Interrupts in C

Main Points to Remember:

1. The interrupt vector is set by the linker
through the use of the Linker Parameter (.PRM)
file.

2. The keyword “interrupt” must precede each of
the interrupt routine declarations.

Setting up a new CodeWarrior
C project

* The following example implements a simple system
that responds to a falling edge IRQ interrupt that is
produced by a bounceless pushbutton connected to
the PE1/IRQ input pin (Pin 2) of our CSMB12C128
module.

* Inresponse to this falling edge, and LED (on PT1) is
toggled and a counter (on Port M) is incremented.




Complete Example of a C program that
incorporates an interrupt service routine

First open CodeWarrior, and click
File — New — HC(S)12 New Project Wizard

Enter Project name and desired path
Click OK and Next

Enter MC9512C128 and Next

Check C and uncheck Assembly and Next
Check NO to Processor Expert and Next

Check NO PC-lint and Next

Check ANSI startup code and Next

Check None for floating point and Next
Check Small for memory model

Check both “Full-Chip Simulation” and

also “P&E Multilink/Cyclone Pro” and Finish

Once the “C” project is created, click on “PRM”.
Then select (double left click on) the “P&E
Multilink/Cyclone Pro” Linker Parameter file.




Now add the desired interrupt vector
initialization to the .PRM file

* In our case we want the function we shall call
IRQISR to be entered when an IRQ interrupt

occurs, which is Vector 6.

* Therefore, add the following line to the end

of the .PRM file:

VECTOR 6 IRQISR

Note: Vector 6 is the IRQ vector, initialize it with address of

IRQISR

Copy the following program into the main.c function

/[Example of using C with interrupts

/IBounceless SW connected to Pin 2 (PEL1/IRQ input)

//LED connected to PT1

llInterrupt count set up on Port A.

/lInterrupt vector for IRQ is initialized to

/I point to the IRQISR routine at the end of

Il the .PRM file.

#include <hidef.h>  /* common defines and macros */

#include <mc9s12c128.h> /* derivative information */

#pragma LINK_INFO DERIVATIVE "mc9s12c128"

void IRQISR(void);

unsigned char cnt;  /* This is global variable is used for
communicating between main program
and ISR, so it MUST be defined outside
of the main program */

void main(void) {

DDRA = OxFF;
cnt =0;
PORTA =0;
DDRT =0x02; /* configure PT1 pin for output */
PTT =0x02; /* enable LEDs to light */
INTCR =0xC0O; [*enable IRQ (PE1/IRQ, Pin2) interrupt
on falling edge */

asm("cli"); /* enable interrupt globally */

/* Alternately you could invoke “Enablelnterrupts;” */
while(1); /* wait for interrupt forever */




interrupt void IRQISR(void)

{

cnt++;

PORTA=cnt; //Increment count on Port A
PTT =~PTT; // Toggle LED on PT1

//Since IRQ input is made edge sensitive,
/[The IRQ interrupt is automatically
/lrelaxed after the interrupt routine is
/lentered, so there is no need to "shut the
/lbaby up" as with most other"I-bit related"
/linterrupts. Upon return from IRQISR, the
/llinterrupt is already inactive.

Configuring PE1/IRQ, pin for interrupt

input

* Note that the INTCR (interrupt control
register) must be set to $CO in order to
configure pin PE1 as a “falling edge” sensitive
IRQ input pin instead of a PORT E digital I/0

pin.




INTCR Register

(From 9512C128DGV1.PDF Design Guide Document)

Address Name Bit7 Bit 6 Bit 5 Bit 4 Bit 3 Bit2 Bit 1 Bit 0

$001E INTCR Serﬁg IRQE | IRQEN 0 0 0 0 0 0

2.3.14 PE1/IRQ — Port E input Pin [1] / Maskable Interrupt Pin

The IRQ input provides a means of applying asynchronous interrupt requests to the MCU. Either falling
edge-sensitive triggering or level-sensitive triggering is program selectable (INTCR register). IRQ is
always enabled and configured to level-sensitive triggering out of reset. It can be disabled by clearing
IRQEN bit (INTCR register). When the MCU is reset the TRQ function is masked in the condition code
register. This pin is always an input and can always be read. There is an active pull-up on this pin while in
reset and immediately out of reset. The pull-up can be turned off by clearing PUPEE in the PUCR register.

Denoting Interrupt Routines in C

Note how the interrupt routine begins with the
keyword “interrupt”. It must also be given a name,
so that the interrupt vector can be initialized using
the name of the interrupt routine. Use of this
keyword ensures that the routine will end with an
RTI instead of just an RTS.

There should be as many interrupt routines defined
in this way as you have interrupt sources.




This program will be interrupted to
increment PORT A and then toggle the
LED on PT1 with each falling edge on
PE1/IRQ pin!




