
ECE331 Lab3 Handout Fall 2004 (KEH) Page 1 of 16

Handout for EC331 Lab #3:

-- ASCII-Encoded Keyswitch Entry Terminal

Jianjian Song and Keith Hoover
Department of Electrical and Computer Engineering
Rose-Hulman Institute of Technology
Revised September 20, 2009

1 OBJECTIVES .. 1

2 DELIVERABLE .. 2

3 REFERENCE MATERIALS AND EQUIPMENT ... 2

3.1 REFERENCES ... 2
3.2 EQUIPMENT ... 2

4 INTRODUCTION.. 2

5 MODULAR PROGRAMMING ... 2

5.1 SOFTWARE MODULES .. 2
5.2 TOP-DOWN MODULAR DESIGN ... 3
5.3 DOCUMENTING A SOFTWARE MODULE: THE HEADER BLOCK ... 3

6 STEP 1: WRITE A VARIABLE-TIME-DELAY SUBROUTINE “WAIT_Y_4US” .. 4

6.1 SOFTWARE INTERFACE SPECIFICATION FOR SUBROUTINE “WAIT_Y_4US” ... 4
6.2 USING THE OUTPUT COMPARE FEATURE OF THE 9S12C128’S HARDWARE TIMING MODULE 4
6.3 VERIFICATION OF SUBROUTINE “WAIT_Y_4US” .. 6
6.4 LAB REPORT PART 1 ... 7

7 INVESTIGATING THE NEED FOR SOFTWARE SWITCH DEBOUNCING: LED TOGGLING
PROGRAM .. 8

7.1 STRUCTURE OF LED TOGGLING PROGRAM .. 8
7.2 RUNNING THE LED TOGGLING PROGRAM WITHOUT (AND THEN WITH) CONTACT DEBOUNCE DELAY 8
7.3 LAB REPORT PART 2 ... 9

8 DEBOUNCED KEYSWITCH ARRAY INPUT SUBROUTINE “GETKEY” .. 9

8.1 WAITING FOR PORT T CHANGES TO SETTLE .. 13
8.2 LAB REPORT PART 3 ... 13

9 WRITE AN ASYNCHRONOUS SERIAL OUTPUT ROUTINE “OUTCHAR” .. 13

9.1 LAB REPORT PART 4 ... 15

10 PUTTING IT ALL TOGETHER: FINAL SYSTEM INTEGRATION! .. 15

10.1 LAB REPORT PART 5 ... 15

11 APPENDIX A: ASCII TABLE ... 16

1 Objectives

(1) To learn modular design and development of software.

(2) To use 9S12C128 hardware timer to generate variable time delays.

EC331 Lab3 Handout August 2009 (KEH) Page 2 of 16

(3) To use hardware-timed delay for debouncing an SPST switch.

(4) To write a routine for 9S12C128 to scan an X-Y matrix keypad.

(5) To learn how to use a lookup table for data conversion.

(6) To program the 9S12C128’s serial communications interface module (SCI) for
asynchronous serial data communication.

2 Deliverable

Each lab group must submit a written memo-style lab report which refers to six different
attachments, where each attachment corresponds to one of the five “Lab Report” sections labeled
“Lab Report Part 1” through “Lab Report Part 5”, which are scattered throughout this lab
handout. (See the table of contents.) The central theme of this lab project is to show that each
module was first written (as a subroutine) and separately tested and debugged (by calling it from
a very simple test program) before the final step, in which all modules are integrated into the
final project.

3 Reference Materials and Equipment

3.1 References

 (1) TIM16B8 Timer Block User Guide (S12TIM16B8CV1.pdf)
 (2) MC9S12C Family Device User Guide (9S12C128DGV1.pdf)
 (3) HCS12 Microcontrollers Reference Manual (S12CPUV2.pdf)

3.2 Equipment

CSMB12C128 evaluation board and a 16-key 4 x 4 row-column matrix keypad (available
from the instrument room.)

4 Introduction

This project is intended to illustrate how a relatively large project, in this case, the design
of a software-debounced keypad entry system with asynchronous serial (RS232) output, can be
approached in a top-down, modular, “divide-and-conquer” fashion.

Along the way, you will gain experience working with the 9S12C128’s hardware timer,
software switch debouncing, key depression identification from a row-column keypad, the use of
a lookup table, and the programming of the 9S12C128’s asynchronous serial communications
interface (SCI) module.

5 Modular Programming

Before we get started with this project, let us discuss the concept of modular programming.

5.1 Software modules

A software module is very much like a hardware module or integrated circuit chip, in that
it is an easily detachable and separately testable section of code that has just one entry point and
one exit point.

EC331 Lab3 Handout August 2009 (KEH) Page 3 of 16

In this project, each module will be written as a subroutine. A separate project will be
created to test each subroutine using a “short and simple” test program that calls that subroutine
under test and exercises it sufficiently to verify its correct operation. Finally, once all of the
component subroutine modules have been individually validated, they will be integrated together
via a main program that calls each subroutine in turn.

5.2 Top-down modular design

The steps in the top-down modular system design (this applies to both hardware and/or
software design) are listed below:

(1) Precisely and fully specify the overall design. When a need arises for a new product,
many “gaps” usually exist in the initially (somewhat vague) product description. Many
secondary design decisions usually have to be made in order to “fill the gaps”.

(2) Intuitively break the overall design into smaller subsystems (modules), which are easily
designed, debugged, and modified separately from each other. Furthermore, each
module should be able to interconnect with the other modules in a clean and
straightforward way that requires the fewest possible number of “interconnections”.

(3) Develop precise and detailed specifications for each module.

(4) Implement each module exactly as specified. (Perhaps several designers will
implement several modules concurrently.) New designers sometimes have trouble
following this step. Although they are certainly encouraged to be as clever and creative
as possible as they internally design the modules, they MUST NOT creatively modify
any of the external module interface specifications in any way. After all, their modules
are going to have to integrate with other modules that have been created by other
designers.

(5) The source (assembly or C) code for each module (usually a subroutine) must be fully
described, along with revision number and author, in a “header comment block”. Many
companies have a standard header block format that must be followed by any
programmers who work for the company. This guarantees that all modules are fully
documented right in their source code, permitting these modules to be used easily in
future applications as well as in the present one.

(6) Fully debug and then test each module SEPARATELY until each module fully
complies with the specifications that were assigned to it.

(7) Integrate all modules into a complete system. Then test to see that the original overall
system specifications have been fully met. If not, “loop back” to Step 4.

5.3 Documenting a software module: the header block

Each software module that you produce should be accompanied by a software interface
definition. This definition typically appears as a header block at the beginning of the module’s
source code. The header block consists of a series of comment lines (perhaps set off using rows
of asterisks). In general, a well-documented module should contain a header block that includes
the following information:

(1) The program (or subroutine) name.

(2) Description of its intended purpose and possible application.

EC331 Lab3 Handout August 2009 (KEH) Page 4 of 16

(3) Author’s name, phone number, and company location and job site.

(4) Date of initial writing.

(5) For each revision made: revision number, descriptions of revision made and date of
revision.

(6) Text or journal reference(s) to algorithm(s) used in the module.

(7) Description of all input data needed, and how this input data is to be sent to the module.
(There are at least three possibilities: (a) in specified machine registers, (b) in specified
RAM locations, and (c) on the stack.)

(8) Description of output data produced by the module; how each resulting output datum
relates to the input data, and where each of the output data can be found after the
module is executed.

(9) Statement of potential problems or side effects of using this software module. Indicate
which, if any, internal machine registers are modified (clobbered) by the module.

6 Step 1: Write a variable-time-delay subroutine “wait_y_4us”

In this section you will use one of the 9S12C128’s “Output Compare” registers to write a
variable time delay subroutine that meets the software interface specification that appears in the
next section.

6.1 Software interface specification for subroutine “wait_y_4us”

Write a 9S12C128 assembly-language subroutine named “wait_y_4us” which, when
called, will make use of the 16-bit hardware timer (binary up counter) register (TCNT) in
conjunction with one of the “Output Compare” timer channel registers (say TC2) to “waste
time”, or delay, for Ny*2 microseconds before returning control back to the calling program. No
registers may be altered by this subroutine, including the Y register.

The symbol Ny represents an unsigned 16-bit integer (input argument) that is placed in the
Y register before the subroutine is called. This delay routine should use the “software polling”
mode of operation; it should NOT be made interrupt-driven. (We will work with interrupt-driven
output compare applications in Lab Project 4.)

The next section outlines how to use the output compare feature of the 9S12C128 to obtain
reasonably accurate delay times in your delay subroutine.

6.2 Using the output compare feature of the 9S12C128’s hardware timing module

Read about the function and programming of Output Compare registers in Section 4.4 of
the TIM16B8 Block User Guide (S12TIM16B8CV1.pdf). For the sake of brevity, I will refer to
this document as the “TIM User Guide” from now on.

Referring to Fig. 4-1 of the TIM User Guide, it should be evident that, in order to use the
16-bit Output Compare register TC2, which is accessible at two adjacent 8-bit addresses,
TC2H:TC2L, you must first turn on the timing system by setting the timer enable (TEN) bit (Bit
7) of the TSCR1 (Timer System Control Register 1) to 1. Setting TEN to one will enable the
free-running 16-bit timer (binary up-counter) TCNT, allowing it to begin counting (See Section
3.3.6 of the TIM User Guide).

EC331 Lab3 Handout August 2009 (KEH) Page 5 of 16

Since TCNT is 16 bits long, and the 9S12C128 is an “eight bit” microcontroller, meaning
that there can only be 8 bits at each memory location, TCNT must be broken up into two
adjacent (8-bit) registers (just as with any 16-bit register in the 9S12C128), with the high (most
significant) 8 bits of TCNT in register “TCNTHi”, and the lower 8 bits of TCNT in register
“TCNTLo”. We will allow TCNT to “free run”, continuously counting from 0x0000 up to
0xFFFF, and then wrapping back to 0x0000 and repeating the cycle endlessly (until the
microcontroller is reset).

The rate at which TCNT is incremented (clocked) is selected by the prescaler bits,
PR2:PR0. These prescale bits may be found in the bottom 3 bits of the Timer System Control
Register 2 (TSCR2), as explained in Section 3.3.11 of the TIM User Guide. Your subroutine
should set these prescale bits to %011 (see Table 3-4 in the TIM16B8 Block User Guide) so that
the 2 MHz internal bus clock frequency will be “prescaled” (divided) by 8, and then used to
clock the 16-bit up counter, TCNT = TCNTHi:TCNTLo. Therefore, we may assume that TCNT
increments once every 8 / 2 MHz = 4 μs. Note that the bus clock frequency is ½ the 4 MHz
external crystal resonator frequency.

You must also set Bit 2 (TIOS2) of the TIOS (Timer Input Capture/Output Compare
Select) register to configure the TC2 (16-bit Timer Channel 2) register (Section 3.3.1 of the TIM
User Guide), to function as either an “Output Compare” register as opposed an “Input Capture”
register, as explained in Section 4.4 of the TIM User Guide. .

Since TC2 is configured as an “Output Compare” register, the contents of the TC2 register
are continuously compared by hardware with the contents of the free-running TCNT register, and
a flag (bit 2 of TFLG1) is set to one when TCNT = TC2, and it stays set until the program writes
a “1” to the flag (bit 2 of TFLG1) to reset it to zero. This flag bit can either be read in a loop,
waiting for the flag to be set to one, or it can be configured to interrupt the processor when it
becomes set. Thus the “Output Compare” mechanism permits us to generate precisely timed
delays in a program. We will use this mechanism in its non-interrupt driven mode in this lab
project.

If TC2 had instead been configured as an “Input Capture” register (by clearing Bit #2 of
the TIOS register), the TC2 register is loaded with the value of TCNT at the precise time that a
specified transition occurs (either rising edge, falling edge, or either edge) on the associated Port
T input pin, PT2; and at this same instant of time, the associated flag bit (bit 2 of TFLG1) is set.
Thus the “Input Capture” mechanism allows us to determine the precise times between
successive edges (transitions) in a digital input signal. We will work with the Input Capture
mechanism in Lab 4.

 Next you may want to clear Bit 2 in the Timer Interrupt Enable (TIE) register to ensure
that TC2-related interrupts are disabled (See Section 3.3.1 of the TIM User Guide). However,
because the TIE register is zeroed out of reset, you should not strictly have to perform this step.)

Next you should read the present value of the 16-bit TCNT free running timer, which is
accessible at two consecutive addresses, TCNTHi (high byte) and TCNTLo (low byte). (See
Section 3.3.5 of the TIM User Guide.) Because we know that the TC2 flag in the TFLG1
register will be set as soon as the TCNT register counts up to a value that equals the value loaded
in the TC2 register (Section 4.4 of the TIM User Guide), you simply need to add the value in the
16-bit Register Y (which contains Ny, the number of 2 µs time increments we desire to wait) to
the current time value found in TCNTHi:TCNTLo. Then store the result in the TC2 Output

EC331 Lab3 Handout August 2009 (KEH) Page 6 of 16

Compare Register at TC2Hi:TC2Lo. This act “schedules” an output compare event to occur at a
time equal to Ny*2 µs from the present time, thereby achieving the desired delay.

Immediately after you schedule the new output compare event, you must take action to
CLEAR the TC2 Output Compare flag bit by writing a “1” (Not a “0”!) to the position of that
flag bit (Bit #2) in the Main Timer Interrupt Flag (TFLG1) register, since TC2 flag has probably
already been set from a previous time that the TCNT register “counted past” whatever (garbage
value) was previously held by the TC2 register before the desired output compare event was
scheduled. Note from Section 3.3.12 in the TIM User Guide that that writing a zero to a bit
position in TFLG1 will NOT change that flag. Thus the instruction MOVB #4, TFLG1 will
clear the TC2 flag, but it will NOT affect the state of any of the other timer interrupt flags (See
Section 3.3.12 of the TIM User Guide). This is important if other output compares are
simultaneously being used in a program to perform other timing functions.

Finally, your program must enter a loop that waits until TCNT counts up to a value that
equals the contents previously stored in the TC2 Output Compare register. This event causes the
TC2 flag in the TFLG1 register to be set to 1 by the Output Compare hardware at the point in
time when TCNTHi:TCNTLo has counted up to the value stored at TC2H:TC2L. This happens
after Ny*2 µs have elapsed.

Note that the Timer Control Registers 1 and 2 (TCTL1 and TCTL2) allow output compare
events to cause automatic changes on the corresponding PORT T I/O pin. (See Section 3.3.8 and
Table 3.2 of the TIM User Guide). However, in this application we do not want to activate this
feature, allowing the PORT T pins to be used for simple parallel I/O functions. Note that TCTL1
and TCTL2 registers are cleared out of reset, and according to Table 3-2 of the TIM User Guide,
this will disable the output compare function on the PORT T pins, as we desire. Therefore your
subroutine can either ignore TCTL1 and TCTL2, or you may want to set them to zero up near the
beginning of the subroutine, just to be sure that an output compare event will not affect the
PORT T pins.

Your subroutine MUST preserve the contents of the A, B, X, Y microcontroller registers if
they are altered, since we may later be using this routine to generate a delay in a program that is
holding important data in registers A, B, X, or Y at the time our delay subroutine is called.
Therefore, if any of these registers are modified inside subroutine “wait_y_4us”, their contents
must be pushed onto the stack at the start of the subroutine, and then restored (pulled) from the
stack, in the reverse order that they were stored, just before returning from this subroutine via the
return from subroutine (RTS) instruction.

6.3 Verification of subroutine “wait_y_4us”

Test your subroutine by calling it using the test program shown in Figure 1. Note that this
program calls wait_y_4us in order to generate a 50% duty cycle square wave on pin PM3 with a
20 ms period.

Figure 1. Test program that calls the “wait_y_4us” routine. (You must fill in the assembly
code for the “ wait_y_4us” routine in the space indicated.)

;**

; ECE331 Lab 3 Part 1

; File: sqwave.asm (by KEH)

EC331 Lab3 Handout August 2009 (KEH) Page 7 of 16

; Square Wave Generating Program that calls the "wait_y_4us” subroutine

; to generate a 50 Hz square wave on pin PM0 that is 10 ms high and 10 ms low.

;**

 XDEF sqwave ; Export 'program entry point' symbol

 ABSENTRY sqwave ; For absolute assembly: mark this as application entry point

 INCLUDE 'mc9s12C128.inc' ; Include 9S12C128 register symbol definitions.

 ORG $4000 ;Start of Flash Program Memory on 9S12C128

sqwave: lds #$1000 ; Initialize program stack pointer to one location ABOVE the end of RAM

 ;(RAM on the 9S12C128 extends from $0400 to $0FFF.)

 movb #%1000,DDRM ; Make PM3 an output.

 ldy #2500 ; Note that 2500*4us = 10 ms delay time

next_cycle: bset PTM, %1000 ; Set PTM3 high

 jsr wait_y_4us ; Delay for 10 ms

 bclr PTM, %1000 ; Set PTM3 low

 jsr wait_y_4us ; Delay for 10 ms

 bra next_cycle ; go back to create next cycle of 50 Hz sq wave

;****** The “wait_y_4us” routine waits for “Y” multiplied by 4 us. X,Y, D are preserved*****

wait_y_4us:

 …………… put your subroutine here………………

 rts

 ORG $FFFE

 fdb sqwave ; Initialize Reset Vector

A soft copy of the sqwave.asm “template file” shown in Figure 1 is available in the class
folder. After you create the template project, copy the sqwave.asm file into this project folder.
Then right click on the template main.asm file and select “Remove” to remove it from the
project. Next right click on the Sources category in the project view and select Add Files.
Select sqwave.asm to add it to the project under the Sources category heading. You will need to
fill in the “wait_y_4us” subroutine code in the place provided near the end of the file, following
the hints of Section 6.2, before this project can be compiled. Note that the calling program must
stay the same.

6.4 Lab Report Part 1

Run your program and verify its operation using your bench oscilloscope. Be sure to
carefully measure the period of the square wave to verify proper timing. Include the adequately
commented assembly source code of your “wait_y_4us” delay subroutine along with the test
program above. Obtain the lab instructor’s signature on your assembly listing.

EC331 Lab3 Handout August 2009 (KEH) Page 8 of 16

7 Investigating the need for software switch debouncing: LED toggling program

Using the same hardware configuration from Lab 2 (Pushbutton SW on PM5 and LED on
PM4, write a program that toggles, or changes the state of, the LED every time there is a rising
edge on PM5.

7.1 Structure of LED toggling program

Your rising-edge sensitive LED toggling program should follow the following steps:

 Configure PM5 as input with no internal pullup (pushbutton SW)

 Configure PM4 as an output (LED);

 next_pass: Wait here until PM5 goes low (switch closed);

 Wait here until PM5 goes high (switch opened);

 Toggle PM4 (change state of LED);

 Go back to “next_pass”;

Note that if the pushbutton switch does not bounce, each time the switch is pushed
(generating a falling edge), nothing should happen to the LED, and each time the switch is
released (generating a rising edge), the LED should change state, or toggle.

7.2 Running the LED toggling program without (and then with) contact debounce delay

Now open a new project, and write, compile, and run this program. When you run this
program (say using LED1 and pushbutton PB1 on your project board), you should discover that
LED1 does not toggle perfectly reliably (try 100 switch operations, and take note of how many
toggling failures occur). Report this in your lab report. Furthermore, LED1 may sometimes
change states not just when the pushbutton PB1 is released, but also when the pushbutton is
pushed! As was discussed in Lab 1, this undesirable behavior is due to the fact that any
mechanical switch contacts bounce for a few milliseconds, both when the button is pushed and
also when the button is released. The LED will appear to change state if an odd number of rising
edges are produced after each switch operation as the bounces die out. On the other hand, if an
even number of rising edges is produced, the LED will appear to remain in the same state.

Actually, the pushbuttons on our project board are of rather high quality, and so the bounce
time of PB1 is usually shorter than the instruction execution delays inherent in the toggling
program, so the LED toggling should appear to be fairly reliable, though NOT perfectly reliable.

To observe less reliable toggling, connect a long hookup wire between the PB1 connection
(there is a second connection to PB1 available on the IDE socket) on the project board, and then
momentarily touch the other end of this wire to the ground “test lug” that is located at the upper
left of the project board (marked GND1). Keep the project board’s pushbutton switch
connected, as it provides the necessary pullup resistor! Thus, we have replaced the high quality
low-bounce pushbutton PB1 with a very low quality high-bounce wire “switch”. As you move
this wire on and off of the GND test lug contact, you should observe far less reliable toggling of
the LED with this very bouncy switch. Once again, record the number of LED toggling failures
out of 100 switch clicks.

EC331 Lab3 Handout August 2009 (KEH) Page 9 of 16

Now we desire to make even the wire switch reliably toggle the LED. The solution is to
call wait_y_4us both after the step that waits for PM5 to go low and also after the step that waits
for PM5 to go high. (You will want to cut and paste the wait_y_4us subroutine from the
previous project that generated the 100 Hz square wave.) Add these two subroutine calls, with Y
set to 20000. Thus the delay subroutine will wait for 60000 * 4 µs = 240 ms, which is a very
long switch debouncing time (about ¼ second), and this should be quite a bit longer than the
worst-case bounce time of just about any pushbutton switch. You should now be able to observe
reliable toggling of the LED even with our improvised wire switch (as long as you are careful to
make clean contact between the wire and the test lug --- otherwise, this improvised switch could
be made “infinitely bouncy”)!

Now try changing Y to lower and lower values of delay. Find the shortest debounce delay
(in milliseconds) for which your wire switch appears to work reliably. Assume that “reliable”
means 100% successful toggling 100 times in a row. This delay corresponds to the worst-case
bounce time of your wire switch. Now remove the wire and repeat this study using pusbutton
PB1 on the project board.

7.3 Lab Report Part 2

Include a hard copy of your commented assembly source code of your (debounced) LED
toggling test program. In your report be sure to indicate the shortest delay time that reliably
debounces your wire switch. Also indicate the shortest delay time that reliably debounces PB1.
Demonstrate both unreliable (with no delay) and reliable (with delay) toggling of the LED (using
the improvised wire switch) to the lab instructor, and get his certifying signature on your
assembly source code.

8 Debounced Keyswitch Array Input Subroutine “getkey”

The keypad we will use for this lab project is a 4x4 X-Y matrix 16-key keypad shown in
Fig. 2. It can be checked out from the instrument room. At first glance, it might seem like the 16
SPST keyswitches would have to be connected to 16 I/O pins on the 9S12C128. However,
because the keypad is arranged in a 4 X 4 “X-Y” matrix (4 rows and 4 columns), we only need to
use 8 I/O pins, using a method called “keypad scanning” that is explained below.

The interfacing circuit for the 4 X 4 keypad is shown in Fig. 2. Note that we have chosen
to use the 8 Port T pins to interface to this keypad. When a keyswitch (represented by a short
diagonal line in Figure 2) is depressed, it will close a contact between a column wire and a row
wire.

To find out when a key is depressed (and also to identify the key’s location in the keypad
matrix), the four pins connected to the rows (PT3:0) are initially configured as inputs with
internal pull-up resistors enabled, while the four pins connected to the columns (PT7:4) are
initially configured as outputs. It is very important to enable internal (10 kΩ) pull-up resistors on
the Port T pins that are configured as inputs. This is done by setting the “Port T Pull Device
Enable” (PERT = $204) register to 0xFF. (See Section 3.3.1 and Figure 3-5 of the PIM 9C32
Block Guide, S12C128PIMV1.pdf).

The output (column) pins (PT7:4) are then driven low, that is PT7:4 are set to %0000, and
the input (row) pins (PT3:0) are repetitively read in a loop. While no key is yet depressed, all
four of the input (row) pins should read high “1”; that is PT3:0 should be read as %1111. But if a
key is depressed, the row pin that is connected to the pressed switch is driven low “0”, since the

EC331 Lab3 Handout August 2009 (KEH) Page 10 of 16

D

Rpuint3

10k

2

Pullup Resistors

PT2PT7

8

(Software Enabled)

+5 V

PT5

KEYPAD P7P5

PT4

(Black with White Lettering)

PT3

4

P8

C

B

*

6

16-KEY

A
Rpuint1

10k

-->

3

P1
PINOUT

PT0PT6

1

P4

9

P6

0

Rpuint2

10k

P3

#

5

Rpuint4

10k
Internal PORT T

7

P2

PT1

output resistance of a 9S12C128 output pin is much lower than the (internal) 10 k-Ohm pull-up
resistor. Note that the row pin that reads low (all the rest should read high) corresponds to the
row that the depressed key is in.

 Figure 2. Interfacing a 4 X 4 keypad to the 9S12C128 microcontroller

In order to discover the column that the switch is in, the I/O directions of the column pins
and row pins should next be reversed. This time all four of the output (row) pins (PT3:0) are
driven low, that is PT3:0 = %0000. The column pins (PT7:4) may now be read by the
M9S12C128 in order to find out which one of these pins is low (certainly one of them should be
low, since a key was already found to be depressed). The column pin that reads low (the other 3
inputs should read high) corresponds to the column that the depressed key is in. The entire
procedure for determining the row and column of a depressed key is illustrated in Figure 3. The
drawing on the left shows the first step, where the columns (PT7:4) are driven low and the
position of the pressed key is read as a “0”on the rows (PT3:0). The drawing on the right shows
the second step, where the rows are driven low (PT3:0) are driven low, and the position of the
pressed key is read as a “0” on the columns (PT7:4).

Note: It is important to check to see that Jumpers BZ and POT are disconnected
(shorting jumpers moved to just one pin) on the Project Board. These are located right next to
the Piezo Buzzer. Removing the BZ jumper should keep the Piezo Buzzer from clicking, and
removing the POT jumper should allow one of the PORT T pull-up resistors to work properly.

EC331 Lab3 Handout August 2009 (KEH) Page 11 of 16

 Figure 3. Two-step scheme for determining the identity of single pressed key (X).

 Step 1: Zeros driven onto columns, Step 2: Zeros driven onto rows,
 and rows are read. Position of “0” and columns are read. Position of
 indicates which row the pressed “0” indicates which column
 key is in. the pressed key is in.

 1 0 1 1
0
0 X

0
0

The 4-bit row identification pattern that was read from the bottom half of PORT T when
the column lines (PT7:4) were driven to %0000, and the 4-bit column identification pattern that
was read from the top half of PORT T when the column lines (PT3:0) were driven to %0000 may
be “catenated” together into one 8-bit key identification code, or “keycode”. (Notice that the
upper 4 bits of this code should contain exactly one zero, and likewise, the lower 4 bits of this
code should contain exactly one zero.) A “lookup table” can then be constructed that relates the
keycode to the numerical value of the key ($0 - $F). An incomplete table is provided in Fig. 4 of
this handout. Complete this table on your own. This table must be scanned by your program
each time a key is pressed in order to learn the identity (value) of that key.

 0 0 0 0
1
0 X

1
1

EC331 Lab3 Handout August 2009 (KEH) Page 12 of 16

Figure 4. Keycodes for each key on the keypad

PT7 PT6 PT5 PT4 PT3 PT2 PT1 PT0 DIGIT
1 0 1 1 0 1 1 1 0
0 1 1 1 1 1 1 0 1
1 0 1 1 1 1 1 0 2
 3
 4
 5
 6
 7
 8
 9
 A
 B
 C
 D
 *
 #

You should use the assembly directive “fcb” (form constant byte), or the equivalent “dc.b”
(define constant byte) to construct a look-up table in flash ROM program memory (not RAM!)
that will serve to convert an eight-bit keycode into the key value. The first part of this look-up
table (based on the table of Fig. 4) appears below.

 Keycode_Table: fcb $B7, $7E, $BE ……..

Note that the first entry in the Keycode_Table contains the keycode for the “0” key, the
next entry is the keycode for the “1” key, etc. Thus, when a key is pressed on the keypad and a
keycode has been determined by getkey, this table may be searched for a match with the
keycode, and the position of the matching element becomes the key value ($0 - $F).

Using the same index offset at which the matching element that was found in the
Keycode_Table, index this same distance into a companion ASCII_Table, the beginning of
which appears below:

 ASCII_Table: fcb ‘0’, ‘1’, ‘2’,…….

This allows us to find the ASCII code of the key that was pressed.

When a key is found to be pressed, subroutine getkey should wait 40 ms for contact closure
bounces to subside, and then wait for the key to be released. Once all keys are found to be
released, the routine should delay for 40-ms before determining the key value from the keycode
via a lookup table and returning from the subroutine, since keys can also bounce upon release.

To summarize the above discussion, here is an outline of the “getkey” subroutine:

EC331 Lab3 Handout August 2009 (KEH) Page 13 of 16

START Getkey
Loop here until key is pressed;
Delay 40 ms to wait for switch contact bouncing to die out;
Get a 4-bit row position code;
Get a 4-bit column position code;
Catenate the two 4-bit codes together into a “keycode”.
Find which key has been pressed using the Keycode_Table
 lookup table
Determine the ASCII code of the key that was pressed
 using the ASCII_Table lookup table.
Loop here until key is released.
Delay 40 ms to wait for switch release bouncing to die out.
Return with the ASCII code of the key in Acc B;
END Getkey

8.1 Waiting for Port T changes to settle

Due to the high speed at which the 9S12C128 executes instructions, it is necessary to insert
a short delay (I suggest that you call the “wait_y_4us” routine with Y = 25 or so) between when
the zeros are driven out on either the high or the low half of Port T and when the other half of
Port T is read. This delay is necessary because it takes time for the voltage on the input pins that
are being read stabilize after a change occurs at the output pins of Port T. This is because there
is a significant rise time (perhaps several microseconds) that must be waited out on an input pin
due to the RC time constant formed between the internal 10 kΩ pull-up resistance and the
parasitic capacitance exhibited by the keypad. If you forget to put this short “settling delay” into
your getkey subroutine, you may find that your getkey subroutine works fine when you are
single-stepping through it, but that it works unreliably when the program is run at full speed!

8.2 Lab Report Part 3

Demonstrate a short test program that calls subroutine getkey to verify its reliable
operation. Include a commented assembly listing of your program in your lab report.

9 Write an asynchronous serial output routine “outchar”

 Write a subroutine “outchar” as yet another new project that will send an ASCII code in
Accumulator B to the 9S12C128’s serial communication terminal’s display through the DB9
RS232C interface. This subroutine should be called by a short test program that calls the
subroutine to print several ASCII characters over and over again. This subroutine will use the
serial communication interface (SCI) functional block of the 9S12C128 microcontroller to
implement RS232 asynchronous serial data communication. (See the “HCS12 Serial
Communication Interface Block Guide”, S12SCIV2.pdf.)
The “receive data” input pin PS0 (RxD) is used to receive serial asynchronous data from an
RS232 serial communications terminal.. The “transmit data” output pin PS1 (TxD) is used to
transmit serial asynchronous data to a terminal. The 9S12C128 microcontroller’s two serial
communication pins (TxD and RxD) are connected to an RS232 terminal through an on-module
interface chip (Max3232CD) that converts the 0 V / 5 V CMOS logic voltage levels to the
corresponding +10 V / -10 V RS232 voltage levels. These RS232-compatible signals are
connected to Pins 2 and 3 on the 9-pin D-shell serial port connector that resides on the 9S12C128
module. The wiring of this connector is shown in Figure 6. We are using only the RxD, TxD,
and Signal Ground pins in our application, since we will NOT use “Hardware Flow Control”.

EC331 Lab3 Handout August 2009 (KEH) Page 14 of 16

Once the Hyperterminal session is started, if you unplug the serial cable from the module, and
carefully short Pins 2 (RxD) and 3 (TxD), without touching the metal grounding shield, using a
key or a screwdriver, you should be able to perform a “loopback test” on the terminal; that is
when you depress a key on the keyboard, the transmitted RS232 signal from the keyboard TxD is
routed back into the RxD input to the display, and the corresponding character should be
displayed on the monitor. This test gives verifies that the serial cable (and Hyperterminal) is
operating properly.

 Figure 6. RS232 DB9 Pinout (Front, Pin-Side View for Female Connector)

Please study the SCI Block Guide to make sure that you understand why the following registers
must be initialized at the beginning of the outchar subroutine in the following way:

 SCIBDL = 13 ; SCI Baud Rate = 2 MHz / (16 * SCIBDL)

 SCIBDH = 0 ; Note: 9600 Baud = 2 MHz / (16 * 13)

 SCICR1 = $00 ; 1 start bit, 8-bit data, 1 stop bit, no parity

 SCICR2 = $0C ; transmit and receive enabled, no interrupt

An ASCII character (byte) is sent to the terminal when the data register SCIDRL is written
with that byte. But first your subroutine must wait (loop) until the “Transmit Data Register
Empty” (TDRE) bit, which is Bit #7 in the SCISR1 register, is a “1”, indicating that the SCI
transmit data register is indeed empty, and thus ready to receive new data before the new data
byte (in Accumulator B) can be written to the SCIDRL. The SCI hardware will then
automatically begin to shift and transmit the contents of SCIDRL out of the TxD pin to the
terminal’s display at the previously configured 9600 bit per second “baud rate”.

In order to observe the proper operation of your “outchar” routine, you will have to start a
“serial communications terminal” program running on your PC, such as Hyperterminal, which
comes with Windows. You will initially have to set up Hyperterminal by following these steps:

1. Click on Start – Programs – Accessories – Communications – Hyperterminal

2. Enter a connection name such as “ECE331_term”. Hit OK

3. In the “Connect To” window, select “Connect Using” COM1 (or COM2, as
needed). Click OK.

4. In the properties window, change Bits Per Second: 9600, Data Bits: 8, Parity:
None, Stop Bits: 1, Flow Control: None. Click OK.

5. Click on File – Save As, and save your Hyperterminal session to the “Windows
Desktop”, so you may click on the resulting desktop icon, rather than having to go

EC331 Lab3 Handout August 2009 (KEH) Page 15 of 16

through all of these setup steps the next time you want to re-open your
Hyperterminal communication window.

6. The Hyperterminal communication window should now be visible.

9.1 Lab Report Part 4

Write and demonstrate a short test program that calls the “outchar” subroutine, and have it
print several ASCII characters over and over again in an endless loop. First carefully and gently
connect the serial port cable that came with your CSMB12C128 module between your PC’s
serial port (or one of the lab PC’s serial ports if your laptop PC does not have a serial port) and
your 9-pin D-shell serial port connector that is located on the CSMB12C128 module (NOT the
one located on the project board). The desired character stream should be displayed in the
Hyperterminal window when you run this program using the BDM debugger.

Include a commented assembly listing of your “outchar” subroutine and its associated test
program. Also include a screen shot of your Hyperterminal window, showing that the desired
characters have been displayed.

10 Putting it all together: final system integration!

Now create another new project that uses the short program of Figure 7 to call the various
subroutines developed above to implement a simple hexadecimal keypad scanning system, where
any sequence of keys (0,1,,E,F) can be typed on the keypad, with the corresponding sequence
of hexadecimal numbers subsequently displayed on the PC’s Hyperterminal serial
communication screen.. The following separately tested software “module” subroutines from the
previous portions of this lab should be cut and pasted into the program file after the calling
program: wait_y_4us, getkey, and outchar.

Figure 7. Final system integration program

Entry: LDS #$1000 ;Init Stack Ptr near top of RAM just below UBUG Stack
nextchar: JSR getkey
 JSR outchar
 LDAB #$0A ;send a line feed to terminal
 JSR outchar
 LDAB #$0D ;send a carriage return
 JSR outchar
 BRA nextchar
 ;…………………………………………………………..
 ;Subroutines wait_y_4us, getkey,
 ;and outchar are all put here
 ;…………………………………………………………..

10.1 Lab Report Part 5

Your memo-style report must include (1) a commented assembly source file of your
“wait_y_4us” delay subroutine along with the test program this final program. This listing must
be signed by the instructor. (2) A hard copy of your commented assembly source code of your
(debounced) LED toggling test program. Be sure to indicate the shortest delay time that you
discovered that will reliably debounce your particular SPST pushbutton switch that was made
from a wire that was touched to ground, as well as the shortest delay time that reliably debounces

EC331 Lab3 Handout August 2009 (KEH) Page 16 of 16

the built-in pushbutton PB1 on the project board. This assembly program must be signed by the
instructor. (3) Hard copy of your commented test program that calls subroutine getkey to verify
its reliable operation. (4) Commented assembly source file of your “outchar” subroutine and its
associated test program. (5) Include a listing of the final “system integration” program that
scans the 4x4 matrix keypad and provides ASCII RS232 serial output. This file must be signed
by the instructor to verify that it was successfully demonstrated.

11 Appendix A: ASCII Table

 0 1 2 3 4 5 6 7
0 NUL DLE Space 0 @ P ` p
1 SOH DC1 ! 1 A Q a q
2 STX DC2 " 2 B R b r
3 ETX DC3 # 3 C S c s
4 EOT DC4 $ 4 D T d t
5 ENQ NAK % 5 E U e u
6 ACK SYN & 6 F V f v
7 BEL ETB ' 7 G W g w
8 BS CAN (8 H X h x
9 HT EM) 9 I Y i y
A LF SUB * : J Z j z
B VT ESC + ; K [k }
C FF FS , < L \ l |
D CR GS - = M] m }
E SO RS . > N ^ n ~
F SI US / ? O _ o delete

