
AN2554/D
Rev. 0, 7/2003

Clearing and Disabling 
Interrupt Flags

Application Note

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.
 By Gordon Borland

Introduction

A common feature of all Motorola micro-controllers is the use of flag bits to latch 
interrupts by the MCU. 

Examples of modules, which utilise this feature, include the MSCAN, certain 
implementations of Key Wake-Up, and certain implementations of PLL. 

An interrupt is pending whilst its respective flag bit is set and the interrupt is 
enabled. The interrupt service routine must reset the flag in order to handshake 
the interrupt. Typically this is achieved by writing a 1 to the corresponding flag 
bit.

Care should be taken when using bit manipulation instructions (BSET) to clear 
the interrupt flag, as this can cause interrupt requests to become lost and not 
get serviced.

The recommended way to clear interrupt flags is to use load and store 
instructions with bit masks.

Motorola micro-controllers also feature an I mask bit in the Condition Code 
Register (CCR). The I mask bit enables and disables maskable interrupt 
sources.

Disabling a specific interrupt source without previously setting the I mask bit in 
the CCR can result in spurious interrupts which cause the micro-controller to 
take the SWI vector instead of the expected interrupt vector. 

It is recommended to set the I mask bit before disabling a maskable interrupt 
source to avoid spurious interrupts.
© Motorola, Inc., 2003
  

For More Information On This Product,
  Go to: www.freescale.com

rxzb30
freescalecolorjpeg

rxzb30
fslcopyrightline



AN2554/D

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Clearing Interrupts

Using a bit manipulation instruction to clear an interrupt flag by writing a '1' can 
result in other interrupt flags being inadvertently cleared.

The BSET instruction is a read, modify, write command. That is it reads the 
contents of a memory location, modifies the contents, and then writes the 
modified value back to the memory location.

In the case of BSET it reads the memory contents, performs a logical OR with 
a user defined mask byte and then writes the contents back to the memory 
location.

BSET Operation:    (Memory Contents) + (Mask) ⇒ (Memory Location)

Thus it is possible that if two or more interrupt flag bits are set and a BSET 
command is used to clear one of the flag bits, all of the interrupt flags which are 
set will be cleared.

Using a MSCAN Receiver Flag Register (CRFLG) as an example, we see that 
it consists of 8 interrupts flags.

Writing a '1' to the corresponding bit position clears each of these flags.

For an interrupt to become pending both the interrupt flag and the interrupt 
enable bit must be set. i.e.

INTERRUPT = FLAG & ENABLE_BIT

If we assume that two interrupt flags are set (OVRIF and RXF) then the CRFLG 
register will contain the value $03.

In order to handle the RXF interrupt, the interrupt service routine (ISR) should 
clear the appropriate flag bit by writing a '1' to bit position 0 of the CRFLG 
register.
2 Clearing and Disabling Interrupt Flags
  

For More Information On This Product,
  Go to: www.freescale.com



AN2554/D
Clearing Interrupts

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

Using a BSET instruction,

BSET CRFLG, $01

Becomes:

($03) + ($01) ⇒ CRFLG

As $03 + $01 equals $03. $03 will be written to the CRFLG register clearing the 
RXF flag and causing the OVRIF flag to be cleared also. The OVRIF interrupt 
request has been cleared unintentionally and will go unnoticed.

Even if only one interrupt flag bit is set, it is still not appropriate to use the BSET 
command to clear the flag, as this could still cause interrupt requests to go 
unnoticed.

Again consider clearing the RXF flag. If we assume that the OVRIF flag is set 
after the RXF interrupt is recognized, but before the BSET instruction is 
executed. Using BSET to clear the RXF flag will again cause the OVRIF 
interrupt to go unnoticed in the same manner as before.

In order to avoid this happening users should use load and store instructions in 
conjunction with an appropriate bit mask.

Using load and store instructions to clear the RXF flag from our initial example, 
we get:

LDAA #$01

STAA CRFLG

Or 

MOVB #$01,CRFLG

NOTE: (MOVB is an HC12 instruction. HC08 devices should use the MOV command 
instead)

After these instructions have been executed the CRFLG register will contain 
$02. The OVRIF flag will not be affected.

Alternatively it is possible to use the BCLR command to clear RXF.

The BCLR instruction reads the register contents, ANDs it with the inverse of a 
user supplied mask, the writes the result back to the register. 

Thus to clear the RXF flag using the BCLR instruction we get:

BCLR CRFLG, $FE

Which becomes:

($03) · ($01) ⇒ CRFLG
Clearing and Disabling Interrupt Flags 3
  

For More Information On This Product,
  Go to: www.freescale.com



AN2554/D

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

As $03 · $01 equals $01. $01 will be written to the CRFLG register clearing the 
RXF flag and leaving the OVRIF flag status unchanged. However, the 
programmer has to remember to use the complement of the normal bit mask 
for this instruction to have the desired effect in this particular case.

Disabling Interrupts

Disabling a maskable interrupt without setting the I mask in the CCR can cause 
the micro-controller to fetch a different interrupt vector than the expected 
vector.

A spurious interrupt occurs when the micro-controller starts interrupt 
processing due to an asserted interrupt, but when the interrupt vector is 
fetched, the interrupt has gone. In this case, the microcontroller will fetch the 
SWI vector.

This can occur when an interrupt source is disabled.

For an interrupt to occur both the interrupt flag and the interrupt enable bit must 
be set. i.e.

INTERRUPT = FLAG & ENABLE_BIT

Using a Keyboard Interrupt Enable Register (KBIER) as an example, we see 
that it consists of 5 interrupt enable bits.

In order to disable the KBIE4 interrupt after it has been previously enabled, bit 
4 needs to be cleared.

LDAA KBIER

ANDA #$EF

STAA KBIER

Or

BCLR KBIER, $10

If the KBIE4 interrupt is asserted whilst the STAA (or BCLR) command is being 
executed, interrupt processing will start at the completion of the STAA (or 
4 Clearing and Disabling Interrupt Flags
  

For More Information On This Product,
  Go to: www.freescale.com



AN2554/D
Disabling Interrupts

    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

BCLR) command. In the meantime however the interrupt source has been 
disabled due to KBIE4 getting cleared. As a result a spurious interrupt will occur 
and the SWI vector will be fetched.

To avoid the risk of this happening, users should set the I mask bit before 
disabling the interrupt.

Using our previous example, the correct code should be

SEI

LDAA KBIER

ANDA #$EF

STAA KBIER

CLI

Or

SEI

BCLR KBIER, $10

CLI

Setting the I mask bit will prevent any maskable interrupt processing until after 
the interrupt source has been disabled and the I mask bit cleared.

NOTE: There is an intentional one cycle delay in the clearing mechanism of the CLI 
instruction, which guarantees that the instruction after the CLI command will 
always be executed, even if an interrupt is pending. This is useful for entering 
STOP mode for example:

SEI

.

. ;Disable IRQs not required for STOP exit

.

CLI

STOP ;This is always executed
Clearing and Disabling Interrupt Flags 5
  

For More Information On This Product,
  Go to: www.freescale.com



    
F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.
n

c
..

.

AN2554/D
Rev. 0
7/2003  

For More Information On This Product,
  Go to: www.freescale.com

rxzb30
disclaimer

rxzb30
hibbertleft

rxzb30
freescalecolorjpeg


	Introduction
	Clearing Interrupts
	Disabling Interrupts



