PAGE
3

ECE331 Lab 5. State Machine in C: Morse Code “Squeeze Keyer”

Originally created for Samuel Finley Breese Morse's electric telegraph in the early 1840s, Morse code was also extensively used for early radio communication beginning in the 1890s. For the first half of the twentieth century, the majority of high-speed international communication was conducted in Morse code, using telegraph lines, undersea cables, and radio circuits. However, the variable length of the Morse characters made it hard to adapt to automated circuits, so for most electronic communication it has been replaced by machine readable formats, such as Baudot code and ASCII.

The most popular current use of Morse code is by amateur radio operators, although it is no longer a requirement for amateur licensing in many countries. It also continues to be used for specialized purposes, including identification of navigational radio beacon and land mobile transmitters. Morse code is designed to be read by humans without a decoding device, making it useful for sending automated digital data in voice channels. For emergency signaling, Morse code can be sent by way of improvised sources that can be easily "keyed" on and off.

[image: image2.png]International Morse Code
-1 dash = 3 dots.
“The space between parts of the same letter = 1 dot.
- The space between letters = 3 dots.
~The space between words = 7 dots.

Veeoeomm
We mm
X oo mm
Y - -

COBNAUBRUNFO~ -

Figure 1. International Morse Code Description and Timing (From Wikipedia)
The state diagram for a basic automatic Morse code key (long used by amateur radio operators) is shown in Fig. 3. Its input is two binary signal levels, DOT and DASH, which are generated by two switches mounted horizontally on a keying paddle), as shown in Fig. 2. Pressing the left paddle toward the right with your thumb causes the DASH signal to be asserted, which in turn causes a series of dash’s to be generated for as long as the thumb remains on the left paddle. Once the left paddle is released, the DASH signal returns to 0, and the dash’s stop (once the final dash is completed). Likewise, if the forefinger presses the right paddle toward the left, the DOT signal is asserted. This causes a series of dot’s to be generated until the forefinger is removed from the right paddle, and the DOT signal returns to 0.

Figure 2. Popular Keying Paddle for Sending Automated Morse Code

Note from the state transition diagram of Fig. 3 that the dot time is equal to the system clock period. If neither DOT or DASH paddle is pressed, the system remains in the “Space” state, where the system output is 0. If the DOT paddle is depressed, the system moves to the “Dot1” state, where the output is 1, and after one clock period (dot time) the system returns to the ”Space” state. If the DOT paddle is being held, a string of dots is generated. Likewise, if the DASH paddle is pressed, the system moves to the “Dash1”, “Dash2”, and “Dash3” states where the output is held at 1, before returning to the “Space” state where the output returns to 0. Once again, if the DASH paddle is held, a string of dashes is generated.

Assignment Part 1. Implementing the Basic “Non-Squeeze” Keyer

Write a C program that emulates the state machine of Fig. 3 in software. Please use the elevator controller state machine that was presented in class as a model. The system inputs (DOT and DASH) should be connected to pushbuttons PB1 and PB2 on your project board. Use any two convenient input pins for DOT and DASH. Your system output should be driven out on PM2, which should be connected to an LED. Slow the clock down to about a 0.5 second clock period by using a simple 0.5 second software delay loop at the end of your infinite control loop before going back to the top of your control loop.

Figure 3. State Transition Diagram for basic (non-squeeze) Morse code keyer

Assignment Part 2. Adding an Interrupt Routine to Generate an Audible Tone

Now connect the Piezo Buzzer on your project board to the microcontroller’s PT0 pin by connecting the “BZ” jumper on the bottom left corner of your project board. Note that the act of connecting this jumper will connect the Piezo Buzzer to PT0 through a BJT amplifier circuit shown in Fig. 4.
Add additional statements to your C program that will cause Timer Channel 0 (operating in Output Compare Mode) to interrupt after 1 ms.
Then write an interrupt routine in C that will handle the Timer Channel 0 interrupt by scheduling another 1 ms “output compare” interrupt. The interrupt routine should also set PT0 to TOGGLE if PM2 is currently high, and set PT0 to remain low if PM2 is currently low. Thus a 500 Hz audio tone should be heard on the Piezo Buzzer only when PM2 (the output of the finite state machine that implements the keyer) is high. Don’t forget to relax the TC0 interrupt flag in the TFLAG1 register (shut the baby up). See the Lecture entitled “Interrupts in C” for information on how to write interrupt routines in the C language. Don’t forget to add the Timer Channel 0 interrupt vector initialization to the .PRM linker command file.

Assignment Part 3. Adding the “Squeeze” Feature to the Keyer Design
Now modify the state transition diagram of Fig. 3 to incorporate an additional feature. Imagine that the DOT paddle is pressed and then after the dot starts to be sent, the DASH paddle is ALSO pressed (the keyer paddle is said to be “squeezed”). After the dot is sent, the keyer should generate alternating dashes and dots for as long as both paddles are squeezed. Likewise, if the DASH paddle is pressed, and then after the dash starts to be sent, the DOT paddle is ALSO pressed, after the dash starts to be sent, the keyer should generate alternating dots and dashes for as long as both paddles are squeezed.

The usefulness of the squeeze feature is that some Morse characters that involve alternating dots and dashes can be sent more easily, with fewer back and forth motions. For example, a “C” can be sent by closing the DASH paddle, and then squeezing both paddles until the entire character (DASH DOT DASH DOT) is sent. Likewise a “.” (period at the end of a sentence) can be sent by closing the DOT paddle, and then squeezing both paddles until the entire character (DOT DASH DOT DASH DOT DASH) has been sent. Often experienced users of a squeeze keyer feel like the characters are almost being sent by themselves!

Finally modify your program to implement (emulate) your final squeeze keyer state transition diagram in software. Demonstrate the finished design to your lab instructor, and obtain his verifying signature.

Figure 4. Piezo Buzzer Connection on the Project Board. (Note that “M13” is the pin on the CSM9S12C32 module socket that corresponds to PT0)
[image: image1.png]13-

M36-

W3a-

M2
7

v
UFEA R68 SRE9
or ozl mz 47K 47K
3l 67 ot B
5 o308 LED us
7] 64 ol PoOT 1
I 1oz o]

+av

BZ
BUZZEFR

Lab 5 Report Requirements

As usual, your report must be memo style, with the following attachments:

1) Commented C code for the basic non-squeeze keyer (with audible tone output) of Parts 1 and 2, which has been signed by the instructor to indicate that it was successfully demonstrated.

2) Modified state transition diagram for the squeeze keyer of Part 3.

3) Commented C code with the instructor’s signature that indicates the final squeeze keyer (with audible tone output) was satisfactorily demonstrated.
DOT=0, DASH=1

DOT =1, DASH=0

DASH=0, DOT=0

Dash3, Out=1

Dash2, Out=1

Dash1, Out=1

Dot1, Out=1

Space, Out=0

