Application Note

AN2554/D
Rev. 0, 7/2003

Clearing and Disabling
Interrupt Flags

By Gordon Borland

Freescale Semiconductor, Inc.

Introduction

A common feature of all Motorola micro-controllers is the use of flag bits to latch
interrupts by the MCU.

Examples of modules, which utilise this feature, include the MSCAN, certain
implementations of Key Wake-Up, and certain implementations of PLL.

An interrupt is pending whilst its respective flag bit is set and the interrupt is
enabled. The interrupt service routine must reset the flag in order to handshake
the interrupt. Typically this is achieved by writing a 1 to the corresponding flag
bit.

Care should be taken when using bit manipulation instructions (BSET) to clear
the interrupt flag, as this can cause interrupt requests to become lost and not
get serviced.

The recommended way to clear interrupt flags is to use load and store
instructions with bit masks.

Motorola micro-controllers also feature an | mask bit in the Condition Code
Register (CCR). The | mask bit enables and disables maskable interrupt
sources.

Disabling a specific interrupt source without previously setting the | mask bit in
the CCR can result in spurious interrupts which cause the micro-controller to
take the SWI vector instead of the expected interrupt vector.

It is recommended to set the | mask bit before disabling a maskable interrupt
source to avoid spurious interrupts.

freescale”

© Freescale Semiconductor, Inc., 2004. All rights reserved. semiconductor

For More Information On This Product,
Go to: www.freescale.com

rxzb30
freescalecolorjpeg

rxzb30
fslcopyrightline

Freescale Semiconductor, Inc.

AN2554/D

Clearing Interrupts

Using a bit manipulation instruction to clear an interrupt flag by writing a '1' can
result in other interrupt flags being inadvertently cleared.

The BSET instruction is a read, modify, write command. That is it reads the
contents of a memory location, modifies the contents, and then writes the
modified value back to the memory location.

In the case of BSET it reads the memory contents, performs a logical OR with
a user defined mask byte and then writes the contents back to the memory
location.

BSET Operation: (Memory Contents) + (Mask) = (Memory Location)

Thus it is possible that if two or more interrupt flag bits are set and a BSET
command is used to clear one of the flag bits, all of the interrupt flags which are
set will be cleared.

Using a MSCAN Receiver Flag Register (CRFLG) as an example, we see that
it consists of 8 interrupts flags.

Bit ¥ - 5 q 3 2 1

o
L=

CRFLG

1 WLIFIF RWRMIF TWHENIF RERRIF TERRIF BOFFIF OvRIF RXF
50104 i

RESE] o L Ja] o o o U]

Writing a '1' to the corresponding bit position clears each of these flags.

For an interrupt to become pending both the interrupt flag and the interrupt
enable bit must be set. i.e.

INTERRUPT = FLAG & ENABLE_BIT

If we assume that two interrupt flags are set (OVRIF and RXF) then the CRFLG
register will contain the value $03.

In order to handle the RXF interrupt, the interrupt service routine (ISR) should
clear the appropriate flag bit by writing a '1' to bit position 0 of the CRFLG
register.

Clearing and Disabling Interrupt Flags

For More Information On This Product,
Go to: www.freescale.com

NOTE:

Freescale Semiconductor, Inc.

AN2554/D
Clearing Interrupts

Using a BSET instruction,

BSET CRFLG, $01
Becomes:

($03) + ($01) = CRFLG

As $03 + $01 equals $03. $03 will be written to the CRFLG register clearing the
RXF flag and causing the OVRIF flag to be cleared also. The OVRIF interrupt
request has been cleared unintentionally and will go unnoticed.

Even if only one interrupt flag bit is set, it is still not appropriate to use the BSET
command to clear the flag, as this could still cause interrupt requests to go
unnoticed.

Again consider clearing the RXF flag. If we assume that the OVRIF flag is set
after the RXF interrupt is recognized, but before the BSET instruction is
executed. Using BSET to clear the RXF flag will again cause the OVRIF
interrupt to go unnoticed in the same manner as before.

In order to avoid this happening users should use load and store instructions in
conjunction with an appropriate bit mask.

Using load and store instructions to clear the RXF flag from our initial example,
we get:

LDAA #3$01
STAA CRFLG
Or
MOVB #$01,CRFLG

(MOVB is an HC12 instruction. HC08 devices should use the MOV command
instead)

After these instructions have been executed the CRFLG register will contain
$02. The OVRIF flag will not be affected.

Alternatively it is possible to use the BCLR command to clear RXF.

The BCLR instruction reads the register contents, ANDs it with the inverse of a
user supplied mask, the writes the result back to the register.

Thus to clear the RXF flag using the BCLR instruction we get:
BCLR CRFLG, $FE
Which becomes:

($03) - ($01) = CRFLG

Clearing and Disabling Interrupt Flags 3

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

AN2554/D

As $03 - $01 equals $01. $01 will be written to the CRFLG register clearing the
RXF flag and leaving the OVRIF flag status unchanged. However, the
programmer has to remember to use the complement of the normal bit mask
for this instruction to have the desired effect in this particular case.

Disabling Interrupts

Disabling a maskable interrupt without setting the I mask in the CCR can cause
the micro-controller to fetch a different interrupt vector than the expected
vector.

A spurious interrupt occurs when the micro-controller starts interrupt
processing due to an asserted interrupt, but when the interrupt vector is
fetched, the interrupt has gone. In this case, the microcontroller will fetch the
SWI vector.

This can occur when an interrupt source is disabled.

For an interrupt to occur both the interrupt flag and the interrupt enable bit must
be set. i.e.

INTERRUPT = FLAG & ENABLE_BIT

Using a Keyboard Interrupt Enable Register (KBIER) as an example, we see
that it consists of 5 interrupt enable bits.

Bit7 G 5 1 3 2 1 Bita
Read: o a 0
KEIE4 KEIE3 KBIEZ KBIET “HIED
Wriba:
Hesel: u] a 0 0] u] a 0

In order to disable the KBIE4 interrupt after it has been previously enabled, bit
4 needs to be cleared.

LDAA KBIER
ANDA #$EF
STAA KBIER

Or
BCLR KBIER, $10

If the KBIE4 interrupt is asserted whilst the STAA (or BCLR) command is being
executed, interrupt processing will start at the completion of the STAA (or

Clearing and Disabling Interrupt Flags

For More Information On This Product,
Go to: www.freescale.com

NOTE:

Freescale Semiconductor, Inc.

AN2554/D
Disabling Interrupts

BCLR) command. In the meantime however the interrupt source has been
disabled due to KBIE4 getting cleared. As aresult a spurious interrupt will occur
and the SWI vector will be fetched.

To avoid the risk of this happening, users should set the | mask bit before
disabling the interrupt.

Using our previous example, the correct code should be
SEI
LDAA KBIER
ANDA #$EF
STAA KBIER
CLI
Or
SEI
BCLR KBIER, $10
CLI

Setting the | mask bit will prevent any maskable interrupt processing until after
the interrupt source has been disabled and the | mask bit cleared.

There is an intentional one cycle delay in the clearing mechanism of the CLI
instruction, which guarantees that the instruction after the CLI command will
always be executed, even if an interrupt is pending. This is useful for entering
STOP mode for example:

SEI

;Disable IRQs not required for STOP exit

CLI

STOP ;This is always executed

Clearing and Disabling Interrupt Flags 5

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor

Technical Information Center, CH370
1300 N. Alma School Road

Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 1 69 35 48 48 (French)
support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064

Japan

0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd.

Technical Information Center
2 Dai King Street

Tai Po Industrial Estate

Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center

P.O. Box 5405

Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150

LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters which may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals” must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

freescale

semiconductor

AN2554/D
Rev. 0
712003 . .
For More Information On This Product,

Go to: www.freescale.com

rxzb30
disclaimer

rxzb30
hibbertleft

rxzb30
freescalecolorjpeg

	Introduction
	Clearing Interrupts
	Disabling Interrupts

