of commands. For example,
for the DB command, the displayed memory dump is the response of the
command. Protocol messages are not responses. - about ERRORS: Errors
are displayed in red in Command Line component. Protocol messages are
not errors. - about NOTICES: Notices are displayed in green in the
Command Line.
DM–338 Debugger Manual

Debugger Commands
Simulator/Debugger Commands
Usage LOG type [=] state {[,] type [=] state}

where type is one of the following types:

CMDLINE: Commands entered on the command line.

CMDFILE: Commands read from a file.

RESPONSES: Command output response.

ERRORS: Error messages.

NOTICES: Asynchronous event notices, such as breakpoints.

where state is on or off.

state is the new state of type. When ON, enables logging of the type; when
OFF, disables logging of the type.

Components Debugger engine.

Example

LOG ERRORS = OFF, CMDLINE = on

Error messages are not recorded in the Log File. Commands entered in the
Command Line component window are recorded.

More About Logging of IF, FOR, WHILE and REPEAT

When commands executed from a command file are logged, all executed
commands that are in a IF block are logged. That is, a command file
executed with the CF or CALL command without the NL option and with
CMDFILE flag of the LOG command set to TRUE. All commands in a
block that are not executed because the corresponding condition is false are
also logged but preceded with a “-”.

Example When executing the following command file:

define truth = 1
IF truth
 bckcolor blue
 at 2000 bckcolor white
else
 bckcolor yellow
Debugger Manual DM–339

Debugger Commands
Simulator/Debugger Commands
 at 1000 bckcolor white
ENDIF

the following log file is generated:

!define truth = 1
!IF truth
! bckcolor blue
! at 2000 bckcolor white
!else
!- bckcolor yellow
!- at 1000 bckcolor white
!ENDIF

When commands executed from a command file are logged, all executed
commands that are in the FOR loop are logged the number of times they
have been executed. That is, a command file executed with the CF or
CALL command without the NL option and with the CMDFILE flag of
the LOG command set to TRUE.

Example When executing the following file:

define i = 1
FOR i = 1..3
 ls
ENDFOR

the following log file is generated:

!define i = 1
!FOR i = 1..3
! ls
i 0x1 (1)
!ENDFOR
! ls
i 0x2 (2)
!ENDFOR
! ls
i 0x3 (3)
!ENDFOR
DM–340 Debugger Manual

Debugger Commands
Simulator/Debugger Commands
When commands executed from a command file are logged, all executed
commands that are in the WHILE loop are logged the number of times
they have been executed. That is, a command file executed with the CF or
CALL command without the NL option and with the CMDFILE flag of
the LOG command set to TRUE.

Example When executing the following file:

define i = 1
WHILE i < 3
 define i = i + 1
ls
ENDWHILE

the following log file is generated:

!define i = 1
!WHILE i < 3
! define i = i + 1
! ls
i 0x2 (2)
!ENDWHILE
! define i = i + 1
! ls
i 0x3 (3)
!ENDWHILE

When commands executed from a command file are logged, all executed
commands that are in the REPEAT loop are logged the number of times
they have been executed. That is, a command file executed with the CF or
CALL command without the NL option and with the CMDFILE flag of
the LOG command set to TRUE.

Example When executing the following file:

define i = 1
REPEAT
 define i = i + 1
ls
UNTIL i == 4

the following log file is generated:
Debugger Manual DM–341

Debugger Commands
Simulator/Debugger Commands
repeat
until condition
!define i = 1
!REPEAT
! define i = i + 1
! ls
i 0x2 (2)
!UNTIL i == 4
! define i = i + 1
! ls
i 0x3 (3)
!UNTIL i == 4
! define i = i + 1
! ls
i 0x4 (4)
!UNTIL i == 4

LS
Description In the Command Line window, the LS command lists the values of

symbols defined in the symbol table and by the user. There is no limit to
the number of symbols that can be listed. The size of memory determines
the symbol table size. Use the DEFINE command to define symbols, and
the UNDEF command to delete symbols.

The symbols that are listed with the LS command are split in two parts:
Applications Symbols and User Symbols.

Usage LS [symbol | *][;C|S]

Where symbol is a restricted regular expression that specifies the symbol
whose values are to be listed.

 * specifies to list all symbols.

;C specifies to list symbols in canonical format, which consists of a
DEFINE command for each symbol.

;S specifies to list symbol table statistics following the list of symbols.

Components Debugger engine.
DM–342 Debugger Manual

Debugger Commands
Simulator/Debugger Commands
Example

in>ls

User Symbols:
j 0x2 (2)
Application Symbols:
counter 0x80 (128)
fiboCount 0x81 (129)
j 0x83 (131)
n 0x84 (132)
fib1 0x85 (133)
fib2 0x87 (135)
fibo 0x89 (137)
Fibonacci 0xF000 (61440)
Entry 0xF041 (61505)

When LS is performed on a single symbol (e.g., in>ls counter) that is an
application variable as well as a user symbol, the application variable is
displayed.

Example with j being an application symbol as well as a user symbol:

in>ls j

Application Symbol:
j 0x83 (131)

MEM
Usage MEM

Components Debugger engine.

Description The MEM command displays a representation of the current system
memory map and lower and upper boundaries of the internal module that
contains the MCU registers.
Debugger Manual DM–343

Debugger Commands
Simulator/Debugger Commands
Example

in>mem

Type Addresses Comment

IO 0.. 3F PRU or TOP TOP board resource or the PRU
NONE 40.. 4F NONE
RAM 50.. 64F RAM
NONE 650.. 7FF NONE
EEPROM 800.. A7F EEPROM
NONE A80..3DFF NONE
ROM 3E00..FDFF ROM
IO FE00..FE1F PRU or TOP TOP board resource or the PRU
NONE FE20..FFDB NONE
ROM FFDC..FFFE ROM
COP FFFF..FFFF special ram for cop
RT MEM 0.. 3FF (enabled)

MS
Description The MS command sets a specified block of memory to a specified list of

byte values. When the range is wider than the list of byte values, the list of
byte values is repeated as many times as necessary to fill the memory
block.

When the range is not an integer multiple of the length of the list, the last
copy of the list is truncated appropriately. This command is identical to the
write bytes (WB) command.

Usage MS range list

range: is an address range constant that defines the block of memory to be
set to the values of the bytes in the list.

list: is a list of byte values to be stored in the block of memory.

Components Debugger engine.
DM–344 Debugger Manual

Debugger Commands
Simulator/Debugger Commands
Example

in>MS 0x1000..0x100F 0xFF

The memory range between addresses 0x1000 and 0x100F is filled with
the 0xFF value.

NB
Usage NB [base]

where base is the new number base (2, 8, 10 or 16).

Components Debugger engine.

Description The NB command changes or displays the default number base for the
constant values in expressions. The initial default number base is 10
(decimal) and can be changed to 16 (hexadecimal), 8 (octal), 2 (binary) or
reset to 10 with this command. The base is always specified as a decimal
constant.

Independent of the default base number, the ANSI C standard notation for
constant is supported inside an expression. That means that independent of
the current number base you can specify hexadecimal or octal constants
using the standard ANSI C notation shown in Table 7.6.

Table 7.6 ANSI C constant notation

Example

0x2F00, /* Hexadecimal Constant */

043, /* Octal Constant */

255 /* Decimal Constant */

Notation. Meaning

0x---- Hexadecimal constant

0---- Octal constant
Debugger Manual DM–345

Debugger Commands
Simulator/Debugger Commands
In the same way, the Assembler notation for constant is also supported.
That means that independent of the current number base you can specify
hexadecimal, octal or binary constants using the Assembler prefixes
shown in Table 7.7.

Table 7.7 Assembler notation for constant

Example

$2F00, /* Hexadecimal Constant */

@43, /* Octal Constant */

%10011 /* Binary Constant */

When the default number base is 16, constants starting with a letter A, B,
C, D, E or F must be prefixed either by 0x or by $, as shown in Table 7.8.
Otherwise, the command line interpreter cannot detect if you are specifying
a number or a symbol.

Table 7.8 Base is 16: constants starting with a letter A, B, C, D, E or F

Example

in>NB 16

Notation. Meaning

$---- Hexadecimal constant

@---- Octal constant

%---- Binary constant

Notation. Meaning

5AFD Hexadecimal constant $5AFD

AFD Hexadecimal constant $AFD
DM–346 Debugger Manual

Debugger Commands
Simulator/Debugger Commands
The number base is hexadecimal.

NOCR
Description The NOCR command closes the current record file. The record file is

opened with the CR command.

Usage NOCR

Components Debugger engine.

Example

in>NOCR

The current record file is closed.

NOLF
Description The NOLF command closes the current Log File. The log file is opened

with the LF command.

Usage NOLF

Components Debugger engine.

Example

in>NOLF

The current Log File is closed.

OPEN
Description The OPEN command is used to open a window component.

Usage OPEN "component" [x y width height][;I | ;MAX]

where:

• component is the component name with an optional path

• x is the X-axis of the upper left corner of the window component

• y is the Y-axis of the upper left corner of the window component

• width is the width of the window component
Debugger Manual DM–347

Debugger Commands
Simulator/Debugger Commands
• height the height of the window component

When I is specified, the component window will be iconized; when MAX
is specified, the component window will be maximized.

Component names are: Assembly, Command, Coverage, Data, Inspect,
IO_Led, Led, Memory, Module, Phone, Procedure, Profiler, Recorder,
Register, SoftTrace, Source, Stimulation.

Components Debugger engine.

Example

in>OPEN Terminal 0 78 60 22

The Terminal component and window is opened at specified positions and
with specified width and height.

OPENFILE
Description In the Stimulation component, the OPENFILE command opens a

specified file to run a Stimulation.

Usage OPENFILE fileName

Where fileName is name of stimulation file.

Components Stimulation component.

Example

in>OPENFILE d:\demo\io_demo.txt

NOTE If no path is specified, the destination directory is the current project
directory.

OPENIO
Description The OPENIO command is used to open a I/O component (components

whose DLL file name has a “.io” extension).

Usage OPENIO "IOcomponentName"
DM–348 Debugger Manual

Debugger Commands
Simulator/Debugger Commands
Where IOcomponentName is the name (with an optional path), without
extension, of the I/O component to open.

Components Debugger engine.

Example

in>OPENIO "demo"

The demo I/O component is opened.

in>OPENIO "c:\Metrowerks\prog\myio\Myio"

The Myio I/O component is opened.

OUTPUT
Description With OUTPUT, you can redirect the Coverage component results to an

output file indicated by the file name and his path.

Usage OUTPUT FileName

Where FileName is file name (path + name).

Components Coverage component.

Example

in>coverage < OUTPUT c:\Metrowerks\myfile.txt

The Coverage output results are redirected to the file myfile.txt from
the directory C:\Metrowerks.

P
Description The P command executes a CPU instruction, either at a specified address

or at the current instruction, (pointed to by the program counter). This
command traces through subroutine calls, software interrupts, and
operations involving the following instructions (two are target specific):

• Branch to SubRoutine (BSR)

• Long Branch to Subroutine (LBSR)

• Jump to Subroutine (JSR)
Debugger Manual DM–349

Debugger Commands
Simulator/Debugger Commands
• Software Interrupt (SWI)

• Repeat Multiply and Accumulate (RMAC)

For example: if the current instruction is a BSR instruction, the subroutine
is executed, and execution stops at the first instruction after the BSR
instruction. For instructions that are not in the above list, the P and T
commands are equivalent.

When the instruction specified in the P command has been executed, the
software displays the content of the CPU registers, the instruction bytes at
the new value of the program counter and a mnemonic disassembly of that
instruction.

Usage P [address]

address: is an address constant expression, the address at which execution
begins.

If address is omitted, execution begins with the instruction pointed to by
the current value of the program counter.

Components Debugger engine.

Example

Example for HC12

in>p

A=0x0 B=0x2 CCR=0x40 D=0x2 IX=0x4 IY=0x0 SP=0xBEF
PC=0x887 PPAGE=0x0 DPAGE=0x0 EPAGE=0x0 IP=0x887

000887 EC82 LDD 2,SP
STEPPED

Contents of registers are displayed and the current instruction is
disassembled.
DM–350 Debugger Manual

Debugger Commands
Simulator/Debugger Commands
PAUSETEST
Description Displays a modal message box shown in Figure 7.1 for testing purpose.

Figure 7.1 PAUSETEST message box

Usage PAUSETEST

Components Debugger engine.

Example

in> pausetest

PBPORT
Description The PBPORT command is used to set the port address of the Push_Buttons

component.

Usage PBPORT (address | ident)

Address locates the port address value of the component (various formats
are allowed), the default format is hexadecimal.

Ident is a known identifier, its content will define the port address.

Components Push_Buttons component.

Example:

in>PBPORT 0x100 0x200

The ports of the Push_Buttons are now defined at addresses 0x100 and
0x200.
Debugger Manual DM–351

Debugger Commands
Simulator/Debugger Commands
PORT
Description In the Led components, the PORT command sets the port Led location.

Usage PORT address

Components Led component.

Example

in> PORT 0x210

PRINTF
Description The PRINTF is the standard ANSI C command: Prints formatted output to

the standard output stream.

Usage PRINTF (“[Text]%format specification” , value)

Components Debugger engine.

Example

in>PRINTF("The value of the counter is: %d", counter)

The output is: The value of the counter is: 2

PTRARRAY
Description The PTRARRAY command allows to specify if a pointer should be

displayed as an array.

Usage PTRARRY on|off [nb]

Where

• on displays pointers as arrays.

• off displays pointers as usual (*pointer).

• nb is the number of elements to display in the array when unfolding a
pointer displayed as array.

Components Data component.
DM–352 Debugger Manual

Debugger Commands
Simulator/Debugger Commands
Example

in>Ptrarray on 5

Display content of pointers as array of 5 items.

RD
Description The RD command displays the content of specified registers. The display

of a register includes both the name and hexadecimal representation. If the
specified register is not a CPU register, then it looks for this register in a
register file as an I/O register. This file is called: MCUIxxxx.REG (where
xxxx is a number related to the MCU).

NOTE This command is processor/derivative specific and will not display banked
registers if the processor does not support banking.

Usage RD { <list> | CPU | * }

where list is a list of registers to be displayed. Registers to be displayed are
separated by a space. When “RD CPU” is specified, all CPU registers are
displayed. If no CPU is loaded, “No CPU loaded” is displayed as an error
message.

When * is specified, the RD command lists the content of the register file
that is currently loaded. You can load a register file with the command
REGFILE. The address and size of each register is displayed. If no register
file is loaded, following error message is displayed: “No register file
loaded”.

When there is no parameter, the previous RD command is processed again.
If there is no previous RD command, all CPU registers are displayed.

If list is omitted, the list and any other parameters of the previous RD
command are used.

For the first RD command of a session, all CPU registers are displayed.

Components Debugger engine.
Debugger Manual DM–353

Debugger Commands
Simulator/Debugger Commands
Example for HC12

in>rd A B

A=0x2
B=0x2

in>rd CPU

A=0x0 B=0x1 CCR=0x41 D=0x1 IX=0x4 IY=0x0 SP=0xBEF
PC=0x878 PPAGE=0x0 DPAGE=0x0 EPAGE=0x0 IP=0x878

RECORD
Description In the SoftTrace component, the RECORD command switches frame

recording on / off while the target is running.

Usage RECORD on|off

Components SoftTrace component.

Example

in>RECORD on

REGBASE
Description This command allows you to change the base address of the I/O registers or

to set (Reset) this address to 0.

Usage Regbase <Address><;R>

Where Address is an address to define the base address of the I/O registers,
the 'R' option sets this address to 0 (Reset).

Components Debugger engine.

Example

in>regbase 0x500
DM–354 Debugger Manual

Debugger Commands
Simulator/Debugger Commands
0x 500 is now the base address of the I/O registers.

REGFILE
Description This command allows you to load a file containing I/O register descriptions

from a register file.

Usage Regfile <filename>

Where Regfile is a register filename (with a .REG extension).

Components Debugger engine.

Example

in>REGFILE MDEF.REG

REPEAT
Description The REPEAT command allows you to execute a sequence of commands

until a specified condition is true. The REPEAT command may be nested.

Press the key to stop this command.

Usage REPEAT

Components Debugger engine.

Example

DEFINE var = 0
...
REPEAT
 DEFINE var = var + 1
 ...
UNTIL var == 2

The REPEAT-UNTIL loop is identical to the ANSI C loop. The operation
DEFINE var = var + 1 is done twice, then var = = 2 and the loop ends.

RESET
Description In the Profiler and Coverage component, the RESET command resets all

recorded frames (statistics).
Debugger Manual DM–355

Debugger Commands
Simulator/Debugger Commands
In the SoftTrace component, the RESET command resets statistics and
recorded frames.

NOTE Make sure that the RESET command is redirected to the correct
component. Targets also have their own RESET command and if RESET
is not redirected, the target is reset.

Usage RESET

Components Profiler and Coverage.

Example

in>Profiler < RESET

RESETCYCLES
Description This command sets the Simulator CPU cycles counter to the user defined

value. If not specified, the value will be 0. The cycles counter is displayed
in the Debugger status and Register Component. This command does not
affect the context.

Usage RESETCYCLES <Value>

where Value is the desired cycles. This command affects only the internal
cycle counter from the Simulator/Debugger.

Components Debugger engine.

Example

in>SHOWCYCLES

 133801

in>RESETCYCLES
in>SHOWCYCLES

 0
DM–356 Debugger Manual

Debugger Commands
Simulator/Debugger Commands
in>RESETCYCLES 5500
in>SHOWCYCLES

 5500

The Showcycles command in the Command Line component displays the
number of CPU cycles executed since the start of the simulation.

RESETMEM
Description This command marks the given range of memory (RAM + ROM) as

uninitialized (‘undefined’).

Usage RESETMEM range

Components Simulator component.

Example

in>RESETMEM

After the RESETMEM command, all configured memory is initialized to
‘undefined’.

in>RESETMEM 0x100..0x110

This command resets the memory between 0x100 and 0x110 (if
configured) to 'undefined'.

in>RESETMEM 0x003F

This command resets the memory location 0x003F (if configured) to
'undefined'.

NOTE In the memory configuration “Auto on Access” the full memory is defined
as RAM, so in this case the command RESETMEM has the same effect as
RESETRAM.
Debugger Manual DM–357

Debugger Commands
Simulator/Debugger Commands
RESETRAM
Description This command marks all RAM as uninitialized (‘undefined’).

NOTE In the memory configuration “Auto on Access” the full memory is defined
as RAM, so in this case the command RESETMEM has the same effect as
RESETRAM.

Usage RESETRAM

Components Simulator component.

Example

in>RESETRAM

After the RESETRAM command, the content of RAM is initialized as
undefined.

RESETSTAT
Description This command resets the statistics (read and write counters to zero)

Usage RESETSTAT

Components Simulator component.

Example

in>RESETSTAT

 After the RESETSTAT command, all counters are initialized to zero.

RESTART
Description Resets execution to the first line of the current application and executes the

application from this point.

Usage RESTART

Components Engine component.
DM–358 Debugger Manual

Debugger Commands
Simulator/Debugger Commands
Example

in>RESTART

After the RESTART command, the cycle counter is initialized to zero.

RETURN
Usage RETURN

Components Debugger engine.

Description The RETURN command terminates the current command processing level
(returns from a CALL command). If executed within a command file,
control is returned to the caller of the command file (i.e. the first instance
that did not chain execution).

Example in file d:\demo\cmd1.txt:

...
CALL d:\demo\cmd2.txt
T
...

 in file d:\demo\cmd2.txt

...

...
RETURN // returns to the caller

The command file cmd1.txt calls a second command file cmd2.txt.
It is so necessary to insert the RETURN instruction to return to the caller
file. Then the T Trace instruction is executed.

RS
Description The RS command assigns new values to specified registers. The RS

mnemonic is followed by register name and new value(s).

An equal sign (=) may be used to separate the register name from the value
to be assigned to the register; otherwise they must be separated by a space.
The contents of any number of registers may be set using a single RS
command. If the specified register is not a CPU register, then the register is
Debugger Manual DM–359

Debugger Commands
Simulator/Debugger Commands
searched in a register file as an I/O register. This file is called:
MCUIxxxx.REG (where xxxx is a number related to the MCU).

Usage RS register[=]value{,register[=]value}

register: Specifies the name of a register to be changed. String register is
any of the CPU register names, or name of a register in the register file.

value: is an integer constant expression (in ANSI format representation).

Components Debugger engine.

Example for HC12

in>RS A=0x0 B=0x5

The new content of A register is 0x0 and B register is 0x5. The display in
the Register window is updated with the new values.

in>rd cpu

A=0x9 X=0x0 Y=0x15 SR=0xE5 PC=0x1040 SP=0x3FB Status=0x5

in>rs A=0x20 X=0xFF
in>rd cpu

A=0x20 X=0xFF Y=0x15 SR=0xE5 PC=0x1040 SP=0x3FB Status=0x5

S
Description The S command stops execution of the emulation processor. Use the Go G

command to start the emulator.

NOTE The S command ends as soon as the PC is changed.

Usage S

Alias STOP
DM–360 Debugger Manual

Debugger Commands
Simulator/Debugger Commands
Components Debugger engine.

Example

in>s

STOPPING
HALTED

Current application debugging is stopped/halted.

SAVE
Description The SAVE command saves a specified block of memory to a specified file

in Motorola S-record format. The memory block can be reloaded later
using the load S-record (SREC) command.

NOTE If no path is specified, the destination directory is the current project
directory.

Usage SAVE range fileName [offset][;A]

offset: an optional offset to add or subtract from addresses when writing S-
records. The default offset is 0.

;A: appends the saved S-records to the end of an existing file. If this option
is omitted, and the file specified by fileName exists, the file is cleared
before saving the S-records.

Components Debugger engine.

Example

in>SAVE 0x1000..0x2000 DUMP.SX ;A

The memory range 0x1000..0x2000 is appended to the DUMP.SX file.

SAVEBP
Description The SAVEBP command saves all breakpoints of the currently loaded

.ABS file into the matching breakpoints file. Also, the matching file has
Debugger Manual DM–361

Debugger Commands
Simulator/Debugger Commands
the name of the loaded .ABS file but its extension is .BPT (for example,
the Fibo.ABS file has a breakpoint file called FIBO.BPT. This file is
generated in the same directory as the .ABS file, when the user quits the
Simulator/Debugger or loads another .ABS file.

If on is set, all breakpoints defined in the current application will be stored
in the matching .BPT file.

If off is set, all breakpoints defined in the current application will not be
stored in the matching .BPT file.

This command is only used in .BPT files and is related to the checkbox
Save & Restore on load in the Breakpoints setting dialog. It is used to
store currently defined breakpoints (SAVEBP on) when the user quits the
Simulator/Debugger or loads another .ABS file.

NOTE For more information about this syntax, refer to BS command, Control
Points chapter, and Saving Breakpoints section.

Usage SAVEBP on|off

Components Debugger engine.

Example content of the FIBO.BPT file

savebp on
BS &fibo.c:Fibonacci+19 P E; cond = "fibo > 10" E; cdSz = 47 srSz
= 0
BS &fibo.c:Fibonacci+31 P E; cdSz = 47 srSz = 0
BS &fibo.c:main+12 P E; cdSz = 42 srSz = 0
BS &fibo.c:main+21 P E; cond = "fiboCount==5" E; cmd = "Assembly <
spc 0x800" E; cdSz = 42 srSz = 0

SEGPORT
Description The SEGPORT command is used to set the display selection port and

segment selection port addresses of the 7-Segments display component.

Usage SEGPORT display selection port (address | ident) segment selection (
address | ident)
DM–362 Debugger Manual

Debugger Commands
Simulator/Debugger Commands
Address locates the port address value of the component (many formats
are allowed), the default format is hexadecimal.

Ident is a known identifier, its content will define the port address.

Components 7-Segments display.

Example:

in>SEGPORT 0x100 0x200

The ports of the 7-Segments display are now defined at addresses 0x100
and 0x200.

SET
Description Sets a new current target for the debugger by loading the targetName

component.

Usage SET targetName

where targetName is name without extension of the target to set.

Components Debugger engine.

Example

in>SET Sim

The debugger’s current target is Simulator.

SETCOLORS
Description The SETCOLORS command is used to change the colors for a specific

channel from the Monitor component.

Usage SETCOLORS ("Name") (Background) (Cursor) (Grid) (Line) (
Text

Name is the name of the channel to modify.

Background is the new color for the channel background (the format is :
0x00bbggrr).

Cursor is the new color for the channel cursor (the format is: 0x00bbggrr).
Debugger Manual DM–363

Debugger Commands
Simulator/Debugger Commands
Grid is the new color for the channel grid (the format is: 0x00bbggrr).

Line is the new color for the channel lines (the format is: 0x00bbggrr).

Text is the new color for the channel text (the format is: 0x00bbggrr).

Components Monitor component.

Example:

in>SETCOLORS "Leds.Port_Register bit 0" 0x00123456 0x00234567
0x00345678 0x00456789 0x00567891

The color attributes from the channel Leds.Port_Register bit 0 will be
changed with these new values.

SETCONTROL
Description The SETCONTROL command is used to modify the number of ticks and

pixels for a Monitor component specific channel. This will change the
horizontal scale of this channel.

Usage SETCONTROL ("Name") (Ticks) (Pixels)

Name is the name of the channel to modify.

Ticks is the new number of ticks for this channel.

Pixels is the new number of pixels for this channel.

Components Monitor component.

Example:

in>SETCONTROL "Leds.Port_Register bit 0" 100 1

The horizontal scale from the channel Leds.Port_Register bit 0 will be
defined with the value 100 for the Ticks value and 1 for pixels value.

SETCPU
Description Load CPU awareness for the debugger.

Usage SETCPU ProcessorName
DM–364 Debugger Manual

Debugger Commands
Simulator/Debugger Commands
where ProcessorName is a supported processor (HC05, HC08, HC11,
HC12, HC16, M68K, M.CORE, XA,ST7 and PPC).

Components Simulator component.

Example

in>SETCPU HC12

The simulator HC12.sim is loaded.

SHOWCYCLES
Description The SHOWCYCLES command returns the number of CPU cycles already

done since the beginning of the simulation in the Command Line
component (RESETCYCLES is performed internally), or since the last
RESETCYCLES command. The number of cycles executed is also the
number displayed in the status bar (CPU cycles counter).

Usage SHOWCYCLES

Components Debugger engine.

Example

in>SHOWCYCLES

 133801

in>RESETCYCLES
in>SHOWCYCLES

 0

This command displays the number of CPU cycles executed since the last
RESETCYCLES command in the Command Line component.
Debugger Manual DM–365

Debugger Commands
Simulator/Debugger Commands
SLAY
Description The SLAY command is used to save the layout of all window components

in the main application window to a specified file.

TIP Layout files usually have a .HWL extension. However, you can specify
any file extension.

NOTE If no path is specified, the destination directory is the current project
directory.

Usage SLAY fileName

Components Debugger engine.

Example

in>slay /hiwave/demo/mylayout.hwl

The current debugger layout is saved to the mylayout.hwl file in the
/hiwave/demo directory.

SLINE
Description With the SLINE command, a line of the source file is made visible. If the

line is not currently visible, the source will scroll so that it appears on the
first line. If the line is currently in a folded part, it is unfolded so that it
becomes visible.

NOTE The given line number should be between 1 and number of lines in source
file, or else an error message is displayed.

Usage SLINE line number

Components Source component

Example

in>sline 15
DM–366 Debugger Manual

Debugger Commands
Simulator/Debugger Commands
SMEM
Description In the Source component, the SMEM command loads the corresponding

module’s source text, scrolls to the corresponding text location (the code
address) and highlights the statements that correspond to this code address
range.

In the Assembly component, the SMEM command scrolls the Assembly
component, shows the location (the assembler address) and select/
highlights the memory lines of the address range given as the parameter.

In the Memory component, the SMEM command scrolls the memory
dump component, shows the locations (the memory address) of the address
range given as the parameter.

Usage SMEM range

Components Source, Assembly and Memory components.

Example

in>Memory < SMEM 0x8000,8

The Memory component window is scrolled and specified memory
addresses are highlighted.

SMOD
Description In the Source component, the SMOD command loads/displays the

corresponding module’s source text. If the module is not found, a message
is displayed in Command Line window.

In the Data component, the SMOD command loads the corresponding
module’s global variables.

In the Memory component, the SMOD command scrolls the memory
dump component and highlights the first global variable of the module.

NOTE Correct module names are displayed in the Module component window.
Make sure that the module name of your command is correct. If the.abs is
in HIWARE format, some debug information is in the object file (.o), and
module names have a .o extension (e.g., fibo.o). In ELF format,
module name extensions are .c, .cpp or .dbg (.dbg or program
Debugger Manual DM–367

Debugger Commands
Simulator/Debugger Commands
sources in assembler) (e.g., fibo.c), since all debugging information is
contained in the .abs file and object files are not used. Please adapt the
following examples with your .abs application file format.

Usage SMOD module

Where module is the name of a module taking part of the application. The
module name should contain no path. The module extension (i.e. .DBG for
assembly sources or .C for C sources, etc.) must be specified.

The module name is searched in the directories associated with the
GENPATH environment variable. An error message is displayed:

• If the module specified does not take part of the current application
loaded.

• If no application is loaded.

Components Data, Memory and source components.

Example

in>Data:1 < SMOD fibo.c

Global variables found in the fibo.c module are displayed in the Data:1
component window.

SPC
Description In the Source component, the SPC command loads the corresponding

module’s source text, scrolls to the corresponding text location (the code
address) and highlights the statement that corresponds to this code address.

In the Assembler component, the SPC command scrolls the Assembly
component, shows the location (the assembler address) and select/
highlights the assembler instruction of the address given as parameter.

In the Memory component, the SPC command scrolls the memory dump
component, shows the location (the memory address) of the address given
as parameter.

Usage SPC address

Components Assembler, Memory and Source component.
DM–368 Debugger Manual

Debugger Commands
Simulator/Debugger Commands
Example

in>Assembly < SPC 0x8000

The Assembly component window is scrolled to the address 0x8000 and
the associated instruction is highlighted.

SPROC
Description In the Data component, the SPROC command shows local variables of

the corresponding procedure stack level.

In the Source component, the SPROC command loads the corresponding
module’s source text, scrolls to the corresponding procedure and highlights
the statement of this procedure that is in the procedure chain.

level = 0 is the current procedure level. level = 1 is the caller stack level
and so on.

TIP This command is relevant when “C-source” debugging.

NOTE When a procedure of a level greater than 0 is given as parameter to the
SPROC command, the statement corresponding to the call of the lower
procedure is selected.

Usage SPROC level

Components Data and Source components.

Example

in>Source < SPROC 1

This command displays the source code associated with the caller function
in the Source component window.

SREC
Description The SREC command initiates the loading of Motorola S-Records from a

specified file.
Debugger Manual DM–369

Debugger Commands
Simulator/Debugger Commands
NOTE If no path is specified, the destination directory is the current project
directory.

Usage SREC fileName [offset]

offset: is a signed value added to the load addresses in the file when
loading the file contents.

Components Debugger engine.

Example

in>SREC DUMP.SX

The DUMP.SX file is loaded into memory.

STEPINTO
Description The STEPINTO command single-steps through instructions in the

program, and enters each function call that is encountered.

NOTE This command works while the application is paused in break mode
(program is waiting for user input after completing a debugging
command).

Usage STEPINTO

Components Debugger engine.

Example

in>STEPINTO

STEP INTO
TRACED

TRACED in the status line indicates that the application is stopped by an
assembly step function.
DM–370 Debugger Manual

Debugger Commands
Simulator/Debugger Commands
STEPOUT
Description The STEPOUT command executes the remaining lines of a function in

which the current execution point lies. The next statement displayed is the
statement following the procedure call. All of the code is executed between
the current and final execution points. Using this command, you can
quickly finish executing the current function after determining that a bug is
not present in the function.

NOTE This command works while the application is paused in break mode
(program is waiting for user input after completing a debugging
command).

Usage STEPOUT

Components Debugger engine.

Example

in>STEPOUT

STEP OUT
STARTED
RUNNING
STOPPED

STOPPED in the status line indicates that the application is stopped by a
step out function.

STEPOVER
Description The STEPOVER command executes the procedure as a unit, and then

steps to the next statement in the current procedure. Therefore, the next
statement displayed is the next statement in the current procedure
regardless of whether the current statement is a call to another procedure.

NOTE This command works while the application is paused in break mode
(program is waiting for user input after completing a debugging
command).
Debugger Manual DM–371

Debugger Commands
Simulator/Debugger Commands
Usage STEPOVER

Components Debugger engine.

Example

in>STEPOVER

STEP OVER
STARTED
RUNNING
STOPPED

STEPPED OVER (or STOPPED) in the status line indicates that the
application is stopped by a step over function.

STOP
Description The STOP command stops execution of the emulation processor. Use the

Go G command to start the emulator.

The STOP command ends as soon as the PC is changed.

Usage STOP

Alias S

Components Debugger engine.

Example

in>STOP

STOPPING
HALTED

Current application debugging is stopped.
DM–372 Debugger Manual

Debugger Commands
Simulator/Debugger Commands
T
Description The T command executes one or more instructions at a specified address,

or at the current address (the address in the program counter). The T
command traces into subroutine calls and software interrupts. For example,
if the current instruction is a Branch to Subroutine instruction (BSR), the
BSR is traced, and execution stops at the first instruction of the subroutine.
After executing the last (or only) instruction, the T command displays the
contents of the CPU registers, the instruction bytes at the new address in
the program counter and a mnemonic disassembly of the current
instruction.

This command can be stopped by typing the key.

Usage T [address][,count]

address: is an address constant expression, the address where execution
begins. If address is omitted, the instruction pointed to by the current value
of the program counter is the first instruction traced.

count: is an integer constant expression, in the decimal integral interval [1,
65535], that specifies the number of instructions to be traced. If count is
omitted, one instruction is traced.

Components Debugger engine.

Example for HC12

in>t 0x876

TRACED
A=0x0 B=0x1 CCR=0x41 D=0x1 IX=0x4 IY=0x0 SP=0xBEF
PC=0x878 PPAGE=0x0 DPAGE=0x0 EPAGE=0x0 IP=0x878

000878 E384 ADDD 4,SP

Contents of registers are displayed and current instruction is disassembled.

TESTBOX
Description Displays a modal message box shown in Figure 7.2 with a given string.
Debugger Manual DM–373

Debugger Commands
Simulator/Debugger Commands
Figure 7.2 TESTBOX message box

Usage TESTBOX "<String>"

Components Debugger engine.

Example

in>TESTBOX "Step 1: init all vars"

TUPDATE
Description In Profiler and Coverage components, the TUPDATE command

switches the time update feature on/ off.

Usage TUPDATE on|off

Components Profiler and Coverage components.

Example

in>TUPDATE on

UNDEF
Description The UNDEF command removes a symbol definition from the symbol

table. This command does not undefine the symbols defined in the loaded
application.

Program variables whose names were redefined using the UNDEF
command are visible again. Undefining an undefined symbol is not
considered an error.

Usage UNDEF symbol | *

If * is specified, all symbols defined previously using the command
DEFINE are undefined.
DM–374 Debugger Manual

Debugger Commands
Simulator/Debugger Commands
Components Debugger engine.

Example

DEFINE test = 1
...
UNDEF test

When the test variable is no longer needed in a command program, it can
be undefined and removed from the list of symbols. After UNDEF test, the
test variable can no longer be used without (re)defining it.

NOTE See also examples of the DEFINE command.

Examples The value of an existing symbol can be changed by applying the DEFINE
command again. In this case, the previous value is replaced and lost. It is
not put on a stack. Then when UNDEF is applied to the symbol, it no
longer exists, even if the value of the symbol has been replaced several
times:

in>DEFINE apple 0
in>LS

apple 0x0 (0) // apple is equal to 0

in>DEFINE apple = apple + 1
in>LS

apple 0x1 (1) // apple is equal to 1

in>DEFINE apple = apple + 1
in>LS

apple 0x2 (2) // apple is equal to 2
Debugger Manual DM–375

Debugger Commands
Simulator/Debugger Commands
in>UNDEF apple
in>LS

 // apple no longer exists

In the next example, we assume that the FIBO.ABS sample is loaded. At
the beginning, no user symbol is defined:

in>UNDEF *
in>LS

User Symbols: // there is no user symbol
Application Symbols: // symbols of the loaded application
fiboCount 0x800 (2048)
counter 0x802 (2050)
_startupData 0x84D (2125)
Fibonacci 0x867 (2151)
main 0x896 (2198)
Init 0x810 (2064)
_Startup 0x83D (2109)

in>DEFINE counter = 1
in>LS

User Symbols: // there is one user symbol: counter
counter 0x1 (1)
Application Symbols: // symbols of the loaded application
fiboCount 0x800 (2048)
counter 0x802 (2050)
_startupData 0x84D (2125)
Fibonacci 0x867 (2151)
main 0x896 (2198)
Init 0x810 (2064)
_Startup 0x83D (2109)
DM–376 Debugger Manual

in>undef counter
in>LS

User Symbols: // there is no user symbol
Application Symbols: // symbols of the loaded application
fiboCount 0x800 (2048)
counter 0x802 (2050)
_startupData 0x84D (2125)
Fibonacci 0x867 (2151)
main 0x896 (2198)
Init 0x810 (2064)
_Startup 0x83D (2109)

UNFOLD
Description In the Source component, the UNFOLD command is used to display the

contents of folded source text blocks, for example, source text that has
been collapsed at program block level. All text is unfolded once or (*)
completely, until no more folded parts are found.

Usage UNFOLD [*]

Where * means unfolding completely, otherwise unfolding only one level.

Components Source component.

Example

in>UNFOLD *

UNTIL
Description The UNTIL keyword is associated with the REPEAT command.

Usage UNTIL condition

Where condition is defined as in “C” language definition.

Components Debugger engine.

Debugger Commands
Simulator/Debugger Commands
Example

repeat
 open assembly
 wait 20
 define i = i + 1
until i==3

At the end of the loop, i is equal to 3.

UPDATERATE
Description In the Data component and Memory component, the UPDATERATE

command is used to set the data refresh update rate. This command only
has an effect if the Data or Memory component to which it applies is set in
Periodical Mode.

Usage UPDATERATE rate

where rate is a constant number matching a quantity of time in tenths of a
second, between 1 and 600 tenth of second (0.1 to 60 seconds).

Components Data and Memory component.

Example

in>Memory < updaterate 30

This commands sets the Memory component updaterate to 3 seconds.

VER
Description The VER command displays the version number of the Debugger engine

and components currently loaded in the Command line window.

Usage VER

Components Debugger engine.

Example

in>ver
DM–378 Debugger Manual

Debugger Commands
Simulator/Debugger Commands
HI-WAVE 6.0.27
HI-WAVE Engine 6.0.49
Source 6.0.20
Assembly 6.0.14
Procedure 6.0.10
Register 6.0.14
Memory 6.0.19
Data 6.0.27
Data 6.0.27
Simulator Target 6.0.17
Command Line 6.0.16

In the Command Line component window, Debugger engine and
components versions are displayed.

WAIT
Description The WAIT command pauses command file execution for a time in tenths

of second or pauses until the target is halted when the option “;s” is set.

When no parameter is specified, it pauses for 50 tenths of a second (5
seconds).

When only time is specified, execution of the command file is halted for
the specified time.

When only ;s is specified, execution of the command file is halted until the
target is halted. If the target is already halted, command file execution is
not halted.

When time and ;s are specified:

If the target is running, command file execution is halted for the specified
time only if the target is not halted. If the target is halted during the
specified period of time (while command file execution is pending), the
time delay is ignored and the command file is run.

If the target is already halted, command file execution is not halted (time
delay is ignored).

NOTE The Wait instruction ends as soon as the PC is changed.
Debugger Manual DM–379

Debugger Commands
Simulator/Debugger Commands
Usage WAIT [time] [;s]

Components Debugger engine.

Example

WAIT 100
T
...

Pauses for 10 seconds before executing the T Trace instruction.

WB
Description The WB command sets a specified block of memory to a specified list of

byte values. When the range is wider than the list of byte values, the list of
byte values is repeated as many times as necessary to fill the memory
block. When the range is not an integer, a multiple of the length of the list
and the last copy of the list is truncated accordingly. This command is
identical to the memory set (MS) command.

Usage WB range list

range: is an address range constant that defines the block of memory to be
set to the values of the bytes in the list.

list: is a list of byte values to be stored in the block of memory.

Alias MS

Components Debugger engine.

Example

in>WB 0x0205..0x0220 0xFF

This command fills up the memory range 0x0205..0x0220 with the 0xFF
byte value.

WHILE
Description The WHILE command allows you to execute a sequence of commands as

long as a certain condition is true. The WHILE command may be nested.

This command can be stopped by pressing the key.
DM–380 Debugger Manual

Debugger Commands
Simulator/Debugger Commands
Usage WHILE condition

Where condition is defined as in “C” language definition.

Components Debugger engine.

Example

DEFINE jump = 0
...
WHILE jump < 20
 DEFINE jump = jump + 1
ENDWHILE
T
...

While jump < 100, the jump variable is incremented by the instruction
DEFINE jump = jump + 1. Then the loop ends and the T Trace instruction
is executed.

WL
Description The WL command sets a specified block of memory to a specified list of

longword values. When the range is wider than the list of longword values,
the list of longword values is repeated as many times as necessary to fill the
memory block. When the range is not an integer or a multiple of the length
of the list, the last copy of the list is truncated accordingly.

When a size is specified in the range, this size represents the number of
longwords that should be modified.

Usage WL range list

range: is an address range constant that defines the block of memory to be
set to the longword values in the list.

list: is a list of longword values to be stored in the block of memory.

Components Debugger engine.

Example

in>WL 0x2000 0x0FFFFF0F
Debugger Manual DM–381

Debugger Commands
Simulator/Debugger Commands
This command fills up memory starting at address 0x2000 with the
0x0FFFFF0F longword value. The addresses 0x2000 to 0x2003 will be
modified.

in>WL 0x2000, 2 0x0FFFFF0F

This command fills up the memory area 0x2000 to 0x2007 with the
longword value 0x0FFFFF0F.

WPORT
Description The WPORT command is used to set the port addresses of the Wagon

component.

Usage WPORT (address | ident) (address | ident)

Address locates the port address value of the component (various formats
are allowed), the default format is hexadecimal.

Ident is a known identifier, its content will define the port address.

Components Wagon

Example:

in>WPORT 0x100 0x200

Ports of the Wagon are now defined at addresses 0x100 and 0x200.

WW
Description The WW command sets a specified block of memory to a specified list of

word values. When the range is wider than the list of word values, the list
of word values is repeated as many time as necessary to fill the memory
block. When the range is not an integer or a multiple of length of the list,
the last copy of the list is truncated accordingly.

Usage WW range list

range: is an address range constant that defines the block of memory to be
set to the word values in the list.
DM–382 Debugger Manual

Debugger Commands
Simulator/Debugger Commands
list: is a list of word values to be stored in the block of memory.

Components Debugger engine.

Example

in>WW 0x2000..0x200F 0xAF00

This command fills up the memory range 0x2000..0x200F with the
0xAF00 word value.

ZOOM
Description In the Data component, the ZOOM command is used to display the

member fields of structures by ‘diving’ into the structure. In contrast to the
UNFOLD command, where member fields are not expanded in place. The
display of the member fields replaces the previous view. The ZOOM out
command is used to return to the nesting level indicated by the given
identifier.

TIP Addresses are not needed to zoom out. Simply type “ZOOM out”.

NOTE This command is relevant when “C-source” debugging.

Usage ZOOM address in|out

Where address is the address of the structure or pointer variable that
should be zoomed-in or zoomed-out, respectively.

Components Data component.

Example

in>ZOOM 0x1FE0 in

The variable structure located at address 0x1FE0 is zoomed in.

in>zoom &_startupData

zooms in the _startupData structure (&_startupData is the address of the
_startupData structure).
Debugger Manual DM–383

8
True Time I/O Stimulation

The Simulator/Debugger I/O Stimulation component is a facility to trigger
I/O events. With the Stimulation component loaded, interrupts and register
modifications invoked by the hardware can be simulated. In this tutorial,
examples of stimulation files are introduced and explained.

Click any of the following links to jump to the corresponding section of
this chapter:

• Stimulation Program examples

• Stimulation Input File Syntax

Stimulation Program examples

Running an Example Program Without
Stimulation

1. Run the Simulator/Debugger.

The Main Window is shown in Figure 8.1.

True Time I /O Stimulation
Stimulation Program examples
Figure 8.1 Simulator/Debugger I/O-Simulation main window

2. Choose Simulator > Set > Sim.

3. Choose Component > Open > Io_led.

The IO_Led component is shown in Figure 8.2.

Figure 8.2 IO_Led Component window

4. Choose Component > Open >Template.

The Template component is shown in Figure 8.3.
Debugger Manual DM–385

True Time I /O Stimulation
Stimulation Program examples
Figure 8.3 Template component window

5. Choose Simulator>Load io_demo.abs.

6. Choose Run>Start/Continue or click the 'green arrow' icon.

7. If the program halts in startup, click the Start/Continue command
again.

8. Choose Run > Halt to stop execution after a few seconds.

The Template component is a view linked to a specific memory location in
TargetObject. In the source code of the test program, you can find a
variable associated with it:

#define PORT_DATA (*((volatile unsigned char *)0x0210))/* Value with range
0..255 */

The Template component polls this value and displays it in a speedometer
like outlook.

In the procedure IO_Show in io_demo.c shown in Listing 8.1, this
value is incremented or decremented, depending on the raise direction. The
raise direction depends on a global variable dir, that is turned back, when
the top or bottom value is reached.

Listing 8.1 IO_Show procedure in io_demo.c

static void IO_Show(void) {
 for (;;) { // endless loop
 dir = 1;
 do {
 Delay();
 PORT_DATA++;
 } while ((dir == 1) && (PORT_DATA != 255));
DM–386 Debugger Manual

True Time I /O Stimulation
Stimulation Program examples
 dir = -1;
 do {
 Delay();
 PORT_DATA--;
 } while ((dir == -1) && (PORT_DATA != 0));
 }
}

Example Program with Periodical Stimulation
of a Variable

1. Choose Simulator >Reset.

2. Choose Simulator | Load Io_demo.abs.

3. Choose Component | Open | Stimulation

The Stimulation component is shown in Figure 8.4.

Figure 8.4 The Stimulation component window

4. Activate Stimulation Window by clicking on it.

5. Choose Stimulation > Open File io_var.txt.

6. Choose Stimulation > Execute.

7. Choose Run > Start/Continue.

The Stimulation component executing io_var.txt accesses
TargetObject at the address 0x210 associated with PORT_DATA in the
source. You can observe this by watching the Template component. The
arrow is not raising with continuity, but jumping around. The value of
Debugger Manual DM–387

True Time I /O Stimulation
Stimulation Program examples
PORT_DATA is now handled from “outside”, from our Stimulation
component.

Using an editor, open the file named io_var.txt in the simulator demo
directory. This file looks like Listing 8.2.

Listing 8.2 io_var.txt

/* Define an identifier a, which is located at address 0x210*/
/* This identifier is 1 Byte wide.*/
def a = TargetObject.#210.B;

/* After 200 000 cycles have expired, repeat 50 time */
/* the code sequence specified between the keywords */
/* PERIODICAl and END. */
PERIODICAL 200000, 50:
 50000 a = 128; /* After 50 000 cycles, write 128 at address
0x210. */
 150000 a = 4; /* After 150 000 cycles, write 4 at address
0x210. */
END

10000000 a = 0; /* After 10 000 000 cycles, write 0 at address
0x210. */

First, the simulated object is defined. This object is located at address
0x210 and is 1 byte wide. Once 200,000 cycles have been executed, the
memory location 0x210 is accessed periodically 50 times. First the
memory location is set to 128 and then 100,000 cycles later, it is set to 4.

Example Program with Stimulated Interrupt
1. Choose Simulator>Reset.

2. Activate Stimulation Window by clicking on it.

3. Choose Stimulation>Open File io_int.txt.

4. Select the Source component window.

5. Choose Source>Open Module io_demo.c.

6. Scroll into the procedure Interrupt_Routine.
DM–388 Debugger Manual

7. Set a breakpoint in the Interrupt_Routine as shown below.

The Source component window is shown in Figure 8.5.

Figure 8.5 Source component window

8. Activate Stimulation Window by clicking on it.

9. Choose Stimulation>Execute.

10. Choose Run>Start/Continue.

After about 300,000 cycles the simulator stops on the breakpoint in the
interrupt routine and the corresponding source line is highlighted. The
interrupt has been called. Start the simulator. It stops approximately each
100,000 cycles on the same breakpoint. Restart and repeat these actions
until 1,200,000 cycles. Start again, the simulator runs until 10,000,000
cycles and stops on the breakpoint. Start the simulator. It continues to run.
The stimulation is finished.

The interrupts have been invoked by the Stimulation component source
io_int.txt. The listing of the Stimulation file is given in Listing 8.3.

Listing 8.3 io_int.txt

def a = TargetObject.#210.B;

PERIODICAL 200000, 10:
 100000 RAISE 7, 3, "test_interrupt";
END

10000000 RAISE 7, 3, "test_interrupt";

True Time I /O Stimulation
Stimulation Program examples
In the first line, the stimulated object is defined. The interrupt is raised
periodically 10 times. The RAISE command takes the number of the
interrupt in the interrupt vector map as the first argument. This number, “7”
in our example is arbitrarily chosen. To export this example to a different
target, take a look at the interrupt vector map in the technical data manual
of the matching MCU. Using an editor, open the io_demo.prm file in
the same demo directory. You can see at the end of this file how to set the
interrupt vector (adapt it to your needs).

VECTOR 7 Interrupt_Function /* set vector on Interrupt 7 */

If the interrupt vector address is not specified in the prm file, the simulator
will stop when interruption is generated. The exception mnemonic
(matching the interrupt vector number) is displayed in the status bar of the
Simulator/Debugger.

The second argument specifies the interrupt priority and the third argument
is a free chosen name of the interrupt.

The file io_int.txt is used to generate 11 interrupts. 10 periodical
interrupts are generated every 100’000 CPU cycles from 200’000 +
100’000 = 300’000 to 1’200’000 CPU cycles. A last one is generated when
the number of CPU cycles reaches 10’000’000.

Example of a Larger Stimulation File

Listing 8.4 contains this example and is commented below. This example
file may not work as expected if the variables defined here do not refer to a
port in TargetObject. In our example, we have only defined the objects
TargetObject.#210 and #212 over the Io_led component. Definitions of b,
c and pbits are only here for illustration. Remove these definition lines and
the lines that refer to them, if the example presented here is not executable.

Listing 8.4 Example file io_ex.txt.

def a = TargetObject.#210.B;
def x = TargetObject.#212;
def b = TargetObject.#216.W;
def c = TargetObject.#220.L;
def pbits = Leds.Port_Register.B[7:3];

#10000 pbits = 3;
DM–390 Debugger Manual

True Time I /O Stimulation
Stimulation Program examples
20000 a = 0;
+20000 b = pbits + 1;

PERIODICAL 100000, 10:
 10000 a = 128;

 30000 RAISE 7, 3, "test_interrupt";
END

1000000 RAISE 7, 3, "test_interrupt";

Detailed Explanation

def a = TargetObject.#210.B;

defines a as byte mapped at address 0x210 in TargetObject.

def x = TargetObject.#212;

defines x as byte mapped at address 0x212 in TargetObject. Size can be
omitted, .B for byte is default.

def b = TargetObject.#216.W;

defines b as word (.W) mapped at address 0x216 in TargetObject.

def c = TargetObject.#220.L;

defines c as long (.L) mapped at address 0x220 in TargetObject.

def pbits = Leds.Port_Register.B[7:3];

defines pbits as bits 5,6 and 7 in the byte (.B) register named
Port_Register in Leds. (In the Simulator, names of target objects can be
specified. In our example, it is the name of the port register defined by the
IO-Led component).

#10000 pbits = 3;

sets the 3 bits of Leds. Port_Register accessed with pbits to binary 011.
Other bits are unaffected. The new value of Port_Register will be 0x75, if
Debugger Manual DM–391

True Time I /O Stimulation
Stimulation Program examples
the initial value was 0x55. Values outside the valid BitRange of pbits are
truncated (in this example only values from 0 to 7 are allowed for pbits).
The # means that the time of execution of the instruction is 10000 cycles
after the start of the simulation.

20000 a = 0;

sets a to 0. Without # or + in front of the time marker, the time refers to the
absolute time after starting execution of the Stimulation file.

NOTE In a periodical loop, the time marker without operator is interpreted as +.

+20000 b = pbits + 1;

reads pbits (3 bits in Leds. Port_Register), increments this value and
writes it to b. The + in front of the time marker refers to the time relative to
the last encountered time value in the Stimulation file.

PERIODICAL 100000, 10:

executes the following block

 10000 a = 128;
 30000 RAISE 7, 3, "test_interrupt";

 10 times. Starts execution 100000 cycles after the start of the simulation.

10000 a = 128;

assigns 128 to a, 10000 cycles after each start of the periodical event.

30000 RAISE 7, 3, "test_interrupt";

raises an interrupt with priority 3 with vector number 7, 40000 cycles (!)
after each start of the periodical event. The time specification in the
PERIODICAL loop is always relative. So 30000 means +30000. The
raised interrupt has the name "test_interrupt". This name is not important
for the interrupt functionality.
DM–392 Debugger Manual

True Time I /O Stimulation
Stimulation Input File Syntax
END

end of the periodical block. The block is looped again after finishing. So
the loop restarts after 10000 + 30000 = 40000 cycles.

1000000 RAISE 7, 3, "test_interrupt";

raises the interrupt for the last time. This instruction marks the terminating
point of the Stimulation, if there are no pending periodical events left.

Stimulation Input File Syntax
EBNF

StimulationFile= { IdDeclaration | TimedEvent |
PeriodicEvent }.

IdDeclaration = “def” ObjectId “=” ObjectField
“;”.

ObjectField = ObjectSpec [“[” BitRange “]”
].

BitRange = StartBit “:” NoOfBits.

TimedEvent = [“+” | “(”] Time
AssignmentList.

AssignmentList= { Assignment | Exception}.

PeriodicEvent = “PERIODICAL” Start NbTimes “:”
{ PerTimedEvent } “END” .

PerTimedEvent= [“+”] Time AssignmentList .

Exception = “RAISE” Vector “,” Priority
[“,” ArbPrio] [“,” Name] “;” .

Assignment = (ObjectId | ObjectField) “=”
Expression “;”.

Name= ““” {character} “”” .

Expression = a standard ANSI-C expression.
The expression accepts object
identifiers previously defined
(ObjectSpec and ObjectField).
Debugger Manual DM–393

True Time I /O Stimulation
Stimulation Input File Syntax
Time = a number which represents a
number of cycle.

ObjectSpec = the name of an object as
defined in Requirement
specification for Object Pool.

Vector= the exception vector number .
Priority= the exception priority number .
ArbPrio= the arbitration priority of the

exception .
Start= the number of cycle when the periodical

event must be called for the
first time after the initial
time.

NbTimes= the number of time the periodical
event has to be called (0 =
infinity).

Remarks

• If bitRange is omitted, all bits of the object register are affected. If
bitRange is specified, the mask defined by this bitRange applies to the
value calculated with the Expression. Only the bits of the object
register defined in the bitRange are affected by this value.

• Bits are numbered from right to left (in a byte, bit 7 is the most left bit).
So in bitRange, noOfBits is always less or equal than StartBit +1.

• ObjectSpec is defined in Requirement specification for Object Pool as
below:

 ObjectSpec::=ObjectName [“.” FieldName].
 ObjectName::=Ident [“:” Index].
 FieldName::=IdentNum ([“..” IdentNum] |

[“.” Size]).
 IdentNum::= Ident | “#“ HexNumber.
 Size ::= “B” | “W” | “L”.

• The identifiers declared in IdDeclaration are stored in a table of
identifiers and can be also used in Expression.

• If “#” is specified, the time is absolute: it is the number of cycles since
the Simulator was started.
If “+” is specified, the time is relative to the previous time
specification.
If nothing is specified, time is the number of cycles since execution of
the Stimulation file.
DM–394 Debugger Manual

True Time I /O Stimulation
Stimulation Input File Syntax
• If size is omitted, the default size is byte (B).

• The periodical event is sent for the first time at initial time + start +
time specified in periodical timed event.

• In the PerTimedEvent declaration, the “+” is optional. If specified or
not, the following time is interpreted exactly the same way.

• The periodical events are not displayed in the stimulation screen.
Debugger Manual DM–395

9
Real Time Kernel
Awareness

The Simulator/Debugger allows you to load and control applications on the
target system (or applications simulated on the host). It also allows you to
inspect the state of the application, which includes global variables,
processor registers and the procedure call chain including the local
(automatic) variables.

This chapter describes how applications built of several tasks are handled
by a generic awareness support and an OSEK awareness.

Click any of the following links to jump to the corresponding section of
this chapter:

• Real Time Kernel Awareness Introduction

• Task description language

• Example of application

• Inspecting data structures of the Kernel

• Register assignments for the RTK awareness

• OSEK Kernel Awareness

Real Time Kernel Awareness Introduction
Often operating systems (Real Time Kernels) are used to coordinate the
different tasks in more complex systems. This chapter describes how
applications built of several tasks can be handled with the Simulator/
Debugger. There are two main topics to be considered:

• Debugging of any task in the system (e.g., viewing the state of any task
in the system). When using the original basic versions of the Simulator/
Debugger, only the current task can be inspected. Due to this extension,

it is possible to switch the debugging context from the current task to
any other task and between any tasks in the system.

• Real time kernels use data structures to describe the state of the system
(scheduling information, queues, timers,...). Some of these data
structures are interesting for the user of an operating system too and
will be described in this chapter.

Inspecting the state of a task

Each multitasking operating system will store the context of each task at a
specific location, usually called the task descriptor. This context consists of
the CPU context (CPU registers) and the content of the associated stack.
There will be more information in the task descriptor, depending on the
specific implementation of the kernel.

The Simulator/Debugger allows you to inspect the CPU registers and stack
containing all procedure activation frames (return addresses, parameters,
local variables). Therefore, it has to get this information for each task to be
debugged. Since this information is specific to the kernel used, there is an
universal way to specify the location where and how to collect this data.
This information is read from a file with the name 'OSPARAM.PRM'. This
file describes the algorithm on how to get all needed data from the target
memory (from the task descriptors). To describe this algorithm, a simple
procedural language is used. The only parameter to the algorithm is an
address specified by the user, which identifies the task to be inspected. The
result will be the CPU context (CPU registers) and status of the task, which
allows the debugger to display the procedure activation stack in a symbolic
way.

RTK interface

When the application is halted, the debugger displays the state of the
current task. To identify the task to be inspected, the user has to follow
these steps.

Make the task descriptor or a pointer to it visible in any of the debugger's
data windows.

Press the key while clicking the left mouse button on a variable of

type "pointer to task descriptor".

Real Time Kernel Awareness
Task description language
Now the current state of the selected task and procedure chain of that task
is displayed in the 'Procedure Chain' window. By clicking on the
procedures in the call chain list, the local data of that function is displayed
in the 'Data1' window. All the usual debugging functions are also available
to inspect this task now (including displaying the register contents).

Task description language
To perform debugging on any task, a file named "OSPARAM.PRM" has to
be created and must be stored in one of the directories specified in
GENPATH

The file "OSPARAM.PRM" describes the algorithm to collect the context
information for a specific task (the PC, SP, DL, SR and registers).

The following syntax has to be used to specify the algorithm (in EBNF):

StatSequence = [Statement] {';'
Statement;}.

Statement = Assignment | ErrorMsg | If.
Assignment = Ident ':=' Expression.
ErrorMsg = 'MSG' ':=' String.
IfStatemen = 'IF' BoolExpr 'THEN'

StatSequence {ELSIFPart}
[ELSEPart] 'END'.

ELSIFPart = 'ELSIF' BoolExpr 'THEN'
StatSequence.

ELSEPart = 'ELSE' StatSequence.
String = '"' {char} '"'.
BoolExpr = Expression RelOp

Expression.
Expression = Term {Op Term}.
Term = Ident | Function | Number.
Ident = 'a'..'z' | 'R00'..'R31' |

'DL' | 'SP' | 'SR' | 'PC' |
'STATUS' | 'B'.

Function = ('MB' | 'MW' | 'MD' | 'MA')
'[' Expression ']'.

RelOp = '#' | '<' | '<=' | '=' |
'>=' | '>'.

Op = '+' | '-'.
DM–398 Debugger Manual

Real Time Kernel Awareness
Task description language
The terminal symbols have the following meaning:

B is the given reference to the task descriptor (initialized upon
start).

a..z are variables for intermediate storage.

MB gets value of memory BYTE at given address.

MW gets value of memory WORD at given address.

MD gets value of DOUBLE WORD at given address.

MA gets value at given address interpreted as DOUBLE
WORD.

PC is the program counter to be set.

SP is the stack pointer to be set.

SR is the status register value to be set.

DL is dynamic link (data base) to be set (if not available,
same as SP).

STATUS error number to be set (refer to manual).

Rnn processor registers to be set (mapping to CPU
registers see manual).

MSG is error message (has to be specified if N >= 1000).

On activation of the task debugging command, the file "OSPARAM.PRM"
is opened and the selected address is stored in variable 'B'. Then the
commands in the file are interpreted. The CPU context of the task is then
expected in the variables PC, SP, SR, DL, Rnn and EN. EN describes the
status of the task. If 'EN' is bigger than 1000 the status is expected in the
string MSG.
Debugger Manual DM–399

 Example of application
Listing 9.1 shows an example of "OSPARAM.PRM" file for SOOM
System/REM.

Listing 9.1 OSPARAM.PRM file

{ File OSParam.PRM, implementation for SOOM System/REM }
{ R0..R7 = D0..D7, R8..R15 = A0..A7 }
{ MSG = message displayed in Procedure Chain window }

DL :=MD(B+8);{ A6 in PD, dynamic link }
SP :=MD(B+4);{ A7 in PD, stack pointer }
PC :=MD(B+14);{ PC in PD, program counter }
SR :=MW(B+12);{ SR in PD, status register }
STATUS:=1000;{ Initialized with 1000 }
IF MW(B+18) = 1 THEN

{ IF (registers are saved in task Control Block) THEN }
R0 := MD(B+22);R1 := MD(B+26);R2 := MD(B+30);
R3 := MD(B+34);R4 := MD(B+38);R5 := MD(B+42);
R6 := MD(B+46);R7 := MD(B+50);R8 := MD(B+54);
R9 := MD(B+58);R10 := MD(B+62);R11 := MD(B+66);
R12 := MD(B+70)

END;
R13 := B;
R14 := DL;
R15 := SP;
i := MB(B+112);{ i contains the current state of the selected
task. }
IF i = 0THEN MSG := "ReadyInCQSc"
ELSIF i = 1THEN MSG := "BlockedByAccept"
ELSIF i = 2THEN MSG := "WaitForDReply"
ELSIF i = 3THEN MSG := "WaitForMail"
ELSIF i = 4THEN MSG := "DelayQueue"
ELSIF i = 5THEN MSG := "BlockedByReceive"
ELSIF i = 6THEN MSG := "WaitForSemaphore"
ELSIF i = 7THEN MSG := "Dummy"
ELSIF i = 8THEN MSG := "SysBlocked"
ELSE MSG := "invalid"
END;

Real Time Kernel Awareness
Inspecting data structures of the Kernel
Inspecting data structures of the Kernel
To allow the debugger to display the data structures of the operating
system, the corresponding symbol information has to be available. This is
the case when using SOOM System/REM. When another kernel is used its
source code would have to be available and would have to be compiled.
However, if only the object code is available, the needed symbol
information can be generated in the following way:

• The kernel data structures of interest have to be described using ANSI-
C language, as shown in Listing 9.2.

Listing 9.2 kernel data structures description

 typedef struct PD {
 int status;
 struct PD *next;
 long regs[6];
 } PD;

This is an example of the definition of a simple task descriptor.

• Variables can be collected in a structure and have to be assigned to a
segment (for example, 'OS_DATA' shown in Listing 9.3).

Listing 9.3 OS_DATA structure

 #pragma DATA_SEG OS_DATA
 struct {
 PD *readyList; /* list of tasks ready to be executed */
 char filler[6]; /* unimportant variables */
 int processes; /* total number of tasks */
 PD processes[10]; /* the 10 possible tasks */
 } OS_DATA;

This structure should be defined in a way to fit the same layout as the
operating system used. It might be necessary to introduce filler variables to
get the correct alignment.

• This segment has to be placed by the linker to the correct address by
using the PRM file shown in Listing 9.4:
Debugger Manual DM–401

Real Time Kernel Awareness
Register assignments for the RTK awareness
Listing 9.4 Linker PRM file

 NAMES ... rtk.o+ ... END
 SECTIONS
 ...
 RTK_SEC = NO_INIT 0x1040 TO 0x1F80;
 ...
 END

 PLACEMENT
 ...
 OS_DATA INTO RTK_SEC;
 ...
 END

The source file (for example, 'rtk.c') has to be compiled and listed in the
NAMES section of the linker parameter file. To force linking, the name of
the object file has to be immediately followed by a '+'. In this example the
variable is linked to the address 0x1040.

If an application is prepared in this way, all declared variables may be
inspected in the data windows of the Simulator/Debugger. There is no
restriction in the complexity of the structures to describe the global data of
the kernel.

NOTE We do not recommend opening the terminal window during testing. Errors
detected during reading of a PRM file are written to this window.

Register assignments for the RTK awareness

OSEK Kernel Awareness
OSEK Kernel provides a framework for building real-time applications.

OSEK Kernel awareness within the debugger allows you to debug your
application from the operating system perspective.

The CodeWarrior Debugger supports OSEK ORTI (OSEK Run Time
Interface) compliant real-time operating systems and offers dedicated
DM–402 Debugger Manual

Real Time Kernel Awareness
OSEK Kernel Awareness
kernel awareness, by using the information stored in your application's
ORTI file.

With the CodeWarrior OSEK kernel awareness, you can monitor kernel
task information, semaphores, messages, queues, resources allocations,
synchronization, communicating between tasks, etc.

ORTI is intended for the description of applications in any OSEK
implementation. It describes a set of attributes for system objects and a
method for interpreting the data obtained.

OSEK ORTI

The OSEK Run Time Interface (ORTI) is intended as an interface for
development tools to the OSEK Operating System. It is a part of the OSEK
standard (refer to www.osek-vdx.org).

OSEK ORTI Definition

The OSEK ORTI intends to enable the attached tool to evaluate and
display information about the operating system, its state, its performance,
the different task states, the different operating system objects etc.

The ORTI file contains dynamic information as a set of attributes that are
represented by formulas to access corresponding dynamic values.
Formulas for dynamic data access are comprised of constants, operations,
and symbolic names within the target file. The given formula can then be
evaluated by the debug tool to obtain internal values of the required OS
objects.
Debugger Manual DM–403

http://www.osek-vdx.org

Figure 9.1 ORTI Aware debugging system

Two types of data shall be made available to the CodeWarrior debug tool.
One type shall describe static configuration data that will remain
unchanged during program execution. The second type of data shall be
dynamic and this data will be re-evaluated each time by Code Warrior. The
static information is useful for display of general information and in
combination with the dynamic data. The dynamic data gives information
about the current status of the system.The information given to
CodeWarrior is represented in a text (ORTI-File). The file describes the
different objects configured in the OS and their properties. The information
is represented in direct text, enumerated values, Symbolic names, or an
equation that may be used for evaluating the attribute.

The ORTI File is generated when building the project through the OSEK
System Generator. The generated file has the same name and the same
location as executable file but its extension is .ort.

ORTI File Structure

The ORTI file structure builds on top of the structure of the OSEK OIL
file. It consists of the following parts:

• Version Section - This section describes the version of the ORTI
standard used for the current ORTI file.

Real Time Kernel Awareness
OSEK Kernel Awareness
• Implementation Definition Section - This section describes the method
that should be used to interpret the data obtained for the value. This
section may also detail the suggested display name for a given attribute.

• Application Definition Section - This section contains information on
all objects that are currently available for a given system. This section
also describes the method that shall be used to reference or calculate
each required attribute. This information shall either be supplied as a
static value or else a formula that shall be used to calculate the required
value.

An OSEK ORTI File Sample is described in Appendix.

OSEK RTK Inspector component

OSEK awareness is described through the Code Warrior RTK Inspector
component as show in Figure 9.2.

Inspector window is displayed by clicking on Component>Open... menu
entry and then by clicking on Inspect icon in the “Open Window
Component” window.

When the RTK components icon is selected in the hierarchical content of
the items, the right side displays various information about OSEK Aware-
ness.
Debugger Manual DM–405

Real Time Kernel Awareness
OSEK Kernel Awareness
Figure 9.2 Code Warrior RTK Inspector

The OSEK RTK Inspector provides all these information. As defined in the
ORTI file, objects of the same type are grouped and can be viewed
together.

• Task

• Stack

• SystemTimer

• Alarm

• Message.

Below you can find a description of typical objects along with their
attributes and how they are presented:
DM–406 Debugger Manual

Real Time Kernel Awareness
OSEK Kernel Awareness
NOTE Be aware that objects and their attributes depend on the OSEK
implementation and OSEK configuration, and therefore may differ from
this description.

Task

The Task shown in Figure 9.3 displays the current state of OSEK task
trace.

Figure 9.3 Inspector Task

When selecting Task in the hierarchical tree on the left side, additional
information concerning tasks is displayed on the right side:

• Name: displays the name of the task

• Task priority: displays the priority of the task.

• Task State: describes the current state of the task. Possible values are
READY, SUPENDED, WAITING, RUNNING or INVALID_TASK.
The ORTI file defines the different states.

• Events States: the event is represented by its mask. The event mask is
the number which range is from 1 to 0xFFFFFFFF. When the event
mask value is set to1, the event is activated. When it is set to 0, the
event is disabled.

• Waited Events: when the bit is set to 0, the event is not expected.
When the bit is set to 1, the event is expected.

• Task Event Mask: describes the current task event mask.

• Current Task Stack: displays the name of the current stack used by
the task.

• Task Priorities: describes task priorities. Possible value are BASIC/
EXTENDED, NONPREMPT/FULLPREMPT, Priority value, AUTO.
The ORTI file defines the possible values.

Stack

The Stack shown in Figure 9.4 displays the current state of OSEK stack
trace.
Debugger Manual DM–407

Real Time Kernel Awareness
OSEK Kernel Awareness
Figure 9.4 Inspector Stack

When selecting Stack in the hierarchical tree on the left side, additional
information concerning task are displayed on the right side:

• Name: displays the name of the stack.

• Stack Start Address: displays the start address of the stack.

• Stack End Address: displays the end address of the stack.

• Stack Size: displays the size of the stack.

SystemTimer

The SystemTimer shown in Figure 9.5 displays the current state of OSEK
SystemTimer trace.

Figure 9.5 Inspector SystemTimer

When selecting SystemTimer in the hierarchical tree on the left side,
additional information concerning task are displayed on the right side:

• Name: displays name of the system timer.

• MaxAllowedValue: displays the maximum allowed counter value.
When the counter reaches this value it rolls over and starts count again
from zero.

• TicksPerBase: displays the number of ticks required to reach a
counter-specific value.

• MinCycle: displays the minimum allowed number of counter ticks for
a cyclic alarm linked to the counter.

• Current Value: displays the current value of the system timer.

• Activated Alarm: displays associated alarms.
DM–408 Debugger Manual

Real Time Kernel Awareness
OSEK Kernel Awareness
Alarm

The Alarm shown in Figure 9.6 displays the current state of OSEK alarm
trace.

Figure 9.6 Inspector Alarm

When selecting Alarm in the hierarchical tree on the left side, additional
information concerning task are displayed on the right side:

• Name: displays the name of the alarm.

• Alarm State: displays the current state of the alarm. Possible values
are ALARMRUN and ALARMSTOP.

• Assigned Counter: based on counters, the OSEK OS offers alarm
mechanism to the application software. Assigned Counter is the name
of the counter used by alarm.

• Notified Task: the alarm management allows the user to link task
activation to a certain counter value. The assignment of an alarm to a
counter, as well as the action to be performed when an alarm expires.
Notified Task defines the task to be notified (by activation or event
setting) when the alarm expires. Notified Task defines the task to be
notified (by activation or event setting) when the alarm expires.

• Event to Set: the alarm management allows the user to link event
setting to a certain counter value. The assignment of an alarm to a
counter, as well as the action to be performed when an alarm expires.
Event to set specifies the event mask to be set when the alarm expires.

• Time to expire: displays time remaining before the time expires and
the event is set.

• Cycle Period: displays period of a tick.

Message

The Message shown in Figure 9.7 displays the current state of OSEK
message trace.
Debugger Manual DM–409

Real Time Kernel Awareness
OSEK Kernel Awareness
Figure 9.7 Inspector Message

When selecting Message in the hierarchical tree on the left side, additional
information concerning task are displayed on the right side:

• Name: displays the name of the message.

• Message Type: displays message type. Possible values are:
UNQUEUED/QUEUED.

• Notified Task: displays the task that shall be activated when the
message is sent.

• Event to be set: displays the event which is to be set when the message
is sent.

The Table 9.1 show the register assignments for the RTK awareness for the
HC12 processor.

Table 9.1 RTK awareness register assignments for the HC12
R

Register Register Name Size (bit)

R0 A 8 (high byte of D)

R1 B 8 (low byte of D)

R2 CCR 8

R6 D 16 (concatenation
of A:B)

R7 X 16

R8 Y 16

R9 SP 24 (concatenation
of xPAGE:SP if in
banked area)
DM–410 Debugger Manual

R10 PC 16

R11 PPAGE 8

R12 EPAGE 8

R13 DPAGE 8

R14 IP 24 (concatenation
of PPAGE:PC if in
banked area)

Register Register Name Size (bit)

Environment
Debugger environment
10
Environment

This chapter describes the environment variables used by the Simulator/
Debugger. Some of these environment variables are also used by other
tools (for example, Linker), so also consult their respective manual.

Click any of the following links to jump to the corresponding section of
this chapter:

• Debugger environment

• Local Configuration File (usually project.ini)

• ABSPATH

• DEFAULTDIR

• ENVIRONMENT

• GENPATH

• LIBRARYPATH

• OBJPATH

• TMP

• USELIBPATH

• Searching order for sources files

• Files of the Simulator/Debugger

Debugger environment
Various parameters of the Simulator/Debugger may be set in an
environment using environment variables. The syntax is always the same:

Parameter = KeyName "=" ParamDef.

NOTE Normally no blanks are allowed in the definition of an environment
variable.

Example
DM–412 Debugger Manual

Environment
Debugger environment
GENPATH=C:\INSTALL\LIB;D:\PROJECTS\TESTS;/usr/local/lib;/home/me/
my_project

These parameters may be defined in several ways:

Using system environment variables supported by your operating system.

Putting the definitions in a file called DEFAULT.ENV in the default
directory.

NOTE The maximum length of environment variable entries in the
DEFAULT.ENV/.hidefaults is 4096 characters.

Putting definitions in a file given by the value of the system environment
variable ENVIRONMENT.

NOTE The default directory mentioned above can be set by using the system
environment variable DEFAULTDIR: Default Current Directory.

When looking for an environment variable, all programs first search the
system environment, then the DEFAULT.ENV file and finally the global
environment file given by ENVIRONMENT. If no definition can be found,
a default value is assumed.

NOTE Ensure that no spaces exist at the end of environment variables.

The Current Directory

The most important environment for all tools is the current directory. The
current directory is the base search directory where the tool begins to
search for files (for example, the DEFAULT.ENV / .hidefaults file)

Normally, the current directory of a tool is determined by the operating
system or program that launches another one (for example, WinEdit).

For MS Windows based operating systems, the current directory definition
is more complex.
Debugger Manual DM–413

Environment
Debugger environment
• If the tool is launched using a File Manager/Explorer, the current
directory is the location of the executable launched.

• If the tool is launched using an Icon on the Desktop, the current
directory is the one specified and associated with the Icon.

• If the tool is launched by dragging a file on the icon of the executable
under Windows 95, 98, Windows NT 4.0 or Windows 2000, the
desktop is the current directory.

• If the tool is launched by another tool with its own current directory
specified (for example, WinEdit), the current directory is the one
specified by the launching tool (for example, current directory
definition in WinEdit).

• For the Simulator/Debugger tools, the current directory is the directory
containing the local project file. Changing the current project file also
changes the current directory, if the other project file is in a different
directory. Note that browsing for a C file does not change the current
directory.

To overwrite this behavior, the environment variable DEFAULTDIR:
Default Current Directory may be used.

Global Initialization File (MCUTOOLS.INI) (PC
only)

All tools may store global data in MCUTOOLS.INI. The tool first searches
for this file in the directory of the tool itself (path of executable). If there is
no MCUTOOLS.INI file in this directory, the tool looks for the file in the
MS Windows installation directory (for example, C:\WINDOWS).

Example

C:\WINDOWS\MCUTOOLS.INI
D:\INSTALL\PROG\MCUTOOLS.INI

If a tool is started in the D:\INSTALL\PROG\DIRECTORY, the project
file in the same directory as the tool is used
(D:\INSTALL\PROG\MCUTOOLS.INI).

If the tool is started outside the D:\INSTALL\PROG directory, the
project file in the Windows directory is used
(C:\WINDOWS\MCUTOOLS.INI).
DM–414 Debugger Manual

Environment
Local Configuration File (usually project.ini)
NOTE For more information about MCUTOOLS.INI entries, see the compiler
manual.

Local Configuration File (usually project.ini)
The Simulator/Debugger does not change the default.env file. Its
content is read only. All configuration properties are stored in the
configuration file. The same configuration file can be used by different
applications.

The shell uses the configuration file with the name “project.ini” in the
current directory only. That is why this name is also suggested to be used
with the Simulator/Debugger. Only when the shell uses the same file as the
compiler, the editor configuration written and maintained by the shell can
be used by the Simulator/Debugger. Apart from this, the Simulator/
Debugger can use any file name for the project file. The configuration file
has the same format as windows .ini files. The Simulator/Debugger
stores its own entries with the same section name as in the global
mcutools.ini file.

The current directory is always the directory containing the configuration
file. If a configuration file in a different directory is loaded, then the current
directory also changes. When the current directory changes, the
default.env file is reloaded. Always when a configuration file is
loaded or stored, options in the environment variable COMPOPTIONS are
reloaded and added to the project options. Beware of this behavior when a
different default.env file exists in different directories, which contain
incompatible options in COMPOPTIONS.

When a project is loaded using the first default.env, its
COMPOPTIONS are added to the configuration file. If this configuration
is stored in a different directory, where a default.env file exists with
incompatible options, the Simulator/Debugger adds options and marks the
inconsistency. Then a message box appears to inform the user that the
default.env options were not added. In such a situation the user can either
remove the option from the configuration file with the option settings
dialog or remove the option from default.env with the shell or a text editor,
depending on which options should be used in the future.

At startup there are three ways to load a configuration:

• use the command line option prod
Debugger Manual DM–415

Environment
Local Configuration File (usually project.ini)
• the project.ini file in the current directory

• or Open Project entry from the file menu.

If the option prod is used, then the current directory is the directory the
project file is in. If prod is used with a directory, the project.ini file in this
directory is loaded.

Configuration of the Default Layout for the
Simulator/Debugger: the PROJECT.INI File

The default layout activated when starting the Simulator/Debugger is
defined in the PROJECT.INI file located in the project directory, as
shown in Listing 10.1. All default layout related parameters are stored in
section [DEFAULTS].

Listing 10.1 Example content of PROJECT.INI:

[HI-WAVE]
Window0=Source 0 0 60 30
Window1=Assembly 60 0 40 30
Window2=Procedure 0 30 50 15
Window3=Terminal 0 45 50 15
Window4=Register 50 30 50 30
Window5=Memory 50 60 50 30
Window6=Data 0 60 50 15
Window7=Data 0 75 50 15
Target=Sim

Target: Specifies the target used when starting the Simulator/Debugger
(loads the file <target> with a .tgt extension), for example, Target=Sim for
Simulator, or Target=Motosil, Target=Bdi.

Window<n>: Specifies coordinates of the windows that must be open
when the Simulator/Debugger is started. The syntax for a window is:

Window<n>=<component> <XPos> <YPos> <width> <height>

where n is the index of the window. This index is incremented for each
window and determines the sequence windows are opened. This index is
relevant in case of overlapping windows, because it determines which
window will be on top of the other. Values for the index have to be in the
range 0..99.
DM–416 Debugger Manual

Environment
Local Configuration File (usually project.ini)
component specifies the type of component that should be opened, for
example, Source, Assembly, etc.

XPos specifies the X coordinate of the top left corner of the component (in
percentage relative to the width of the main application client window).

YPos specifies the Y coordinate of the top left corner of the component (in
percentage relative to the height of the main application client window).

width specifies the width of the component (in percentage relative to the
width of the main application client window).

height specifies the height of the component (in percentage relative to the
height of the main application client window).

Example:

Window5=Memory 50 60 50 30

Window number 5 is a Memory component, its starting position is at: 50%
from main window width, 60% from main window height. Its width is 50%
from main window width and its height 30% from main window height.

Other parameters

• It is possible to load a previously saved layout from a file by inserting
the following line in your PROJECT.INI file:

Layout=<LayoutName>

where LayoutName is the name of the file describing the layout to be
loaded,

for example, Layout=lay1.hwl

NOTE The layout path can be specified if the layout is not in the project directory.

Please see section Window Menu for more information about Layouts.

NOTE If Layout is defined in PROJECT.INI, the Layout parameter overwrites
any Window<n> definition, describing the default windows layout.

• It is possible to load a previously saved project from a file by inserting
the following line in your PROJECT.INI file:
Debugger Manual DM–417

Environment
Local Configuration File (usually project.ini)
Project=<ProjectName>

where ProjectName is the name of the file describing the project to be
loaded,

for example, Project=Proj1.hwc

NOTE The project path can be specified if the project is not in the project
directory. This option can be used for compatibility with the old .hwp
format (Project=oldProject.hwp) and will be opened as a new project file.

See File Menu section for more details about Projects.

NOTE If Layout and Project are defined in PROJECT.INI, the Project
parameter overwrites the Layout parameter, also containing layout
information.

MainFrame=<nbr.>,<nbr.>,<nbr.>,<nbr.>,<nbr.>,<nbr.>,

<nbr.>,<nbr.>,<nbr.>,<nbr.>

This variable is used to save and load the Simulator/Debugger main
window states: positions, size, maximized, minimized, iconized when
opened, etc. This entry is used for internal purposes only.

• The toolbar, status bar, heading line, title bar and small border can be
specified in the default section:

The toolbar can be shown or hidden with the following syntax:

Tooolbar = (0 | 1)

If 1 is specified, the toolbar is shown, otherwise the toolbar is hidden.

The status bar can be shown or hidden with the following syntax:

Statusbar = (0 | 1)

If 1 is specified, the status bar is shown, otherwise the toolbar is hidden.

Title bars can be shown or hidden with the following syntax:
DM–418 Debugger Manual

Environment
Local Configuration File (usually project.ini)
Hidetitle = (0 | 1)

If 1 is specified, the title bars are hidden, otherwise they are shown.

The heading lines can be shown or hidden with the following syntax:

Hideheadlines = (0 | 1)

If 1 is specified, the heading lines are hidden otherwise they are shown.

The border can be reduced with the following syntax:

Smallborder = (0 | 1)

If 1 is specified, borders are thin otherwise they are normal.

• The environment variable BPTFILE authorizes the creation of
breakpoint files; they may be enabled or disabled. All breakpoints of
the currently loaded 'abs' file are saved in a breakpoints file. BPTFILE
may be ON (default) or OFF. When ON, breakpoint files are created.
When OFF, breakpoint files are not created.

BPTFILE =(On | Off)

NOTE Target specific environment variables can also be defined in the
PROJECT.INI file. Refer to the specific target manual for details.

Ini file activation

When a project file (PROJECT.INI) is activated, the following occurs
(from first action to last):
1. The old Project file is closed.
2. Target Component is unloaded
3. The environment variable (Path) is added from

the Project file.

Select HI-WAVE section to retrieve value from:

if an entry 'Windows0' or 'Target' can be retrieved from section [HI-
WAVE] then

 use [HI-WAVE]
Debugger Manual DM–419

Environment
Local Configuration File (usually project.ini)
else if an entry 'Windows0' or 'Target' can be retrieved from section
[DEFAULTS] then

 use [DEFAULTS]

else use [HI-WAVE]
4. The environment variables are loaded from the

default.env file.
5. If an entry ’Layout=lll’ exists, the layout

file lll.hwl is loaded and executed.
6. The target is set (if entry 'Target=ttt'

exists load target 'ttt').
7. If an entry ’Project=ppp’ exists, the command

file ’ppp’ is executed.
8. The configuration file (*.hwc) is loaded (entry

configuration=*.hwc).

Paths

Most environment variables contain path lists indicating where to search
for files. A path list is a list of directory names separated by semicolons
following the syntax below:

PathList = DirSpec {";" DirSpec}.

DirSpec = ["*"] DirectoryName.

Example:

GENPATH=C:\INSTALL\LIB;D:\PROJECTS\TESTS;/usr/local/hiwave/lib;/
home/me/my_project

If a directory name is preceded by an asterisk ("*"), the programs
recursively search the directory tree for a file, not just the given directory.
Directories are searched in the order they appear in the path list.

Example:

GENPATH=.\;*S;O
DM–420 Debugger Manual

NOTE Some DOS environment variables (like GENPATH, LIBPATH, etc.) are
used.

We strongly recommend working with WinEdit and setting the
environment by means of a DEFAULT.ENV file in your project directory.
This 'project directory' can be set in WinEdit's 'Project Configure...' menu
command. This way, you can have different projects in different
directories, each with its own environment.

NOTE When using WinEdit, do not set the system environment variable
Defaultdir. If you do and this variable does not contain the project
directory given in WinEdit’s project configuration, files might not be put
where you expect them.

Line Continuation

It is possible to specify an environment variable in an environment file
(default.env/.hidefaults) over multiple lines by using the line continuation
character ‘\’:

Example:

OPTIONS=\
-W2 \
-Wpd

This is the same as

OPTIONS=-W2 -Wpd

Be careful when using the line continuation character with paths, for
example,

GENPATH=.\
TEXTFILE=.\txt

will result in

GENPATH=.TEXTFILE=.\txt

Environment
Local Configuration File (usually project.ini)
To avoid such problems, use a semicolon’;’ at the end of a path, if there is a
‘\’ at the end:

GENPATH=.\;
TEXTFILE=.\txt

Environment Variable Details

The remainder of this section is devoted to describing each of the
environment variables available for the Simulator/Debugger. The options
are listed in alphabetical order and each is divided into several sections
described in the Environment Variable Details.

Table 10.1 Environment Variable Details

Topic Description

Tools Lists of other tools that are using this variable

Synonym Fore some environment variables a synonym also exists.
The synonyms may be used for older releases of the
Simulator/Debugger and will be removed in the future. A
synonym has lower precedence than the environment
variable.

Syntax Specifies the syntax of the option in EBNF format.

Arguments Describes and lists optional and required arguments for the
variable.

Default Shows the default setting for the variable or none.

Description Provides a detailed description of the option and how to
use it.

Example Gives an example of usage and effects of the variable
where possible. The examples show an entry in the
default.env file for PC.

See also Names related sections.
DM–422 Debugger Manual

Environment
ABSPATH
ABSPATH

ABSPATH: Absolute Path
Tools

SmartLinker, Debugger

Synonym

None

Syntax

ABSPATH=" {<path>}.

Arguments

<path>: Paths separated by semicolons, without spaces.

Description

When this environment variable is defined, the SmartLinker will store the
absolute files it produces in the first directory specified. If ABSPATH is
not set, the generated absolute files will be stored in the directory the
parameter file was found.

Example

ABSPATH=\sources\bin;..\..\headers;\usr\local\bin

See also

None
Debugger Manual DM–423

Environment
DEFAULTDIR
DEFAULTDIR

DEFAULTDIR: Default Current Directory
Tools

Compiler, Assembler, Linker, Decoder, Librarian, Maker, Burner,
Debugger.

Synonym

None.

Syntax

"DEFAULTDIR=" <directory>.

Arguments

<directory>: Directory specified as default current directory.

Default

None.

Description

With this environment variable the default directory for all tools may be
specified. All tools indicated above will take the directory specified as their
current directory instead of the one defined by the operating system or
launching tool (for example, editor).

NOTE This is an environment variable at the system level (global environment
variable). It CANNOT be specified in a default environment file
(DEFAULT.ENV/.hidefaults).

Example

DEFAULTDIR=C:\INSTALL\PROJECT
DM–424 Debugger Manual

Environment
ENVIRONMENT
See also

The Current Directory and Global Initialization File (MCUTOOLS.INI)
(PC only)

ENVIRONMENT

ENVIRONMENT: Environment File
Specification
Tools

Compiler, Linker, Decoder, Librarian, Maker, Burner, Debugger.

Synonym

HIENVIRONMENT

Syntax

"ENVIRONMENT=" <file>.

Arguments

<file>: file name with path specification, without spaces

Default

None.

Description

This variable has to be specified at the system level. Normally the
application looks in the The Current Directory for an environment file
named default.env. Using ENVIRONMENT (for example, set in the
autoexec.bat for DOS), a different file name may be specified.

NOTE This is an environment variable at the system level (global environment
variable). It CANNOT be specified in a default environment file
(DEFAULT.ENV/.hidefaults).
Debugger Manual DM–425

Environment
GENPATH
 Example

ENVIRONMENT=\Metrowerks\prog\global.env

See also

None:

GENPATH

GENPATH: #include “File” Path
Tools

Compiler, Linker, Decoder, Burner, Debugger.

Synonym

HIPATH

Syntax

"GENPATH=" {<path>}.

Arguments

<path>: Paths separated by semicolons, without spaces.

Default

Current directory

Description

If a header file is included with double quotes, the Simulator/Debugger
searches in the current directory, then in the directories given by
GENPATH and finally in the directories given by LIBRARYPATH.

NOTE If a directory specification in this environment variable starts with an
asterisk (“*”), the whole directory tree is searched recursively. All
subdirectories and their subdirectories are searched. Within one level in the
tree, search order is random.
DM–426 Debugger Manual

Environment
LIBRARYPATH
Example

GENPATH=\sources\include;..\..\headers;\usr\local\lib

See also

Environment variable LIBPATH

LIBRARYPATH

LIBRARYPATH: ‘include <File>’ Path
Tools

Compiler, ELF tools (Burner, Linker, Decoder)

Synonym

LIBPATH

Syntax

"LIBRARYPATH=" {<path>}.

Arguments

<path>: Paths separated by semicolons, without spaces.

Default

Current directory

Description

If a header file is included with double quotes, the Compiler searches in the
current directory, then in the directories given by GENPATH and finally in
directories given by LIBRARYPATH.

NOTE If a directory specification in the environment variables starts with an
asterisk (“*”), the whole directory tree is searched recursively. All
subdirectories and their subdirectories are searched. Within one level in the
tree, search order is random.
Debugger Manual DM–427

Environment
OBJPATH
Example

LIBRARYPATH=\sources\include;..\..\headers;\usr\local\lib

See also

Environment variable GENPATH

Environment variable USELIBPATH

OBJPATH

OBJPATH: Object File Path
Tools

Compiler, Linker, Decoder, Burner, Debugger.

Synonym

None.

Syntax

"OBJPATH=" <path>.

Default

Current directory

Arguments

<path>: Path without spaces.

Description

If a tool looks for an object file (for example, the Linker), then it first
checks for an object file specified by this environment variable, then in
GENPATH and finally in HIPATH.

Example

OBJPATH=\sources\obj
DM–428 Debugger Manual

Environment
TMP
See also

None.

TMP

TMP: Temporary directory
Tools

Compiler, Assembler, Linker, Librarian, Debugger.

Synonym

None.

Syntax

"TMP=" <directory>.

Arguments

<directory>: Directory to be used for temporary files.

Default

None.

Description

If a temporary file has to be created, normally the ANSI function tmpnam()
is used. This library function stores the temporary files created in the
directory specified by this environment variable. If the variable is empty or
does not exist, the current directory is used. Check this variable if you get
an error message “Cannot create temporary file”.

NOTE This is an environment variable at the system level (global environment
variable). It CANNOT be specified in a default environment file
(DEFAULT.ENV/.hidefaults).

Example

TMP=C:\TEMP
Debugger Manual DM–429

Environment
USELIBPATH
See also

Section ‘The Current Directory’

USELIBPATH

USELIBPATH: Using LIBPATH Environment
Variable
Tools

Compiler, Linker, Debugger.

Synonym

None.

Syntax

"USELIBPATH=" ("OFF" | "ON" | "NO" | "YES")

Arguments

"ON", "YES": The environment variable LIBRARYPATH is used to look
for system header files <*.h>.
"NO", "OFF": The environment variable LIBRARYPATH is not used.

Default

ON

Description

This environment variable allows a flexible usage of the LIBRARYPATH
environment variable, because LIBRARYPATH may be used by other
software (for example, version management PVCS).

Example

USELIBPATH=ON

See also

Environment variable LIBRARYPATH
DM–430 Debugger Manual

Environment
Searching order for sources files
Searching order for sources files
This section describes the searching order (from first to last) used by the
debugger.

Searching Order in the Simulator/Debugger for
C source files (*.c, *.cpp)

1. Path coded in the absolute file (.abs)

2. Project file directory (where the .pjt or .ini file is located)

3. Paths defined in the GENPATH environment variable (from left to
right)

4. Abs File directory

Searching Order in the Simulator/Debugger for
Assembly source files (*.dbg)

1. Path coded in the absolute file (.abs)

2. Project file directory (where .pjt or .ini file is located)

3. Paths defined in the GENPATH environment variable (from left to
right)

4. Abs File directory

Searching Order in the Simulator/Debugger for
object files (HILOADER)

1. Path coded in the absolute file (.abs)

2. Abs File directory

3. Project file directory (where .pjt or .ini file is located)

4. Path defined in the OBJPATH environment variable

5. Paths defined in the GENPATH environment variable (from left to
right)
Debugger Manual DM–431

Environment
Files of the Simulator/Debugger
Files of the Simulator/Debugger
The Simulator/Debugger comes with several program, application,
configuration files and examples. These files are listed in the following
table.

Table 10.2 Simulator/Debugger and Metrowerks files extension.

Filename. Description.

*.ABS Absolute framework application file e.g.,
fibo.abs

*.ASM Assembler specific file e.g., macrodem.asm

*.BBL Burner Batch Language file e.g, fibo.bbl

*.BPT Simulator/Debugger Breakpoint file e.g.,
fibo.bpt

*.C *.CPP C and C++ source files

*.CHM Compiled HTML help file

*.CMD Command File Script, for example, Reset.cmd

*.CNF Specific cpu configuration file

*.CNT Help Contents File, for example, cxa.cnt

*.CPU Central Processor Unit Awareness file

*.DBG Debug listing files, for example, Fibo.dbg

DEFAULT.ENV Simulator/Debugger Default Environment file.
DM–432 Debugger Manual

Environment
Files of the Simulator/Debugger
*.DLL A .DLL file that contains one or more functions
compiled, linked, and stored separately from the
processes that use them. The operating system
maps the DLLs into the process's address space
when the process is starting up or while it is
running. The process then executes functions in
the DLL.
The DLL of the Simulator/Debugger is provided
for supported library and extended functions.

*.H Header file

HIWAVE.EXE The Simulator/Debugger for Windows
executable program.

*.HWL Simulator/Debugger Layout file, for example,
default.hwl

*.HWC Simulator/Debugger Configuration file
(project.hwc)

*.EXE Other Windows executable program, for
example, LINKER.EXE

*.FPP Flash Programming Parameters files (CPU
specific) for example, mcu0e36.fpp

*.HLP Application Help file, for example, Hiwave.hlp

*.IO I/O’s simulation file, for example, sample11.io

*.ISU Uninstall Application File

*.PJT Debugger configuration Settings File, for
example, Project.pjt

*.INI Debugger configuration Settings File, for
example, Project.ini

*.LST Assembler Listing File, for example, fibo.lst

Filename. Description.
Debugger Manual DM–433

Environment
Files of the Simulator/Debugger
*.MCP Metrowerks CodeWarrior IDE project file

*.MAK Make file, for example, demo.mak

*.MAP Mapping file, for example, macrodem.map

*.MEM Memory Configuration file, for example,
000p4v01.mem

*.MON Firmware loading, file for allowing to load a
specified target, for example, Firm0508.mon

*.O Object file code, for example, Fibo.o

*.PDF Portable Document Format file.

*.PRM Linker parameter file, for example, fibo.prm

Project.Ini Simulator/Debugger Project Initialization File

*.REC Recorder File

*.REG Register Entries files, for example, mcu081e.reg

*.SIM CPU simulator file, for example, st7.sim

*.SX Motorola S-Record file, for example, fibo.sx

*.TXT General Text Information file.

*:TGT Target File for the Simulator/Debugger, for
example, xtend-g3.tgt

*.WND Simulator/Debugger Window Component File,
for example,, recorder.wnd

*.XPR Simulator/Debugger User Expression file, for
example, Fibo.xpr

Filename. Description.
DM–434 Debugger Manual

11
How To ...

This chapter provides answers to frequently asked questions.

Click any of the following links to jump to the corresponding section of
this chapter:

• How To Configure the Simulator/Debugger

• How To Start the Simulator/Debugger

• Automating startup of the Simulator/Debugger

• How To Load an Application

• How To Start an Application

• How To Stop an Application

• How To Step in the Application

• How To Work on Variables

• How To Work on Register

• How to Modify the content of a Memory Address

• How to Modify the content of a Memory Address

• How to Consult Assembler Instructions Generated by a Source
Statement

• How To view Code

• How to Communicate with the Application

• About startup.cmd, reset.cmd, preload.cmd, postload.cmd

How To Configure the Simulator/Debugger
If you have installed the Simulator/Debugger under Windows 95, 98, NT
4.0 and Windows2000 or higher, the Simulator/Debugger can be started
from the desktop, from the Start menu, or external editor (WinEdit,
CodeWright, etc.). In order to work efficiently (find all requested
configuration and component files), the Simulator/Debugger must be
associated with a working directory.

How To . . .
How To Start the Simulator/Debugger
How To Configure the Simulator/Debugger for
Use from Desktop on Win 95, Win 98,Win NT4.0
or Win2000

When starting the Simulator/Debugger from Windows 95 or Windows NT
V4.0 (for example, without WinEdit), the working directory can be defined
in the file MCUTOOLS.INI, located in the Windows directory.

Defining the Default Directory in the MCUTOOLS.INI

When starting from the desktop or Start menu, the working directory can
be set in the configuration file MCUTOOLS.INI.

The working directory including the path is defined in the environment
variable DefaultDir in the [Options] group or WorkDir
[WorkingDirectory].

How To Start the Simulator/Debugger
This section describes various ways to start the Debugger.

How To Start the Simulator/Debugger from
WinEdit

The Simulator/Debugger can be started by selecting Project>Debug or
clicking the Debugger icon (bug) in WinEdit tool bar (when configured).
The Window looks like Figure 11.1.
DM–436 Debugger Manual

How To . . .
Automating startup of the Simulator/Debugger
Figure 11.1 Simulator/Debugger after startup

READY displayed in the status bar indicates that the simulator is ready.

Automating startup of the Simulator/Debugger
Often the same tasks have to be performed after starting the Simulator/
Debugger. These tasks can be automated by writing a command file that
contains all commands to be executed after startup of the Simulator/
Debugger, as shown in Listing 11.1.

Listing 11.1 Example of a command file to automate tasks

load fibo.abs
bs &main t
g

Debugger Manual DM–437

How To . . .
Automating startup of the Simulator/Debugger
This file will first load an application, then set a temporary breakpoint at
the start of the function main and start the application. The application will
then stop on entering main (after executing the startup and initialization
code).

There are several ways to execute this command file:

• specify the command file on the command line using the command line
option -c: This is done in the application that starts the Simulator/
Debugger (for example, Editor, Explorer, Make utility, ...).

Example:

\Metrowerks\PROG\HIWAVE.EXE -c init.cmd

When the Simulator/Debugger is started with this command line, it will
execute the command specified in the file init.cmd after loading the
layout (or project file).

• Calling the command file from the project file (Listing 11.2). The
project file where the layout and target component can be saved (File
>Save...) is a normal text file that contains command line commands to
restore the context of a project. This file, once created by the save
command, can be extended by a call to the command file (CALL
INIT.CMD). When this project is loaded by the File >Open...
command or by the corresponding entry in the Configuration of the
Default Layout for the Simulator/Debugger: the PROJECT.INI File),
commands in this file are executed.

Listing 11.2 Calling a command file from the project file:

set Sim
CLOSE *
call \Metrowerks\DEMO\test.hwl
call init.cmd

• Calling the command file when the Target Component is loaded. Most
target components will execute the command file STARTUP.CMD
once the target component is loaded and initialized. By adding the call
command file in this file (for example, CALL INIT.CMD), it will
automatically execute when the target component is loaded.

NOTE Refer to section Starting the Debugger from a Command Line.
DM–438 Debugger Manual

How To . . .
How To Load an Application
How To Load an Application
1. Choose Simulator > Load The LoadObjectFile dialog box is opened.

2. Select an application (for example FIBO.ABS).

3. Click OK. The dialog box is closed and the application is loaded in the
Simulator/Debugger (Listing 11.2).

Figure 11.2 Loading of an application in the debugger.

The Source component contains source from the module containing the
entry point for the application (usually the startup module). The
highlighted statement is the entry point.

The Assembly component contains the corresponding disassembled code.
The highlighted statement is the entry point.

The Global Data component contains the list of global variables defined in
the module containing the application entry point.

The Local Data component is empty.

The PC in the Register component is initialized with the PC value from the
application entry point.
Debugger Manual DM–439

How To . . .
How To Start an Application
How To Start an Application
There are two different ways to start an application:

1. Choose Run>Start/Continue

2. Click the Start>Continue icon in the debugger tool bar

RUNNING in the status line indicates that the application is running.

The application will continue execution until:

• you decide to stop the execution (See How To Stop an Application).

• a breakpoint or watchpoint has been reached.

• an exception has been detected (watchpoints or breakpoints).

How To Stop an Application
There are two different ways to stop program execution:

1. Choose Run >Halt

2. Click on the Halt icon in the debugger tool bar

HALTED in the status line indicates that execution has been stopped.

The blue highlighted line in the source component is the source statement
at which the program was stopped (next statement to be executed).

The blue highlighted line in the Assembly component is the assembler
statement at which the program was stopped (next assembler instruction to
be executed).

Data window with attribute Global displays the name and values of the
global variables defined in the module where the currently executed
procedure is implemented. The name of the module is specified in the Data
info bar.

Data window with attribute Local displays the name and values of the local
variables defined in the current procedure. The name of the procedure is
specified in the Data info bar.
DM–440 Debugger Manual

How To Step in the Application
The Simulator/Debugger provides stepping functions at the application
source level and assembler level (Listing 11.3).

How to step on Source Level

Listing 11.3 Stepping on source level.

How to Step on the next source instruction

The Simulator/Debugger provides two ways of stepping to the next source
instruction:

1. Choose Run>Single Step

2. Click the Single Step icon from the Simulator/Debugger tool bar

3. STEPPED in the status line indicates that the application is stopped by
a step function.

If the application was previously stopped on a subroutine call instruction, a
Single Step stops the application at the beginning of the invoked function.

The display in the Assembly component is always synchronized with the
display in the Source component. The highlighted instruction in the

How To . . .
How To Step in the Application
Assembly component is the first assembler instruction generated by the
highlighted instruction in the Source component.

Elements from Register, Memory or Data components that are displayed in
red are the register, memory position, local or global variables, and which
values have changed during execution of the source statement.

How to Step Over a Function Call (Flat Step)

The Simulator/Debugger provides two ways of stepping over a function
call:

1. Choose Run >Step Over

2. Click the Step Over icon from the Simulator/Debugger tool bar

STEPPED OVER (or STOPPED) in the status line indicates that the
application is stopped by a step over function.

If the application was previously stopped on a function invocation, a Step
Over stops the application on the source instruction following the function
invocation.

The display in the Assembly component is always synchronized with the
display in the Source component. The highlighted instruction in the
Assembly component is the first assembler instruction generated by the
highlighted instruction in the Source component.

Elements from Register, Memory or Data components that are displayed in
red are the register, memory position, local or global variables, and which
values have changed during execution of the invoked function.

How to Step Out from a Function Call

The Simulator/Debugger provides two ways of stepping out from a
function call:

1. Choose Run>Step Out

2. Click the Step Out icon from the debugger tool bar

STOPPED in the status line indicates that the application is stopped by a
step out function.
DM–442 Debugger Manual

If the application was previously stopped in a function, a Step Out stops
the application on the source instruction following the function invocation.

The display in the Assembly component is always synchronized with the
display in the Source component. The highlighted instruction in the
Assembly component is the first assembler instruction generated by the
highlighted instruction in the Source component.

Elements from Register, Memory or Data components that are displayed in
red are the register, memory position, local or global variables, and which
values have changed since the Step Out was executed.

How to Step on Assembly Level

The Simulator/Debugger provides two ways of stepping to the next
assembler instruction:

1. Choose Run>Assembly Step

2. Click the Assembly Step icon from the debugger tool bar

TRACED in the status line indicates that the application is stopped by an
assembly step function.

The application stops at the next assembler instruction.

The display in the Source component is always synchronized with the
display in the Assembly component. The highlighted instruction in the
Source Component is the source instruction that has generated the
highlighted instruction in the Assembly component.

Elements from Register, Memory or Data components that are displayed in
red are the register, memory position, local or global variables, and which
values have changed during execution of the assembler instruction.

How To Work on Variables
This section shows the different methods to work on variables.

How To . . .
How To Work on Variables
How to Display Local Variable from a Function

The Simulator/Debugger provides two different ways to see the list of local
variables defined in a function:

• Using Drag and Drop

1. Drag a function name from the Procedure component to a Data
component with attribute local.

• Using Double-click

1. Double-click a function name in the Procedure component.

The Data component (with attribute local that is neither frozen or locked)
displays the list of variables defined in the selected function with their
values and type.

How to Display Global Variable from a Module

The Simulator/Debugger provides two ways to see a list of global variables
defined in a module:

• Opening Module Component

1. Choose Component>Open. The list of all available components is
displayed on the screen.

2. Double-click the entry Module. A module component is opened, which
contains the list of all modules building the application.

3. Drag a module name from the Module component to a Data
component with attribute Global.

• Using Popup Menu

1. Right-click in a Data component with attribute Global.

2. Choose Open Module in Popup Menu. A dialog box is opened, which
contains the list of all modules building the application.

• Double-click on a module name. The Data component with attribute
global, which is neither frozen nor locked is the destination
component.

The destination Data component displays the list of variables defined in the
selected module with their values.
DM–444 Debugger Manual

How to Change the Format for the Display of
Variable Value

The Simulator/Debugger allows you to see the value of variables in
different formats. This is set by entries in Format menu (Table 11.1).

Table 11.1 Debugger Display Format

1. Values for pointer variables are displayed in hexadecimal format.

2. Values for function pointer variables are displayed as function name.

3. Values for character variables are displayed in ASCII character and
decimal format.

4. Values for other variables are displayed in signed or unsigned decimal
format depending on the variable being signed or not.

Format menu is activated as follows:

1. Right-click in the Data component. The Data Popup Menu is displayed
on the screen.

2. Choose Format from Popup Menu. The list of all formats is displayed
on the screen.

The format selected is valid for the whole Data component. Values from all
variables in the data component are displayed according to the selected
format.

Menu entry Description

Hex Variable values are displayed in hexadecimal format.

Oct Variable values are displayed in octal format.

Dec Variable values are displayed in signed decimal format.

UDec Variable values are displayed in unsigned decimal format.

Bin Variable values are displayed in binary format.

Symbolic Displayed format depends on variable type.

How To . . .
How To Work on Variables
How to Modify a Variable Value

The Simulator/Debugger allows you to change the value of a variable, as
shown in Figure 11.3.

Modify a Variable Value

Figure 11.3 Modifying a Variable Value

The Simulator/Debugger allows you to change the value of a variable.

Double-click on a variable. The current variable value is highlighted and
can be edited.

1. Formats for the input value follow the rule from ANSI C constant
values (prefixed by 0x for hexadecimal value, prefixed by 0 for octal
values, otherwise considered as decimal value). For example, if the
data component is in decimal format and if a variable input value is
0x20, the variable is initialized with 32. If a variable input value is 020,
the variable is initialized with 16.

2. To validate the input value you can either press or

.

3. If an input value has been validated by the value of the next

variable in the component is automatically highlighted (this value can
also be edited).

4. To restore the previous variable value, press or select another

variable.
DM–446 Debugger Manual

How To . . .
How To Work on Variables
A local variable can be modified when the application is stopped. Since
these variables are located on the stack, they do not exist as long as the
function where they are defined is not active.

How to Get the Address Where a Variable is
Allocated

The Simulator/Debugger provides you with the start address and size of a
variable if you do the following:

1. Point to a variable name in a Data Component

2. Click the variable name

The start address and size of the selected variable is displayed in the Data
info bar.

How to Inspect Memory starting at a Variable
Location Address

The Simulator/Debugger provides two ways to dump the memory starting
at a variable allocation address.

• Using Drag and Drop

1. Drag a variable name from the Data Component to Memory
component.

• Using +

1. Point to a variable name in a Data Component.

2. Press the left mouse button and + .

The memory component scrolls until it reaches the address where the
selected variable is allocated. The memory range corresponding to the
selected variable is highlighted in the memory component.

How to Load an Address Register with the
Address of a variable

The Simulator/Debugger allows you to load a register with the address
where a variable is allocated.
Debugger Manual DM–447

How To . . .
How To Work on Register
1. Drag a variable name from the Data Component to Register
component.

The destination register is updated with the start address of the selected
variable.

How To Work on Register
This section describes how to work with the Register.

How to Change the Format of the Register
display

The Simulator/Debugger allows you to display the register content in
hexadecimal or binary format.

1. Right-click in the Register component. The Register Popup Menu is
displayed on the screen.

2. Choose Options .. from the Popup Menu. The pull down menu
containing the possible formats is displayed.

3. Select either binary or hexadecimal format.

The format selected is valid for the Register component. The contents from
all registers are displayed according to the selected format.

How to Modify a Register Content

The Simulator/Debugger allows you to change the content of indexes,
accumulators or bit registers.

How to Modify an Index or Accumulator Register Content

Double-click a register. The current register content is highlighted and may
be edited.
DM–448 Debugger Manual

How To . . .
How To Work on Register
Figure 11.4 Modifying an Index or Accumulator Register Content

1. The format of the input value depends on the format selected for the
data component. If the format of the component is Hex, the input value
is treated as a Hex value. If the input value is 10 the variable will be set
to 0x10 = 16.

2. To validate the input value you can either press or

, or select another register.

3. If an input value has been validated by , the content of the

next register in the component is automatically highlighted. This
register can also be edited).

4. To restore the previous register content, press .

How to Modify a Bit Register Content

In a bit register, each bit has a specific meaning (a Status Register (SR) or
Condition Code Register (CCR).

Mnemonic characters for bits that are set to 1 are displayed in black,
whereas mnemonic characters for bits that are reset to 0 are displayed in
grey.

Single bits inside the bit register can be toggled by double-clicking the
corresponding mnemonic character.
Debugger Manual DM–449

How To . . .
How To Work on Register
How to Get a Memory Dump starting at the
Address where a Register is pointing

The Simulator/Debugger provides two ways to dump memory starting at
the address a register is pointing to.

• Using Drag and Drop

1. Drag a register from the Register Component to Memory component.

• Choose Address ..

Figure 11.5 Memory menu Display Address

1. Right-click in the Memory component. The Memory Popup Menu is
displayed.

2. Choose Address ... from the Popup Menu. The Memory ... dialog box
shown in Figure 11.5 is opened.

3. Enter the register content in the Edit Box and choose OK to close the
dialog box.

The memory component scrolls until it reaches the address stored in the
register.

This feature allows you to display a memory dump from the application
stack.

NOTE If “Hex Format” is checked, numbers and letters are considered to be
hexadecimal numbers. Otherwise, expressions can be typed and Hex
numbers should be prefixed with “Ox” or “$”. Refer to Constant Standard
Notation section.
DM–450 Debugger Manual

How To . . .
How to Modify the content of a Memory Address
How to Modify the content of a Memory Address
The Simulator/Debugger allows you to change the content of a memory
address.

Double-click the memory address you want to modify. Content from the
current memory location is highlighted and can be edited.

1. The format for the input value depends on the format selected for the
Memory component. If the format for the component is Hex, the input
value is treated as a Hex value. If input value is 10 the memory address
will be set to 0x10 = 16.

2. Once a value has been allocated to a memory word, it is validated and
the next memory address is automatically selected and can be edited.

3. To stop editing and validate the last input value, you can either press

 or , or select another variable.

4. To stop editing and restore the previous memory value, press .

How to Consult Assembler Instructions
Generated by a Source Statement

The Simulator/Debugger provides an on-line disassembly facility, which
allows you to disassemble the hexadecimal code directly from the
Simulator/Debugger code area.

Online disassembly can be performed in one of the following ways:

• Using Drag and Drop

1. In the Source component, select the section you want to disassemble.

2. Drag the highlighted block to the Assembly component.

• Using +

1. In the Source component, point to the instruction you want to
disassemble.
Debugger Manual DM–451

How To . . .
How To view Code
2. +

The disassembled code associated with the selected source instruction is
greyed in the Assembly component.

How To view Code
The Simulator/Debugger allows you to view the code associated with each
assembler instruction.

Figure 11.6 Viewing code associated with an assembler instruction.

Online disassembly can be performed in one of the following ways:

• Using Popup Menu

1. Point in the Assembly component and right-click. The Assembly
Popup Menu is displayed.

2. Choose Display Code (Figure 11.6).

• Using Assembly Menu

1. Click the title bar of the Assembly component. The Assembly menu
appears in the debugger menu bar.

2. Choose Assembly > Display Code

The Assembly component displays the corresponding code on the left of
each assembler instruction.
DM–452 Debugger Manual

How To . . .
How to Communicate with the Application
How to Communicate with the Application
The Simulator/Debugger has a pseudo-terminal facility. Use the Terminal
component window to communicate with the application using specific
functions defined in the TERMINAL.H file and used in the calculator
demo file.

1. Start the Simulator/Debugger and choose Open... from the Component
menu.

2. Open the Terminal Component.

3. Choose Load... from the Simulator menu.

4. Load the program CALC.ABS.

Data entered in the Terminal component window through the keyboard
will be fetched by the target application with the ‘Read’ function. The
target application can send data to the Terminal component window of the
host with the ‘Write’ function.

Refer to sections TestTerm Component and Terminal Component for more
information.

About startup.cmd, reset.cmd, preload.cmd,
postload.cmd

The command files startup.cmd, reset.cmd, preload.cmd,
and postload.cmd are Simulator/Debugger system command files. All
these command files do not exist automatically. They could be installed
when installing a new target.

However, the Simulator/Debugger is able to recognize these command
files and execute them.

• startup.cmd is executed when a target is loaded (the target defined
in the project.ini file or loaded when you select Component>Set
Target).

• reset.cmd is executed when you select “Target Name” >Reset in
the menu (Target Name is the real name of the target, such as
MMDS0508, SDI, etc.).

• preload.cmd is executed before loading a .ABS application file or
Srecords file (when you select “Target Name”>Load... in the menu).
Debugger Manual DM–453

How To . . .
About startup.cmd, reset.cmd, preload.cmd, postload.cmd
• postload.cmd is executed after loading a .ABS application file or
Srecords file (when you select “Target Name”>Load... in the menu).

Depending on the target used, other command files can be recognized by
the Simulator/Debugger. Refer to the appropriate target manual for
information and properties of these command files.
DM–454 Debugger Manual

CodeWarrior Integration
Requirements
12
CodeWarrior Integration

This chapter provides information on how to use and configure the
Simulator/Debugger within CodeWarrior.

Click any of the following links to jump to the corresponding section of
this chapter:

• Requirements

• Debugger Configuration

Requirements
CodeWarrior IDE - version 4.1 or later

Debugger V6.1 or later

NOTE This chapter provides information on how to use and configure the
Simulator/Debugger within the CodeWarrior IDE, for more information,
refer to the CodeWarrior documentation.

Debugger Configuration
To configure the Real Time Debugger and True Time Simulator, in the
CodeWarrior IDE open the Target Settings Panel and select Build Extras
(Figure 12.1).

In the Build Extras pane check the Use External Debugger checkbox. In
the Application field, type the Debugger path, for example,
{Compiler}prog\hiwave.exe and arguments, for example,
%targetFilePath -Target=sim in the Argument field. Click on Apply to
validate these changes.
Debugger Manual DM–455

CodeWarrior Integration
Debugger Configuration
Figure 12.1 IDE Build Extras Panel
DM–456 Debugger Manual

13
Debugger DDE capabilities

This chapter provides information on debugger capabilities and how to use
and configure the Simulator/Debugger within CodeWarrior.

NOTE The DDE capabilities of the Debugger are deprecated. Future versions
of the Debugger will have no DDE capabilities. Its recommended to use the
Component Object Model (COM) Interface. See the chapter Scripting for
more information about this.

Click the following link to jump to the corresponding section of this
chapter:

• Debugger DDE Server

Debugger DDE Server

DDE introduction

The DDE is a form of interprocess communication that uses shared
memory to exchange data between applications. Applications can use DDE
for one-time data transfers and for ongoing exchanges in applications that
send updates to one another as new data becomes available.

Debugger DDE implementation

The Simulator/Debugger integrates a DDE server and DDE client
implementation in the KERNEL.

The DDE application name of the IDF server is "HI-WAVE".

The Simulator/Debugger DDE support allows you to execute almost any
command that would be available from within the debugger (from

Debugger DDE capabi l i t ies
Debugger DDE Server
Command line). There are also special DDE items for more commonly
performed tasks.

This section describes topics and DDE items available to CodeWright
clients. In addition to the required System topic, CurrentBuffer and the
names of all CodeWright non-system buffers (documents) are available as
topics.

Driving the Simulator/Debugger through DDE

The DDE implementation in the Debugger allows you to drive it easily by
using the DDE command.

For this, you have to use a program that can send a DDE message (a DDE
client application) like DDECLient.exe from Microsoft.

The service name of the Simulator/Debugger DDE Server is "HI-WAVE"
and the Topic name for the Simulator/Debugger DDE Server is
"Command".

The following example is done with DDECLient.exe from Microsoft.

1. Run the Simulator/Debugger and in the "Service" field in the
DDEClient type: "HI-WAVE"

2. In the "Topic" field type "Command"

3. Push the "Connect" button of the DDEClient. The following message
will appear in DDECLient: "Connected to HI-WAVE|Command".

4. In the "Exec" field of DDECLient type a Simulator/Debugger
command, for example "open recorder" and click the "Exec" button.
The command is executed by way of DDE and you'll see a new
recorder component in the Simulator/Debugger.

NOTE You can disconnect the DDE in the Simulator/Debugger. The Simulator/
Debugger can be started without DDE (this is saved in the project file). To
view the current state, open a command line component and type the
following command: "DDEPROTOCOL STATUS". The state must be:
"DDEPROTOCOL ON" to ensure the DDE works properly.
DM–458 Debugger Manual

14
Synchronized debugging
through DA-C IDE

This chapter provides information on how to use and configure
Metrowerks tools within DA-C IDE.

Click any of the following links to jump to the corresponding section of
this chapter:

• Requirements

• Configuring DA-C IDE for Metrowerks Tool Kit

• Debugger Interface

• Synchronized debugging

• Troubleshooting

Requirements
DA-C - version 3.5 build 555 or later - (Development Assistant for C -
RistanCASE).

Simulator/Debugger V6.0 or later.

NOTE This chapter provides information on how to use and configure
Metrowerks tools within DA-C IDE. For more information on DA-C, refer
to the "Development Assistant for C" documentation v 3.5.

Configuring DA-C IDE for Metrowerks Tool Kit
Install the DA-C software. The Metrowerks CD contains a demo version
located in \Addons\DA-C. Run Setup to install the Typical installation.

Synchronized debugging through DA-C IDE
Configuring DA-C IDE for Metrowerks Tool Kit
A few configurations are required in order to make efficient use of
Metrowerks Tools within DA-C IDE.

• Create a new project

• Configure the working directories

• Configure the file types

• Configuration of the Metrowerks library path

• Adding files to project

• Building the Database

• Configure the tools

In the following sections, we assume that the Metrowerks tool kit is
installed in "C:\Metrowerks" directory. You may have to adapt the paths to
your current installation. An example configuration for the M68k CPU is
provided, which can be adapted to each CPU supported by Metrowerks.

Creating a new project

Start DA-C.exe and choose Project>New Project… from the main menu.
Browse to the directory and enter a project file name, for example

 "C:\Metrowerks\work\<processor>c\myproject"

and change the <processor> field to your CPU). A specific project file is
created with ".dcp" extension (for example "myproject.dcp").

Configure the working directories

Choose Options>Project from the main menu of DA-C. The dialog box
shown in Figure 14.1 contains options, which establish directories for the
project.
DM–460 Debugger Manual

Synchronized debugging through DA-C IDE
Configuring DA-C IDE for Metrowerks Tool Kit
Figure 14.1 DA-C Project Options dialog

• Project root directory

Determines the project root directory. The full path is expected, or a single
dot can be entered, which stands for the same directory where the project
file resides. All files that belong to the project are considered relative to the
Project root directory, if the full path of the file is not given. In our case,
keep the single dot for the project root directory.

• Referential project root directory

If not empty, specifies alternate Project Root Path for searching files not
found in the original project path. Filenames in the original path with
referential extensions are tried before those in the referential path.
Specified path may be either full or relative to project root, and it may not
specify a subdirectory in the project root directory tree. Leave this field
empty.

• Database directory

Determines the directory where the symbols and software metrics database
will be saved. This directory can be absolute or relative to the Project Root
Directory. Leave this field empty.

• User help file
Debugger Manual DM–461

Synchronized debugging through DA-C IDE
Configuring DA-C IDE for Metrowerks Tool Kit
Determines the user help file, for example compiler help file. The hot key
for User Help File can be defined in the Keyboard definition file (default
Ctrl-Shift-F1). Browse in the "\prog" directory of your Metrowerks
installation and select the help file matching your CPU.

• Configure the file types

In the previous menu choose "File Types" to configure the basic file types.
This dialog box contains options, which determine file types of the project.
For an efficient use of Metrowerks tools, Figure 14.2 shows file extension
types that can be defined.

Figure 14.2 Definition of file types extension

Configuration of the library path

An additional configuration path must be defined to specify the location of
library header files (needed for DA-C symbol analysis). This can be done
by choosing Options>Analysis for Symbols … >C Source in the main
menu of DA-C. The dialog box shown in Figure 14.3 contains options that
determine parameters of the C source code analysis.
DM–462 Debugger Manual

Synchronized debugging through DA-C IDE
Configuring DA-C IDE for Metrowerks Tool Kit
Figure 14.3 Analysis for Symbols Options dialog

• Source

The supported C dialects of the C language used in the current project can
be selected in this field. In our example we chose the Metrowerks M68k
language (adapt it to your needs).

• Preprocessor | Header Directories

Determines the list of directories that are to be searched for files named
within the "#include" directive. A semicolon separates directories. Only
listed directories are searched for files, named between "<" and ">".
Searching for files, named between quotation marks (""), starts in the
directory of the source file containing "#include" directive.

The list of header directories can be assigned in a file. In that case, this
field contains the file name (absolute or relative in relation to the project
Debugger Manual DM–463

Synchronized debugging through DA-C IDE
Configuring DA-C IDE for Metrowerks Tool Kit
root) with prefix @. Directories are separated with a semi-colon or new
line.

Define the library path matching your CPU (assuming Metrowerks tools
are installed on "C:\Metrowerks"):

 C:\Metrowerks\lib\<processor>c\include.

• Preprocessor | Preinclude file

Determines the name of the file that will be included automatically at the
beginning of every source module during analysis, in the same way as if
#include "string" were present in the first line. The preinclude file can be
used to specify predefined macros and variable and function declarations
for a particular compiler, which are not set by default in DA-C analysis.
We have selected the one corresponding to our example: M68k preinclude
file (adapt it to your needs).

Adding files to project

In the Project Manager's window the Explorer View replaces the Window's
Explorer and supplies you with additional information on directories
containing project files. It also gives you the option to add files into the
project. For example, we will now set all files needed to run the "fibo"
example.

In the Explorer View, browse to the
">Metrowerks>WORK><processor>c" directory of your Metrowerks
installation and select "fibo.c" file. Then right-click mouse button and
choose "Add to Project". The file is now added in the current project and a
green mark appears in front of it (Figure 14.4).
DM–464 Debugger Manual

Synchronized debugging through DA-C IDE
Configuring DA-C IDE for Metrowerks Tool Kit
Figure 14.4 Adding files to project with the Explorer View

In the same way, select "fibo.prm" file and add it to this project.

You can also add a directory to the project in the following way:

• Select Explorer view in Project Manager.

• In the left section, select the directory with files to be added to the
project (files from subdirectories may also be added to the project).

• From popup menu choose "Add to project".

This operation may also be performed from Folder view, if the directory is
in the left section.

NOTE When adding entire directory to the project only files with extensions
defined in Options>Project>File types (as described in section
"Configure the file type") will be added to the project.

Building the database

Development Assistant for C provides the static code analysis of C source
files, as well as generating various data based on the results.

Analysis of the project source files and generation of the database are
divided into two phases: the analysis of individual program modules and
generation of data about global symbols usage. Results of the analysis are
saved in database files on the disk, which enables their later use in DA-C.
Debugger Manual DM–465

Synchronized debugging through DA-C IDE
Configuring DA-C IDE for Metrowerks Tool Kit
You can choose between the unconditional analysis of all project files and
the analysis of changed source files only, using Start> Build database and
Start>Update database commands. The latter one will optionally check if
the include files used in program modules are changed as well.

To build the database in our example use Start>Build database command,
which makes the unconditional analysis of all project files and creates a
database containing information about analyzed source code. Errors and
Warnings detected during this operation are displayed in the Messages
window as illustrated in Figure 14.5 (for Fibo.c sample file):

Figure 14.5 DA-C Message Window

After the analysis of all project files, the new database file containing
information about global symbols is constructed. Refer to the DA-C
manual for more information on how symbol information can be used.

In the Project Manager's window of DA-C, select the Logical View
property page shown in Figure 14.6 and unfold all fields, you will now
have the overview of your project.
DM–466 Debugger Manual

Figure 14.6 Logical View

Double-click on "Fibo.c" file to open it.

Configuring the tools

We will now configure the compiler and maker into DA-C IDE.
Procedures are defined in Project>User Defined Actions… from the main
menu of DA-C.

Compiler

In Menu "Start" Actions, click on new and fill in the New Action box
with "C&ompile", then press ENTER (Figure 14.7). In the Toolbar field,
you can associate a bitmap with each tool, for example click on the Picture
radio button and browse to the "\Bitmap" directory of your current DA-C
installation and choose Compiler.bmp. This is a default bitmap delivered
with DA-C IDE (here you are able to add your own bitmap).

Figure 14.7 DA-C Compiler Settings

Now fill in the Action Script field in order to associate related compiler
actions. Copy the following lines shown in Listing 14.1 in the Action
Script field and change the directory to where the compiler is located.

Listing 14.1 Script for compiler action association
.%If(%HasModuleExt(%CurrFile),,%Message(Not a module
file!)%Cancel)

.%SaveAll

.c:\Metrowerks\prog\cm68k.exe %CurrFile

.%if(%Exist(edout),,%Message(No Messages found!)%Cancel)

.%ErrClr(Compiler)

.%ErrGet(edout,Compiler)

.%Reset(%CurrFile)

Click on OK to validate these settings. Select "Fibo.c" file. Click on the
"Compiler" button (or from the main menu of DA-C select
Start>Compile). This file is now compiled and the corresponding object
file ("Fibo.o") is generated.

Linker

In the same way, you can now configure the linker as illustrated in Figure
14.8. In the Menu "Start" Actions, click on new and fill in the created
New Action box with " &Link", then validate with ENTER. After setting
the corresponding bitmap, copy the following lines shown in Listing 14.2
in the Action Script field and change the directory to where the linker is
located.

Listing 14.2 Script for Linker action association

+c:\Metrowerks\prog\linker.exe fibo.prm
.%if(%Exist(edout),,%Message(No Messages found!)%Cancel)
.%ErrClr()
.%ErrGet(edout)

Figure 14.8 DA-C Linker Settings

Maker

In the same way, you can now configure the maker as illustrated in Figure
14.9. In the Menu "Start" Actions, click on new and fill in the created
New Action box with " &Make", then press ENTER. After setting the
corresponding bitmap, copy the lines from Listing 14.3 in the Action
Script field and change the directory to where the maker is located.

Listing 14.3 Script for Maker action association

+c:\Metrowerks\prog\maker.exe fibo.mak
.%if(%Exist(edout),,%Message(No Messages found!)%Cancel)
.%ErrClr()
.%ErrGet(edout)

Figure 14.9 DA-C Maker Settings

Debugger Interface
DA-C v3.5 is currently integrating a DAPI interface (Debugging support
Application Programming Interface). Through this interface DA-C is
enabled to exchange messages with the Simulator/Debugger. The
advantages of such connection show that it is possible to set or delete break
points from within DA-C (in an editor, flow chart, graph, browser) and to
execute other debugger operations. DA-C is following Simulator/Debugger
in its operation, since it is always in the same file and on the same line as
the debugger. Thus, usability of both the DA-C and Simulator/Debugger is
increased. Some configurations are required in order to make an efficient
use of this Debugger Interface:

• Installation of communication DLL

• Configuration of Debugger properties

• Configuration of the Simulator/Debugger project file

Principle of Communication between DA-C IDE
and Simulator/Debugger

DA-C and the Simulator/Debugger are both Microsoft Windows
applications and communication is based on the DDE protocol (Figure
14.10). The whole system contains:

• DA-C

• Simulator/Debugger

• cDAPI interface implementation DLL - which is used by DA-C
(Cdgen32.dll)

• nDAPI communication DLL (provided by DA-C), which is used by
Simulator/Debugger

• Simulator/Debugger specific DLL for bridging its interface to
debugging environment and DA-C's nDAPI (DAC.wnd)

Figure 14.10 Principle of Communication between DA-C IDE and Simulator/
Debugger

Installation of communication DLL

As described previously, the Simulator/Debugger needs the nDAPI
communication DLL (provided by DA-C IDE). This dll (called Ndapi.dll)
is automatically installed during the Metrowerks Tool Kit installation.
However, if you install a new release of DA-C you have to follow this
procedure:

In the "\Program" directory of your DA-C installation, copy the
"Ndapi32.dll" (Ndapi32.dll version 1.1 or later) and paste it in
your current "Metrowerks\PROG" directory (where Simulator/
Debugger is located). Then rename it to "Ndapi.dll".

Configuration of Debugger properties

In the DA-C main menu, choose Options>Debugger, the dialog shown in
Figure 14.11 is opened.

Figure 14.11 DA-C Debugger Options

In the "Debugger" combo-box, select the corresponding debugger: "HI-
WAVE 6.0". Now specify the binary file to be opened: in our example we
want to debug the "fibo.abs" file.

Then click on the Setup… button. The dialog shown in Figure 14.12 is
opened.

Figure 14.12 DDE Debugger Setup

Specify the path to the "hiwave.exe" file or use the Browse… button then
click on OK.

Configuration of the Simulator/Debugger project file

Before configuring the project file, close DA-C. Open Simulator/Debugger
(for example, from a shell) and select File>Open Project… from the main

menu bar. Select the "Project.ini" file from the currently defined
working directory (in our case
"C:\Metrowerks\WORK\<processor>c\project.ini"). We
will now add in the layout of the project the Simulator/Debugger DAC
component ("dac.wnd"). In the Simulator/Debugger select Component
>Open from the main menu bar and choose "Dac", as shown in Figure
14.13.

Figure 14.13 DA-C component opening

The Simulator/Debugger DAC window, which is needed for
communication with DA-C IDE is now opened (Figure 14.14).

Figure 14.14 DA-C Window

You have to save this configuration by selecting File>Save Project from
the main menu of the Simulator/Debugger. This component will be
automatically loaded the next time this project is called. Close the
Simulator/Debugger.

Synchronized debugging
We can now test the synchronization between DA-C IDE and Simulator/
Debugger. Run DA-C.exe and open the project previously created. Open
"Fibo.c" if it's not already open. Right-click mouse button on "Fibo.c"
source window and select "main" in the popup menu. The cursor points to
the "void main(void) {" statement. In the main menu from DA-C, select
Debug>Set Breakpoint (or click on the corresponding button on the
debug toolbar), the selected line is highlighted in red, indicating that a
breakpoint has been set. Then select Debug>Run, the Simulator/Debugger
is now started and after a while stops on the specified breakpoint. Up to
now, you can debug from DA-C IDE with the toolbar, as shown in Figure
14.15 or from the Simulator/Debugger.

Figure 14.15 DA-C toolbar

NOTE In case of changes to your source code, don't forget to rebuild the Database
when generating new binary files to avoid misalignment between the
Simulator/Debugger and DA-C source positions.

Troubleshooting
This section describes possible trouble when trying to connect the
Simulator/Debugger with the DA-C IDE.

1. When loading DAC component into the Simulator/Debugger, if the
message box shown in Figure 14.16 is displayed:

Figure 14.16 DA-C component loading error.

check if the Ndapi.dll is located in the "\prog" directory of your
current Metrowerks installation. If not, copy the specified DLL into this
directory.

2. If the message box shown in Figure 14.17 is displayed in DA-C IDE:

Figure 14.17 DA-C debugger support.

This means that the current name specified in the Options>Debugger
main menu of DA-C doesn't match the debugger name specified in the
Simulator/Debugger. Open the setup dialog in the Simulator/Debugger by
clicking on the DA-C Link component and choose DA-C Link>Setup…
from the main menu. The "Connection Specification" dialog is opened
(Figure 14.18).

Figure 14.18 DA-C connection specification

Compare the "Debugger Name" from this dialog with the selected
Debugger in DA-C IDE (Options>Debugger), shown in Figure 14.19.

Figure 14.19 DA-C Debugger Options

Both must be the same. If it's not the case, change it in the Simulator/
Debugger "Connection Specification" and click OK. This implies a new
connection to be established and the "Connection Specification" to be
saved in the current "Project.ini" file in the section shown in Listing
14.4.

Listing 14.4 DA-C section in project file.

[DA-C]
DEBUGGER_NAME=HI-WAVE 6.0
SHOWPROT=1

Debugger Manual DM–481

DM–482 Debugger Manual

Debugger Manual DM–483

DM–484 Debugger Manual

Debugger Manual DM–485

DM–486 Debugger Manual

Debugger Manual DM–487

Debugger Manual DM–489

DM–490 Debugger Manual

Debugger Manual DM–491

DM–492 Debugger Manual

Debugger Manual DM–493

DM–494 Debugger Manual

Debugger Manual DM–495

DM–496 Debugger Manual

Debugger Manual DM–497

DM–498 Debugger Manual

Debugger Manual DM–499

DM–500 Debugger Manual

Debugger Manual DM–501

DM–502 Debugger Manual

DM–504 Debugger Manual

Full Chip Simulation
Introduction
15
Full Chip Simulation

This chapter contains the documentation about the Full Chip Simulation
and is divided into the following sections:

• Introduction

• Supported Derivatives

• Communication Modules

• Converter Modules

• Memory Modules

• Misc. Modules

• Port I/O Modules

• Timer Modules

Introduction
Full Chip Simulation means not only to simulate the plain instructions but
also on-chip i/o devices such as (CRG, PWM, ECT, ...). In the section
Supported Derivatives the supported i/o devices are listed for each
supported derivative.

By generating a new project with the ‘New HC(12) Project Wizard’ and
the ‘Metrowerks Full Chip Simulator’ connection everything is already
setup correct to run the project with FCS support. However it is possible to
change the FCS support later manually.

With the menu option ‘Simulator > Set Derivative’ you can change the
derivative to simulate. Additional to the derivatives you will find four
special entries: HC12 CORE, HCS12 CORE, HC12 SAMPLE and HC12
SAMPLE. The CORE entries allow to simulated the chip without FCS
support (plain instructions only) and the SAMPLE entries allow to
simulated a chip with minimal FCS what all derivatives have common
(Register Block, Memory Expansion Registers, Clock and Reset
Generator, Serial Communication Interface 0 and PortB).
Debugger Manual DM–505

Full Chip Simulation
Introduction
Figure 15.1 ‘Set Derivative’ dialog

The current state of the FCS support can be seen in the statusbar. To access
the ‘Set Derivative’ dialog it is also possible to double click on the FCS
support entry in the statusbar.

Figure 15.2 FCS support in the Statusbar
DM–506 Debugger Manual

Full Chip Simulation
Supported Derivatives
Supported Derivatives
For some derivatives there is only a ‘Generic Full Chip Simulation’, that
means that the SAMPLE will be used. The fully supported derivatives are
listed in the following table.

Table 1: Supported Derivatives

Derivative Name Modules

MC9S12A32 ATD (Analog to Digital Converter)
CRG (Clock and Reset Generator)
ECT (Enhanced Capture Timer)
EETS (EEPROM)
FTS (Flash)
MEBI (Multiplexed External Bus Interface)
MSCAN (Motorola Scalable CAN)
PIM (Port Integration Module)
PWM (Pulse Width Modulator)
SCI (Serial Communication Interface)
SPI (Serial Peripheral Interface)
VREG (Voltage Regulator)

MC9S12A64 ATD (Analog to Digital Converter)
BLCD (J1850 Bus)
CRG (Clock and Reset Generator)
ECT (Enhanced Capture Timer)
EETS (EEPROM)
FTS (Flash)
IIC (Inter-IC Bus)
MEBI (Multiplexed External Bus Interface)
PIM (Port Integration Module)
PWM (Pulse Width Modulator)
SCI (Serial Communication Interface)
SPI (Serial Peripheral Interface)
VREG (Voltage Regulator)
Debugger Manual DM–507

Full Chip Simulation
Supported Derivatives
MC9S12C32 ATD (Analog to Digital Converter)
CRG (Clock and Reset Generator)
FTS (Flash)
MEBI (Multiplexed External Bus Interface)
MSCAN (Motorola Scalable CAN)
PIM (Port Integration Module)
PWM (Pulse Width Modulator)
SCI (Serial Communication Interface)
SPI (Serial Peripheral Interface)
TIM (Timer Module)
VREG (Voltage Regulator)

MC9S12D32 ATD (Analog to Digital Converter)
CRG (Clock and Reset Generator)
ECT (Enhanced Capture Timer)
EETS (EEPROM)
FTS (Flash)
MEBI (Multiplexed External Bus Interface)
MSCAN (Motorola Scalable CAN)
PIM (Port Integration Module)
PWM (Pulse Width Modulator)
SCI (Serial Communication Interface)
SPI (Serial Peripheral Interface)
VREG (Voltage Regulator)

MC9S12D64 ATD (Analog to Digital Converter)
CRG (Clock and Reset Generator)
ECT (Enhanced Capture Timer)
EETS (EEPROM)
FTS (Flash)
IIC (Inter-IC Bus)
MEBI (Multiplexed External Bus Interface)
MSCAN (Motorola Scalable CAN)
PIM (Port Integration Module)
PWM (Pulse Width Modulator)
SCI (Serial Communication Interface)
SPI (Serial Peripheral Interface)
VREG (Voltage Regulator)

Table 1: Supported Derivatives

Derivative Name Modules
DM–508 Debugger Manual

Full Chip Simulation
Supported Derivatives
MC9S12DB128A ATD (Analog to Digital Converter)
BF (Byteflight)
CRG (Clock and Reset Generator)
ECT (Enhanced Capture Timer)
EETS (EEPROM)
FTS (Flash)
MEBI (Multiplexed External Bus Interface)
MSCAN (Motorola Scalable CAN)
PIM (Port Integration Module)
PWM (Pulse Width Modulator)
SCI (Serial Communication Interface)
SPI (Serial Peripheral Interface)
VREG (Voltage Regulator)

MC9S12DB128B ATD (Analog to Digital Converter)
BF (Byteflight)
CRG (Clock and Reset Generator)
ECT (Enhanced Capture Timer)
EETS (EEPROM)
FTS (Flash)
MEBI (Multiplexed External Bus Interface)
MSCAN (Motorola Scalable CAN)
PIM (Port Integration Module)
PWM (Pulse Width Modulator)
SCI (Serial Communication Interface)
SPI (Serial Peripheral Interface)
VREG (Voltage Regulator)

Table 1: Supported Derivatives

Derivative Name Modules
Debugger Manual DM–509

Full Chip Simulation
Supported Derivatives
MC9S12DG128B ATD (Analog to Digital Converter)
CRG (Clock and Reset Generator)
ECT (Enhanced Capture Timer)
EETS (EEPROM)
FTS (Flash)
IIC (Inter-IC Bus)
MEBI (Multiplexed External Bus Interface)
MSCAN (Motorola Scalable CAN)
PIM (Port Integration Module)
PWM (Pulse Width Modulator)
SCI (Serial Communication Interface)
SPI (Serial Peripheral Interface)
VREG (Voltage Regulator)

MC9S12DG256B ATD (Analog to Digital Converter)
CRG (Clock and Reset Generator)
ECT (Enhanced Capture Timer)
EETS (EEPROM)
FTS (Flash)
IIC (Inter-IC Bus)
MEBI (Multiplexed External Bus Interface)
MSCAN (Motorola Scalable CAN)
PIM (Port Integration Module)
PWM (Pulse Width Modulator)
SCI (Serial Communication Interface)
SPI (Serial Peripheral Interface)
VREG (Voltage Regulator)

Table 1: Supported Derivatives

Derivative Name Modules
DM–510 Debugger Manual

Full Chip Simulation
Supported Derivatives
MC9S12DJ128B ATD (Analog to Digital Converter)
BLCD (J1850 Bus)
CRG (Clock and Reset Generator)
ECT (Enhanced Capture Timer)
EETS (EEPROM)
FTS (Flash)
IIC (Inter-IC Bus)
MEBI (Multiplexed External Bus Interface)
MSCAN (Motorola Scalable CAN)
PIM (Port Integration Module)
PWM (Pulse Width Modulator)
SCI (Serial Communication Interface)
SPI (Serial Peripheral Interface)
VREG (Voltage Regulator)

MC9S12DJ256B ATD (Analog to Digital Converter)
BLCD (J1850 Bus)
CRG (Clock and Reset Generator)
ECT (Enhanced Capture Timer)
EETS (EEPROM)
FTS (Flash)
IIC (Inter-IC Bus)
MEBI (Multiplexed External Bus Interface)
MSCAN (Motorola Scalable CAN)
PIM (Port Integration Module)
PWM (Pulse Width Modulator)
SCI (Serial Communication Interface)
SPI (Serial Peripheral Interface)
VREG (Voltage Regulator)

Table 1: Supported Derivatives

Derivative Name Modules
Debugger Manual DM–511

Full Chip Simulation
Supported Derivatives
MC9S12DJ64 ATD (Analog to Digital Converter)
BLCD (J1850 Bus)
CRG (Clock and Reset Generator)
ECT (Enhanced Capture Timer)
EETS (EEPROM)
FTS (Flash)
IIC (Inter-IC Bus)
MEBI (Multiplexed External Bus Interface)
MSCAN (Motorola Scalable CAN)
PIM (Port Integration Module)
PWM (Pulse Width Modulator)
SCI (Serial Communication Interface)
SPI (Serial Peripheral Interface)
VREG (Voltage Regulator)

MC9S12DP256B ATD (Analog to Digital Converter)
BLCD (J1850 Bus)
CRG (Clock and Reset Generator)
ECT (Enhanced Capture Timer)
EETS (EEPROM)
FTS (Flash)
IIC (Inter-IC Bus)
MEBI (Multiplexed External Bus Interface)
MSCAN (Motorola Scalable CAN)
PIM (Port Integration Module)
PWM (Pulse Width Modulator)
SCI (Serial Communication Interface)
SPI (Serial Peripheral Interface)
VREG (Voltage Regulator)

Table 1: Supported Derivatives

Derivative Name Modules
DM–512 Debugger Manual

Full Chip Simulation
Supported Derivatives
MC9S12DP512 ATD (Analog to Digital Converter)
BLCD (J1850 Bus)
CRG (Clock and Reset Generator)
ECT (Enhanced Capture Timer)
EETS (EEPROM)
FTS (Flash)
IIC (Inter-IC Bus)
MEBI (Multiplexed External Bus Interface)
MSCAN (Motorola Scalable CAN)
PIM (Port Integration Module)
PWM (Pulse Width Modulator)
SCI (Serial Communication Interface)
SPI (Serial Peripheral Interface)
VREG (Voltage Regulator)

MC9S12DT128B ATD (Analog to Digital Converter)
CRG (Clock and Reset Generator)
ECT (Enhanced Capture Timer)
EETS (EEPROM)
FTS (Flash)
IIC (Inter-IC Bus)
MEBI (Multiplexed External Bus Interface)
MSCAN (Motorola Scalable CAN)
PIM (Port Integration Module)
PWM (Pulse Width Modulator)
SCI (Serial Communication Interface)
SPI (Serial Peripheral Interface)
VREG (Voltage Regulator)

Table 1: Supported Derivatives

Derivative Name Modules
Debugger Manual DM–513

Full Chip Simulation
Communication Modules
Communication Modules

BF (Byteflight)

The I/O device Byteflight (BF) is not simulated.

BLCD (J1850 Bus)

The I/O device J1850 Bus (BLCD) is not simulated.

MSCAN (Motorola Scalable CAN)

The I/O device Motorola Scalable CAN (MSCAN) is not simulated.

IIC (Inter-IC Bus)

The I/O device Inter-IC Bus (IIC) is not simulated.

SCI (Serial Communication Interface)

This I/O device simulates the Serial Communication Interface (SCI). The
not memory mapped registers ‘SCIInput/SCIInputH’ and ‘SerialInput’

MC9S12DT256B ATD (Analog to Digital Converter)
CRG (Clock and Reset Generator)
ECT (Enhanced Capture Timer)
EETS (EEPROM)
FTS (Flash)
IIC (Inter-IC Bus)
MEBI (Multiplexed External Bus Interface)
MSCAN (Motorola Scalable CAN)
PIM (Port Integration Module)
PWM (Pulse Width Modulator)
SCI (Serial Communication Interface)
SPI (Serial Peripheral Interface)
VREG (Voltage Regulator)

Table 1: Supported Derivatives

Derivative Name Modules
DM–514 Debugger Manual

Full Chip Simulation
Communication Modules
serve to send characters to the SCI Module. The not memory mapped
registers ‘SCIOutput/SCIOutputH’ and ‘SerialOutput’ contain the
characters sent from to the SCI Module.

Registers

SC0BDH (SCI Baud Rate Register High)

SBR12, SBR11, SBR10, SBR9 and SBR8 are simulated.

SC0BDL (SCI Baud Rate Register Low)

SBR7, SBR6, SBR5, SBR4, SBR3, SBR2, SBR1 and SBR0 are simulated.

SC0CR1 (SCI Control Register 1)

M and ILT are simulated.

SC0CR2 (SCI Control Register 2)

TIE, TCIE, RIE, ILIE, TE, RE and SBK are simulated.

SC0SR1 (SCI Status Register 1)

TDRE, TC, RDRF, IDLE and OR are simulated.

SC0SR2 (SCI Status Register 2)

RAF is simulated.

SC0DRH (SCI Data Register High)

R8 and T8 are simulated.

SC0DRL (SCI Data Register Low)

R7/T7, R6/T6, R5/T5, R4/T4, R3/T3, R2/T2, R1/T1 and R0/T0 are
simulated.

Not memory mapped registers

SCIInput

This is a not memory mapped register and will serve to send a character to
the SCI. This value will be received from the SCI and can be read through
a read access to the SCDR. The ninth bit is taken from the SCIInputH
register. A read access to SCIInput has no specified meaning.
Debugger Manual DM–515

Full Chip Simulation
Communication Modules
Bit 7..0 character send to the SCI.

SCIInputH

This is a not memory mapped register and will serve to send a character to
the SCI. It contains the ninth bit. This register must be written before the
SCIInput register. A read access to SCIInputH has no specified meaning.

Bit 0 ninth bit send to the SCI.

SCIOutput

This is a not memory mapped register and will serve to receive a character
which is sent from the SCI. The value received in the SCIOutput is
triggered through a write access to the SCDR. The ninth bit is written to the
SCIOutputH register. A write access to SCIOutput has no specified
meaning.

Bit 7..0 character send from the SCI.

SCIOutputH

This is a not memory mapped register and will serve to receive a character
which is sent from the SCI. It contains the ninth bit. A write access to
SCIOutput has no specified meaning.

Bit 0 ninth bit send from the SCI

SerialInput

This not memory mapped register is a alias for the SCIInput register and
serve to connect the SCI to the terminal window. The ninth bit is not
supported. A read access to SerialInput has no specified meaning.

Bit 7..0 data from terminal window to SCI

SerialOutput

This not memory mapped register is a alias for the SCIOutput register and
serve to connect the SCI to the terminal window. The ninth bit is not
supported. A write access to SerialOutput has no specified meaning.

Bit 7..0 data sent from SCI to terminal window
DM–516 Debugger Manual

Full Chip Simulation
Converter Modules
SPI (Serial Peripheral Interface)

This I/O device simulates the Serial Peripheral Interface (SPI).

Registers

SPICR1 (SPI Control Register 1)

SPIE, SPE, MSTR, CPOL, CPHA and LSBFE are simulated.

SPICR2 (SPI Control Register 2)

SPISWAI and SPC0 are simulated.

SPIBR (SPI Baud Rate Register)

SPPR2, SPPR1, SPPR0, SPR2, SPR1 and SPR0 are simulated.

SPISR (SPI Status Register)

SPIF, SPTEF and MODF are simulated.

SPIDR (SPI Data Register)

Bit 7..0 are simulated.

Not memory mapped registers

SPIValue

This is a not memory mapped register and will serve to sent and receive
(swap) a character from and to the SPI.

Bit 7..0 data sent from/to SPI

Converter Modules

ATD (Analog to Digital Converter)

This I/O device simulates the Analog to Digital Converter (ATD). The
analog inputs are reachable separately through the object pool. They are
called PAD0 to PAD7. For the ATD module 1, PAD0 input corresponds to
the PAD8 pin of the microcontroller.
Debugger Manual DM–517

Full Chip Simulation
Converter Modules
Conversion Results

The analog inputs of ATD module are simulated as 8-bit logic values.
Therefore, the simulation of the conversion itself only has a limited
interest. The conversion result will be an image of the simulated input.

For the unsigned, right justified 8-bit conversion, the result displayed in the
corresponding data register will be the exact image of the input.

Still, the simulation is accurate on the conversion delays, the modification
that affect the input (8-10 bits, left/right justified, signed/unsigned), the
data registers in which the conversion results should be transferred and
gives a precise image on how the ATD modules should be configured for
proper conversion process.

Registers

ATDCTL2 (ATD Control Register 2)

ADPU, AFFC, AWAI, ETRIGLE, ETRIGP, ETRIGE, ASCIE and ASCIF
are simulated.

ATDCTL3 (ATD Control Register 3)

S8C, S4C, S2C and S1C are simulated.

ATDCTL4 (ATD Control Register 4)

SRES8, SMP1, SMP0, PRS4, PRS3, PRS2, PRS1 and PRS0 are simulated.

ATDCTL5 (ATD Control Register 5)

DJM, DSGN, SCAN, MULT, CC, CB and CA are simulated.

ATDSTAT0 (ATD Status Register 0)

SCF, ETORF, FIFOR, CC2, CC1 and CC0 are simulated.

ATDSTAT1 (ATD Status Register 1)

CCF7, CCF6, CCF5, CCF4, CCF3, CCF2, CCF1 and CCF0 are simulated.

ATDDIEN (ATD Input Enable Register)

IEN7, IEN6, IEN5, IEN4, IEN3, IEN2, IEN1 and IEN0 are simulated.
DM–518 Debugger Manual

Full Chip Simulation
Memory Modules
PORTAD (Port Data Register)

PTAD7, PTAD6, PTAD5, PTAD4, PTAD3, PTAD2, PTAD1, PTAD0 are
simulated.

ATDDRx (ATD Conversion Result Registers)

Fully simulated.

Not memory mapped registers

PADx

This are eight not memory mapped registers that will serve to be the
‘measured’ values for the ATD. The format of each 4 bytes big PAD is
IEEE32. To setup a PAD easier the following command can be used:

ATDx_SETPAD <CHANNEL> <VOLATGE AS FLOAT>

Memory Modules

EETS (EEPROM)

The I/O device EEPPROM (EETS) is not simulated.

FTS (Flash)

The I/O device Flash (FTS) is not simulated.

Misc. Modules

VREG (Voltage Regulator)

The I/O device Voltage Regulator (VREG) is not simulated.
Debugger Manual DM–519

Full Chip Simulation
Port I/O Modules
Port I/O Modules

MEBI (Multiplexed External Bus Interface)

This I/O device simulates the Multiplexed External Bus Interface (MEBI).
The MEBI block is part of the Core and its description can be found in the
CORE manual. This block controls the behavior of the ports A, B, E and K,
the IRQ and XIRQ signals and the operating mode of the Core (normal/
extended/special…).

In the simulator, only the single chip mode is simulated. Therefore ports A
and B cannot be used as external bus lines.

Only the I/O behavior of the ports is simulated, except for port E. The IRQ
and XIRQ functionality going through port E pins 0 and 1 are simulated
together with the various I/O enabling conditions of the port E pins
described in the PEAR register. When a port E pin is not selected as a I/O
pin, it stays at 0, other functionality are not simulated.

PIM (Port Integration Module)

This I/O device simulates the Port Integration Module (PIM). The PIM
module controls all the ports that are not directly associated to the CORE.
All registers present in the PIM module are port specific apart from the
MODRR register that affects ports S, P, M, J and H. All port specific
registers have been implemented together with the interrupt logic
associated.

Timer Modules

CRG (Clock and Reset Generator)

This I/O device simulates the Clock and Reset Generator (CRG). The
simulated parts of the CRG are the PLL, RTI and COP. Additional features
of the CRG such as hardware failures of the oscillator system are not
simulated.

The PLL output clock frequency (PLLCLK) = 2 OSCCLK ? (SYNR + 1)/
(REFDV + 1). The PLL block is considered as a frequency converter, other
functionality of the PLL in the hardware have been ignored.
DM–520 Debugger Manual

Full Chip Simulation
Timer Modules
Reference Clock

The reference clock of the CRG module is CLK24 given at the output. The
CLK3 and CLK23 clocks are not simulated.

When PLLSEL is set to 0, the oscillator clock frequency (used by the RTI
and COP) is the same as the reference clock frequency.

When PLLSET is set to 1, OSCCLK frequency = CLK24 * (REFDV + 1) /
(2 * (SYNR + 1)).

As some systems might not work for a CLK24 frequency less than the
OSCCLK frequency on the hardware, the simulation does not accept it and
a warning message is generated.

Any OSCCLK frequency set to be greater than the CLK24 frequency will
have the same frequency as the CLK24.

Blocks

PLL (Phase lock Loop)

The clock divider functionality of the PLL are fully simulated, this includes
the REFDV and the SYNR registers and the PLLSEL bit in the CLKSEL
register.

Changing the value of the PLLSEL bit will automatically update the COP
and the RTI events, this may cause cycle irregularities as described in the
manual. For proper use of the COP and RTI, these modules should be
enabled after changing PLLSEL.

A stabilization time is simulated for the PLL, it ranges from 100 to 1500
clock cycles after REFDV or SYNR registers have been modified.

Setting PLLSEL to ‘1’ before this stabilization time elapses will generate a
warning message. The simulator will operate properly but the
corresponding program might not work on the hardware.

RTI (Real Time Interrupt) and COP

The reference clock for theses event is CLK24, if OSCCLK is different
from CLK24, the RTI and COP period will be adapted to the clock
difference.
Debugger Manual DM–521

Full Chip Simulation
Timer Modules
Registers

SYNR (CRG Synthesizer Register)

SYN5, SYN4, SYN3, SYN2, SYN1 and SYN0 are simulated.

REFDV (CRG Reference Divider Register)

REFDV3, REFDV2, REFDV1 and REFDV0 are simulated.

CRGFLG (CRG Flags Register)

RTIF is simulated.

CRGINT (CRG Interrupt Enable Register)

RTIE is simulated.

CLKSEL (CRG Clock Select Register)

PLLSEL is simulated.

PLLCTL (CRG PLL Control Register)

Not simulated.

RTICTL (CRG RTI Control Register)

RTR6, RTR5, RTR4, RTR3, RTR2, RTR1 and RTR0 are simulated.

COPCTL (CRG COP Control Register)

WCOP, RSBCK, CR2, CR1 and CR0 are simulated.

ARMCOP (CRG COP Timer Arm/Reset Register)

Fully simulated.

ECT (Enhanced Capture Timer)

This I/O device simulates the Enhanced Capture Timer (ECT). The various
functionality are cycle accurate up to 99%. The simulation might differ
from the hardware concerning the pipelining of the instructions; some
interruptions might be raised with a delay of one instruction.

The function with error detected in the hardware are not simulated, one
mode of operation being used as default, further information are given in
the case of not implemented features.
DM–522 Debugger Manual

Full Chip Simulation
Timer Modules
Modes of operation

NORMAL and STOP mode are implemented, when entering the FREEZE
or WAIT mode, the system behaves like in STOP mode.

Registers

TIOS (Timer Input Capture/Output Compare Select Register)

IOS7, IOS6, IOS5, IOS4, IOS3, IOS2, IOS1 and IOS0 are simulated.

CFORC (Timer Compare Force Register)

FOC7, FOC6, FOC5, FOC4, FOC3, FOC2, FOC1 and FOC0 are
simulated.

OC7M (Output Compare 7 Mask Register)

OC7M7, OC7M6, OC7M5, OC7M4, OC7M3, OC7M2, OC7M1 and
OC7M are simulated.

OC7D (Output Compare 7 Data Register)

OC7D7, OC7D6, OC7D5, OC7D4, OC7D3, OC7D2, OC7D1 and OC7D0
are simulated.

TCNT (Timer Count Register)

Partly simulated: In the test mode TCNT is not writable.

TSCR1 (Timer System Control Register 1)

TEN and TFFCA are simulated.

TTOV (Timer Toggle On Overflow Register 1)

TOV7, TOV6, TOV5, TOV4, TOV3, TOV2, TOV1 and TOV0 are
simulated.

TCTL1/TCTL2 (Timer Control Register 1-2)

OM7, OL7, OM6, OL6, OM5, OL5, OM4, OL4,

OM3, OL3, OM2, OL2, OM1, OL1, OM0 and OL0 are simulated.

TCTL3/TCTL4 (Timer Control Register 3-4)

EDG7B, EDG7A, EDG6B, EDG6A, EDG5B, EDG5A, EDG4B, EDG4A,
Debugger Manual DM–523

Full Chip Simulation
Timer Modules
EDG3B, EDG3A, EDG2B, EDG2A, EDG1B, EDG1A, EDG0B and
EDG0 are simulated.

TIE (Timer Interrupt Enable Register)

C7I, C6I, C5I, C4I, C3I, C2I, C1I and C0I are simulated.

TSCR2 (Timer System Control Register 2)

TOI, TCRE, PR2, PR1 and PR0 are simulated.

TFLG1 (Main Timer Interrupt Flag 1)

C7F, C6F, C5F, C4F, C3F, C2F, C1F and C0F are simulated.

TFLG2 (Main Timer Interrupt Flag 2)

TOF is simulated.

TCx (Timer Input Capture/Output Compare Registers 0-7)

Fully simulated

PACTL (16-Bit Pulse Accumulator A Control Register)

PAEN, PEDGE and PAOVI are simulated.

PAFLG (Pulse Accumulator A Flag Register)

PAOVF is simulated.

PACN3, PACN2 (Pulse Accumulators Count Registers 2-3)

Fully simulated.

PACN1, PACN0 (Pulse Accumulators Count Registers 0-1)

Fully simulated.

MCCTL (16-Bit Modulus Down-Counter Control Register)

MCZI, MODMC, RDMCL, ICLAT, FLMC, MCEN, MCPR1 and MCPR0
are simulated.

MCFLG (16-Bit Modulus Down-Counter FLAG Register)

MCZF, POLF3, POLF2, POLF1 and POLF0 are simulated.
DM–524 Debugger Manual

Full Chip Simulation
Timer Modules
ICPAR (Input Control Pulse Accumulators Register)

PA3EN, PA2EN, PA1EN and PA0EN are simulated.

DLYCT (Delay Counter Control Register)

Not simulated.

ICOVW (Input Control Overwrite Register)

NOVW7, NOVW6, NOVW5, NOVW4, NOVW3, NOVW2, NOVW1 and
NOVW0 are simulated.

ICSYS (Input Control System Control Register)

SH37, SH26, SH15, SH04, TFMOD, PACMX, BUFEN and LATQ are
simulated.

PBCTL (16-Bit Pulse Accumulator B Control Register)

PBEN and PBOVI are simulated.

PBFLG (Pulse Accumulator B Flag Register)

PBOVF is simulated.

PA3H–PA0H (8-Bit Pulse Accumulators Holding Registers 0-3)

Fully simulated.

MCCNT (Modulus Down-Counter Count Register)

Fully simulated

TC0H-TC3H (Timer Input Capture Holding Registers 0-3)

Fully simulated.

Not memory mapped registers

PORTT (Port T)

The functionality linking the PWM module and the port T have been
simulated; the register involved is PTT (Port T I/O Register).

PORTTBitx

The pins are simulated as ‘not memory mapped’ and can be accessed one
by one through the object pool (PORTTBit0 to PORTTBit7).
Debugger Manual DM–525

Full Chip Simulation
Timer Modules
PWM (Pulse Width Modulator)

This I/O device simulates the Pulse Width Modulator (PWM). PWM with
8 and 6 channels are supported. The PWM with 6 channel is a subset of the
other one and has fewer registers and in some registers less bits are used.

The simulation is accurate up to one instruction; this limitation is due to the
different pipelining of instruction in the hardware and in the simulation.

However, the simulation strictly respects the period and the duty time of
the generated pulses.

Changing control registers while the counters are running causes
irregularities on the hardware outputs and cycle duration. Irregularities are
present in the simulation as well but these irregularities might differ from
the one encountered in the hardware. For proper use of the module,
channels should be disabled (PWME register) and the counter reset
(PWMCNTx registers) before modifying the corresponding control register
(clock selection, period settings etc.) as described in the manual.

Clock Select

Scalers and prescalers are simulated for the clock selection. Changing
clock control bits while channels are operating can cause irregularities, that
affects the time until the next end of a period (and duty) and the value
displayed in the PWN counter registers.

Polarity, Duty and Period

It is important to notice the information given in the inspector component,
concerning the various events. The two types of event used in the PWM
module are the “Duty” and “Period” events.

In left aligned mode:

• The “End of Period Time” represents the number of bus clock cycles to
come before the counter is reset.

• The “End of Duty Time” represents the number of bus clock cycles to
come before the output changes state.

In center aligned mode:

• The “End of Period Time” represents the number of bus clock cycles to
come before the counter changes state. This means that the “event
period” is half the effective period of the centered output waveform.
DM–526 Debugger Manual

Full Chip Simulation
Timer Modules
• The “End of Duty Time” represents the number of bus clock cycles to
come before the output changes state. A “End of Duty Time” is set after
the end of each “Period Event”.

Registers

PWME (PWM Enable Register)

PWME7, PWME6, PWME5, PWME4, PWME3, PWME2, PWME1 and
PWME0 are simulated.

PWMPOL (PWM Polarity Register)

PPOL7, PPOL6, PPOL5, PPOL4, PPOL3, PPOL2, PPOL1 and PPOL0 are
simulated.

PWMCLK (PWM Clock Select Register)

PCLK7, PCLKL6, PCLK5, PCLK4, PCLK3, PCLK2, PCLK1 and PCLK0
are simulated.

PWMPRCLK (PWM Prescale Clock Select Register)

PCKB2, PCKB1, PCKB0, PCKA2, PCKA1 and PCKA0 are simulated.

PWMCAE (PWM Center Align Enable Register)

CAE7, CAE6, CAE5, CAE4, CAE3, CAE2, CAE1, CAE0 are simulated.

PWMCTL (PWM Control Register)

CON45, CON23 and CON01 are simulated. PFRZ is not simulated but the
system will act as if PFRZ is always set to 1.

PWMSCLA (PWM Scale A Register)

Fully simulated.

PWMSCLB (PWM Scale B Register)

Fully simulated.

PWMCNTx (PWM Channel Counter Registers 0-5/7)

Fully simulated.

PWMPERx (PWM Channel Period Registers 0-5/7)

Fully simulated.
Debugger Manual DM–527

Full Chip Simulation
Timer Modules
PWMDTYx (PWM Channel Duty Registers 0-5/7)

Fully simulated.

PWMSDN (PWM Shutdown Register)

PWMIF, PWMIE, PWMRSTRT, PWMLVL, PWM7IN, PWM7INL and
PWM7EN are simulated.

Not memory mapped registers

PORTP (Port P)

The functionality linking the PWM module and the port P have been
simulated; the register involved is PTP (Port P I/O Register).

PWMoutx

As in the hardware, writing to PTP has no effect. The input pins are
simulated as ‘not memory mapped’ and can be accessed one by one
through the object pool (PWMout0 to PWMout7). Only the PWMout7 pin
can be configured as an input. Writing to the other pins has no effect.

TIM (Timer Module)

This I/O device simulates the Timer Module (TIM). This module can be
viewed as a subset of the ECT module. The TIM for example has only two
Pulse Accumulator Count Registers and they are called PACNT_H and
PACNT_L. Both registers are fully simulated. For more information see
ECT (Enhanced Capture Timer).
DM–528 Debugger Manual

Full Chip Simulation Tutorials
Guess the number
16
Full Chip Simulation
Tutorials

This chapter contains a tutorial how to use the Full Chip Simulation. The
tutorial is split up into small steps. After completing the last step a full
functional example should exist.

This chapter contains the following sections:

• Guess the number

• PWM Channel 0

Guess the number
We are going to create step by step the demo run in the executive tutorial.
The application makes use of the SCI (Serial Communication Interface)
and a terminal window from the debugger. At the end the user can guess a
number between 0 and 9. This guessing is done via terminal window. The
produced application will run on real hardware as well.

Step 1 - Environment setup
• The tutorial is using Prcessor Expert, you can get a free Processor

Expert licence (Special Edition) from www.metrowerks.com.

• In order to run the produced example on real hardware, you will need a
serial cable. This cable must connect COM1 (PC) with the SCI0
(Hardware Board).

Step 2 - Creating the project
• Launch the ‘CodeWarrior IDE’

• In the CodeWarrior menu, Select File > New
Debugger Manual DM–529

Full Chip Simulation Tutorials
Guess the number
• Make sure the ‘Project’ tab is active, Select HC(S)12 New Project
Wizard

• Enter a project name like ‘MyGuessTheNumber’

• Change the directory if you want (Location, Set…)

• Click OK. The project wizard opens to let you select the device,
language, etc.

• Select a derivative like ‘MC9S12DP256B’ and click Next.
• Select ‘C’ for the language and click Next.
• Select ‘Yes’ for Processor Expert support and click Next.
• Select ‘No’ for PCLint support and click Next.
• Select ‘float is IEEE 32 and double is IEEE 32’ and click Next.
• Select ‘Metrowerks Full Chip Simulator’ and click Finish.

A new project is created using the wizard and the Processor Expert is
available. Several windows should be visible:

Figure 16.1 Created project
DM–530 Debugger Manual

Full Chip Simulation Tutorials
Guess the number
Step 3 - ‘Target CPU’ window

The ‘Target CPU’ window in the center shows a footprint of the processor
selected for the development. In the device, we see the different on-chip
modules such as CPU, Timer, A/D converter. Modules with an icon
attached to them are modules used by the application. The pins that are
used to connect external functions are indicated by a line and an icon,
symbol of the function attached (CPU and Port A).

Figure 16.2 ‘Target CPU’ window

Optional:

• Place the cursor of the mouse on the pins to see a description of their
functions.

• Enlarge the ‘Target CPU’ window and you will see different on-chip
modules.
Debugger Manual DM–531

Full Chip Simulation Tutorials
Guess the number
Step 4 - ‘Bean Selector’ window

The ‘Bean Selector’ window offers the developer a list of beans to add to
the project. Some of the beans may not be usable with the version of
CodeWarrior installed. The Standard and Professional Editions offer a
wider range of hardware and software beans than the Special Edition.

• Select ‘Bean Categories’ > ‘CPU internal peripherals’ >
‘Communication’ > ‘AsynchroSerial’

Figure 16.3 Selection of the ‘AsynchroSerial’ bean

Step 5 - ‘Project Panel’ window

The ‘Project Panel’ window shows and keeps track of the beans that have
been created for this application. This Panel is a tab of the Project
Manager window. A click on the [+] next to a bean shows a list of
methods and/or events related to the bean. A green tick indicate if the
named methods or event is selected and a red cross that code has not been
generated.
DM–532 Debugger Manual

Full Chip Simulation Tutorials
Guess the number
Figure 16.4 The ‘Project Panel’

Under ‘Beans’ you should find the previously created bean with the name
‘AS1:AsynchroSerial’.

Step 6 - ‘Bean Inspector AS1:AsynchroSerial’
window

In this window you can modify the behavior of the bean to your needs. In
the tab ‘Properties’ you will find general settings. Software drivers are
found under the tab ‘Methods’ and ‘Events’

• Select ‘Properties’ tab

• Enter a proper baud rate. If you want to run it on real hardware check
your board manual for the right value. If you want to run it on the
Simulator only you can enter ‘9600’.
Debugger Manual DM–533

Full Chip Simulation Tutorials
Guess the number
Figure 16.5 The ‘Bean Inspector’ window

Step 7 - Generation of driver code

We are going to generate the code for the I/O drivers and the files for the
user code.

• Select the ‘Make’ icon in the Project Manager window (or the menu
bar Project > Make or [F7]).

Processor Expert shows several messages. One message indicates that we
have started the code generation. The second message shows the progress
with the information processed and the code generated. Another window
shows compiling and linking progress.

Step 8 - Verification of the files created

We can verify the folders created by Processor Expert:

‘User Modules’

A file “MyGuessTheNumber.C” that is the placeholder for the main
procedure and any other procedure desired by the user. These other
procedures can of course be placed in additional files.
DM–534 Debugger Manual

Full Chip Simulation Tutorials
Guess the number
‘Generated Code’

The .C files for the code associated with the beans added to the project.
This includes initialization, input, output and the declarations necessary for
the use of the functions.

Step 9 - Entering the user code
• Open the user module “MyGuessTheNumber.C“

• Insert the following code before the main routine.

#include <stdlib.h>
void PutChar(unsigned char c) {
 while (AS1_SendChar(c) == ERR_TXFULL) {
 // could wait a bit here
 }
}
void PutString(const char* str) {
 while (str[0] != '\0') {
 PutChar(str[0]);
 str++;
 }
}

void GuessTheNumber(void) {
 int ran = rand() / (RAND_MAX / 9);
 AS1_Init();

 PutString("Guess a Number between 0 and 9\n");
 PutString("Number: ");
 for (;;) {
 unsigned char c;
 if (AS1_RecvChar(&c) == ERR_OK) {
 PutChar(c); PutChar(' ');
 if(c < '0' || c > '9') {
 PutString("not a number, try again\n");
 } else if(c == ran + '0') {
 PutString("\nCongratulation! You have found the number!");
 PutString("\nGuess a new number\n");
 ran = rand() / (RAND_MAX / 9);
 } else if(c > ran + '0') {
 PutString("lower\n");
 } else {
 PutString("greater\n");
 }
 PutString("Number: ");
 } else {
 // could wait a bit here
Debugger Manual DM–535

Full Chip Simulation Tutorials
Guess the number
 }
 } // for
}

• Call the function GuessTheNumber in the main routine.

void main(void) {

 /*** Processor Expert internal initialization. DON'T REMOVE THIS CODE!!! ***/
 PE_low_level_init();
 /*** End of Processor Expert internal initialization. ***/

 /*Write your code here*/
 GuessTheNumber();

 /*** Processor Expert end of main routine. DON'T MODIFY THIS CODE!!! ***/
 for(;;);
 /*** Processor Expert end of main routine. DON'T WRITE CODE BELOW!!! ***/
} /*** End of main routine. DO NOT MODIFY THIS TEXT!!! ***/

Step 10 - Run

The application is now finished and we can launch it. Make sure you have
chosen the Simulator Target.

• Select the ‘Debug’ icon in the Project Manager window (or the menu
bar Project > Debug or [F5]).

• Select ‘Component > Open’ in the debugger and open the ‘Terminal’
component.

• Select the ‘Save’ icon in debugger (or the menu bar File > Save
Configuration) to save the window layout.

• Select the ‘Debug’ icon in debugger (or the menu bar Run > Start/
Continue or [F5]).
DM–536 Debugger Manual

Full Chip Simulation Tutorials
PWM Channel 0
Figure 16.6 The Final Application

PWM Channel 0
We are going to create step by step the demo run in the executive tutorial.
The application makes use of the PWM (Pulse Width Accumulator). With
the final application you will be able to change the period and duty time of
the PWM and you will see the changes displayed in a chart.

Step 1 - Environment setup
• The tutorial is using Prcessor Expert, you can get a free Processor

Expert licence (Special Edition) from www.metrowerks.com.

Step 2 - Creating the project
• Launch the ‘CodeWarrior IDE’
• In the CodeWarrior menu, Select File > New
Debugger Manual DM–537

Full Chip Simulation Tutorials
PWM Channel 0
• Make sure the ‘Project’ tab is active, Select HC(S)12 New Project
Wizard

• Enter a project name like ‘MyPWMChannel0’

• Change the directory if you want (Location, Set…)

• Click OK. The project wizard opens to let you select the device,
language, etc.

• Select a derivative like ‘MC9S12DP256B’ and click Next.
• Select ‘C’ for the language and click Next.
• Select ‘Yes’ for Processor Expert support and click Next.
• Select ‘No’ for PCLint support and click Next.
• Select ‘none’ for floating point support and click Next.
• Select ‘Metrowerks Full Chip Simulator’ and click Finish.

A new project is created using the wizard and the Processor Expert is
available. Several windows should be visible:

Step 3 - ‘Target CPU’ window

The ‘Target CPU’ window in the center shows a footprint of the processor
selected for the development. In the device, we see the different on-chip
modules such as CPU, Timer, A/D converter. Modules with an icon
attached to them are modules used by the application. The pins that are
used to connect external functions are indicated by a line and an icon,
symbol of the function attached (CPU and Port A).

Optional:

• Place the cursor of the mouse on the pins to see a description of their
functions.

• Enlarge the ‘Target CPU’ window and you will see different on-chip
modules.

Step 4 - Creating the PWM Bean
• Select ‘Bean Categories’ > ‘CPU internal peripherals’ > ‘Timer’ >

‘PWM’

Step 5 - ‘Project Panel’ window

The ‘Project Panel’ window shows and keeps track of the beans that have
been created for this application. This Panel is a tab of the Project
Manager window. A click on the [+] next to a bean shows a list of
DM–538 Debugger Manual

Full Chip Simulation Tutorials
PWM Channel 0
methods and/or events related to the bean. A green tick indicate if the
named methods or event is selected and a red cross that code has not been
generated.

Under ‘Beans’ you should find the previously created bean with the name
‘PWM8:PWM’.

Step 6 - ‘Bean Inspector PWM8.PWM

In this window you can modify the behavior of the bean to your needs. In
the tab ‘Properties’ you will find general settings. Software drivers are
found under the tab ‘Methods’ and ‘Events’

• Select ‘Properties’ tab

• Select ‘Period’ and enter ‘100’ms

• Select ‘Starting pulse width’ and enter ‘10’ms

Step 7 - Generation of driver code

We are going to generate the code for the I/O drivers and the files for the
user code.

• Select the ‘Make’ icon in the Project Manager window (or the menu
bar Project > Make or [F7]).

Processor Expert shows several messages. One message indicates that we
have started the code generation. The second message shows the progress
with the information processed and the code generated. Another window
shows compiling and linking progress.

Step 8 - Verification of the files created

We can verify the folders created by Processor Expert.

‘User Modules’

A file “MyPWMChannel0.C” that is the placeholder for the main
procedure and any other procedure desired by the user. These other
procedures can of course be placed in additional files.
Debugger Manual DM–539

Full Chip Simulation Tutorials
PWM Channel 0
‘Generated Code’

The .C files for the code associated with the beans added to the project.
This includes initialization, input, output and the declarations necessary for
the use of the functions.

Step 9 - Entering the user code
• Open the user module “MyPWMChannel0.C“

• Replace the main routine with the following code.

volatile static byte pwmChannel[1];
volatile static unsigned int pwmRatio= 6939;
void main(void) {
 /*** Processor Expert internal initialization. DON'T REMOVE THIS CODE!!! ***/
 PE_low_level_init();
 /*** End of Processor Expert internal initialization. ***/

 /*Write your code here*/
 for(;;) {
 pwmChannel[0]= PTP_PTP0;
 void)PWM8_SetRatio16(pwmRatio);
 }

 /*** Processor Expert end of main routine. DON'T MODIFY THIS CODE!!! ***/
 for(;;);
 /*** Processor Expert end of main routine. DON'T WRITE CODE BELOW!!! ***/
} /*** End of main routine. DO NOT MODIFY THIS TEXT!!! ***/

Step 10 - Run

The application is now finished and we can launch it. Make sure you have
chosen the Simulator Target.

• Select the ‘Debug’ icon in the Project Manager window (or the menu
bar Project > Debug or [F5]).

• Select ‘Component > Open’ in the debugger and open the
‘VisualizationTool’ component.

In the following text we will create a nice visualization for our propose. All
has to be done in the VisualizationTool window. Make sure that you are in
the ‘Edit mode’ (switch with ‘Right mouse click’ > ‘Edit Mode’ or
[Ctrl-E])

• ‘Right mouse click’ > ‘Properties’
DM–540 Debugger Manual

Full Chip Simulation Tutorials
PWM Channel 0
Properties of the VisualizationTool

• Select for ‘Refresh Mode’ ‘CPU Cycles’

• Select for ‘Cycle Refresh Count’ ‘10000’

Now lets add a nice chart, where we can see the changing value of the
channel in a graphic.

• ‘Right mouse click’ > ‘Add New Instrument‘ > ‘Chart’
• ‘Double click’ on the ‘Chart’ to see the ‘Chart Properties’.

‘Chart’ Properties

• Select for ‘Kind of Port’ ‘Expression’

• Select for ‘Port to Display’ ‘pwmChannel[0]’
• Select for ‘High Display Value’ ‘2’

• Select for ‘Type of Unit’ ‘Target Periodical’
• Select for ‘Unit Size’ ‘1000’

• Select for ‘Numbers of Units’ ‘1000’

• Leave all others on default.

With the follwing bar we can change the period value of the PWM channel
0.

• ‘Right mouse click’ > ‘Add New Instrument‘ > ‘Bar’

• ‘Double click’ on the ‘Bar’ to see the ‘Bar Properties’.

‘Bar Properties’ for the period

• Select for ‘Kind of Port’ ‘Variable’

• Select for ‘Port to Display’
‘_PWMPER01.Overlap_STR.PWMPER0STR.Byte’

• Leave all others on default.

You might add labels with ‘Right mouse click’ > ‘Add New Instrument‘ >
‘Static Text’. Now lets add a bar to change the duty time.

• ‘Right mouse click’ > ‘Add New Instrument‘ > ‘Bar’

• ‘Double click’ on the ‘Bar’ to see the ‘Bar Properties’.

‘Bar Properties’ for the duty time

• Select for ‘Kind of Port’ ‘Variable’

• Select for ‘Port to Display’ ‘pwmRatio’

• Select for ‘High Display Value’ ‘65535’
Debugger Manual DM–541

Full Chip Simulation Tutorials
PWM Channel 0
• Leave all others on default.

Now lets leave the Edit mode and run the final application. First we might
save the window layout.

• ‘Right mouse click’ > ‘Edit Mode’ (or [Ctrl-E])
• Select the ‘Save’ icon in debugger (or the menu bar File > Save

Configuration) to save the window layout.

• Select the ‘Debug’ icon in debugger (or the menu bar Run > Start/
Continue or [F5]).

Figure 16.7 The Final Application
DM–542 Debugger Manual

Scripting
The Component Object Model Interface
17
Scripting

This chapter explains how to use the Debugger’s Component Object
Model (COM) Interface. The Debugger’s Interface inherits from
IDispatch. This enables the feature to control the Debugger from external
scripts. The script language can be any language that supports the
Component Object Model: e.g. Visual Basic Script, Perl, Java Script, etc.

This chapter contains the following sections:

• The Component Object Model Interface

• Manual Registration

• Scripting Example

• Remote Scripting another HI-WAVE

The Component Object Model Interface
The Interface Name is ”Metrowerks.Hiwave” and consists of two
methods. Both make the same except that the later one returns the result
message that the given command will produce.

Listing 17.1 Interface Methods

HRESULT ExecuteCmd([in] BSTR command);
HRESULT ExecuteCmdRes([in] BSTR command,
 [out, retval] BSTR *result);

Parameters:
command

For this command you can use the debugger commands that are specified
in the chapter Debugger Commands.
Debugger Manual DM–543

Scripting
Manual Registration
result

Returns the result message that the command produced. This is the same
message you would see in the command window when executing the
command.

Return Values:

If the method succeeds, the return value is S_OK.
If the method fails, the return value is an error.

Manual Registration

NOTE The Component Object Model Interface will be automatically registered
during the installation.

When executing the batch file bin/regservers.bat the Component Object
Model Interface from the Code Warrior Debugger will be explicitly
registered. Or use prog/hiwave.exe /RegServer.

Scripting Example
The following Visual Basic Script demonstrates the use of the Component
Object Model Interface from the CodeWarrior Debugger. This small
example will start the CodeWarrior Debugger (HI-WAVE), open a
command window, set the target interface to simulator and loads an
application named “filbo.abs”.

Listing 17.2 example.vbs

‘ Code Warrior Debugger COM Scripting Example

Dim h
Set h = CreateObject("Metrowerks.Hiwave")

h.ExecuteCmd("open command")

Dim result
result = h.ExecuteCmdRes("set sim")
DM–544 Debugger Manual

Scripting
Remote Scripting another HI-WAVE
If result <> "" Then
 msgbox result
End If

h.ExecuteCmd("load fibo.abs")

Remote Scripting another HI-WAVE
Its also possible to remote control another HI-WAVE from within a
running HI-WAVE. To do so open the component ComMaster. This will
add additional commands. You can see them by entering help in the
command window.

NOTE Make sure that the HI-WAVE you want to remote control is registered.

COM_START
Description The COM_START command starts another HI-WAVE. Its only possible

to start one HI-WAVE at once. If you want to have several remote HI-
WAVE applications simply open several ComMaster components.

Usage COM_START

Components ComMaster component.

Example

in>COM_START

The remote Debugger application is started.

COM_EXIT
Description This command will quit the started reomte HI-WAVE.

Usage COM_EXIT

Components ComMaster component.
Debugger Manual DM–545

Scripting
Remote Scripting another HI-WAVE
Example

in>COM_EXIT

The remote Debugger application is closed.

COM_EXE
Description With this command you can send commands to the remote HI-WAVE

Usage COM_EXE "<MyCommand>"

Components ComMaster component.

Example

in>COM_EXE “load fibo.abs“

Loads an application named “fibo.abs“ in the remote Debugger.
DM–546 Debugger Manual

18
Appendix

This chapter contains the followings sections:

• Messages in Status Bar

• EBNF Notation

• Constant Standard Notation

• Register Description File

• OSEK ORTI File Sample

• Bug Reports

• Technical Support

Messages in Status Bar
This section describes debugger status messages.

Status Messages

This section describes the different status messages.

READY

The Simulator/Debugger is ready and waits until a new target or
application is loaded. This message is generated once the Simulator/
Debugger has been started.

HALT

Program execution has been stopped by a request of the application. The
predefined macro HALT (defined in HIDEF.H) has been reached in the
application code during execution of the application.

Appendix
Messages in Status Bar
RUNNING

The application is currently executing in the Simulator/Debugger.

HALTED

Execution has been stopped on user request. The menu entry Run>Halt or
the Halt icon in the tool bar has been selected.

RESET

This message is generated when the Simulator/Debugger has been reset on
user request. The menu entry Simulator>Reset or the Reset icon in the
tool bar has been selected, or the reset command has been used.

HARDWARE RESET

This message is generated when the Simulator/Debugger has been Reset on
user request and when a target is specified. The menu entry
Simulator>Reset or the Reset icon in the tool bar has been selected, or the
Reset command has been used.

Stepping, Breakpoint and Watchpoints
Messages

This section describes the different Stepping, Breakpoint and Watchpoints
messages.

STEPPED

Program execution has been stopped after a single step at source level. The
menu entry Run>Single Step or the Single Step icon in the tool bar has
been selected.

STEPPED OVER

Execution has been stopped after stepping over a function call. The menu
entry Run>Step Over or the Step Over icon in the tool bar has been
selected.

STOPPED

Execution has been stopped after stepping out of a function call. The menu
entry Run>Step Out or the Step Out icon in the tool bar has been selected.
DM–548 Debugger Manual

Appendix
Messages in Status Bar
TRACED

Execution has been stopped after a single step at assembler level. The
menu entry Run>Assembly Step or the Assembly Step icon in the tool bar
has been selected.

BREAKPOINT

Program execution has been stopped because a breakpoint has been
reached.

WATCHPOINT

Execution has been stopped because a watchpoint has been reached. The
format from this message is:

Watchpoint at address: size

Where:

• address is the start address in memory where the watchpoint has been
defined.

• size is the size of the memory area where the watchpoint has been
defined.

The name of the variable is displayed (if available).

 CPU Specific Messages

Some error messages depend on the CPU used. These are messages related
to exceptions. The Simulator/Debugger make a distinction between
predefined exceptions (which have a specific meaning for all derivatives in
the CPU family) and user defined exceptions (which can be freely
configured by the user or does not have the same meaning for all
derivatives in the CPU family).

Format for exception message is:

Exception string | number

Where:

• string describes the reason for the exception. This string is only
specified when a predefined exception is detected.
Debugger Manual DM–549

Appendix
Messages in Status Bar
• number is the entry in the vector table that generates the exception.
This number is only specified when a user defined exception is
detected.

Two exceptions are treated differently; the address error and the bus error
exception.

ADDRESS ERROR

An address error exception for the target processor has been generated.
Check your hardware manual for the reason of the Address Error
Exception.

BUS ERROR

A bus error exception for the target processor has been generated. Check
your hardware manual for the reason of the Bus Error Exception.

OTHER EXCEPTION

An exception has been generated for a vector that is not associated with an
interrupt function.

Possible reasons:

• You have forgotten to disable an interrupt source. Insert code to disable
the interrupt source in your application.

• You have forgotten to initialize the corresponding entry in the vector
table with the address of the function associated with the interrupt.
Initialize the vector table.

Target Specific Messages

Some messages are closely related to the debugging interface used
(Simulator, Emulator,...).

These messages are listed in the corresponding Target Manual.

Examples: Simulator/Debugger Simulator Messages

This section describes the different Simulator/Debugger Simulator
messages.
DM–550 Debugger Manual

Appendix
Messages in Status Bar
SIM_READY

The Simulator/Debugger simulator is ready and waits for user commands.
This message is generated when an application has been loaded into the
Simulator/Debugger Simulator.

More Simulator Peculiar Messages: Memory
Access Messages

This section describes the different Simulator Peculiar Messages: Memory
Access Messages

READ UNDEFINED

The Simulator/Debugger detects a read access on a RAM area, where there
was no previous write access. This allows you to track read access on
uninitialized local variables.

NO MEMORY

The Simulator/Debugger has detected an attempt to access a memory area
that is not defined (no memory).

Possible reasons:

• Your code is not correct and tries to access an address where there is no
memory available. Correct your code.

• Your memory configuration is not correct. Check the current
configuration in the Memory Configuration dialog box.

PROTECTED

The Simulator/Debugger has detected a write access on a ROM area.

Possible reason:

• Your code is not correct and tries to write in a ROM area. Correct your
code.

• Your memory configuration is not correct. Check the current
configuration in the Memory Configuration dialog box.
Debugger Manual DM–551

Appendix
EBNF Notation
EBNF Notation
This chapter gives a short overview of the EBNF notation, which is
frequently used in this manual to describe file formats and syntax rules.

Introduction to EBNF

Extended Backus–Naur Form (EBNF) is frequently used in this reference
manual to describe file formats and syntax rules. Therefore, a short
introduction to EBNF is given in Listing 18.1.

Listing 18.1 EBNF Example

ProcDecl=PROCEDURE "(" ArgList ")".
ArgList=Expression {"," Expression}.
Expression=Term ("*"|"/") Term.
Term=Factor AddOp Factor.
AddOp="+"|"-".
Factor=(["-"] Number)|"(" Expression ")".

The EBNF language is a formalism that can be used to express the syntax
of context-free languages. An EBNF grammar is a set of rules called
productions of the form:

LeftHandSide=RightHandSide.

The left hand side is a so-called nonterminal symbol, the right hand side
describes how it is composed.

EBNF consists of the following symbols:

• Terminal symbols (terminals for short) are the basic symbols, which
form the language described. In above example, the word PROCEDURE
is a terminal. Punctuation symbols of the language described (not of
EBNF itself) are quoted (they are terminals, too), while other terminal
symbols are printed in boldface.

• Nonterminal symbols (nonterminals) are syntactic variables and have
to be defined in a production. They have to appear on the left hand side
of a production somewhere. In above example, there are many
nonterminals, for example, ArgList or AddOp.

• The vertical bar "|" denotes an alternative; either the left or the right side
of the bar can appear in the language described, but one of them has to
DM–552 Debugger Manual

Appendix
EBNF Notation
appear. For example, the 3rd production above means “an expression is
a term followed by either a "*" or a "/" followed by another term”.

• Parts of an EBNF production enclosed by "[" and "]" are optional. They
may appear exactly once in the language, or they may be skipped. The
minus sign in the last production above is optional, both –7 and 7 are
allowed.

• The repetition is another useful construct. Any part of a production
enclosed by "{" and "}" may appear any number of times in the
language described (including zero, that is, it may also be skipped).
ArgList above is an example: an argument list is a single expression or a
list of any number of expressions separated by commas. (Note that the
syntax in the example does not allow empty argument lists...)

• For better readability, normal parentheses may be used for grouping
EBNF expressions, as is done in the last production of the example.
Note the difference between the first and the second left bracket: the
first one is part of EBNF itself, the second one is a terminal symbol (it
is quoted) and therefore may appear in the language described.

• A production is always terminated by a period.

EBNF-Syntax

We can now give the definition in EBNF:

Production=NonTerminal "=" Expression ".".
Expression=Term {"|" Term}.
Term=Factor {Factor}.
Factor=NonTerminal
| Terminal
| "(" Expression ")"
| "[" Expression "]"
| "{" Expression "}".
Terminal=Identifier | “"“ <any char> “"“.
NonTerminal=Identifier.

The identifier for a nonterminal can be any name you like; terminal
symbols are either identifiers appearing in the language described or any
character sequence that is quoted.

Extensions

In addition to this standard definition of EBNF, we use the following
notational conventions:

• The counting repetition: Anything enclosed by "{" and "}" and
followed by a superscripted expression x must appear exactly x times. x may
Debugger Manual DM–553

Appendix
EBNF Notation
also be a nonterminal. In the following example, exactly four stars are
allowed:

Stars = {"*"}4.

• The size in bytes. Any identifier immediately followed by a number n
in square brackets ("[" and "]") may be assumed to be a binary number
with the most significant byte stored first, having exactly n bytes.
Example:

Struct = RefNo FilePos[4].

• In some examples, we enclose text by "<" and ">". This text is a meta–
literal. Whatever the text says may be inserted in place of the text. (cf.
<any char> in the above example, where any character can be inserted).

“Expression” Definition in EBNF
expression= lorExpr.
lorExpr= landExpr {"||" landExpr} // logical OR
landExpr = orExpr {"&&" orExpr} // logical AND
orExpr = xorExpr {"|" xorExpr} // bitwise OR
xorExpr= andExpr {"^" andExpr} // bitwise XOR
andExpr = eqExpr {"&" eqExpr} // bitwise AND
eqExpr = relExpr {("==" | "!=") relExpr}
relExpr = shiftExpr {("<" | ">" | "<=" | ">=")

shiftExpr}
shiftExpr = addExpr {("<<" | ">>") addExpr}
addExpr = mulExpr {("+" | "-") mulExpr}
MulExpr = castExpr {("*" | "/" | "%") castExpr
castExpr= ["~" | "!" | "+" | "-"] parenExpr
parenExpr= "(" expression ")"

| cObject
| symbol
| register
| variable
| string
| number

cObject= ["(" cType ")"] expression
| "&" itemName
| "*" itemName
| itemName {(("." | "->")identifier)|

("[" expression "]")}
DM–554 Debugger Manual

Appendix
EBNF Notation
cType= [qualifier] [specifier] type
| [qualifier] specifier
| specifier
| "void *"

qualifier= "const" | "volatile"
specifier= "signed" | "unsigned"
type= "char" | "short" | "long" | "int" |

"float" | "double"
symbol defined with the DEFINE command
register= IOReg
variable= ObjectReg
ObjectReg= ["OBJPOOL::"] ObjectSpec
ObjectSpec= ObjectName ["." FieldName].
ObjectName= ident [":" Index].
FieldName= IdentNum ([".." IdentNum] | ["." Size]).
IdentNum= ident | "#" HexNumber.
Size= "B" | "W" | "L".
ident is an identifier as defined in ANSI-C

IOReg= ["IOREG::"] group | regName
group refer to the silicon vendor I/O register file definition
regName refer to the silicon vendor Register Name definition

itemName = module |[[module] ":"] procedure |
[[module] ":" [procedure] ":"] variable

variable = ident { "." ident | number }
module = ident ["." extension]
procedure = ident
extension is an identifier as defined in ANSI-C
number is a number as defined in ANSI-C
ident is an identifier as defined in ANSI-C

Module names can have an extension. If no extension is specified, the
parser will look for the first module that has the same name (without
extension).

NOTE Correct module names are displayed in the Module component window.
Make sure that the module name of your command is correct. If the .abs
is in HIWARE format, some debug information is in the object file (.o),
and module names have a .o extension (e.g., fibo.o). In ELF format,
module name extensions are .c, .cpp or .dbg (.cpp for program
Debugger Manual DM–555

Appendix
EBNF Notation
sources in assembler) (e.g., fibo.c), since all debug information is
contained in the .abs file and object files are not used. Please adapt the
following examples with your .abs application file format.

Semantic

A scope represents either a module or a procedure. A scope is recognized
by the presence of the double colon which terminates the scope. If the
scope identification contains at least one colon, it is assumed to represent a
procedure, otherwise a module.

Empty module or procedure names represent the current module or
procedure, respectively. The current procedure is the procedure that the pc
of the simulator points into. The current module is the module that contains
the current procedure.

Items are identified either absolutely or relatively, corresponding to the
presence or absence of a scope.

An item is identified absolutely by specifying its scope, that is, the module
and/or procedure where the item is located.

An item is identified relatively, if a scope is omitted. In this case, the item
is assumed to be located in the current procedure.

Examples

fibo.c:Fibonacci:fib1 matches the local variable fib1 of the procedure
Fibonacci in the module fibo.

:main matches the procedure main in the current module.

start12:_Startup matches the procedure _Startup in the module start12.

::counter matches global variable counter of the current module.

:Fibonacci:fib1 matches the local variable fib1 of the procedure
Fibonacci of the current module.

fibo.c::counter matches the global variable counter of the module fibo.

fib1 matches the local or global variable or module of the current
procedure and/or the current module.
DM–556 Debugger Manual

Appendix
Constant Standard Notation
startupData.flags matches the field flags of the local or global variable
startupData (which is a structure) of the current module or procedure.

Constant Standard Notation
Inside an expression, the ANSI C standard notation for constant is
supported. That means that independently from the current number base
you can specify hexadecimal or octal constants using the standard ANSI C
notation.

Example

Notation Meaning

0x---- Hexadecimal constant

0---- Octal constant

In the same way, the Assembler notation for constant is supported. That
means that independently from the current number base you can specify
hexadecimal, octal or binary constants using the assembler prefixes.

Example

Notation Meaning

$---- Hexadecimal constant

@ Octal constant

% Binary constant

When the default number base is 16, constants starting with a letter A, B,
C, D, E or F must be prefixed either by 0x or $. Otherwise, the command
line detects a symbol and not a number.

Example

Notation Meaning

5AFD Hexadecimal constant $5AFD.

AFD Symbol, whose name is AFD.
Debugger Manual DM–557

Appendix
Register Description File
Register Description File
When loading a Simulator/Debugger target, the definition of the I/O
registers is loaded from a file. This allows you to use the names of these
registers as parameters of the commands or as operands in an expression.
The syntax of the file is given below.

There may be several different files depending on the MCU used. The
name of the correct file is derived from the MCU identification number
(MCUID) in the following way:

 MCUIxxxx.REG

where nnn is the MCUID in hexadecimal representation. This file is
expected to be found in the directory where the program files are located
(e.g., ..\PROG). If this file is not found, a file with the name
'DEFAULT.REG' is searched for and loaded, if found. If no file is found,
an error message is displayed.

File format

The register description file contains the following information (for details
refer to the EBNF definition in Appendix). First, a header contains the
name, identification number and location of the register block of the MCU.
The header is followed by a list of module descriptors. Each of those
contain register definitions and optionally a memory map specification.
The register definitions may be grouped under a group name. Each register
definition defines the name, address and size of an I/O register. The
memory map specification is used by the MEM command to display the
configured memory of that module.

Description using EBNF.

The format of the register file is described in Listing 18.2 in EBNF.

Listing 18.2 Register file description EBNF.

MCUDescription=Header {Module}.
Header="MCU" McuName McuId RegBase RegSize.
Module="MODULE" ModuleName {RegDef} {GroupDef | MapDef}.
GroupDef="GROUP" GroupName {RegDef}.
RegDef=RegName RegOffset Size.
DM–558 Debugger Manual

Appendix
Register Description File
MapDef="MEMMAP" BlkName BaseMapDef {MapSecifier}.
BaseMapDef="BASE" Exp "SIZE" Exp "ENABLED" Exp.
MapSpecifier="SPECIFIER" [Label] Exp.
Exp=CExpression | SwitchExpr.
SwitchExpr=CExpression ":" {CaseSpec}.
CaseSpec="[" ConstValue ":" (CExpression | StringDef) "]".

McuName=StringDef.//name of the MCU
McuId=ConstValue.//identification number of the MCU
RegBase=ConstValue.//base address of the registers after reset
ModuleName=Name.//name of the module
GroupName=Name.//name of a group of registers
RegName=Name.//name of the register

RegOffset=ConstValue.//offset from the register base address
Size=ConstValue.//size of the register in bits.
BlkName=Name.//name of the memory block.
Label=StringDef.//name to be used to label the specifier
CExpression=// expression as defined in ANSI-C which

 contains integer values only.
ConstValue=// constant value as defined in ANSI-C
Name=// identifier as defined in ANSI-C
StringDef=// any number of printable character in double quotes
(")

[1] evaluation of expressions is done using signed 32 bit arithmetic.

[2] all non-printable characters are interpreted as white spaces.

Example

Listing 18.3 describes a hypothetical MCU. It contains the modules ABC,
SQIM and FLASH. The SQIM has two groups of registers, the PORTS and
CHIPSELECTS.

Listing 18.3 MCU examples

MCU "MY_MCU" 0x07A5 0xFFF000 0x1000
 MODULE ABC
 ABCMCR 0x700 16
Debugger Manual DM–559

Appendix
Register Description File
 PORTABC 0x706 16
 MODULE SQIM
 SQIMCR 0xA00 16
 SYNCR 0xA04 16
 GROUP PORTS
 PORTA 0xA10 8
 PORTB 0xA11 8
 GROUP CHIPSELECTS
 CSPAR0 0xA44 16
 CSBARA 0xA60 16
 CSORA 0xA62 16
 MEMMAP CSA
 BASE (CSBARA & 0xFFF8) << 8
 SIZE CSBARA & 7 :
 [0:0x800] [1:0x2000] [2:0x4000]
 [3:0x10000] [4:0x20000] [5:0x40000]
 [6:0x80000] [7:0x80000]
 ENABLED (CSPAR0 & 3) >= 2
 SPECIFIER "ACCESS" (CSORA >> 11) & 3 :
 [0:"None"][1:"Read"]
 [2:"Write"][3:"Both"]
 SPECIFIER "BYTE" (CSORA >> 13) & 3 :
 [0:"None"][1:"Lower"]
 [2:"Upper"][3:"Both"]
 SPECIFIER (CSORA >> 4) & 3 :
 [0:"None"][1:"Lower"]
 [2:"Upper"][3:"Both"]
 MODULE FLASH
 FEEMCR 0x820 16
 FEEBAH 0x824 16
 FEEBAL 0x826 16
 MEMMAP FLASH
 BASE (FEEBAH << 16)
 SIZE 0x8000
 ENABLED (FEEMCR & 0x8000) == 0
<eof>
DM–560 Debugger Manual

Appendix
OSEK ORTI File Sample
OSEK ORTI File Sample
When building an OSEK project in CodeWarrior, the OSEK ORTI file is
automaticaly generated by the the OSEK System Generator. The generated
file has the same name and the same location as exucutable file but its
extension is .ort.

Listing 18.4 OSEK ORTI File Sample

IMPLEMENTATION Motorola_ORTI_OSEKturbo_OS12_2_1_1_17 {

OS {
ENUM UINT8 ["NO_TASK" = 0,

"MotorDriveTask" = 1,
"ControlTask" = 2,
"InitTask" = 3,
"InputTask" = 4,
"LockTask" = 5

] RUNNINGTASK, "Running Task Identification";
ENUM UINT8 ["NO_SERVICE" = 0, "StartOS" = 0x01, "ShutdownOS"

= 0x02,
"GetActiveApplicationMode" = 0x03,

/* task management services*/
"ActivateTask" = 0x10, "TerminateTask" = 0x11,

"ChainTask" = 0x12,
"Schedule" = 0x13, "GetTaskId" = 0x14, "GetTaskState" =

0x15,
/* interrupt handling services*/

"EnterISR" = 0x20, "LeaveISR" = 0x21,
"EnableInterrupt" = 0x22, "DisableInterrupt" = 0x23,

"GetInterruptDescriptor" = 0x24,
"ResumeOSInterrupts" = 0x25, "SuspendOSInterrupts" =

0x26,
"EnableAllInterrupts" = 0x27, "DisableAllInterrupts" =

0x28,
/* resource management services*/

"GetResource" = 0x30, "ReleaseResource" = 0x31,
/* event control services*/

"SetEvent" = 0x40, "ClearEvent" = 0x41, "GetEvent" =
0x42, "WaitEvent" = 0x43,
Debugger Manual DM–561

Appendix
OSEK ORTI File Sample
/* messages services*/
"SendMessage" = 0x50, "ReceiveMessage" = 0x51,

/* counters and alarms services*/
"GetAlarmBase" = 0x60, "GetAlarm" = 0x61, "SetRelAlarm" =

0x62,
"SetAbsAlarm" = 0x63, "CancelAlarm" = 0x64,

/* OSEK OS v1.0 specs*/
"InitCounter" = 0x65, "CounterTrigger" = 0x66,
"GetCounterValue" = 0x67, "GetCounterInfo" = 0x68,

/* hook routines*/
"ErrorHook" = 0x70, "PreTaskHook" = 0x71, "PostTaskHook"

= 0x72,
"StartupHook" = 0x73, "ShutdownHook" = 0x74,

/* extra services*/
"IdleLoopHook" = 0x75] CURRENTSERVICE, "OS Services

Watch";
ENUM UINT8 ["TASK_LEVEL" = 0

 , "SYSTEM_TIMER" = 1
 , "StallInt" = 3

] RUNNINGISR, "Executed ISR Identification";
 };
 TASK {

ENUM UINT8 ["0" = 1, "5" = 2, "10" = 3, "20" = 4, "30" = 5]
PRIORITY, "Task Priority";

 ENUM UINT8 ["RUNNING" = 0, "WAITING" = 1, "READY" = 2,
"SUSPENDED" = 3] STATE, "Task State";

 UINT8EVENTS, "Events State";
 UINT8WAITEVENTS, "Waited Events";

STRING MASKS, "Task Event Masks";

ENUM ADDRESS ["MAIN_STACK" = "&_OsOrtiStackStart",
"MotorDriveTask_STACK" = "OsMotorDriveTaskStack+1",

"ControlTask_STACK" = "OsControlTaskStack+1",
 "NO_STACK" = 0] STACK, "Current Task Stack";
 STRING PROPERTY, "Task Properties";

 };
 STACK {
 ADDRESSSTARTADDRESS , "Stack Start Address";
 ADDRESSENDADDRESS , "Stack End Address";
 UINT16SIZE , "Stack Size";
DM–562 Debugger Manual

Appendix
OSEK ORTI File Sample
};
COUNTER{

STRINGMAXALLOWEDVALUE, "MAXALLOWEDVALUE";
 STRING TICKSPERBASE, "TICKSPERBASE";

STRING MINCYCLE, "MINCYCLE";
UINT16 VALUE, "Current Value";
ENUM UINT8["NO_ALARM" = 0, "ALARM" = 1] STATE, "Activated

Alarm";
};

ALARM{
 ENUM UINT8 ["ALARMSTOP" = 0, "ALARMRUN" = 1] STATE, "Alarm

State";
STRING COUNTER, "Assigned Counter";
STRING TASK, "Notified Task";
STRING EVENT, "Event to set";
UINT16 TIME, "Time to expire";
UINT16 CYCLE, "Cycle period";

};

MESSAGE{
STRING TYPE, "Message Type";
STRING TASK, "Notified Task";
STRING EVENT, "Event to be set";

};
};

/* Application Description Part */

 OS os {
RUNNINGTASK = "OsRunning";
CURRENTSERVICE = "OsOrtiRunningServiceId";
RUNNINGISR = "OsOrtiRunningISRId";

 };

 TASK MotorDriveTask {
PRIORITY = "3";
STATE = "(OsRunning != 1) * (((OsTaskStatus[1] & 0x02)

!= 0) + ((OsTaskStatus[1] & 0x02) == 0)* ((OsTaskStatus[1]
& 0x04) != 0) * 2 + (OsTaskStatus[1] == 0) * 3)";
Debugger Manual DM–563

Appendix
OSEK ORTI File Sample
STACK = "OsMotorDriveTaskStack+1";
EVENTS = "OsTaskSetEvent[0]" ;
WAITEVENTS = "OsTaskWaitEvent[0]" ;
MASKS = "UP_EVENT = , STOP_EVENT = , DOWN_EVENT = ";

 PROPERTY = "EXTENDED, FULLPREEMPT, Priority: 10 ";

 };
 TASK ControlTask {

PRIORITY = "4";
STATE = "(OsRunning != 2) * (((OsTaskStatus[2] & 0x02)

!= 0) + ((OsTaskStatus[2] & 0x02) == 0)* ((OsTaskStatus[2]
& 0x04) != 0) * 2 + (OsTaskStatus[2] == 0) * 3)";

STACK = "OsControlTaskStack+1";
EVENTS = "OsTaskSetEvent[1]" ;
WAITEVENTS = "OsTaskWaitEvent[1]" ;
MASKS = "KEY_EVENT = , HALF_SEC_EVENT = , STALL_EVENT = ,

STALL_END_EVENT = , REVERSE_EVENT = ";
 PROPERTY = "EXTENDED, FULLPREEMPT, Priority: 20 ";

 };
 TASK InitTask {

PRIORITY = "5";
STATE = "(OsRunning != 3) * (((OsTaskStatus[3] & 0x04)

!= 0) * 2 + (OsTaskStatus[3] == 0) * 3)";
STACK = "&_OsOrtiStackStart";
EVENTS = "0" ;
WAITEVENTS = "0" ;
MASKS = "";

 PROPERTY = "BASIC , NONPREEMPT, Priority: 30 , AUTOSTART";

 };
 TASK InputTask {

PRIORITY = "1";
STATE = "(OsRunning != 4) * (((OsTaskStatus[4] & 0x04)

!= 0) * 2 + (OsTaskStatus[4] == 0) * 3)";
STACK = "&_OsOrtiStackStart";
EVENTS = "0" ;
WAITEVENTS = "0" ;
MASKS = "";

 PROPERTY = "BASIC , FULLPREEMPT, Priority: 0 ";

 };
DM–564 Debugger Manual

Appendix
OSEK ORTI File Sample
 TASK LockTask {
PRIORITY = "2";
STATE = "(OsRunning != 5) * (((OsTaskStatus[5] & 0x04)

!= 0) * 2 + (OsTaskStatus[5] == 0) * 3)";
STACK = "&_OsOrtiStackStart";
EVENTS = "0" ;
WAITEVENTS = "0" ;
MASKS = "";

 PROPERTY = "BASIC , FULLPREEMPT, Priority: 5 ";

 };

STACK MAIN_STACK {
 STARTADDRESS = "&_OsOrtiStackStart";
 ENDADDRESS = "&_OsOrtiStart";
 SIZE = "&_OsOrtiStart - &_OsOrtiStackStart";
 };

STACK ISR_STACK {
 STARTADDRESS = "OsIsrStack";
 ENDADDRESS = "OsIsrStack + 64";
 SIZE = "64";
 };

STACK MotorDriveTask_STACK {
 STARTADDRESS = "OsMotorDriveTaskStack+1";
 ENDADDRESS = "OsMotorDriveTaskStack + 101";
 SIZE = "100";
 };

STACK ControlTask_STACK {
 STARTADDRESS = "OsControlTaskStack+1";
 ENDADDRESS = "OsControlTaskStack + 101";
 SIZE = "100";
 };

COUNTER SYSTEMTIMER{
MAXALLOWEDVALUE = "0xFFFF";

 TICKSPERBASE = "10";
MINCYCLE = "0";
Debugger Manual DM–565

Appendix
OSEK ORTI File Sample
VALUE = "OsCtrValue[0]";
STATE = "(OsCtrLink[0] != 0xFF)";

};

ALARM HALF_SEC_AL{
 STATE = "(OsAlmLink[0] != 0)";

COUNTER = "SYSTEMTIMER";
TASK = "ControlTask";
EVENT = "HALF_SEC_EVENT () ";
TIME = "OsAlmValue[0] - OsCtrValue[OsAlmCtr[0]] +

((OsAlmValue[0] - OsCtrValue[OsAlmCtr[0]]) < 0)*(0xFFFF+1)";
CYCLE = "OsAlmCycle[0]";

};
ALARM POLLINPUTS_AL{
 STATE = "(OsAlmLink[1] != 1)";

COUNTER = "SYSTEMTIMER";
TASK = "InputTask";
EVENT = " ";
TIME = "OsAlmValue[1] - OsCtrValue[OsAlmCtr[1]] +

((OsAlmValue[1] - OsCtrValue[OsAlmCtr[1]]) < 0)*(0xFFFF+1)";
CYCLE = "OsAlmCycle[1]";

};
ALARM STALL_END_AL{
 STATE = "(OsAlmLink[2] != 2)";

COUNTER = "SYSTEMTIMER";
TASK = "ControlTask";
EVENT = "STALL_END_EVENT () ";
TIME = "OsAlmValue[2] - OsCtrValue[OsAlmCtr[2]] +

((OsAlmValue[2] - OsCtrValue[OsAlmCtr[2]]) < 0)*(0xFFFF+1)";
CYCLE = "OsAlmCycle[2]";

};
ALARM REVERSE_AL{
 STATE = "(OsAlmLink[3] != 3)";

COUNTER = "SYSTEMTIMER";
TASK = "ControlTask";
EVENT = "REVERSE_EVENT () ";
TIME = "OsAlmValue[3] - OsCtrValue[OsAlmCtr[3]] +

((OsAlmValue[3] - OsCtrValue[OsAlmCtr[3]]) < 0)*(0xFFFF+1)";
CYCLE = "OsAlmCycle[3]";

};

DM–566 Debugger Manual

Appendix
OSEK ORTI File Sample
MESSAGE Msg_Input {
TYPE = "UNQUEUED";
TASK = "ControlTask ";
EVENT = "KEY_EVENT ";

};
MESSAGE Msg_Lock {

TYPE = "UNQUEUED";
TASK = "LockTask ";
EVENT = "";

};
Debugger Manual DM–567

Appendix
Bug Reports
Bug Reports
If you cannot solve your problem, you may need to contact our Technical
Support Department. Isolate the problem – if it’s a Debugger problem,
write a short program reproducing the problem. Then send us a bug report.

Send or fax your bug report to your local distributor, it will be forwarded to
the Technical Support Department.

The report type gives us a clue how urgent a bug report is. The
classification is:

Information

Things you’d like to see improved in a future major release, that would be
handy, but you can live without.

Bug

An error for which you have a work around or would be satisfied for the
time being if we could supply a work around. If you already have a work
around, we’d like to know it, too. Bugs will be fixed in the next release.

Critical Bug

A grave error that makes it impossible for you to continue with your work.

Electronic Mail (email) or Fax Report Form

If you send the report by fax or email, the following template can be used:

 Metrowerks REPORT FORM

Fill this form and send it to Metrowerks:

 EMail: support_europe@metrowerks.com

 Fax : +(41) 61 690 75 01

CUSTOMER INFORMATION
DM–568 Debugger Manual

Appendix
Bug Reports
--

Customer Name:

Company :

Customer Number:

Phone Number:

Fax Number:

Email Address:

--

PROCUCT INFORMATION

--

Product (HI-CROSS+, Simulator/Debugger, Smile Line,...):

Host Computer (PC, ...):

OS/Window Manager (WinNT, Win95,Win98, Win2000, Win XP ...):

Target Processor:

Language (C, C++, ...):

--

TOOL INFORMATION

--

Tool (Compiler, Linker, ...):

Version Number (Vx.x.xx):

Options Used:

For the Simulator/Debugger only: Target Interface Used:

--
Debugger Manual DM–569

Appendix
Bug Reports
REPORT INFORMATION

--

Report Type (Bug, Wish, Information):

Severity Level (0: Higher, ... 5: Lower):

(0 : No workaround, development stopped.

 1 : Workaround found, can continue development, problem seems to

 be a common one.

 2 : Workaround found, problem with very special code.

 3 : Has to be improved.

 4 : Wish

 5 : Information

)

Description:
DM–570 Debugger Manual

Appendix
Technical Support
Technical Support
The following methods are available to receive technical support for the
CodeWarrior Interactive Development Environment (IDE). Whichever
method you choose, we at Metrowerks listen and act.

Click any of the following links to jump to the corresponding section of
this chapter:

• “E-mail”

• “FAX”

• “Support by MAIL”

• “Internet”

E-mail

The best way to get technical support is through e- mail. You can attach
examples to the email using a compression utility or simply uuencode.

The email addresses are:

EUROPE: support_europe@metrowerks.com

USA: support@metrowerks.com

ASIA/PACIFIC: j-emb-sup@metrowerks.com

FAX

You can fax your problem to the following numbers:

EUROPE: Fax: +41 61 690 7501

USA: Fax: +512 997 4901

ASIA/PACIFIC: +3-3780-6092

Support by MAIL

To reach technical support by normal mail, use the addresses below:
Debugger Manual DM–571

Appendix
Technical Support
EUROPE: Metrowerks Europe - Riehenring 175 - CH-4058 Basel
(Switzerland)

USA: Metrowerks - 9801 Metric Blvd - Austin, TX 78758

ASIA/PACIFIC: Metrowerks Japan - Metrowerks Co., Ltd., Shibuya
Mitsuba Building 5F, Udagawa-cho 20-11, Shibuya-ku, Tokyo 150-0042
Japan

Internet

For the latest updates and product-enhancement information, go to:

http://www.metrowerks.com
DM–572 Debugger Manual

Index

De
Index
Symbols
.abs file 71
.cmd 88
.hidefaults 413, 424, 425, 429
.hwl 417
.HWP 37
.hwp 418
.INI 37
.PJT 37
.rec 163
.sim 49
.tgt 48
.WND 72
.wnd 61
.xpr file 101

A
A 282
About Box 59
About True Time Simulator and Real Time

Debugger 59
ABSPATH 423
ACTIVATE 283
ADCPORT 284
Add New Instrument 229, 230
ADDCHANNEL 283
Address 114, 116
ADDRESS ERROR 550
Address... 81
ADDXPR 284
Align 230
All Text Folded At Loading 189
Analog 232
Analog to Digital Converter 517
AND Mask 235, 236, 239
Appendix 547
Application

Assembly Step 443
Embedded 23
Loading 439
Starting 440

Step In 441
Step Out 442
Step Over 442
Stopping 440
Target 23

ArbPrio 394
Arrange Icons 58
ASCII 116
Assembly Step 44
Assembly Step Out 45
Assembly Step Over 44
Assignment 393
AssignmentList 393
Associated Commands 125
AT 296
ATTRIBUTES 284
Auto 168
Automatic 103, 116
AUTOSIZE 297

B
Background Color 56
Backgroundcolor 231, 233
Bar 232
Barcolor 234
Bardirection 234
BASE 297
BC 298
BCKCOLOR 299
BD 300
Bin 104, 115, 168, 445
Binary 445, 448
Bit Reverse 115, 168
Bitnumber to Display 237
BitRange 393
BLCD 514
Bottom 231
Bounding Box 232
BREAKPOINT 549
Breakpoint 80, 179

BREAKPOINT 549
bugger Manual DM–573

Index
Checking condition 248
Command 257
Conditional 255, 261
Counting 253, 261
Definition 244
Deleting 256
Message 548
Multiple selection 248
Permanent 244, 253
Position 251
Temporary 244, 252

breakpoint 389
Breakpoint with Register Condition 256
Breakpoints... 45
BS 300
BUS ERROR 550
Byte 114
Byteflight 514

C
-C 32
CALL 303
Call Chain 151
Cascade 58
CD 303
CF 304
CLOCK 307
Clock and Reset Generator 520
Clone Attributes 230
CLOSE 307
-Cmd 32
CMDFILE 308
CodeWarrior Integration 455
Color if 238
Color if Bit 237
COM 543
Command 242

Syntax 209, 269
Command File Dialog 52
Command File menu entry 52
Command File Playing 88
Command Line 31
COMPLEMENT

DATA Component 291
Memory Component 292
Register Component 287

Component
Analog Meter 209
Assembly 80, 439, 440
Associated Menus 61
Command Line 86
Coverage 91
CPU 71
DAC 96
Data 98, 439, 440, 443
Framework 27, 28, 71
Inspector 211
IO_Led 220
LED 222
Led 222
Main Menu 61
Memory 111, 451
MicroC 144
Module 149
Phone 224
Pop Up Menu 61
Procedure 151
Profiler 154
Recorder 162
Register 166, 439, 448
SoftTrace 175
Source 178, 439, 440
Stimulation 192
Target 72
Terminal 453
VisualizationTool 227
Window 71

Component Object Model 543
Components File 61
COMPOPTIONS 415
Configuration 37
Control Point

Definition 244
Dialogs 244

Control Points 244
Copy 230
COPYMEM 307
CopyMem 114
Copyright 59
Copyrights 17
CPORT 308
CPU

Cycle 34
cycle 166
DM–574 Debugger Manual

Index

De
CPU Message 549
ADDRESS ERROR 550
BUS ERROR 550

CR 309
Cross-debugging 23
Ctrl+E 229
Ctrl+L 229
Ctrl+S 229
CTRL-P 231
Current Directory 413, 424
Customize 39
Cut 230
CYCLE 309
Cycle 176
Cycles 392

D
DAC

communication DLL 473
Configure the file types 462
Configuring 459
Configuring the tools 467
database 465
Database directory 461
Debugger Interface 471
Debugger name 478
IDE 459
library path 462
Ndapi.dll 478
new project 460
Preprocessor | Header Directories 463
Preprocessor | Preinclude file 464
Project root directory 461
Referential project root directory 461
Requirements 459
rue Time Simulator and Real Time Debugger

project file 474
Source 463
Synchronized debugging 477
Troubleshooting 477
User help file 461
working directories 460

DASM 310
DB 311
DDE

HI-WAVE server 457
DDEPROTOCOL 312

Debugger DDE Server 457
Debugger Start Option -C 32
Debugger Start Option -Cmd 32
Debugger Start Option -ENVpath 32
Debugger Start Option -

Instance=%currentTargetName 31
Debugger Start Option -Nodefaults 32
Debugger Start Option -Prod 32
Debugger Start Option -T 31
Debugger Start Option -Target 31
Debugger Start Option -W 31
Debugging 23
Dec 104, 115, 168, 445
Decimal 445
Decimalmode 238
DEFAULT.ENV 413, 424, 425, 429
DEFAULT.REG 558
DEFAULTDIR 424
DefaultDir 436
DEFINE 313
DELCHANNEL 314
Delete Breakpoint 83, 184
Demo Version Limitations 125
DETAILS 315
Disable Breakpoint 83, 184
Display 113
Display Absolute Address 82
Display Adress 82
Display Adress Dialog 117
Display Code 82
Display Headline 231
Display Scrollbars 231
Display Symbolic 82
Display Version 238
Displayfont 240
DL 315
Drag Out 125
Dragging 62, 63
Driving True Time Simulator and Real Time Debugger

trough DDE 458
Drop Into 125
DUMP 316
DW 316
bugger Manual DM–575

Index
E
E 317
EBNF 552
Editing

Memory 451
Register 448
Variable 446

Editmode 229, 231
Editor 99
EEPPROM 519
ELSE 318
ELSEIF 318
Enable Breakpoint 83, 184
ENDFOCUS 319
ENDFOR 319
ENDIF 320
ENDWHILE 320
Enhanced Capture Timer 522
Environment

ABSPATH 423
DEFAULTDIR 424
ENVIRONMENT 413
File 413
GENPATH 426, 428
HIENVIRONMENT 425
HIPATH 426, 428
LIBPATH 427, 430
LIBRARYPATH 428
OBJPATH 428
TMP 429
USELIBPATH 430
Variable 422

-ENVpath 32
EQUAL Mask 235, 239
Events 384
Exception 393
EXECUTE 321
EXIT 321
Exit 37
Explorer 414
Expression 393
Expression Command File 101
Expression definition (EBNF) 554
Expression Editor 99
Extended Backus-Naur Form, see EBNF

F
Field Description 241, 242
File

Environment 413
File Manager 414
Filename 235
FILL 321
Fill Memory Dialog 117
FILTER 322
FIND 322
Find 185, 187
Find Procedure 185, 188
FINDPROC 323
Flash 519
FLEXlm 28
Float 168
FOCUS 323
FOLD 324
Fold 189
Fold All Text 189
Folding 182

Mark 182
Folding Menu 188
Foldings 185
FONT 325
Fonts 56
FOR 325, 339
Format 113, 445, 448
Format mode 241
Format... 103
FPRINTF 326
FRAMES 326
Frames 175
Frozen 103, 105, 116

G
G 327
GENPATH 426, 428
Global 103
Global Variable

Displaying 444
GO 327
Go To Line 188
Go to Line 185, 186, 187
GOTO 328
DM–576 Debugger Manual

Index

De
GOTOIF 328
Graphic bar 91, 154
GRAPHICS 329
Grid Color 232
Grid Mode 232
Grid Size 232

H
HALT 547
Halt 43
HALTED 548
Hardware 23
Height 232
HELP 329
Help Topics 59
Hex 104, 115, 168, 445, 449
Hexadecimal 445, 448, 452
Hide Headline 39
Hide Tile 39
HIENVIRONMENT 425
High Display Value 234, 237, 241
HIPATH 426
Horiz. Text Alignment 240
Horizontal Size 231
How To ... 435

I
IdDeclaration 393
IDF 457
IDispatch 543
IF 330, 339
I-LOGIX 144
Important 17
Indicatorcolor 234, 237
Indicatorlength 234
init.cmd 438
INSPECTORUPDATE 331
-Instance=%currentTargetName 31
Instruction Syntax 270
Inter-IC Bus 514
Interrupt

Example 388
Stimulated 388

Interrupt_Function 388
interruption 122

Introduction 23
io_demod 386
Io_demod.abs 387
io_ex.txt 390
io_int.txt 388, 389, 390
IO_Led 385
IO_Show 386
io_var.txt 387, 388
iodemo.c 388
IO-Simulation

Main window 385
IPATH 428
ITPORT 332
ITVECT 332

J
J1850 Bus 514
j-emb-sup@metrowerks.com 571

K
keyword DAC

True Time Simulator and Real Time Debugger
project file 474

Kind of Port 233
KPORT 333

L
Layout 29, 417
Layout - Load/Store 58
LCDPORT 333
Led 220
Leds 390
Left 231
LF 334
LIBPATH 430
LIBRARYPATH 427, 428
Line Continuation 421
LINKADDR 334
LOAD 335
Load Application 36
Load Layout 229, 230
Load Target 46, 48
LOADCODE 337
Loading an Application 439
LOADMEM 337
bugger Manual DM–577

Index
LOADSYMBOLS 338
Local 103
Local Variable

Displaying 444
Locked 103, 105
LOG 338
Low Display Value 234, 237, 241
LS 342
Lword 114

M
Main Menu Bar 35
MainFrame 418
Marks 185
MC9S12A32 507
MC9S12A64 507
MC9S12C32 508
MC9S12D32 508
MC9S12D64 508
MC9S12DB128A 509
MC9S12DB128B 509
MC9S12DG128B 510
MC9S12DG256B 510
MC9S12DJ128B 511
MC9S12DJ256B 511
MC9S12DJ64 512
MC9S12DP256B 512
MC9S12DP512 513
MC9S12DT128B 513
MC9S12DT256B 514
MCUID 558
MCUIOnnn.REG 558
MCUTOOLS.INI 414, 436
MEM 343
Memory

Dump 111
Word 111

Memory Access Message 551
NO MEMORY 551
PROTECTED 551
READ UNDEFINED 551

Menu
Help 58
Run 42
Target 45, 56
View 39

Window 57
MicroC 144
Mode 113
Module 149
Motorola Scalable CAN 514
MS 344
ms 176
Multiplexed External Bus Interface 520

N
Name 393
NB 345
NbTimes 394
New 36
NO MEMORY 551
NOCR 347
-Nodefaults 32
NOLF 347
NoOfBits 393

O
Object 27
Object Info Bar 34
ObjectField 393
ObjectId 393
ObjectSpec 393, 394
OBJPATH 428
Oct 104, 115, 168, 445
Octal 445
OPEN 347
Open Component 56
Open Configuration 37
Open Source File 185
OPENFILE 348
OPENIO 348
Options 436

Pointer As Array. 103
Options - Autosize 58
Options - Component Menu 58
OSEK Kernel Awareness 402
OSEK ORTI 403
OSEK RTK Inspector 405
OSPARAM.PRM 397
Outlinecolor 238
OUTPUT 349
DM–578 Debugger Manual

Index

De
P
P 349
Paste 230
PATH 420
Pause 163
PAUSETEST 351
PBPORT 351
Percentage 91, 154
PERIODICAL 193, 393
Periodical 103, 116, 387
PeriodicEvent 393
PerTimedEvent 393, 395
Play 162
Pointer as Array 103, 106
PORT 352
Port Integration Module 520
Port to Display 233
PORT_DATA 386, 387, 388
Port_Register 391
Postload command file 54
postload.cmd 454
Preference panel 38
Preferences dialog 37
Preload command file 54
preload.cmd 453
PRINTF 352
Priority 394
prm file 390
Procedure Chain 151
-Prod 32
Project 418
PROJECT.INI 45, 416
project.ini 416
Properties 230
PROTECTED 551
PTRARRAY 352
Pulse Width Modulator 526
PVCS 430

R
RAISE 389
RD 353
READ UNDEFINED 551
READY 547
real time 23

Real Time Kernel Awarness 396
Real Time Kernels 396
RECORD 354
Record 162
REGBASE 354
REGFILE 355
Register 166
Register values 256, 266
Registers 558

Description file 558
Registration 59
Relative Mode 241
Release Notes 20
Remove 230
REPEAT 339, 355
Replay 164
RESET 355
Reset command file 53
Reset Target 46, 49
reset.cmd 453
RESETCYCLES 356
RESETMEM 357
RESETRAM 358
RESETSTAT 358
RESTART 358
Restart 43
RETURN 359
RHAPSODY 144
Right 231
RS 359
Run To Cursor 83, 184
RUNNING 548

S
S 360
SAVE 361
Save Configuration 37
Save Configuration As 37
Save Layout 229, 230
SAVEBP 361
Scope... 103
SDI 72
search order 431
Searching Order

Assembly source files 431
bugger Manual DM–579

Index
C source files 431
Object files source files 431

SEGPORT 362
Send to Back 230
Send to Front 230
Serial Communication Interface 514
Serial Peripheral Interface 517
SET 363
Set Breakpoint 83, 184
Set Target 56
Set Zero Base 177, 192
SETCOLORS 363
SETCONTROL 364
SETCPU 364
Setcpu command file 54
Setup 229
Show Breakpoints 83, 184
Show Location 84, 185
SHOWCYCLES 365
SIM_READY 551
Simulation 23
Simulator 72
Simulators File 49
Single Step 44
Size 231
Size of Port 233
SLAY 366
SLINE 366
Sloping 238
Small Borders. 39
SMEM 367
SMOD 367
Source 389
SPC 368
Splitting View 91
SPROC 369
SREC 369
ST1619-HDS

Postload command file 54
Preload command file 54
Reset command file 53
Startup command file 53

Start 164, 394
Start/Continue 43
StartBit 393
Starting an Application 440

startup 415
Startup command file 53
startup.cmd 453
Statistics 156
Status Bar 34, 39

Message 547
Status Message 547

HALT 547
HALTED 548
Hardware Reset 548
READY 547
Reset 548
RUNNING 548

Status register bits 166
Step In 441

Assembly Instruction 443
Source Instruction 441

Step Out 44, 441
Function Call 442

Step Over 44, 441, 442
STEPINTO 370
STEPOUT 371
STEPOVER 371
STEPPED 548
STEPPED OVER 548
Stepping Message 548

STEPPED 548
STOPPED 548
TRACED 549

Stimulation 387
Example 388
File 390

StimulationFile 393
STOP 372
STOPPED 548
Stopping an Application 440
Support

FAX 571
MAIL 571

support@metrowerks.com 571
support_europe@metrowerks.com 571
Symbolic 104, 445

T
-T 31
T 373
-Target 31
DM–580 Debugger Manual

Index

De
Target files 48
Target Message 550

SIM_READY 551
TargetObject 386, 387, 389, 390
task 396
Template 386
TESTBOX 373
Text 237
Text Mode 240
Textcolor 240
Tile 58
Time 394
TimedEvent 393
Timer Module 528
Timer Update 93
TMP 429
Toolbar 33, 39

Customizing 40
ToolTips 185
ToolTips Activation 180
ToolTips format 180
ToolTips mode 180
Top 230
TRACED 549
Trademarks 17
True Time IO Stimulation 384
True Time Simulator and Real Time Debugger

Concept 26
Configuration 435
Default Layout Configuration 416
Demo Version Limitations 28
Drag and Drop 64
Engine 24
Execution framework 25, 26
Framework component 27
Layout 417
Objects and Services 27
Project 418
project.ini 416
Running from a command line 31
Smart User Interface 62
Tool tip 34
Toolbar 33
User Interface 29, 62
Using on Windows 95 or Windows NT 4.0/

WIN2000 436
TUPDATE 374

U
UDec 104, 115, 168, 445
UNDEF 374
UNFOLD 377
Unfold 189
Unfold All Text 189
Unfolding 182

Mark 182
Unsigned Decimal 445
UNTIL 377
UPDATERATE 378
USELIBPATH 430
User 104

V
VA 383
Variable 387

Address 447
Displaying Global Variables 444
Displaying Local Variables 444
Editing Value 446
Format 98
Local and Global 98
Mode 103
Scope 98
Showing Location 447
Type 98
Value 445

Vector 394
VER 378
Version number 59
Vert. Text Alignment 240
Vertical Size 231
VisualizationTool

7 Segment Display 237
Analog 233
Bar 234
Bitmap 235, 236
Demo 243
Demo limitation 243
Demo Version Limitations 243
DILSwitch 236
Instrument 232
Knob 236
LED 237
Setup 231
Switch 238
bugger Manual DM–581

Index
Text 240
Voltage Regulator 519
Vppoff command file 55
Vppon command file 55

W
-W 31
WAIT 379
Warranty 18
WATCHPOINT 549
Watchpoint

Checking condition 261
Command 268
Conditional 261, 265
Counting 261, 264
Definition 244
Deleting 267
Message 548
Read 262
Read, Write 245
Read/Write 264
WATCHPOINT 549
Write 263

Watchpoints... 45
WB 380
WHILE 339, 380
Width 232
Windows 413
WinEdit 413, 414
WL 381
Word 114
Word size 113
WorkDir 436
WorkingDirectory 436
WPORT 382
WW 382

X
X-Position 232

Y
Y-Position 232

Z
ZOOM 383

Zoom in 103
Zoom out 103
DM–582 Debugger Manual

CodeWarrior

True-Time Simulator & Real-Time
Debugger

	Table of Contents
	Important Notice
	Copyrights
	Trademarks
	Warranty

	Overview
	About This Guide
	Highlights
	Read the Release Notes
	Document Conventions

	Introduction
	What Is the Simulator/Debugger?
	What Is a Simulator/Debugger Application?
	What Is a Simulator/Debugger Execution Framework?
	Understanding the Simulator/Debugger Concept
	The Simulator/Debugger Execution Framework
	Objects and Services
	Framework Components
	Demo Version Limitations Components

	Simulator/Debugger User Interface
	Introduction
	Application Programs
	Start the Debugger
	Start the debugger from the IDE
	Starting the Debugger from a Command Line

	Simulator/Debugger Main Menu Bar
	Simulator/DebuggerSimulator/Debugger Toolbar
	Simulator/Debugger Status Bar
	Object Info Bar of the Simulator/Debugger Components
	Function of the Main Menu Bar
	File Menu
	View Menu
	Run Menu
	Target Menu
	Simulator Menu
	Component Menu
	Window Menu
	Help Menu

	Component Associated Menus
	Component Main Menu
	Component Popup Menu

	Highlights of the User Interface
	Smart User Interface: Activating Services with Drag and Drop
	To Drag and Drop an Object
	Drag and Drop Combinations
	Selection Dialog Box

	Framework Components
	Component Introduction
	CPU component
	Window components
	Target components

	Components Window
	General Component
	Adc_Dac component
	Assembly Component
	Command Line Component
	Coverage Component
	DAC Component
	Data Component
	Memory Component
	IT_Keyboard
	Keyboard
	LCD Display Component
	Monitor components
	Push Buttons components
	MicroC Component
	Module Component
	Procedure Component
	Profiler Component
	Programmable IO_Ports
	Recorder Component
	Register Component
	Seven segments display component
	SoftTrace Component
	Source Component
	Stimulation Component
	TestTerm Component
	Terminal Component
	Wagon Component

	Visualization Utilities
	Analog Meter Component
	Inspector Component
	IO LED Component
	LED Component
	The Phone Component
	VisualizationTool

	Control Points
	Control points introduction
	Breakpoints setting dialog
	Breakpoint Symbols
	Description of the Dialog
	Multiple selections in the dialog
	Checking condition in dialog
	Saving Breakpoints

	Define Breakpoints
	Identify all Positions Where a Breakpoint Can Be Defined
	Define a Temporary Breakpoint
	Define a Permanent Breakpoint
	Define a Counting Breakpoint
	Define a Conditional Breakpoint
	Delete a Breakpoint
	Associate a Command with a Breakpoint

	Watchpoints setting dialog
	Description of the Dialog
	Multiple selections in the dialog
	Checking condition in the dialog

	General Rules for Halting on a Control Point
	Define Watchpoints
	Defining a Read Watchpoint
	Defining a Write Watchpoint
	Defining a Read/Write Watchpoint
	Defining a Counting Watchpoint
	Defining a Conditional Watchpoint
	Deleting a Watchpoint
	Associate a Command with a Watchpoint

	Debugger Commands
	Simulator/Debugger Commands
	List of Available Commands
	Definitions of Terms Commonly Used in Command Syntaxes
	A
	ACTIVATE
	ADDCHANNEL
	ADCPORT
	ADDXPR
	ATTRIBUTES
	AT
	AUTOSIZE
	BASE
	BC
	BCKCOLOR
	BD
	BS
	CALL
	CD
	CF
	CLOCK
	CLOSE
	COPYMEM
	CMDFILE
	CPORT
	CR
	CYCLE
	DASM
	DB
	DDEPROTOCOL
	DEFINE
	DELCHANNEL
	DETAILS
	DL
	DUMP
	DW
	E
	ELSE
	ELSEIF
	ENDFOCUS
	ENDFOR
	ENDIF
	ENDWHILE
	EXECUTE
	EXIT
	FILL
	FILTER
	FIND
	FINDPROC
	FOCUS
	FOLD
	FONT
	FOR
	FPRINTF
	FRAMES
	G
	GO
	GOTO
	GOTOIF
	GRAPHICS
	HELP
	IF
	INSPECTOROUTPUT
	INSPECTORUPDATE
	ITPORT
	ITVECT
	KPORT
	LCDPORT
	LINKADDR
	LF
	LOAD
	LOADCODE
	LOADMEM
	LOADSYMBOLS
	LOG
	LS
	MEM
	MS
	NB
	NOCR
	NOLF
	OPEN
	OPENFILE
	OPENIO
	OUTPUT
	P
	PAUSETEST
	PBPORT
	PORT
	PRINTF
	PTRARRAY
	RD
	RECORD
	REGBASE
	REGFILE
	REPEAT
	RESET
	RESETCYCLES
	RESETMEM
	RESETRAM
	RESETSTAT
	RESTART
	RETURN
	RS
	S
	SAVE
	SAVEBP
	SEGPORT
	SET
	SETCOLORS
	SETCONTROL
	SETCPU
	SHOWCYCLES
	SLAY
	SLINE
	SMEM
	SMOD
	SPC
	SPROC
	SREC
	STEPINTO
	STEPOUT
	STEPOVER
	STOP
	T
	TESTBOX
	TUPDATE
	UNDEF
	UNFOLD
	UNTIL
	UPDATERATE
	VER
	WAIT
	WB
	WHILE
	WL
	WPORT
	WW
	ZOOM

	True Time I/O Stimulation
	Stimulation Program examples
	Running an Example Program Without Stimulation
	Example Program with Periodical Stimulation of a Variable
	Example Program with Stimulated Interrupt
	Example of a Larger Stimulation File

	Stimulation Input File Syntax

	Real Time Kernel Awareness
	Real Time Kernel Awareness Introduction
	Inspecting the state of a task

	Task description language
	Example of application
	Inspecting data structures of the Kernel
	Register assignments for the RTK awareness
	OSEK Kernel Awareness
	OSEK ORTI
	OSEK RTK Inspector component

	Environment
	Debugger environment
	The Current Directory
	Global Initialization File (MCUTOOLS.INI) (PC only)

	Local Configuration File (usually project.ini)
	Configuration of the Default Layout for the Simulator/Debugger: the PROJECT.INI File
	Paths
	Environment Variable Details

	ABSPATH
	ABSPATH: Absolute Path

	DEFAULTDIR
	DEFAULTDIR: Default Current Directory

	ENVIRONMENT
	ENVIRONMENT: Environment File Specification

	GENPATH
	GENPATH: #include “File” Path

	LIBRARYPATH
	LIBRARYPATH: ‘include <File>’ Path

	OBJPATH
	OBJPATH: Object File Path

	TMP
	TMP: Temporary directory

	USELIBPATH
	USELIBPATH: Using LIBPATH Environment Variable

	Searching order for sources files
	Searching Order in the Simulator/Debugger for C source files (*.c, *.cpp)
	Searching Order in the Simulator/Debugger for Assembly source files (*.dbg)
	Searching Order in the Simulator/Debugger for object files (HILOADER)

	Files of the Simulator/Debugger

	How To ...
	How To Configure the Simulator/Debugger
	How To Configure the Simulator/Debugger for Use from Desktop on Win 95, Win 98,Win NT4.0 or Win2000

	How To Start the Simulator/Debugger
	How To Start the Simulator/Debugger from WinEdit

	Automating startup of the Simulator/Debugger
	How To Load an Application
	How To Start an Application
	How To Stop an Application
	How To Step in the Application
	How to step on Source Level
	How to Step on Assembly Level

	How To Work on Variables
	How to Display Local Variable from a Function
	How to Display Global Variable from a Module
	How to Change the Format for the Display of Variable Value
	How to Modify a Variable Value
	Modify a Variable Value
	How to Get the Address Where a Variable is Allocated
	How to Inspect Memory starting at a Variable Location Address
	How to Load an Address Register with the Address of a variable

	How To Work on Register
	How to Change the Format of the Register display
	How to Modify a Register Content
	How to Get a Memory Dump starting at the Address where a Register is pointing

	How to Modify the content of a Memory Address
	How to Consult Assembler Instructions Generated by a Source Statement
	How To view Code
	How to Communicate with the Application
	About startup.cmd, reset.cmd, preload.cmd, postload.cmd

	CodeWarrior Integration
	Requirements
	Debugger Configuration

	Debugger DDE capabilities
	Debugger DDE Server
	DDE introduction
	Debugger DDE implementation

	Synchronized debugging through DA-C IDE
	Requirements
	Configuring DA-C IDE for Metrowerks Tool Kit
	Creating a new project
	Configure the working directories

	Debugger Interface
	Principle of Communication between DA-C IDE and Simulator/Debugger

	Synchronized debugging
	Troubleshooting

	Full Chip Simulation
	Introduction
	Supported Derivatives
	Communication Modules
	BF (Byteflight)
	BLCD (J1850 Bus)
	MSCAN (Motorola Scalable CAN)
	IIC (Inter-IC Bus)
	SCI (Serial Communication Interface)
	SPI (Serial Peripheral Interface)

	Converter Modules
	ATD (Analog to Digital Converter)

	Memory Modules
	EETS (EEPROM)
	FTS (Flash)

	Misc. Modules
	VREG (Voltage Regulator)

	Port I/O Modules
	MEBI (Multiplexed External Bus Interface)
	PIM (Port Integration Module)

	Timer Modules
	CRG (Clock and Reset Generator)
	ECT (Enhanced Capture Timer)
	Not memory mapped registers
	PWM (Pulse Width Modulator)
	TIM (Timer Module)

	Full Chip Simulation Tutorials
	Guess the number
	Step 1 - Environment setup
	Step 2 - Creating the project
	Step 3 - ‘Target CPU’ window
	Step 4 - ‘Bean Selector’ window
	Step 5 - ‘Project Panel’ window
	Step 6 - ‘Bean Inspector AS1:AsynchroSerial’ window
	Step 7 - Generation of driver code
	Step 8 - Verification of the files created
	Step 9 - Entering the user code
	Step 10 - Run

	PWM Channel 0
	Step 1 - Environment setup
	Step 2 - Creating the project
	Step 3 - ‘Target CPU’ window
	Step 4 - Creating the PWM Bean
	Step 5 - ‘Project Panel’ window
	Step 6 - ‘Bean Inspector PWM8.PWM
	Step 7 - Generation of driver code
	Step 8 - Verification of the files created
	Step 9 - Entering the user code
	Step 10 - Run

	Scripting
	The Component Object Model Interface
	Parameters:
	Return Values:

	Manual Registration
	Scripting Example
	Remote Scripting another HI-WAVE
	COM_START
	COM_EXIT
	COM_EXE

	Appendix
	Messages in Status Bar
	Status Messages
	Stepping, Breakpoint and Watchpoints Messages
	CPU Specific Messages
	Target Specific Messages
	More Simulator Peculiar Messages: Memory Access Messages

	EBNF Notation
	Introduction to EBNF
	“Expression” Definition in EBNF

	Constant Standard Notation
	Register Description File
	OSEK ORTI File Sample
	Bug Reports
	Technical Support
	E-mail
	FAX
	Support by MAIL
	Internet

	Index

