HC(S)12 Compiler
Manual

freescale

Revised: 15 March 2007~ aamieon ductor

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. CodeWarrior is a trademark or reg-
istered trademark of Freescale Semiconductor, Inc. in the United States and/or other countries. All other product or ser-
vice names are the property of their respective owners.

Copyright © 20062007 by Freescale Semiconductor, Inc. All rights reserved.

Information in this document is provided solely to enable system and software implementers to use Freescale Semicon-
ductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any inte-
grated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale
Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any partic-
ular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product
or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental dam-
ages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and
do vary in different applications and actual performance may vary over time. All operating parameters, including “Typ-
icals”, must be validated for each customer application by customer's technical experts. Freescale Semiconductor does
not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not de-
signed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semi-
conductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold
Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

How to Contact Us

Corporate Headquarters Freescale Semiconductor, Inc.
7700 West Parmer Lane
Austin, TX 78729

U.S.A.

World Wide Web http://www. freescale.com/codewarrior

Technical Support http://www.freescale.com/support

http://www.freescale.com/codewarrior
http://www.freescale.com/support

Table of Contents

| Overview

Il Using the Compiler

1 Introduction

Compiler environmentc.c.......
Project directory i
Editor........

Using CodeWarrior to manage a project.
New Project Wizard,
Analysis of the project files and folders

Compilation with the Compiler
Linking with the Linker

Application Programs (Build Tools).

Startup Command-Line Options.

Highlights

CodeWarrior Integration.
Combined or Separated Installations.
Target Settings preference panel
Build Extras preference panel...................
Assembler for HC12 preference panel
Burner preference panel
Compiler for HC12 preference panel
Importer for HC12 preference panel..............
Linker for HC12 preference panel
Simulink preference panel......................
CodeWarrior Tips and Tricks

Integration into Microsoft Visual Studio (Visual C++ V5.0 or later)

Object-File Formats

HC(S)12 Compiler Manual

Table of Contents

HIWARE Object-File Format, 86
ELF/DWAREF Object-File Format. 86
TO0IS et 86
Mixing Object-File Formats 87

2 Graphical User Interface 89
Launching the Compiler i 89
Interactive Mode 90
BatchMode 90
Tipofthe Dayo 91
Main Window 92
Window Title.ot 92
Content ATEA . . . o\ttt ettt e e 92
Toolbar 93
Status Bar 94
Menu Bar. 94
File Menu. i 95
Editor Settings dialogbox 97
Save Configuration dialog box o, 104
Environment Configuration Dialog Box 105
Compiler Menu 107
View Menu. 107
HelpMenu.o e e 108
Standard Types dialog boxo 109
Option Settings dialog boxX 110
Compiler Smart Control dialogboxo ... 112
Message Settings dialog boX. 113
Changing the Class associated witha Message. 115
Retrieving Information about an Error Message. 116
About ... dialog boX.o 116
Specifyingthe Input File. i 117
Use the Command Line in the Toolbar to Compile................... 117
Message/Error Feedback i 118
Use Information from the Compiler Window 118
Use a User-Defined Editor. 118

4 HC(S)12 Compiler Manual

Table of Contents

3 Environment 119
Current DIr€Ctoryottt 120
Environment Macros.t 121
Global Initialization File (mcutools.ini) 122
Local Configuration File (usually project.ini) 122
Paths ... 123
Line Continuationottt e 124
Environment Variable Details. 125

COMPOPTIONS: Default Compiler Options. 126
COPYRIGHT: Copyright entry in objectfile....................... 127
DEFAULTDIR: Default Current Directory., 128
ENVIRONMENT: Environment File Specification.................. 129
ERRORFILE: Error filename Specification........................ 130
GENPATH: #include “File” Path 132
INCLUDETIME: Creation Time in ObjectFile..................... 133
LIBRARYPATH: ‘include <File>" Path........................... 134
OBJPATH: ObjectFilePath 135
TEXTPATH: TextFile Path. 136
TMP: Temporary Directory.ot 137
USELIBPATH: Using LIBPATH Environment Variable 138
USERNAME: User Name in ObjectFile 139

4 Files 141

Input Fileso o 141
Source Files.o 141
Include Fileso 141

Output Files.o 142
Object Files oo 142
Error Listingo 142
Interactive Mode (Compiler Window Open) 142

File Processingouio it 143

5 Compiler Options 145
Option Recommendationo i, 147

HC(S)12 Compiler Manual 5

Table of Contents

Compiler Option Details i e 148
OPtion GIoUPS . . ¢ o v ettt e e et e e 148
OPLioN SCOPES . . . v vttt e e e e 149
Option Detail Descriptionottt 150
-I: filenames to DOS length. 153
-AddIncl: Additional Include File 154
-Ansi: Strict ANST . ..o 156
-Asr: Tt is assumed that HLI code saves written registers 157
-BfaB: Bitfield Byte Allocation. 159
-BfaGapLimitBits: Bitfield Gap Limit 161
-BfaTSR: Bitfield Type-Size Reduction 163
-CH+ (-C++f, -C++e, -C++4c): C++Supporto ov e 165
-Cc: Allocate Constant Objects intoROM 167
-Ccx: Cosmic Compatibility Mode for Space Modifiers and Interrupt

Handlers. 169
-Cf: Float IEEE32, doubles IEEE64 172
-Ci: Tri- and Bigraph Support i 173
-Cn: Disable compactC++ featureso ... 177
-Cni: No Integral Promotion oo, 179
-Cppc: C++ Comments in ANSI-C i 182
-CpDIRECT: DIRECT Register Valueoo.... 184
-CpDPAGE: Specify DPAGE Registercoiion. .. 186
-CpEPAGE: Specify EPAGE Register. 188
-CpGPAGE: Specify GPAGE Register 190
-CpPPAGE: Specify PPAGE Register. 192
-CpRPAGE: Specify RPAGE Register 194
-Cpu: Generate code for specific HC(S)12 families 196
-Cq: Propagate const and volatile qualifiers for structs. 198
-CswMaxLF: Maximum Load Factor for Switch Tables 200
-CswMinLB: Minimum Number of Labels for Switch Tables 202
-CswMinLF: Minimum Load Factor for Switch Tables 204
-CswMinSLB: Minimum Number of Labels for Search Switch Tables . . .206
-Cu:Loop Unrollingt 208
-CVolWordAcc: Do not reduce volatile word accesses. 211
-Cx: No Code Generationc.cuuuiininennenenennenn.. 213

6 HC(S)12 Compiler Manual

Table of Contents

-D: Macro Definition. 214
-Ec: Conversion from 'const T*'to "T*'. 216
-Eencrypt: Encrypt Files 218
-Ekey: Encryption Key 220
-Env: Set Environment Variable 221
-F (-Fh, -F1, -Flo, -F2, -F20,-F6, or -F7): Object-File Format. 223
-H:Short Help. ..o 225
-IiInclude File Path. o 227
-Ica: Implicit Comments in HLI-ASM Instructions 229
-La: Generate Assembler Include File 230
-Lasm: Generate Listing File. o ... 232
-Lasmc: Configure Listing File. 234
-Ldf: Log Predefined Definesto File 236
-Li: Listof Included Files i 238
-Lic: License Information 240
-LicA: License Information about every Feature in Directory 241
-LicBorrow: Borrow License Feature. 242
-LicWait: Wait until Floating License is Available from Floating

License Server.ttt 244
-LI: Statistics about Each Function. 245
-Lm: List of Included Files in Make Format. 247
-LmCfg: Configuration of List of Included Files in Make Format. 249
Lot Object File Listo v 252
-Lp: Preprocessor Qutputttt 253
-LpCfg: Preprocessor Output configuration 254
-LpX: Stop after Preprocessor. 256
-M (-Ms, -Mb, -Ml): Memory Model 257
-Map: Define mapping for memory space 0x4000-Ox7FFF 258
-N: Display Notify BoX. i 259
-NoBeep: No Beepin Case of an Error. 261
-NoDebuglnfo: Do not Generate Debug Information. 262
-NoEnv: Do not Use Environment 264
-NoPath: StripPathInfo 265
-O (-Os, -Ot): Main Optimization Target 266
-Obfv: Optimize Bitfields and Volatile Bitfields. 268

HC(S)12 Compiler Manual 7

Table of Contents

-ObjN: Object filename Specification. on... 270
-Oc: Common Subexpression Elimination (CSE).................... 272
-OdocF: Dynamic Option Configuration for Functions 274
-Of or -Onf: Create Sub-Functions with Common Code. 276
SO INlNINg. . oo 279
-Oilib: Optimize Library Functions. 281
-Ol: Try to Keep Loop Induction Variables in Registers. 284
-Ona: Disable Alias Checking., 286
-OnB: Disable Branch Optimizer 288
-Onbf: Disable Optimize Bitfields. 289
-Onbt: Disable ICG Level Branch Tail Merging. 291
-Onca: Disable any Constant Folding 293
-Oncn: Disable Constant Folding in case of a New Constant........... 295
-OnCopyDown: Do Generate Copy Down Information for Zero

Values. . ..o 297
-OnCstVar: Disable CONST Variable by Constant Replacement. 299
-One: Disable any low-level Common Subexpression Elimination 300
-OnP: Disable Peephole Optimization. 302
-OnPMNC: Disable Code Generation for NULL Pointer to

Member Check.o 304
-Ont: Disable Tree Optimizerttt .. 305
-Or: Allocate Local Variables into Registers. 311
-Ou and -Onu: Optimize Dead Assignments. 313
-Pe: Preprocessing Escape Sequences in Strings. 315
-PEDIV: Use EDIVinstructiont .. 317
-Pic: Generate Position-Independent Code (PIC) 320
-PicRTS: Call Runtime Support Position Independent 322
-Pio: Include FilesOnly Once., 324
-Prod: Specify Project Fileat Startup 326
-PSeg: Assume Objects areon Same Page 327
-Px4:DoNotUse 7BNEor 7BEQ. 330
-Qvtp: Qualifier for Virtual Table Pointers 332
-Rp (-Rpe, -Rpt): Large Return Value Type 333
-T: Flexible Type Managementuuiiitirinenenenn .. 335
-V: Prints the Compiler Version., 342

8 HC(S)12 Compiler Manual

Table of Contents

-View: Application Standard Occurrence 343
-WErrFile: Create "err.log" Error File. 345
-Wmsg8x3: Cut filenames in Microsoft Formatto 8.3................ 347
-WmsgCE: RGB Color for Error Messages 349
-WmsgCF: RGB Color for Fatal Messages.c.ooo... 350
-WmsgCI: RGB Color for Information Messages 351
-WmsgCU: RGB Color for User Messagesovuvnon.. 352
-WmsgCW: RGB Color for Warning Messages 353
-WmsgFb (-WmsgFbi, -WmsgFbm): Set Message File Format for Batch
Mode 354
-WmsgFi (-WmsgFiv, -WmsgFim): Set Message Format for
Interactive Mode i 356
-WmsgFob: Message Format for BatchMode 358
-WmsgFoi: Message Format for Interactive Mode. 360
-WmsgFonf: Message Format for no File Information. 362
-WmsgFonp: Message Format for no Position Information............ 364
-WmsgNe: Number of Error Messages., 366
-WmsgNi: Number of Information Messages. 367
-WmsgNu: Disable User Messages.covevininneenenenen.. 368
-WmsgNw: Number of Warning Messages. 370
-WmsgSd: Setting a MessagetoDisable 371
-WmsgSe: Setting a MessagetoError 372
-WmsgSi: Setting a Message to Information 373
-WmsgSw: Setting a Message to Warning 374
-WOutFile: Create Error Listing File 375
-Wpd: Error for Implicit Parameter Declaration. 377
-WStdout: Write to Standard Output., 379
-W1: No Information Messagescouvuirininennenenen.. 380
-W2: No Information and Warning Messages. 381
6 Compiler Predefined Macros 383
Compiler Vendor Defines 383
Product Defines. 384
Data Allocation Defines i 384
Various Defines for Compiler Option Settings. 385

HC(S)12 Compiler Manual 9

Table of Contents

Option Checkingin C Codeottt 386
ANSI-C Standard Types 'size_t', 'wchar_t' and 'ptrdiff_t' Defines 386
Macros for HC12 e 388
Divisionand Modulus. 389
Macros for HCI2. e e 390
Object-File Format Defines. i it 390
Bitfield Defines. 390
Bitfield Allocation.t 390
Bitfield Type Reduction. i, 392
Signof Plain Bitfields i 393
Type Information Defines 394
7 Compiler Pragmas 397
Pragma Details 397
#pragma align (onloff): Turn alignmentonoroff.................... 399
#pragma CODE_SEG: Code Segment Definition. 401
#pragma CONST_SEG: Constant Data Segment Definition 404
#pragma CREATE_ASM_LISTING: Create an Assembler Include File
LiSting . .ot 407
#pragma DATA_SEG: Data Segment Definition 408
#pragma INLINE: Inline Next Function Definition 411
#pragma INTO_ROM: Put Next Variable Definition into ROM 412
#pragma LINK_INFO: Pass Information to the Linker 414
#pragma LOOP_UNROLL: Force Loop Unrolling 416
#pragma mark: Entry in CodeWarrior IDE Function List.............. 417
#pragma MESSAGE: Message Setting, 419
#pragma NO_ENTRY: NoEntryCodet 421
#pragma NO_EXIT: NoExitCode, 423
#pragma NO_FRAME: NoFrame Code. 425
#pragma NO_INLINE: Do not Inline next function definition. 427
#pragma NO_LOOP_UNROLL: Disable Loop Unrolling 428
#pragma NO_RETURN: No Return Instruction. 429
#pragma NO_STRING_CONSTR: No String Concatenation during
PIEPIOCESSING . . o vttt e e e e e e 431
#pragma ONCE: Include Once 432

10

HC(S)12 Compiler Manual

Table of Contents

#pragma OPTION: Additional Options., 433
#pragma REALLOC_OBIJ: Object Reallocation 436
#pragma STRING_SEG: String Segment Definition 438
#pragma TEST_CODE: Check Generated Code 440
#pragma TRAP_PROC: Mark function as interrupt function. 442

8 ANSI-C Frontend 443
Implementation Features. i 443
Keywords 443
Preprocessor Directives.t 444
Language EXtensions.vutntnt e 444
Implementation-Defined Behavior 460
Translation Limitations i 461
ANSI-C Standard 464
Integral Promotions.ttt 465
Signed and Unsigned Integers., 465
Arithmetic CONVerSIONS.vut ittt e 465
Order of Operand Evaluation, 466
Rules for Standard-Type Sizes, 466
Floating-Type Formats i 467
Floating-Point Representation of 500.0 for IEEE. 468
Representation of 500.0 in IEEE32 Format 468
Representation of 500.0 in IEEE64 Format 469
Representation of 500.0 in DSP Format 470
Volatile Objects and Absolute Variables. 472
Bitfields.o 472
Signed Bitfields. 473
Segmentationttt e 474
Example of Segmentation without the -Cc Compiler Option. 476
Example of Segmentation with the -Cc Compiler Option 4717
OPUMIZAONS . . o\ ettt ettt e e e e e e e e 477
Peephole Optimizer. it i 477
Strength Reduction 478
Shift Optimizations i 478
Branch Optimizationsttt 478

HC(S)12 Compiler Manual 11

Table of Contents

Dead-Code Elimination.c.o.itiiinenniinan.. 478
Constant-Variable Optimization, 479
Tree Rewriting.ot 479
Using Qualifiers for Pointers. i 481
Defining C Macros Containing HLI AssemblerCode 483
Defining a Macro. ottt e 483
Using Macro Parameterst 485
Using the Immediate-Addressing Mode in HLI Assembler Macros. 486
Generating Unique Labels in HLI Assembler Macros 486
Generating Assembler Include Files
(-La Compiler Option)ttt 487
9 Generating Compact Code 499
Compiler OptionsSottt 499
-Or: Register Optimizationc..vuvtiniine ... 499
-Oi: Inlining: Inline Functions. o ... 499
__SHORT_SEG Segmentsuuuutninint i 500
Defining /O RegiSterst 501
Programming Guidelines. i 502
Constant Function at a Specific Address. 502
HLI Assembly e e 503
Post and Pre Operators in Complex Expressions 504
Boolean Typeso vt e 504
printf) and scanf(). 505
Bitfieldso 505
Struct Returns 505
Local Variables 506
Parameter Passing 507
Unsigned Data Types.ottt e 507
Inlining and Macros.ottt 507
Data Types.o 509
Short SEEMENtS . . .o .v e e 509
Qualifiers . . . oo e 509

12

HC(S)12 Compiler Manual

Table of Contents

10 HC(S)12 Backend 511
Memory Models 511
SMALL memory modelt 511
BANKED memory model. 512
LARGE memorymodel 519
Non-ANSTKeywordsov i e 520
Data TyPeS . .ot 521
Scalar TYPes . oot e 521
Floating-Point Typesot 522
Bitfields.o 524
Paged Variables. 525
Position-Independent Code (PIC). 529
Register Usageoti i e 533
Call Protocol and Calling Conventionsoueuenenn.n.. 533
Argument Passing 533
Return Values 534
Returning Large Results 534
Stack Frames. 534
Callinga __farFunction............ 536
_farand _near....... 536
Pragmas. o 537
TRAP_PROC . .. 537
NO_ENTRY ... e e 537
NO _EXIT .ot e e e e 537
NO_FRAME 537
Interrupt Functions 538
#pragma TRAP_PROC 538
Interrupt Vector Table Allocation 538
Debug Information e 539
Segmentationt e 540
OPHMIZALONS .« .« . ettt et ettt e e e et e 541
Lazy Instruction Selection.ot 541
Peephole Optimizations.ovut ittt 541
Peephole index optimization (-OnP=x to disableit).................. 548
HC(S)12 Compiler Manual 13

Table of Contents

Branch Optimizationsc.. i, 549
Constant Folding 551
Volatile ObJectSottt 551
Programming Hints. 551

11 High-Level Inline Assembler for the Freescale HC(S)12 553

SYMEAX .« o et 553
Mixing HLI Assemblyand HLL 554
Special Features.t 556

Il ANSI-C Library Reference

12 Library Files 561
Directory StruCturettt e 561
How to Generate aLibrary 561
Common Source Files. i 561
Target Dependent Files for HC12 562
Startup Files.o 563
Startup Files for the Freescale HC12. 564
Library Fileso 565
13 Special Features 567
Memory Management -- malloc(), free(), calloc(), realloc(); alloc.c, and heap.c. .
567
Signals - signal.C.t 567
Multi-byte Characters - mblen(), mbtowc(), wctomb(), mbstowcs(), westombs();
StAlID.C . o 568
Program Termination - abort(), exit(), atexit(); stdlib.c 568
TO-printfic. ... 568
Locales - locale. 570
o184 01 O 570
String Conversions - strtol(), strtoul(), strtod(), and stdlib.c............... 570

14 HC(S)12 Compiler Manual

Table of Contents

14 Library Structure 571
Error Handling 571
String Handling Functions i, 571
Memory Block Functions 572
Mathematical Functionsttt 572
Memory Management.ottt 574
Searching and SOrting.o 574
System Functions 576
Time FUnctions ot 576
Locale FUNCHONS.\ttt e e ettt 577
Conversion FUNCtiONSot e 577
printf) and scanf() 577
Flle /O ..o 578

15 Types and Macros in the Standard Library 581
BITNO. . L o e 581
float.h ... 581
Hmits.h .o 582
locale.h ..o 583
math.h ... 585
SE M. . L e 585
signal.h ..o 586
stddef.h ..o 586
StAI0h . . 587
StAlib.h. . o e 588
Hme.h .o 589
SN .o e 589
ASSEIt N ... e 590
stdarg.h . . 590
ClypPe. . o 591

16 The Standard Functions 593

ADOTE() .« ottt 594
ADS() . i 595

HC(S)12 Compiler Manual 15

Table of Contents

acos() and acosf(). oot 596
ASCHIME() + vt ettt et e 597
asin)and asinf() o 598
ASSCIE() « v ot et e 599
atan)and atanf() e 600
atan2()and atan2f() 601
ALEXIE) « o o 602
AtOF() . oo 603
ALO1(). ot 604
ALO10). . e 605
bsearch() . ..o e 606
CalloC() . . oo 608
ceilQandceilf().o e 609
clearerr() ... 610
ClOCK() .« oo 611
cos)and coSt() ..ot 612
cosh()and coshf() i i 613
CHME() .« o ot e 614
difftime() . ..o 615
AiVO) o e 616
CXI(). ot 617
expOand expf(). . ..o oot 618
fabs()and fabsf() 619
FCloSE() . o oo 620
ol () oo 621
ferror() . . oo 622
fllushQ) . . .o 623
FOtC(). v vttt 624
FOtPOS() . v vt 625
24 1] () S 626
floor() and floorf() o 627
fmod()and fmodf() 628
fopen()o 629
fprintf() ... o 631
PULC) .« oot e 632

16

HC(S)12 Compiler Manual

Table of Contents

TPULS() - ot 633
fread() . ..o e 634
free() . oo 635
freopen()ot 636
frexp() and frexpf() oot 637
fscanf() 638
£SEEK() . oo 639
FSEtPOS() . v v vt et e 640
<Y 1 641
FWIItE ().« oo e 642
BOEC)+ v vt e e 643
getchar() 644
GELEIV() « v v vttt e e 645
OS]+t e 646
GMEME() « o .ttt ettt e e e e 647
isalnum(), isalpha(), iscntrl(), isdigit(), isgraph(), islower(), isprint(),
ispunct(), isspace(), isupper(), and isxdigit()..................... 648
LabS() vt 650
Idexp() and 1dexpf().o oo v i 651
LdivO) oo e 652
localeconV(). . . oot 653
localtime() oottt e 654
logOand 10gf()o 655
logl0) and 1og10f()o oot 656
Longimp(). .« .o et 657
MalloC() . .o e 658
MbIEN() . ..t 659
MDStOWCS() .« . v oot et e e 660
MDEOWC() . vt e et e 661
memchr(). 662
MEMCMP() « ettt et e e e e e e e 663
memcpy() and MeMMOVE() . . . ot vttt et 664
MEMSEL() « o ot e ettt e 665
MKHME() . .o et e 666
modf()and modff() 667

HC(S)12 Compiler Manual 17

Table of Contents

PEITOT(). « o e ettt e e e e e 668
pow(and powt(). . .ot 669
Printf() . . .o 670
PULC() - e e ettt e 671
putchar().o e 672
PUES() - e e ettt e 673
SOTE(). v et et e e e e e 674
TAISE) e o e e et e 676
TANA() - . oo e 677
TAllOC() . vttt e 678
TEIMOVE(). « o v ittt et et e 679
TeNAME(). - o ottt e e e 680
TeWINA() . . oo e 681
SCANT() . oo e 682
Setbuf(). ..o 683
SEUMP() v v ettt e 684
Setlocale(). . .ot i 685
Setvbuf(). . . . 686
SIZNAL() . o e 687
sin)and sinf() e 688
sinhand sinhf() i e 689
SPrntf() . .o 690
sqrtQ) and sqrtf().o 694
STANA() . . ot e 695
SSCANT (). . .o 696
SEECAL() .« o vt 700
StrChr() . .o 701
SITCINP() & v v v e e et e e e e e e 702
SICOIL(). . oo 703
SICPY ().« v e ettt 704
SITCSPII() « v v e e et e e e e e 705
SEEITOI() . v v v ettt e et e e e 706
strftime()o 707
SEEIEN() . oo 709
SHNCAL() .« o\ttt e 710

18

HC(S)12 Compiler Manual

Table of Contents

StrNCMP() .« v v e
SUNCPY() « v et
strpbrk(). ..o
strrchr() ...
SISPN(). v v vt et e
SISII() oot
Strtod() . o
SttoK() . o
strtol() ..o
strtoul() ...
strxfrm() ...
SYStEM() . v v v
tan)andtanf().
tanh() and tanhf().

tmpfile().
tmpnam().
tolower() ...t

toupper() ..o vv
UNEELC() « v v v et e e e

va_arg(), va_end(), and va_start()
viprintf(), vprintf(), and vsprintf()

wetomb().
westombs() ...

IV Appendices

A Porting Tips and FAQs

Migration Hints.
Porting from Cosmic...................
Allocation of Bitfields.
Type Sizes and Signofchar
@bool Qualifier.......................

HC(S)12 Compiler Manual

Table of Contents

@tiny and @far Qualifier for Variables 746
Arrays with Unknown Size i 746
MissSing Prototypeottt 747
_aSM(“SEQUENCE™) . vttt et 747
Recursive Comments. ottt 747
Interrupt Function, @interrupt.ouutt i 747
Defining Interrupt Functions. i 748
How to Use Variablesin EEPROM. 751
Linker Parameter File 751
The Application.ottt e 752
General Optimization Hints 754
Executing an Application from RAM 755
ROM Library Startup File i 755
Generate an S-Record File. i 756
Modify the Startup Codeot 756
Application PRM File 757
Copying Code from ROMtoRAM. ia. 757
Invoking the Application’s Entry Point in the Startup Function. 758
Frequently Asked Questions (FAQs), Troubleshooting 759
Making Applicationsttt 759
EBNF NOtationottt e e et 765
Terminal Symbols 766
Non-Terminal Symbols 766
Vertical Bar o 766
Brackets 766
Parentheses 766
Production End 766
EBNF Syntax.ot it et 767
EXtensionsot 767
Abbreviations, Lexical ConventionsS. vttt 768
Number Formats. 768
Precedence and Associativity of Operators for ANSI-C.................. 769
List of all Escape Sequences., 770

20 HC(S)12 Compiler Manual

Table of Contents

B Global Configuration-File Entries 773
[Options] SECHOMttt t et e e e e 773
DefaultDir 773
[XXX_Compiler] Sectioncuuuiuiinininin ., 774
SaveOnEXIt . . .ot e 774
SAVEAPPEATANCE . . . o vt vttt e 774
SaveEditor.o e 774
SAVEOPLIONS & . v vttt et e e 775
RecentProject0, RecentProjectl, i 775
TipFilePoso 776
ShowTipOfDayo 776
TipTimeStamp.ot e 776
[Editor] SECtiON.ottt 777
Editor_Name. o e 777
Editor_ExXe. 777
Editor_Opts . . . oot 778
Example 778
C Local Configuration-File Entries 781
[Editor] SECtion.o vttt 781
Editor_Name. e 781
Editor_EXe. . ..o 782
Editor_Opts . . oot 782
Example [Editor] Section i 782
[XXX_Compiler] Section.ouuiniininiiin ... 783
RecentCommandLineX i, 783
CurrentCommandLine. i 783
StatusbarEnabled. 784
ToolbarEnabled 784
WindowPos e 785
WindowFont 785
OPLIONS . vttt e e e 786
EditorType. . . oo 786
EditorCommandLine. i, 787

HC(S)12 Compiler Manual 21

Table of Contents

EditorDDECHentNameuuintnnt ittt 787
EditorDDETopicNameo.iuintitinininenenen. 787
EditorDDEServiceNameo vttt 788

Example. 788

D Using the Linux Command Line Compiler 791
Command Line Arguments.ttt 791

Command Examples 791
UsingaMakefile 791

Using the .hidefaults File i 794

Index 795

22 HC(S)12 Compiler Manual

Overview

The HC(S)12 Compiler manual describes the Compiler used for the Freescale §-bit MCU
(Microcontroller Unit) chip series. This document contains these major sections:

¢ Overview (this section): Description of the structure of this document and a
bibliography of C language programming references

* Using the Compiler: Description of how to run the Compiler

* ANSI-C Library Reference: Description on how the Compiler uses the ANSI-C
library

* Appendices: FAQs, Troubleshooting, and Technical Notes
Refer to the documentation listed below for details about programming languages.

* “American National Standard for Programming Languages — C”, ANSI/ISO 9899—
1990 (see ANSI X3.159-1989, X3J11)

¢ “The C Programming Language”, second edition, Prentice-Hall 1988
e “C: A Reference Manual”, second edition, Prentice-Hall 1987, Harbison and Steele

e “C Traps and Pitfalls”, Andrew Koenig, AT&T Bell Laboratories, Addison-Wesley
Publishing Company, Nov. 1988, ISBN 0-201-17928-8

¢ “Data Structures and C Programs”, Van Wyk, Addison-Wesley 1988

* “How to Write Portable Programs in C”, Horton, Prentice-Hall 1989

¢ “The UNIX Programming Environment”, Kernighan and Pike, Prentice-Hall 1984
¢ “The C Puzzle Book”, Feuer, Prentice-Hall 1982

¢ “C Programming Guidelines”, Thomas Plum, Plum Hall Inc., Second Edition for
Standard C, 1989, ISBN 0-911537-07-4

¢ “DWARF Debugging Information Format”, UNIX International, Programming
Languages SIG, Revision 1.1.0 (October 6, 1992), UNIX International, Waterview
Corporate Center, 20 Waterview Boulevard, Parsippany, NJ 07054

HC(S)12 Compiler Manual 23

“DWARF Debugging Information Format”, UNIX International, Programming
Languages SIG, Revision 2.0.0 (July 27, 1993), UNIX International, Waterview
Corporate Center, 20 Waterview Boulevard, Parsippany, NJ 07054

“System V Application Binary Interface”, UNIX System V, 1992, 1991 UNIX
Systems Laboratories, ISBN 0-13-880410-9

'Programming Microcontroller in C', Ted Van Sickle, ISBN 1878707140

'C Programming for Embedded Systems', Kirk Zurell, ISBN 1929629044
'Programming Embedded Systems in C and C ++', Michael Barr, ISBN 1565923545
'Embedded C' Michael J. Pont ISBN 020179523X

24

HC(S)12 Compiler Manual

Using the Compiler

This section contains eleven chapters in the use and operation of the Compiler:

* “Introduction” on page 27: Description of the CodeWarrior Development Studio and
the Compiler

¢ “Graphical User Interface” on page 89: Description of the Compiler’s GUI
¢ “Environment” on page 119: Description of all the environment variables

* “Files” on page 141: Description of how the Compiler processes input and output
files

¢ “Compiler Options” on page 145: Detailed description of the full set of Compiler
options

¢ “Compiler Predefined Macros” on page 383: List of all macros predefined by the
Compiler

¢ “Compiler Pragmas” on page 397: List of available pragmas
¢ “ANSI-C Frontend” on page 443: Description of the ANSI-C implementation

¢ “Generating Compact Code” on page 499: Programming advice for the developer to
produce compact and efficient code.

e “HC(S)12 Backend” on page 511: Description of code generator and basic type
implementation, also hints about hardware-oriented programming (optimizations,
interrupt functions, etc.) specific for the Freescale HC(S)12.

* “High-Level Inline Assembler for the Freescale HC(S)12” on page 553: Description
of the HLI Assembler for the HC(S)12.

HC(S)12 Compiler Manual 25

26

HC(S)12 Compiler Manual

Introduction

This chapter describes the Compiler used for the Freescale HC(S)12. The Compiler
consists of a Frontend, which is language-dependent and a Backend that depends on the
target processor, the HC(S)12.

The major sections of this chapter are:

¢ “Compiler environment” on page 27

* “Using CodeWarrior to manage a project” on page 28

¢ “Compilation with the Compiler” on page 50

* “Application Programs (Build Tools)” on page 70

¢ “Startup Command-Line Options” on page 71

* “Highlights” on page 72

¢ “CodeWarrior Integration” on page 72

* “Integration into Microsoft Visual Studio (Visual C++ V5.0 or later)” on page 83

¢ “Object-File Formats” on page 85

Compiler environment

The Compiler can be used as a transparent, integral part of the CodeWarrior Development
Studio. Using the CodeWarrior IDE is the recommended way to get your project up and
running in minimal time. Alternatively, the Compiler can still be configured and used as a
standalone application as a member of a suite of other Build Tool Utilities such as a
Linker, Assembler, EPROM Burner, Simulator or Debugger, etc.

A linux version of the HC(S)12 compiler (chc12) runs on Red Hat Linux 9.0. Refer to
Appendix D “Using the Linux Command Line Compiler” for more information.

In general, a Compiler translates source code such as from C source code files (* . ¢) and
header (* . h) files into object-code (* . o) files for further processing by a Linker. The

* . ¢ files contain the programming code for the project’s application, and the * . h files
have data that is specifically targeted to a particular CPU chip or are interface files for
functions. The Compiler can also directly generate an absolute (* . abs) file that the
Burner uses to produce an S-Record (* . s19 or * . sx) File for programming ROM
memories.

The typical configuration of the Compiler is its association with a Project directory and an
Editor.

HC(S)12 Compiler Manual 27

Introduction
Using CodeWarrior to manage a project

Project directory

A project directory contains all of the environment files that you need to configure your
development environment.

In the process of designing a project, you can either start from scratch by making your
own project configuration (* . in1i) file and various layout files for your project for use
with standalone project-building tools. On the other hand, you can let CodeWarrior
coordinate and manage the entire project. Or, you can begin the construction of your
project with CodeWarrior and also use the standalone build tools (Assembler, Compiler,
Linker, Simulator/Debugger, etc.) that are included with the CodeWarrior suite.

NOTE The Build Tools are located in the prog folder in the CodeWarrior
installation. The default location is:
C:\Program Files\Freescale\CW for HC1l2\prog.

Editor

You can associate an editor, including the editor that is integrated into CodeWarrior, with
the Compiler to enable both error or positive feedback. You can use the Configuration
dialog box to configure the Compiler to select your choice of editors when using the Build
Tools. Please refer to the Editor Settings dialog box section of this manual.

Using CodeWarrior to manage a project

CodeWarrior has a New Project Wizard to easily configure and manage a project. You can
get your project up and running by following a short series of steps to configure the project
and to generate the basic files which are located in the project directory.

The following New Project Wizard section will construct and configure a basic
CodeWarrior project that uses C source code.

New Project Wizard

Start the HC(S)12 CodeWarrior IDE (usual path: Freescale\CodeWarrior for
HC12\bin\IDE.exe) and select New... from the File menu (File > New...). The New
dialog box appears (Figure 1.1).

28

HC(S)12 Compiler Manual

Introduction
Using CodeWarrior to manage a project

Figure 1.1 Constructing a new CodeWarrior project

Project name:

) HCIS)12 New Project Wizard

Create New Project...

Savein: I (5 Project

File name: Model

Save as type: IF‘roject Files (" mcp)

1 ¥ Create Folder

Select the HC(S)12 New Project Wizard. Enter the name for your project in the Project
Name text box. CodeWarrior uses the default * . mcp extension automatically, so you do
not have to explicitly append the extension to the filename.

In the event that the default location in the Location textbox is not where you want to place
the project directory, press the Set button to the right of the Location textbox and browse
to the location of your choice in the Create New Project dialog box. Check the Create
Folder checkbox, unless you already prepared another folder. Press the Save and the OK
buttons to close the dialog boxes.

The New Project Wizard - Page 1 dialog box appears. (Figure 1.2).

HC(S)12 Compiler Manual 29

Introduction
Using CodeWarrior to manage a project

Figure 1.2 New Project Wizard - Page 1 dialog box

New Project Wizard - Page 1

Welcome to the project wizard.

This wizard will guide you through the creation of
a CodeWarrior project.

By asking a series of guestions, such as
processor dervative, programming language, and
several other options, it will help you create a
project with your desired settings.

“ freescale

Next > Cancel

The New Project Wizard welcomes you aboard. Moving right along... Press Next >. The
New Project Wizard - Page 2 dialog box appears (Figure 1.3).

30 HC(S)12 Compiler Manual

Introduction
Using CodeWarrior to manage a project

Figure 1.3 New Project Wizard - Page 2 dialog box

Select the dervative you would like to use.

Derivatives
MCE8HCI12DG128
MCE8HCI12DG128A
MCE8HC9120T123
MCE8HC9120T123A
MC95124123B
MC3512A2568
MC3512A32
MC8512A512
MCS8512A64
MC95128128
MC3512864
MC3512C128
MC8512C32
MC9512Ca4
MC9512C96
MC9512032

Bammm e A

>

“ freescale

| €

< Back Next > Cancel

Select the desired HC(S)12 CPU derivative for the project. In this case, the MC9S12C64 is
selected. Press Next >. The New Project Wizard - Page 3 dialog box appears (Figure 1.4).

HC(S)12 Compiler Manual 31

Introduction
Using CodeWarrior to manage a project

Figure 1.4 New Project Wizard - Page 3 dialog box

New Project Wizard - Page 3

Please choose the set of languages to be
supported initially. You can make multiple
selections.

This will set up your application with an
IWNSI-C compliant startup code (doing
initialization of global variables).

freescale

< Back Mend = Cancel

The default - C is already checked. Uncheck Assembly and C++. You can have more than
one selection for the language, but the C option is the only option we will use. Press
Next >. The New Project Wizard - Page 4 dialog box appears (Figure 1.6).

32

HC(S)12 Compiler Manual

Introduction
Using CodeWarrior to manage a project

Figure 1.5 New Project Wizard - Page 4

New Project Wizard - Page 4

Processor ST

Would you like to use Processor Expert?

" Yes

Mo device initiglization code is generated.
nhy generates startup code. See readme bt

n project how Processor Expert can be
nabled (f not done here).

< Back Mend = Cancel

Select No. We are interested in creating a simple, basic ANSI-C project. Processor Expert
is the Rapid Application Development (RAD) tool in the CodeWarrior Development
Studio. In practice, you may routinely use Processor Expert on account of its many
advantages. The New Project Wizard - Page 5 dialog box appears (Figure 1.6).

HC(S)12 Compiler Manual

33

Introduction
Using CodeWarrior to manage a project

Figure 1.6 New Project Wizard - Page 5 dialog box

New Project Wizard - Page 5

Do you want to create a project set up for
PCHirmt(TM)?

™ Yes
* No

Lint tools can find common programming
istakes or suspicious lines in source code
analyzing it.
PCAint{TM) is a product from Gimpel
Software. You need the PCHint(TM) software
rom Gimpel installed in order to use the
o deWarrior plugin.
ou can enable PCAint{TM) later by manually
loning a target and changing the linker to
PCAint linker.

#freescale

< Back MNext > Cancel

The default - No - is what we want. PC-lint is a useful software package for detecting
programming errors. But we do not use it here, so press Next >. The New Project Wizard -
Page 6 dialog box appears (Figure 1.7).

34 HC(S)12 Compiler Manual

Introduction
Using CodeWarrior to manage a project

Figure 1.7 New Project Wizard - Page 6 dialog box

New Project Wizard - Page 6

Which level of startup code do you want to use?
Select minimal startup code’ for best code density.

" minimal startup code

f* ANSI startup code

iz will perform an ANSI compliart startup
ode: it initializes global varables/objects
nd calls the application main routine.

-

“ freescale

< Back Meat = Cancel

The default - ANSI-C startup code is the usual choice. CodeWarrior automatically
generates the startup and initialization routines and calls the entry routine into your ANSI-
C project - the main () function. Press Next >. The New Project Wizard - Page 7 dialog
box appears (Figure 1.8).

HC(S)12 Compiler Manual 35

Introduction
Using CodeWarrior to manage a project

Figure 1.8 New Project Wizard - Page 7 dialog box

New Project Wizard - Page 7

HC12: Select the floating point format supported.
Select "None'for best code density.

+ None

(" float is IEEE32, double is IEEE32

(" float is IEEE32, double is IEEEG4

Don't use floating point support for the HC12.

-

“ freescale

< Back Meat = Cancel

The default - None is what you will usually want for your projects. A simple project
definitely does not require the complexity of floating-point numbers. Use the integer
format whenever possible in your projects, as floating-point numbers impose a severe
speed-hit penalty. Press Next >. The New Project Wizard - Page 8 dialog box appears
(Figure 1.8).

36

HC(S)12 Compiler Manual

Introduction
Using CodeWarrior to manage a project

Figure 1.9 New Project Wizard - Page 8 dialog box

New Project Wizard - Page 8

Which memary model shall be used?

* Small
" Banked
" Large

e small memory model is best suited f both

he code and the data do fit into the 64 kB

ddress space.
By default all variables and functions are

ccessed with 16 bit addresses. The

e ompiler does support banked functions or
=" freescale aged variables in this memory model,

e fucton owewer

1>

hd

< Back Mend = Cancel |

Select Small for the memory model. The Small memory model is used for smaller (address
space < 64 kB) HC(S)12 projects. Larger projects can make use of the two other memory
models. Press Next >. The New Project Wizard - Page 8 dialog box appears (Figure 1.11).

HC(S)12 Compiler Manual 37

Introduction

Using CodeWarrior to manage a project

Figure 1.10 New Project Wizard - Page 9

New Project Wizard - Page 9

freescale

Please choose the connections you want. You can
select multiple connections.

Metrowerles Full ;
[|P&E Hardware Debugging
[15of Tec Microsystems Hardware Debugging

[|Freescale Serial Maonitor Hardware Debugging

Metrowerks Full Chip Simulation with
imulation of on-chip peripherals. Later on in
he debugaer you can switch to hardware
ebugging.

< Back | Finigh | Cancel

The default - Full Chip Simulation (FCS) - is our last selection, so press Finish. Using the
New Project Wizard, an HC(S)12 project could easily be created within a minute or two

(Figure 1.11).

38

HC(S)12 Compiler Manual

Introduction
Using CodeWarrior to manage a project

Figure 1.11 Project creation

File Edit Wiew Search Project Processor Expert Window Help

R R A KGEFAYEEEIARLEEY RN
==l

HC(S)12 Compiler Manual

Model T.mcp I
[# Model T By &5 [
Files | Lirk, Elrderl Targetsl
¢ | Fie
Creating the project. Please Wait.
NENNNNNNENEEED
0 files
2
v
CodeWarrior now creates an ANSI-C project (Figure 1.12).
39

Introduction
Using CodeWarrior to manage a project

Figure 1.12 CodeWarrior project window

File Edit View Search Project Processor Expert Window Help
I R R EERFAYERE SRS RY BER-
%
Model T.mcp I
I % Simulator j B & @ -
Files | Lirk Drderl Targetsl
| Fie | Code | Data ¥ |-
B readme it na nfa =l*
B tips.tst n'a nfa =l
@ [+{_] Sources 0 0+ =
@ [+{_] Startup Code 0 0« =
@ {3 P 0 o=
#Z7 Linker Map 0 0o o=
@ [+{_] Librariez] 0+ =
[+Z3 Debugger Project File] 0 =
[#3 Debugger Crad Files 0 o=
17 files 0 0 P
£ I}] x|
B

A number of files and folders are automatically generated. The root folder is the project
directory that you selected in the first step.

Analysis of the project files and folders

CodeWarrior created a project window that contains two text files and seven “folders.” In
reality the folder icons do not necessarily represent any actual folders but instead are
convenient groups of project files. If you were to examine with Windows Explorer the
project directory that CodeWarrior created for the project, you could view the actual
generated project folders and files, as in Figure 1.13. After the final stage of the New
Project Wizard, you could safely close the project and return to it later, in the same
configuration as when you last saved it.

40

HC(S)12 Compiler Manual

Introduction
Using CodeWarrior to manage a project

Figure 1.13 Project directory in the Windows Explorer

% E:\Freescale\Project\Model T

File Edit View Favorites Tools Help
Folders S Name Size | Type
= C3 Project A [Chbin Filz Falder
202 ~ Eemd File Folder
) bin [E)Model_T_Data File Folder
£ emd Dprm File Folder
= [Model_T_Data IChSources File Folder
© simulator [E)c_Layout.hn 1KE HWL File
© prm Default.mem 1KB MEM File
I3 sources L Model T.mcp 60 KB CodewWarrior Project
) test [Z] readme. txt 4KB T File
) Gimp |#) simulstor. ini 1KE INIFile
) Openoffice [Z] tips. bt 11KB T¥T File
) Projects
[RECYCLER N | s

For this project, the name of the project directory and its path is:
E:\Freescale\Project\Model T
Inside the project directory is the master file for the project - Model T .mcp. This is the

file that you open whenever you want to reopen the project. Opening this master project
file opens the CodeWarrior project in the same configuration it had when it was last saved.

If you expand the “folders” - groups, actually, in the CodeWarrior project window, you can
view all the default files that CodeWarrior generated (Figure 1.14).

HC(S)12 Compiler Manual 41

Introduction
Using CodeWarrior to manage a project

Figure 1.14 Project window showing most of the files that CodeWarrior created

File Edit View Search Project Processor Expert Window Help

s Evox<hBA AR5 EER

“ix
Model T.mcp I
I ¥ Simulator j B @ @ -
Files | Link. Drderl Talgetsl
| Fie | Code | Data 4 |-
B readme.tat na nfa =l -
B tips bt néa nfa =l
¥ [ZHE3 Sources 0 0+ =
W B mainc 0 0« =
W B datapage.c 0 0 =
w [=3 Startup Code 0 0s =
W [l StartlZ.c il 0 =
@ [=[ERPm 0 o =
W B burnerbbl néa nfa =l
W B Simulator_linker.prm nia néa =l
= Linker Map 0 0=
M Simulator.map nia nfa =
w =3 Libraries 0 0 =
il o=
W i 0e =
W 0 o=
0 o=
L] nfa =
(=& Debugger Crmd Files 0 o o=
[==3 Simulatar il o =
Bl Simulator_Startup.crmd néa nfa =l
B Simulator_Reset crmd nia n'a =l
B Simulator_Preload.cmd nda néa =l
-l Simulator_Postload.cmd néa néa =l
- Simulator_SetCPULcmd nia nfa =
17 files 0 0 P
£ 1|] k2l

Those files marked by red check marks will remain checked until they are successfully
assembled, compiled, or linked. Double click on the main. c file in the Sources group.
The editor in CodeWarrior opens the main. c file in the project window that Code Warrior
generated (Figure 1.15).

42

HC(S)12 Compiler Manual

Introduction
Using CodeWarrior to manage a project

Figure 1.15 main.c opened in the project window

b - - ~ o' ~ Path: | E’\Freescale'\Project \Model T\Sources\mainc <
#include <hidef .h> /* common defines and macros %7 QI

#include =MC2S12064 . ha» /% darivative information */

woid main{void)] |

/* put your cwn code hare */
EnableInterrupts;
for(;;) {} /* wait forever */

/* please make sure that you never leave this function */

b

Line 1 Cal 1 | [A

You could adapt the main. c file created by the Wizard as a base for your C source
program. Otherwise, you can import other C source-code files into the project and remove
the default main. c file from the project. Whichever way you go concerning the C source
code, you need one and only one main () function for your project.

For now we will use the simple main. c file. At this point, CodeWarrior has created the
project, but the source files have not yet been compiled and no object code has been linked
into an executable output file. Return to the CodeWarrior project window.

You could process any of the check-marked files individually or a combination of them
simultaneously by selecting their icons in the project window. In this case, we will build
the entire project all at once. To do this, you could press the Make button on the Toolbar in
the project window or you can build your project from the Project menu in CodeWarrior
(Project > Make (or Debug).

If CodeWarrior is correctly configured and if the files do not have any serious errors, all of
the red check marks in the project window will disappear after a successful building of the
project (Figure 1.16)

HC(S)12 Compiler Manual 43

Introduction
Using CodeWarrior to manage a project

Figure 1.16 Successful build of your project

=l
Model T.mcp ‘

|'ﬁ Simulator j B % @ 5‘

Files | Link Order | Targets |

L File Code | Data 4 =
B readme.tat n'a nfa =l
B tips. ket néa nfa =l

- &3 Sources 183 0s =
@l mainc 4 0« =
@l datapage.c 185 ne =

=-&3 Startup Code 43 G+ =
- Stat1Z.c 49 E + =

--EAPrm i o o=
@ bumer.bbl n'a nfa =l
w8 Sirmulator_linker.pron néa nfa =l

=& Linker Map i o=
-l Simulator map néa nfa =l
= &3 Libraries 7K. 2K . =
@ MCIS12C64.h] 0 =l
-fl MC3512C64.c i 260 « =
-l ansizi.lib 7ra 208 =l

-3 Debugger Project File] i =l

Bl Sirnulator.ini néa nfa =l
== Debugger Cmd Files 0 o =
=- &3 Simulator a o=
@ Simulatar_Startup.cmd néa nfa =l
B Simulator_Reset cmd nia nfa =l
@ Sirmulator_Preload emd n'a n/a =l
@ Simulator_Postload.cmd héa nta =l
w8 Sirulator_SetCPUcmd néa nta =l
17 files 7k 2K

Continually compiling and linking your project files incrementally during the construction
phase of the project is a wise programming technique in case an error occurs. The source
of the error is much easier to locate if the project is frequently rebuilt. You can make use of
the positive or error feedback for each compilation.

This project has four C-source files that successfully compiled. The Code and Data
columns in the project window show the size of the compiled executable object code or
the non-executable data in the object code for the compiled source files. Some additional
files were generated after the build process (Figure 1.17).

44

HC(S)12 Compiler Manual

Introduction
Using CodeWarrior to manage a project

Figure 1.17 Windows Explorer after a project build

8% E:\Projects\Model T\Model_T_Data\Simulator\ObjectCode

File Edit Wew Favorites Tools Help _-:,.

x Name Size Type
datapage.c.o 9KE OFie
I Clawhammer main.c.o 4KB OFile
(£ Downloads MC9512C64.c.0 99 KB O File
[2) Freescale Start12.c.o 6KB OFile
£ Gimp
[C3) Openoffice
=) Projects
I3) Absolute =,
I3 Absolute Assembly
I3 Fibonacd
= I3 Model T
(C3) bin
=) ond
=) Model_T_Data
2 | simulator
@] ObjectCode
2 prm
1) Sources v £ 5

Folders
[= = Drive E (E:) ~

The object-code files for the four C-source files are found in the ObjectCode folder.
However, the executable output file is located in the bin folder (Figure 1.18).

HC(S)12 Compiler Manual 45

Introduction
Using CodeWarrior to manage a project

Figure 1.18 bin folder in the project directory

8% E:\Projects\Model T\bin

File Edit WView Favorites Tools Help ."',.
Folders x Name Size | Type
= < Drive E (£) ~| [H simulator.abs 93KB ABS File
3 Clawhammer 1 Simulator.abs. phy 1KB PHY File
[C) Downloads Simulator.abs.s 19 1KB 519 File
) Freescale = simulator map 74KB MAP File
D Gimp
|2 OpenOffice
= I Projects

IC5) Absaolute —
IC5) Absolute Assembly
IC3) Fibonacd
= I3 Model T

(2 bin

=) amd

= I Model_T_Data
2 5 simulataor
|3 ObjectCode
= prm
|2 Sources v £ | Y

As you can see, all the files currently in the bin folder have the Simulator filename
plus an extension. The extension for the executable is * . abs (for absolute). The *.s19
file extension is the S-Record File used for programming ROM memory. The * . map file
extension is for the Linker Map file. The Map file provides (among other things) useful
information concerning how the Linker allocates RAM and ROM memory areas for the
various modules used in the project.

You have not entered these filenames - Simulator. * - while creating the project with
the New Project Wizard. So where did these filenames come from? These so happen to be
the default filenames for the project using the New Project Wizard. You can change these
defaults to become more meaningful, say Alpha.*, by using one of the preference panels
available in CodeWarrior - Target Settings.

From the Edit menu in CodeWarrior, select Edit > Simulator Settings.... The Simulator
Settings dialog box appears with the Target Settings preference panel (Figure 1.19).

46

HC(S)12 Compiler Manual

Introduction
Using CodeWarrior to manage a project

Figure 1.19 Target Settings preference panel

i @ Simulator Settings

|E T arget Settings Panels |E T arget Settings
= Target =

Target Mame: |Simulat0r

- Access Paths Linker [
- Build Extras inker: Linker for HC12

- Runtime 5 ettings F'IE-linkEl:|None
- File M appings
- Source Trees
- OSEK, Spsgen Output Directory:

- Assembler for HC12 Choose...

- Bumer for HC12 {Prajectthin
- Compiler for HC12 Clear
- |mparter for HZ12
- Linker for HC12
- Sirnulink(r] —
= Editor
e Custom Kepwaords
— Debugger
- Other Executables v|

Ledlafle]

Post-linker: |N ohe

[™ Save project entries using relative paths

Factary Settings Import Panel... | Export Panel.. |

ak | Cancel | |

The Target Name: text box contains the default Target Name for the project. Enter Alpha
in this text box and press OK. If you were to again check the Edit menu, you would notice
that the Simulator Settings... menu item is no longer present, while Alpha Settings... is
there is its place. This change is also reflected in the project window. Alpha now appears
as the new name for the build target (Figure 1.20).

HC(S)12 Compiler Manual 47

Introduction
Using CodeWarrior to manage a project

Figure 1.20 Alpha is the new name for the build target...

Model T.mcp ‘
| ® Apha By &5
Files l Lirk Drder] Targets]
3 File Code | Data 4 =
Bl readme.txt n‘a nfa =~
B tips.tet nia nfa =l
=Eq Sources 189 0+ =
~f main.c 4 0+ =
R datapage.c 185 0« =
=C3 Startup Cade 49 B+ =
R Stat12c 49 E + =
=-E3 Pm 0 0o =
M burrer.bbl n'a nfa =l
SR Simulator_linker.prm na nfa =
== Linker Map 0 0o =
R Sirulator map nia nfa =l
=3 Libraries 7K 2k o+ =
--f MC9512C64.h a a =l
-l MCI512CE4.0 0 260 = =
R ansisilib e 2ma =l
=23 Debugger Project File I o =
LB Sirulator ini n/a nia =
=E Debugger Crnd Files 1] o =
=123 Simulator] 0o =
MR Simulator_Startup.crd nta nfa =l
i n'a nta =l
B Simulator_Preload.cmd n'a nta =l
8 Simulator_Postload.cmd n'a nfa =l
LB Simulator_SetCPU . cmd nia nfa =l
17 files 7K 2K

This causes the name of the Simulator folder which contains the object files to be
changed to Alpha. However, the names in the bin folder still are unchanged. You can
change the name of the executable file to Alpha . abs by using another preference panel.
From the Edit menu, select Alpha Settings.... The Alpha Settings dialog box appears.
Select Target > Linker for HC12 in the Target Settings Panels. The Linker for HC12
preference panel appears (Figure 1.21).

48 HC(S)12 Compiler Manual

Introduction
Using CodeWarrior to manage a project

Figure 1.21 Linker for HC12 preference panel

[} Target Settings Panels [/ Linker for HC12

| »

= Target

i Command Line Arguments:
- Target Settings

- fAocess Paths |
- Build Extraz

[~ Preprocess PRM file

- Agsembler for HC12
- Burner for HC12
- Compiler for HC12

" lse Template PRM file

* Use PRM file from project

- Runtime Settings Hlessage: Db |

- File Mappings [~ Display generated commandines in message window
- Source Trees

. DSEK Sysgen " Usze Custorm PRM file

J

]mcgs'l 2cB4. prm

= Other Executables

=]

nalmporter for G2 " Absolute, Single-File &szembly projsct
- Linker for HC12 e
- Simulinklr) _ & pplication Filename:
= Editor |Simu|ator.abs
o Custom Keywords
= Debugger About Help

|

Factory Seftings ‘

| Import Panel... | Export Panel... ‘

ok | Cancel | ppl ‘

In the Application Filename: text box, delete Simulator.abs and enter Alpha . abs and
press OK. Now a dialog box appears stating that “Target ‘Alpha’ must be relinked”. Press
OK. Press the Make icon on the Toolbar to rebuild the project. The contents of the bin

folder change to reflect the new build target

- Alpha (Figure 1.22).

HC(S)12 Compiler Manual

49

Introduction
Compilation with the Compiler

Figure 1.22 bin folder revisited...

8% E:\Projects\Model T\bin

File Edit Wew Favorites Tools Help L
Folders S MName Size | Type
5 < Drive E (&) ~| [alpha.abs 9IKB ABS File
) Clawhammer ~ =) Alpha.abs.phy LKB PHY File
() Downloads = Alpha.abs.s 12 LKB S13Fie
) Freescale = alpha. map 74KB MAP File
B Gimp Simulator.abs 93KB ABS File
) OpenOffics [=) simulator.abs.phy 1KB PHY Fie
=) Projects = simulator.abs.s13 1KB 519 File
3 Absolute ~ = simulator map 7AKB MAP File
| Absolute Assembly
| Fibonacd
= 3 Model T
=
=) emd
= |2 Model_T_Data
=) Alpha
[Z) ObjectCode
= prm v
< | > < | b

Now, files with the Alpha. * filenames are generated. The previous Simulator.*
files are not modified at all. However, they no longer are included in the project, so that
they may be safely deleted.

The Linker PRM file

The PRM file determines how the Linker allocates the RAM and ROM memory areas.
The usual procedure is to use the default PRM file in the project window for any particular
CPU derivative. However, it is possible to modify the PRM file if you want an alternative
allocation.

Compilation with the Compiler

It is also possible to use the HC(S)12 Compiler as a standalone compiler. This tutorial
does not create an entire project with the Build Tools, but instead uses parts of a project
already created by the CodeWarrior New Project Wizard. CodeWarrior can create,
configure, and mange a project much easier and quicker than using the Build Tools.
However, the Build Tools could also create and configure a project from scratch. Instead,
we will create a new project directory for this project, but will make use of some files
already created in the previous project.

50

HC(S)12 Compiler Manual

Introduction
Compilation with the Compiler

A Build Tool such as the Compiler makes use of a project directory file for configuring
and locating its generated files. The folder that is properly configured for this purpose is
referred to by a Build Tool as the “current directory.”

Start the Compiler. You can do this by opening the chc12 . exe file in the prog folder in
the HC12 CodeWarrior installation. The Compiler opens (Figure 1.23).

Figure 1.23 HC12 Compiler opens...

. - o

Tip of the Day

@ Did you know...

You can alzo uze the toolbar to load or store a
configuration.

& m) ¥ Show Tips on Startlp Mest Tip | Close |

Ready

Read any of the Tips if you choose to and then press Close to close the Tip of the Day
dialog box.

Configuring the Compiler

A Build Tool, such as the Compiler, requires information from configuration files. There
are two types of configuration data:

¢ Global

This data is common to all Build Tools and projects. There may be common data for
each Build Tool (Assembler, Compiler, Linker, ...) such as listing the most recent
projects, etc. All tools may store some global data into the mcutools.ini file.
The tool first searches for this file in the directory of the tool itself (path of the
executable). If there is no mcutools. ini file in this directory, the tool looks for
anmcutools. ini file located in the MS WINDOWS installation directory (e.g.
C: \WINDOWS). See Listing 1.1.

HC(S)12 Compiler Manual 51

Introduction

Compilation with the Compiler

Listing 1.1 Typical locations for a global configuration file

\CW installation directory\prog\mcutools.ini - #1 priority
C:\mcutools.ini - used if there is no mcutools.ini file above

If a tool is started in the C: \Program Files\Freescale\CW for HC12
V4 .5\prog directory, the initialization file in the same directory as the tool is used.

C:\Program Files\Freescale\CW for HC12
V4 .5\prog\mcutools.ini).

But if the tool is started outside the CodeWarrior installation directory, the
initialization file in the Windows directory is used. For example,
(C:\WINDOWS\mcutools.ini).

For information about entries for the global configuration file, see
Global Configuration-File Entries in the Appendices.

Local

This file could be used by any Build Tool for a particular project. For information
about entries for the local configuration file, see Local Configuration-File Entries in
the Appendices.

After opening the compiler, you would load the configuration file for your project if it
already had one. However, you will create a new configuration file and save it so that
when the project is reopened, its previously saved configuration state will be used. From
the File menu, select New / Default Configuration. The HC12 Compiler Default
Configuration dialog box appears (Figure 1.24)

Figure 1.24 HC12 Compiler Default Configuration dialog box

Dl 28 & FUMF = E
)
)
|]
Ready 14:45:28

Now save this configuration in a newly created folder that will become the project
directory. From the File menu, select Save Configuration (or Save Configuration As...). A
Saving Configuration as... dialog box appears. Navigate to the folder of your choice and
create and name a folder and filename for the configuration file (Figure 1.25).

52

HC(S)12 Compiler Manual

Introduction
Compilation with the Compiler

Figure 1.25 Loading configuration dialog box

Saving Configuration as...

Savein: |L‘f} Projects j &= cF Bl

() absalute [C)Relocatable Assembly
[C)Absolute Assembly [C)Sample

[CO)Fibonacc [C)Test

C)Model T

[CSyMew Falder

File name: |project ini
Save as type: |Pn:|ject files (*ini:* pit) j Cancel

Press Open and Save. The current directory of the HC12 Compiler changes to your new
project directory (Figure 1.26).

Figure 1.26 Compiler’s current directory switches to your project directory...

il HC12 Compiler E:\Projects\Model A\project.ini |;||§|g|
File Compiler Wiew Help

Ded 28 | & FIIF = E

s

Changed current directory to E:\Projecta‘\Model R
w

0| *

Ready 16:02:57

If you were to examine the project directory with the Windows Explorer at this point, it
would only contain the project. ini configuration file that you just created. If you
further examined the contents of the project’s configuration file, you would notice that it
now contains the [CHC12_Compiler] portion of the project. ini file in the prog
folder where the Build Tools are located. Any options added to or deleted from your
project by any Build Tool would be placed into or deleted from this configuration file in
the appropriate section for each Build Tool.

If you want some additional options to be applied to all projects, you can take care of that
later by changing the project. ini file in the prog folder.

You now set the object file format that you intend to use (HIWARE or
ELF/DWAREF). Select the menu entry Compiler > Options... > Options. The Compiler

HC(S)12 Compiler Manual 53

Introduction
Compilation with the Compiler

displays the HC12 Compiler Option Settings dialog box. Select the Output tab
(Figure 1.27).

Figure 1.27 HC12 Compiler Option Settings dialog box

HC12 Compiler Option Settings

Host] Code Generation] Messages]
Optimizations Output] Input] Language]

[JAllozate COMST objects in ROM ”
[|Encrypt Files [-Eencrypt=<file>]]
0 .

Object File Farmat

[1Generate Azzembler Include File
[w|Generate Listing File

[Configure Listing File

[|Loqg predefined defines ta file
[List of included filez to "inc' file
[J'wfrite statistic autput to file

| £

-FIhI71612012]; Object File Format

|ELF/DWARF 2.0 |

-F2 -Lasm="%n Ist

QK Cancel Help

In the Output panel, select the check boxes labeled Generate Listing File and Object
File Format. For the Object File Format, select the ELF/DWARF 2.0 in the pull-
down menu. Press OK to close the HC12 Compiler Option Settings dialog box.

Save the changes to the configuration by:
e selecting File > Save Configuration (Ctrl + S) or

* pressing the Save button on the toolbar.

Input Files

Now that the project’s configuration is set, you can compile an C source-code file.
However, the project does not contain any source-code files at this point. You could create
C source (* .c) and include (* . inc) files from scratch for this project. However, for

54 HC(S)12 Compiler Manual

Introduction
Compilation with the Compiler

simplicity’s sake, you can copy and paste the Sources folder from the previous Model T
CodeWarrior project into the Model A project directory (Figure 1.28).

Figure 1.28 Project files

% E:\Projects\Model A\Sources

Folders X Mame & Size Type

B) Projeds "~ a Wdatapage.c 64KB CSource File
[C3) Absalute B Emain.c 1KB C Source File
[C3) Absolute Assembly = HEStarti2.c 21KB C Source File
I3 Fibonacd
= I Model A

&? Sources

) Model T v

£ il | < >

Now there are four files in the project:
e the project. ini configuration file in the project directory and

* in the Sources folder:
— datapage.c,
A collection of paged data-access runtime routines
— main.c, and
The user’s program plus derivative-specific and memory-model includes
— Startl2.c.

The startup and initialization routines

Compiling the C source-code files

Let’s compile one of the C source files, say the Start12. c file. From the File menu,
select Compile. The Select File to Compile dialog box appears (Figure 1.29).

HC(S)12 Compiler Manual 55

Introduction
Compilation with the Compiler

Figure 1.29 Select File to Compile dialog box

] HC12 Compiler E:\Projects\Model A\project.ini - [B]X]
l Select File to Compile
Look in: |E} Model A j 4= |‘=:F EH- [
EJSources
File name: || Open
Files of type: IC source files (*.c) ;I Cancel
L =i
Ready |20:36:24 4

Browse to the Sources folder in the project directory and select the Start12. c file.
Press Open and the Start12. c file should start compiling (Figure 1.30).

56 HC(S)12 Compiler Manual

Introduction

Compilation with the Compiler

Figure 1.30 Results of compiling the Start12.c file

fHC12 Compiler E:\Projects\Model A\project.ini

File Compiler View Help

DEE 78

jects'\Model A\Source:

& il EFE ==

Changed current directory to E:ZwProjecta\Model A
"E:wProjectsi\Model A\Sourcesh\Startli.c”
Command Line: '"-F2

"E:\Projects\Model A\Scurces\Startl2.c"”

Could not open the file 'hidef.h'

>» in "E:“Projects‘\Model A\Sources\Startl2.c", line 24,
#include "hidef

ERRCE C5200: hidef.h file not found

Could not open the file "startl2.h'

>» in "E:%Projects\Model ARh\Sources\Startl2.c™, line 25,
#$include "startlZ.h"

EBRCR C5200: startl2.h f£ils not found

Could not open the file 'default.agm'

>»> in "E:\Projects‘\Model AM\Sources\Startl2.c", line 89,
#include "default.sgm"

EBERCR C5200: default.sgm file not found

Could not open the file "mon_bank.sgm'

»» in "E:%ProjectaiModel AN\SourceshStartli.c", line 372,
¢#include "non_bank.sgm”

ERRCR C5200: non_bank.sgm file not found

HC12 Compiler: *** 4 error(s),
***% command line:
HC12 Compiler:

0 warning(s),

%* Error gccurred while processing! *

JReady

-Lasm=%n.lst "E:\Frojects\Model A\Sources\Startl2.c"'

0 information message(3)
'-F2 -Lasm=%n.lst "E:\Projects\Model &\Scurces 3tartla.c™'

col 10, pos 1433

col 10, pos 1453

1a,

o
=}

pos

col 10, pos 18712

LR
kkk

21:19:40

The project window provides positive or negative feedback information about the
compilation process or generates error messages if the compiling was unsuccessful. In this

case four error messages are generated - four instances of the

C5200: ‘FileName’ file not

found message. If you right-click on the text about the error message, a context menu

appears (Figure 1.31).

HC(S)12 Compiler Manual

57

Introduction
Compilation with the Compiler

Figure 1.31 Context menu

fHC12 Compiler E:\Projects\Model A\project.ini

File Compiler View Help
D=E 7 8 jects\Model A\Sources\Start12.c] g FINEF = =

Changed current directory to E:\Projecta‘\Model A

"E:\Projects\Model A\Sourcea‘\Startli.c”

Command Line: '-F2 -Laam=%n.lst "E:\Projects\Model A\Sources\Startll2.c"'
"E:\Projects\Model A\Scurces‘Startl2.c"

Could not open the file 'hidef.h"

>» in "E:\Projects\Model A\Sources\Startl2.c", line 24, col 10, pos 1433
#include "hidef.h"

ERRCR C5200: hidef.h file nor fonnd

Could not open the file| MainHelp

>> in "E:\Projecta\Mode| QOpen fie "'E:'IProjects'l,I\"IodeIA\Sﬁces'lstartlz.c"" 3 1453

#include "startlz.h” Copy "ERROR. C5200: hidef.h file not found”

EBRCR C5200: startli.h file not found
Could not open the file 'default.agm’

o
ra
o

>> in "E:\Projects\Model A\Sources\Startl2.c", line 89, col 10, pos
#include "default.sgm

-~

EBRCR C5200: default.sgm file not found
Could not open the file 'nmon_bank.sgm'

»» in "E:%Projects\Model A\SourceshStartl2.c", line 372, col 10, pos 18712
¢#include "non_bank.sgm"

~

ERRCR C5200: non_bank.sgm file not found

HC12 Compiler: *** 4 error(s), 0 warning(s), 0 information message(s) =***

*** command line: '-F2 -Lasm=%n.lst "E:\Projecta\Model A\Socurces\Startl2.c"' ***
HC12 Compiler: *** Error occurred while processing! ***

Calls context help 21:73:12

Select Help on ‘FileName’ file not found and help for the C5200 error message appears
(Figure 1.32).

58 HC(S)12 Compiler Manual

Introduction
Compilation with the Compiler

Figure 1.32 C5200 error message help

E? Freescale HC12 Compiler Messages |:||§|g|
© a o
Hide Locate Stop Refresh Home Print Qptions
3
C5200: 'FileName' file not
found
[ERROR]
Description

The specified source file was not found.

Example

F¥include "notexisting.h”

Tips
Specify the correct path and name of vour source file!

See also

» Input Files

L

=" freescale

semiconductor
Www.cadewarrior.com
cw_support@freescale. com

The Tips portion in the Help for the C5200 error states that you should specify the correct
paths and names for the source files. All four of the files that the Compiler could not find
are contained in the same following folder:

<CodeWarrior installation folder>\1lib\hcl2\include

HC(S)12 Compiler Manual 59

Introduction
Compilation with the Compiler

NOTE If youread the Start. c file, you could have anticipated this on account of
two #include preprocessor directives on lines 24 and 25 for two header
files. The remaining two missing files were included by those two header files.

The Compiler needs a configurational modification so that it can find these missing files.
Select File > Configuration. The Configuration dialog box appears (Figure 1.33).

Figure 1.33 Browsing for the include subfolder in the CodeWarrior lib folder

HC12 Compiler E:\Projects\Model A\project.ini

File Compiler View Help

== | T w2 | "E\Projects

Configuration

Ed'rtorSeﬂingsI Save Configuration Environment I L1 A\Sources\Startl2.c"

General Path
Object Path
Text Path
Absolute Path jne 24,

Header File Path

Various Environment Variables

col 10, pos 1433

| Browse for Folder

Add | Ehangel Deletel Up | Select a directory:
{3 (Helper Apps) A
{3 bin |
&-{C3) Help
2+ lib =
2 hele
. @[3 he12_lib_Data
b e |
I o)
0K Cance] @D old
- 32pm
ERROR ©5200: non_bank.sgm file n I R =
HC12 Compiler: *** 4 errcor(s), 0 A m LB en=tec | 3
**% command line: '-F2 -La %0, — = = *
HC12 Compiler: *** Error occurre
L OK J [Cancel]
|Ready A

Select the Environment tab in the Configuration dialog box and then select Header File
Path. Press the “...” button and navigate in the Browse for Folder dialog box for the folder
that contains the missing file - the include subfolder in the CodeWarrior installation’s
1ib folder. Press OK to close the Browse for Folder dialog box. The Configuration dialog
box is now again active (Figure 1.34).

60 HC(S)12 Compiler Manual

Introduction
Compilation with the Compiler

Figure 1.34 Adding a Header File Path

Configuration gl

Editor Seﬁings] Save Configuration Environment]

Header File Path
Various Environment Variables

|C “Program Files'\Freescale"CW for HC12 V4.5 Wi

IR s e [0

C:\Program Files"Freescale CW for HC12 V4.5 \ib'he12

0K Cancel Help

Press the Add button. The path to the header files “C:\Program Files\Freescale\CW for
HC12 V5.0\libVic12c\include” now appears in the lower panel. Press OK. An asterisk now
appears in the Configuration Title bar, so save the modification to the configuration by
pressing the Save button or by File > Save Configuration. If you do not save the
configuration, the Compiler will revert to last-saved configuration the next time the
project is reopened. The asterisk disappears.

TIP You can clear the messages in the Compiler window at any time by selecting
View > Log > Clear Log.

Now that you have supplied the path to the erstwhile missing files, you can try again to
compile the Start12. c file. Instead of compiling each file separately, you can compile
any or all of them simultaneously.

Select File > Compile and again navigate to the Sources folder (in case it is not already
active) and this time select all three * . c files and press Open (Figure 1.35).

HC(S)12 Compiler Manual 61

Introduction

Compilation with the Compiler

Figure 1.35 Successful compilation - three object files created...

HC12 Compiler E:\Projects\Model A\project.ini

File Compiler View Help

OD=E 7 8 |"E:"-.Pn:-je-:is"-.Mc-deI A\Sources\Stat 12.c" "E:"-.PnojeCj & FIE = =

JReady 01:51:32

"C:\Program Files‘\Freeacale\CW for HC12 V4.5%1lib\hcl2chinclude'stdtypes.h" L
"C:\Program Filea\Freeacale\CW for HC12 V4.5%1ib‘\hcl2chinclude'stddef.h"
"C:\Program Files\Freescale\CW for HC12 V4.5%\1lib\hcl2echinclude\non bank.sgm™
"C:WProgram Files‘\Freescale\CW for HC12 V4.5%libthclZchinclude'\runtime.sgm™
Option -Lasm: Generating listing file '"E:\Projects‘\Mcdel RA\datapage.lst'
Object file: E:\Projects‘\Model A\Scurces‘datapage.o, format ELF/DWARF 2.0
Code Size: 331
Glebal ckjecta: 12
HC12 Compiler: *** 0 error(3), 0 warning(s), 0 informaticon message (3) **#*
HC12 Compiler: *** Processing ok ***
"E:\Projecta‘\Model A\Sources‘\main.c"™
Command Line: '"-F2 -Lasm=%n.lst "E:\Projects‘\Model A\Socurces'\main.c"'
"E:\Projecta\Model Rh\Scurces‘\main.c"

"C:\Program Files\Freescale\CW for HC12 V4.5 \lib\hcl2c\include\hidef.h™
"C:\Program Filea‘\Freescale\CW for HC12V45%lib%hclZchinclude\default.sgm™
"C:%\Program Files\Freescale\CW for HC12 V45 \lib\hcl2ch\includehstdtypes.h"
"C:\Program Filea\Freeacale\CW for HC12 V4.5 \lib\hcl2ch\includeh\stddef.h"™

"C:%Program Files‘\Freeacale\CW for HCl2 V454.1libvhelZehinclude\MCI312C64.0"

Option -Lasm: Generating listing file 'E:\Projects‘\Mcodel A\main.lst’

Object file: E:\Projects‘\Model A\Scurces‘main.c, format ELE/DWRRF 2.0

Code Size: 4

Global cbjecta: 1

HC12 Compiler: *%** 0 error{s), 0 warning(s), 0 information message (3) ***
HC12 Compiler: *** Processing ok *** =
w

The Compiler indicates successful compilation of all three C-source files and displays the
Code Size for each. Also, the header files included by each C-source file are shown. The
message “*** 0 error (s),” indicates that the file compiled without errors. Do not
forget to save the configuration one additional time.

The Compiler also generated object files in the Sources folder (for further processing by
the Linker), and a output listing file in the project directory. The binary object file has the
same name as the input module, but with the ‘* . 0’ extension instead. The assembly
output file for each C-source file is similarly named (Figure 1.36).

NOTE The Compiler generates object-code files in the same location as the C-source

files. If any C-source code file is in a CodeWarrior library folder (a subfolder
inside \ 1ib), we recommend that you configure the path for this C-source file
into somewhere other than this lib folder. The OBJPATH environment variable
is used for this case. You use the Object Path option in the Configuration
dialog box for this (Figure 1.34).

62

HC(S)12 Compiler Manual

Introduction
Compilation with the Compiler

Figure 1.36 Project directory after successful compilation

8% E:\Projects\Model A |'__||'E|g|
File Edit View Favorites Tools Help -"}l?
Folders x MName Size Type
[=] % Drive E (E:) A| [CDSources File Folder
) Clawhammer Banjo [¥]datapagest 87KB LSTFie
(3 bownloads [E) ErRTHT 0KB TXT File
) Freescale [#] main.Ist LKB LSTFie
) Gimp | |®)project.ini 1KB INIFile
) CpenGfiice [projectinibak 1KB BAKFile
= 3 Projects | %) start12.1st 25KE LSTFile

|2 Absolute
|2 Absolute Assembly
| Fibonacd
= oN
|2 Sources
| Model T v

The haphazard running of this project was intentionally designed to fail in order to
illustrate what would occur if the path of any header file is not properly configured. Be
aware that header files may be included by C-source or other header files. The 1ib folder
in the CodeWarrior installation contains several derivative-specific header and other files
available for inclusion into your projects.

Now that the project’s object code files are available, the Linker Build Tool
(linker.exe) together with an appropriate * . prm file for the CPU-derivative used in
the project could link these object-code files together with any necessary library files to
create a * . abs executable output file. See the Linker section in the Build Tool Utilities
manual for details. However, using the CodeWarrior Development Studio is much faster
and easier to set up or configure for this purpose.

Linking with the Linker

If you are using the standalone Linker (also known as the Smart Linker), you will use a
PRM file for the Linker to allocate RAM and ROM memory areas.
» Start your editor and create the project’s linker parameter file. You can modify a
* . prm file from another project and rename it as <target_name>.prm.

» Store the PRM file in a convenient location. A good spot would be directly into the
project directory.

¢ Inthe <target_name>.prm file, add the name of the executable (* . abs) file,
say <target_name> . abs. (The actual names chosen for the filenames do not
matter, as long as they are unique.) In addition, you can also modify the start and end
addresses for the ROM and RAM memory areas. The module’s Model_A.prm file
— a PRM file for an MC9S12C64 from another CodeWarrior project was adapted —
is shown in Listing 1.2.

HC(S)12 Compiler Manual 63

Introduction
Compilation with the Compiler

Listing 1.2 Layout of a PRM file for the Linker - Model_A.prm

/* This is an adapted linker parameter file for the MC9S12C64 */

LINK Model_A.abs /* This is the name of the executable output file */
NAMES Startl2.o datapage.o main.o /* list of all object-code files */
END

SEGMENTS /* Here all RAM/ROM areas of the device are listed.
Used in PLACEMENT below. */
RAM = READ_WRITE 0x0400 TO O0xOFFF;

/* unbanked FLASH ROM */
ROM_4000 = READ_ONLY 0x4000 TO Ox7FFF;
ROM_CO000 = READ_ONLY 0xCO000 TO OXFEFF;

/* banked FLASH ROM */

PAGE_3C = READ_ONLY 0x3C8000 TO Ox3CBFFF;

PAGE_3D = READ_ONLY 0x3D8000 TO Ox3DBFFF;
END

PLACEMENT /* Here all predefined and user segments are placed into
the SEGMENTS defined above. */

STARTUP, /* startup data structures */
ROM_VAR, /* constant variables */
STRINGS, /* string literals */
DEFAULT_ROM, NON_BANKED, /* runtime routines which

must not be banked */
COPY /* copy down information: how to

initialize variables */

/* in case you want to use
ROM_4000 here as well, make sure
that all files (incl. library
files) are compiled with the
option: -OnB=b */

INTO ROM_C000/*, ROM_4000%*/;

OTHER_ROM INTO PAGE_3D, PAGE_3C;

.stack, /* allocate stack first to avoid
overwriting variables on overflow */

DEFAULT_RAM INTO RAM;

END

STACKSIZE 0x100
VECTOR 0 _Startup /* Reset vector: this is the default
entry point for a C/C++ application. */

64 HC(S)12 Compiler Manual

Introduction
Compilation with the Compiler

NOTE If you are adapting a PRM file from a CodeWarrior project, most of what you
need do is adding the LINK portion and adding in the NAMES portion whatever
object filenames that are to be linked.

NOTE The default size for the stack using the CodeWarrior New Project Wizard for
the MC9S12C64 is 256 bytes: (STACKSIZE 0x100).

NOTE Most of the entries in the PLACEMENT section are not used in this simple
project. Furthermore, a number of extra entries were deleted from the actual
PRM file used in another CodeWarrior project. It does not matter if all of these
entries are used or not. They were left in order to show what entries are
available for your future projects.

The commands in the linker parameter file are described in detail in the Linker section of
the Build Tool Utilities manual.

¢ Start the Linker.

The Smart Linker tool is located in the prog folder in the CodeWarrior installation:
proj\linker.exe

* Press Close to close the Tip of the Day dialog box.

¢ Load the project’s configuration file. Use the same <project>.ini that the
Compiler used for its configuration - the project. ini file in the project
directory:

File > Load Configuration and navigate to the project’s configuration file
(Figure 1.37).

HC(S)12 Compiler Manual 65

Introduction
Compilation with the Compiler

Figure 1.37 HC(S)12 Linker

Loading configuration

Lok in: I (3 Model &
@Suurces

| o : P
project.ini

File name: |pmiect.ini Open

[o= | g
1 Files of type: | Project files (i pit) =l Cancel |
A A,

* Press Open to load the configuration file. The project directory is now the current
directory for the Linker. You can press the Save button to save the configuration if
you choose. If you fail to save the configuration, the Linker will revert to its last-
saved configuration when it is reopened. From the File menu in the Smart Linker,
select Link: (File > Link (Figure 1.38).

66 HC(S)12 Compiler Manual

Introduction
Compilation with the Compiler

Figure 1.38 Select File to Link dialog box

SmartLinker E:WProjects\Model Avproject.ini [:|@||X|
Select File to Link 5
Look ir; | () Model & ~| « & cf BE- n
| B
@Suurces =
E Madel_A.prm
File narme: bodel A, 0 I
I odel_&. prm pen a9
4 Files of type: IIink parameter files [*.prm) ;! LCancel |
H d

* Browse to locate the PRM file for your project. Select the PRM file. Press Open. The

Smart Linker links the object-code files in the NAMES section to produce the
executable * . abs file as specified in the LINK portion of the Linker PRM file

(Figure 1.39).

HC(S)12 Compiler Manual

67

Introduction
Compilation with the Compiler

Figure 1.39 Linker main window after linking

SmartLinker E:\Projects\Wodel Alproject.ini
File Smartlinker View Help

Oz | % N || EProjctsiMadsl AModel_a p || ~ ==

Changed current directory to E:Z\Projects'\Model A
"E:ZProjectahModel AvModel A prm”

Command Line: '"E:%vProjectsi\Model 44vModel A.prm™!'
Reading Parameters

Linking E:%ProjectatModel A\Model 4.prm

Fead Binary Input Files

Reading file 'E:%ProjectsiModel AY\Sources)\Startli.o!
Feading file 'E:%Projects\Model A%\Sources‘\main.o'
Reading file 'E:%ProjectsiModel A%\Sourcesh\datapage.o!
Marking Referenced Objects

Mowing Ohjects across Sections

Reserwving Memory for Ztartup Data

Allocating Obhjects

Preparing 3tartup Data

Generating Code

Generating Zymbol table

Generating DWARF data wersion 2.0

Code 3ize: &7

Generating MAP file 'E:\Projects'Model A\Model b.map'
Smartlinker: *** 0 erroris), 0 warningi(s), 0 information message(s) *%*
Smartlinker: *%#% Processing ok #%%

Processing ok 09:38:44

The messages in the linker’s project window indicate:

¢ The current directory for the Linker is the project directory,
E:\Projects\Model A

* The Model_A.prm file was used to name the executable file, which object files
were linked, and how the RAM and ROM memory areas are to be allocated for the
relocatable sections.

¢ There were three object-code files, Start12.o0,main. o, and datapage.o.
¢ The output format was DWARF 2.0.

¢ The Code Size was 67 bytes.

¢ A Linker Map file was generated - Model_A .map.

* No errors or warnings occurred and no information messages were issued.

The Simulator/Debugger Build Tool, hiwave . exe, located in the prog folder in the
CodeWarrior installation could be used to simulate the sample program in the main. c
source-code file. The Simulator Build Tool can be operated in this manner:

68 HC(S)12 Compiler Manual

Introduction
Compilation with the Compiler

¢ Start the Simulator.
¢ Load the absolute executable file:
— File > Load Application... and browse to the appropriate * . abs file or

— Select the given path to the executable file, if it is appropriate as in this case
(Figure 1.40):

E:\Projects\Model A\Model_ A.abs
Figure 1.40 HC(S)12 Simulator: Select the executable file

i True-Time Simulator & Real-Time Debugger C:WProgram Files\Freescale\CW for HC12 ¥
File

Load Executahle File

Look in: I £ Model &
EJ Sources

Model_a.abs

File: narne: |Mode|_p’-‘«.abs Open I
Filez of type: IEHBCUtab'BS [* abs: * elf] | Cancel |

— Load Option:
1 Load Code + Symbols © Load Symbols only ¢ Load Code only
" Load Code to onchip Mon Valatie Memon (erase and flash] Options...

— Code Yenfication Options
& Mone " Firsthytes only © Allbgtes € Fead back anly

¥ FRemember options selection above Syrnb Global

¢ Assembly-Step (Figure 1.41) through the program source code (or do something
else...).

HC(S)12 Compiler Manual 69

Introduction
Application Programs (Build Tools)

Figure 1.41 HC(S)12 Simulator Startup

File ‘Wiew Run Simulator Component Command Window Help
T e - L e I R T R)

B Source
|E:\Projectsi\Model &\SourceshStatl 2.c

/% initialize the stack pointer */
INIT_SP_FROM STARTUP_DESC ([JRREERS b=, s code */ /% HLI macro defin

#if defined(HC51Z_SERIALMON)
/% for Monitor based software remap the RAM & EEPROM to adhere

2]

[Procedure
|

_Startup ()

This particular C program could be simulated through its program. You could gain an
insight as to what the Start12 . c routines are before it turns the program over to the
routines inmain.c.

Application Programs (Build Tools)

You will find the standalone application programs (Build Tools) in the \prog directory
where you installed the CodeWarrior software. For example, if you installed the
CodeWarrior software in the C: \Program Files\Freescale\ directory, all the
Build Tools are located in the C: \Program Files\Freescale\prog directory
with the exception of IDE. exe which is found in the bin subfolder of the CodeWarrior
installation folder.

The following list is an overview of the tools used for C programming:
e IDE.exe - CodeWarrior IDE

¢ chcl2.exe - HC(S)12 Compiler
¢ ahcl2.exe - HC(S)12 Assembler
¢ libmaker.exe - Librarian Tool to build libraries

e linker.exe - Link Tool to build applications (absolute files). The Linker is also
referred to as the Smart Linker.

* decoder. exe - Decoder Tool to generate assembly listings. This is another name
for a Disassembler.

70

HC(S)12 Compiler Manual

Introduction
Startup Command-Line Options

* maker.exe - Make Tool to rebuild automatically
e burner.exe - Batch and interactive Burner (S-Record Files, ...)
* hiwave.exe - Multi-Purpose Simulation or Debugging Environment

* piper.exe - Utility to redirect messages to stdout

NOTE Depending on your license configuration, not all programs listed above may be
installed or there might be additional programs.

Startup Command-Line Options

There are some special tool options. These tools are specified at tool startup (while
launching the tool). They cannot be specified interactively:

* -Prod: Specify Project File at Startup specifies the current project directory or file
(Listing 1.3).

Listing 1.3 An example of a startup command-line option

linker.exe -Prod=C:\Freescale\demo\myproject.pjt

There are other options that launch a build tool and open its special dialog boxes. Those
dialog boxes are available in the compiler, assembler, burner, maker, linker, decoder, or
libmaker:

* ShowOptionDialog

This startup option (see Listing 1.4) opens the tool’s option dialog box.
* ShowMessageDialog

This startup option opens the tool message dialog box.
¢ ShowConfigurationDialog

This opens the File > Configuration dialog box.
¢ ShowBurnerDialog

This option is for the Burner only and opens the Burner dialog box.
¢ ShowSmartSliderDialog

This option is for the compiler only and opens the smart slider dialog box.
¢ ShowAboutDialog

This option opens the tool about box.

The above options open a modal dialog box where you can specify tool settings. If you
press the OK button of the dialog box, the settings are stored in the current project settings
file.

HC(S)12 Compiler Manual 71

Introduction
Highlights

Listing 1.4 An example of storing options in the current project settings file

C:\Freescale\prog\linker.exe -ShowOptionDialog
-Prod=C:\demos\myproject.pjt

Highlights

* Powerful User Interface

¢ Online Help

» Flexible Type Management

* Flexible Message Management

* 32-bit Application

* Support for Encrypted Files

* High-Performance Optimizations
* Conforms to ANSI/ISO 9899-1990

CodeWarrior Integration

All required plug-ins are installed together with the CodeWarrior IDE. The CodeWarrior
IDE is installed in the *bin " directory (usually C: \CodeWarrior\bin). The plug-ins
are installed in the *bin\plugins’ directory.

Combined or Separated Installations

The installation script enables you to install several CPUs in one single installation path.
This saves disk space and enables switching from one processor family to another without
leaving the IDE.

NOTE In addition, it is possible to have separate installations on one machine. There
is only one point to consider: The IDE uses COM files, and for COM the IDE
installation path is written into the Windows Registry. This registration is done
in the installation setup. However, if there is a problem with the COM
registration using several installations on one machine, the COM registration is
done by starting a small batch file located in the ‘bin’ (usually the
C:\CodeWarrior\bin) directory. To do this, start the
regservers.bat batch file.

72 HC(S)12 Compiler Manual

Introduction
CodeWarrior Integration

Target Settings preference panel

The linker builds an absolute (* . abs) file. Before working with a project, set up the
linker for the selected CPU in the Target Settings Preference Panel (Figure 1.42).

Figure 1.42 Target Settings preference panel

mulator Settings

H Target Settings Panel: |E Target Settings
= Target -

Target Marme: |Simulat0r

- Access Paths Linker o
- Build Extras inker: |Linker for HC12

- Runtime Settings Pre-linker: |N0ne
- File Mappings
- Source Trees
- OSEK Sysgen Output Directany:

- Azzembler for HC12 Choose...

- Bumer for HC12 {Projectihin
- Compiler for HC12 Clear
- |mporter for HC12
- Linker for HC12
- Simulink[r] —
=+ Editar
L Custom Fepwords
=+ Drebugger
i Other Executables v|

LedLeflel

Paostlinker: |N one

™ Save project entries using relative paths

Factary Settings Irnport Parel... | Export Panel... |

oK | Cancel | |

Depending on the CPU targets installed, you can choose from various linkers available in
the linker drop box.

You can also select a libmaker. When a libmaker is set up, the build target is a library
(*.11ib) file. Furthermore, you may decide to rename the project’s target by entering its
name in the Target Name: text box.

Build Extras preference panel

Use the Build Extras Preference Panel (Figure 1.43) to get the compiler to generate
browser information.

HC(S)12 Compiler Manual 73

Introduction
CodeWarrior Integration

Figure 1.43 Build Extras preference panel

Simulator Settings

/ Target Settings Panels |E Build Extras

—+ Target =
- Target Settings
- Acoess Paths
SEuild E
- Runtime Settings
- File Mappings
- Source Trees
- JSEK Syzgen
- Aggembler for HCT2
- Bumer for HC12
- Compiler for HC12
- |mparter for HC12
- Linker for HC12
- Simulink[r] —

= Editor

e Cusztom Keywaords
- Debugger

- Other Executables |

Extras

Application:

Arguments:

Initial directory:

¥ Use modification date caching

Generate Browser Data From: |Compiler

™ Dump internal browse information after compile

Thiz zetting iz uzed by compiler developers to debug generated browser data.

[Usze Euternal Debugger

¥ Cache Subprojects

|

Browse...

|{Eompiler}prog\hiwave.e:-ce

|-Pr0d=°/=pr0iectFiIeDil\Simulatol.ini -instance=zim

Browse...

|{Pr0iect}

Factomny Settings |

Import Panel... | Export Panel... |

oKk | Cancel | |

Enable the ‘Use External Debugger’ check box to use the external simulator or debugger.
Define the path to the debugger, which is either absolute (for example,
‘C:\Freescale\prog\hiwave.exe’), or installation-relative (for example,

‘{Compiler}prog\hiwave.exe’).

Additional command-line arguments passed to the debugger are specified in the
Arguments box. In addition to the normal arguments (refer to your simulator or debugger
documentation), the following *% macros’ can also be specified:

* %sourceFilePath

* %sourceFileDir

* %sourceFileName

* %sourceLineNumber
* %sourceSelection
e ¥sourceSelUpdate
e ¥projectFilePath
s ¥projectFileDir

* ¥projectFileName

s ¥projectSelectedFiles

74

HC(S)12 Compiler Manual

Introduction
CodeWarrior Integration

* YtargetFilePath

* ¥targetFileDir

s YtargetFileName

¢ $currentTargetName
¢ ¥symFilePath

e $symFileDi

¢ ¥symFileName

Assembler for HC12 preference panel

The Assembler for HC12 preference panel (Figure 1.44) contains the following:

e Command Line Arguments: Command-line options are displayed. You can add,
delete, or modify the options by hand, or by using the Messages and Options buttons
below.

— Messages: Button to open the Messages dialog box
— Options: Button to open the Options dialog box

* Display generated commandlines in message window: The plug-in filters the
messages produced, so that only Warning, Information, or Error messages are
displayed in the ‘Errors & Warnings” window. With this check box set, the complete
command line is passed to the tool.

e Use Decoder to generate Disassembly Listing: The built-in listing file generator is
used to produce the disassembly listing. If this check box is set, the external decoder
is enabled.

e About: Provides status and version information.

* Help: Opens the help file.

HC(S)12 Compiler Manual 75

Introduction
CodeWarrior Integration

Figure 1.44 Assembler for HC12 preference panel

i@ Simulator Settings

|E Target Settings Panels |E Asszembler for HC12
= Target =
- Target Settings

Command Line Arguments:

- heeess Paths | CpuHESTZ Mg

- Build Extraz i

- Runtime Settings tessages Options

- File Mappings

- Source Trees [Display generated commandlines in message window
- O5EK Syzgen

= nbler far HC12 [™ Usze Decoder ta generate Dizassembly Listing
- Bumer for HC12
- Compiler for HC12
- |mparter for HC12
- Linker for HC12
- Sirnulink[r] -
= Editar
o Custom Kepwords
= Debugger About | Help |
+ Other Executables v|

Factary Settings| | Irpart Parel... | Export Panel... |

oK | Cancel | |

Burner preference panel

The Burner Plug-In Function: The * .bb1 (batch burner language) files are mapped to the
Burner Plug-In in the File Mappings Preference Panel. Whenever a * . bb1 file is in the
project file, the * . bb1 file is processed during the post-link phase using the settings in the
Burner Preference Panel (Figure 1.45).

76 HC(S)12 Compiler Manual

Introduction
CodeWarrior Integration

Figure 1.45 Burner for HC12 preference panel

i@ Simulator Settings
|E Target Settings Panels IE Burner for HC12

= Target =
- Target Settings
- Access Paths |
- Build Extras
- Runtime Settings
- File Mappingz
- Source Trees [™ Display generated commandlines in message window
- O5EK Syzgen
- Agsembler for HC12
o £ e for HC12
- Caompiler for HC12
- |mparter for HC12
- Linker for HC12
- Sirnulink[r] =
= Editar
o Custom Kepwords
= Debugger About | Help |
- Other Executables v|

Command Line Arguments:

Mezzages Options Burner

| | Irnpart Panel... | Expart Parnel... |

oK | Cancel | |

The Burner for HC12 preference panel contains the following:

e Command Line Arguments: The actual command line options are displayed. You can
add, delete, or modify the options manually, or use the Messages, Options, and
Burner buttons listed below.

— Messages: Opens the Messages dialog box
— Options: Opens the Options dialog box
— Burner: Opens the Burner dialog box

* Display generated commandlines in message window: The plug-in
filters the messages produced, so that only Warning, Information, or Error messages
are displayed in the ‘Errors & Warnings’ window. With this check box set, the
complete command line is passed to the tool.

¢ About: Provides status and version information.

* Help: Opens the help file.

HC(S)12 Compiler Manual 77

Introduction
CodeWarrior Integration

Compiler for HC12 preference panel

The plug-in Compiler Preference Panel (Figure 1.46) contains the following:

e Command Line Arguments: Command line options are displayed. You can add,
delete, or modify the options manually, or use the Messages, Options, Type Sizes,
and Smart Sliders buttons listed below.

— Messages: Opens the Messages dialog box
— Options: Opens the Options dialog box
— Type Sizes: Opens the Standard Type Size dialog box

Smart Sliders: Opens the Smart Slider dialog box

* Display generated commandlines in message window: The plug-in filters the
messages produced, so that only Warning, Information, or Error messages are
displayed in the ‘Errors & Warnings’ window. With this check box set, the complete
command line is passed to the tool.

* Use Decoder to generate Disassembly Listing: Checking this check box enables the
external decoder to generate a disassembly listing.

e About: Provides status and version information.

* Help: Opens the help file.

Figure 1.46 Compiler for HC12 preference panel

i@ Simulator Settings
|E Target Settings Panels |E Campiler for HC12

= Target =
- Target Sethings
. hroess Paths | CpuHCS12 -D__NO_FLOAT__ -Ms
- Build Extras
- Runtime Settings
- File Mappingz
- Source Trees [Display generated commandlines in message window
- OSEK Syzgen
- Mzzembler for HC12 [Use Decoder to generate Disassembly Listing
- Bumer for HC12
o Cornpiler for HCT2
- |mparter for HC12
- Lirker for HCU2
- Siraulink[r] =
= Editar
Lo Cuztom Kepwords
= _Debugge[About | Help |
+ Other Executables v|

Command Line Arguments:

Meszages O ptionz Type Sizez Smart Sliders

Factary Settings| | Irnpaort Panel... | Export Panel... |

oK | Cancel | |

78 HC(S)12 Compiler Manual

Introduction
CodeWarrior Integration

Importer for HC12 preference panel

The plug-in Importer Preference Panel (Figure 1.47) contains the following controls:

o Command-line Arguments: Command-line options are displayed. You can add,
delete, or modify the options manually, or use the Messages or Options buttons listed
below.

— Messages: Opens the Messages dialog box
— Options: Opens the Options dialog box

* Display generated commandlines in message window: The plug-in filters the
messages produced so that only Warning, Information, or Error messages are
displayed in the ‘Errors & Warnings’ window. With this check box set, the complete
command line is passed to the tool.

e About: Provides status and version information.

* Help: Opens the help file.

Figure 1.47 Importer preference panel

i @ Simulator Settings
|E Target Settings Panels |E Irparter for HC12

= Target = Command Line Arguments:

- Target Settings
- fccess Paths |
- Build Extras
- Runtime Settings
- File Mappings
-~ Source Trees [Display generated commandlines in message window
- OSEK Syzgen
- fgzembler for HC12
- Burner far HC12
- Compiler for HC12
o | rmporter for HC12
- Linker for HG12
- Sirnulink[r] —
=+ Editar
L Cuizhom Kepwionds
= Debugger About | Help |
> Other Executables -

Meszzages Optionz

| | Impart Panel... | Export Panel... |

ak | Cancel | |

HC(S)12 Compiler Manual 79

Introduction

CodeWarrior Integration

Linker for HC12 preference panel

This preference panel (Figure 1.48) displays in the Target Settings Panel if the Linker is
selected. The plug-in preference panel contains the following controls:

Command-line Arguments: Command-line options are displayed. You can add,
delete, or modify the options manually, or use the Messages or Options buttons listed
below.

— Messages: Opens the Messages dialog box
— Options: Opens the Options dialog box

Preprocess PRM file: When checked, the preprocessor of the ANSI-C compiler is
used to preprocess the PRM file prior to the linking step. In the PRM file, all ANSI-C
preprocessor conditions like conditional inclusion (#if) are available. The same
preprocessor macros as in ANSI-C code can be used (e.g., #ifdef _ SMALL__).

Display generated commandlines in message window: The plug-in filters the
messages produced, so that only Warning, Information, or Error messages are
displayed in the ‘Errors & Warnings’ window. With this check box set, the complete
command line is passed to the tool.

Use Custom PRM file: Specifies a custom linker parameter file in the edit box. Use
the browse button (...) to browse for a file.

Use Template PRM file: With this radio control set, you can select one of the pre-
made PRM files located in the templates directory (usually
C:\Freescale\templates\<target>\prm). By employing the ‘Copy
Template’ button, the user can copy a template PRM file into the project to maintain
a local copy.

Application Filename: The output filename is specified.
About: Provides status and version information.

Help: Button to open the tool help file directly.

80

HC(S)12 Compiler Manual

Introduction
CodeWarrior Integration

Figure 1.48 Linker preference panel

Simulator Settings

|E Target Settings Panels

[B Linker for HC12

=+ Target

- Target Settings
- Access Paths
- Build Extraz
- Runtime Settings
- File M appings
- Source Trees
- [O5EK Sysgen
- Azzembler for HC12
- Burner for HC12
- Compiler for HC12
- |mporter for HC12
ik for HC
- Simulink[r]
=+ Editar

L Custom Keywords
—+ Debugger

= Other Executables

| »

- |

Command Line Arguments:

Messages

Options | ™ Preprocess PRM fils

™ Display gererated commandlines in message window

=]
-

(" Use Custom PRM fle |

" Usze Template PRM fil |m.3931 2cE4.prm

+ Use PRM file from project

™ Abzolute, Single-File Azsembly project

Application Filenare:

|

|S imulatar. abs

About | Help |

Factary Settings| | Irnport Parel... | Export Panel... |

ok | Cancel | |

Simulink preference panel

The plug-in Importer Preference Panel (Figure 1.47) contains the following controls:

e Group Name

¢ File Name: Filename of the listing file.

e Filter: List of file extensions. Use

“l”

for separators.

* System Generator: Specify the command line of the source-generation tool.

HC(S)12 Compiler Manual

81

Introduction

CodeWarrior Integration

Figure 1.49 Simulink preference panel

i@ Simulator Settings

|E Target Settings Panels
- Target =
- Target Settings

- Acoess Paths

B Simuiinkin]

Group Mame: |Sources:8imulink

’ . File Marne: |{|nputFi|E} M ame of file that contains the list of fles
- Build Extras
- Runtime Settings [Filker; | List of file extensions (zeparatar]
+ File Mappings [System Generator
- Source Trees
. DSEK Sysgen Specify the command line for the sounce generation tool along with all the required

- Agzembler for HC12 parameters below:

- Bumner for HC12 |
- Compiler far HC12
- |mporter for HC12
Linker for HC12

Macros that can be uzed in the fields above:

{lmputFile} Active file in the praject with extenzion: mpf
ol - {lnputMarme} Active file in the project [withaut extenzion)
—- Editar {Campilery Path where the Codehwamior IDE is ingtalled
L Custam K d {Project} Path ta the project
- DebuugSgDeT BpWOIEE {5 pstem} Path to the aperating system [Windaws)

b Other Executables Simulink(r) is a registered trademark of The Mathworks

Impaort Panel... | Export Panel... |

0K | Cancel | Apply |

CodeWarrior Tips and Tricks

If the Simulator or Debugger cannot be launched, check the settings in the Build Extras
Preference Panel.

If the data folder of the project is deleted, then some project-related settings may also have
been deleted.

If a file cannot be added to the project, its file extension may be absent from the File
Mappings Preference Panel. Adding this file’s extension to the listing in the File
Mappings Preference Panel should correct this.

If it is suspected that project data is corrupted, export and re-import the project using
File -> Export Project and File -> Import Project.

HC(S)12 Compiler Manual

Introduction
Integration into Microsoft Visual Studio (Visual C++ V5.0 or later)

Figure 1.50 Compiler Log Display

Top: c:3ZTest \b_prm e

co\ Test \b_prm: INFORMATION L4003: Linking c:\Testi\b._prm
INFORMATION Lz01lZ: Beading directories of:

Sabintboo

ERROR LZ064: Required system object _main not found
ERROR LZ104: Linking failed.

Tool returned code: 1 -
A
4 =T Build % Debug s Findin Files 1 % Findin Files 2 3, HWARC Linkar el 3

Integration into Microsoft Visual Studio
(Visual C++ V5.0 or later)

Use the procedure in Listing 1.5 to integrate the Tools into the Microsoft Visual Studio
(Visual C++).

Listing 1.5 Integration as Additional Tools

(1) Start Visual Studio.
(2) Select the menu Tools->Customize.
(3) Select the Tools Tab.

(4) Add a new tool using the New button, or by double-clicking
on the last empty entry in the Menu contents list.

(5) Type in the name of the tool to display in the menu (for example, Linker).

(6) In the Command field, type in the name and path of the piper tool (for example,
‘C:\Freescale\prog\piper.exe’.

(7) In the Arguments field, type in the name of the tool to be started with any command line options
(for example, -N) and the $(FilePath) Visual variable

(for example, ‘C: \Freescale\prog\linker.exe -N $(FilePath)’).

(8) Check Use Output Window.

(9) Uncheck Prompt for arguments.

Proceed as above for all other tools (for example, compiler, decoder).
Close the ‘Customize’ dialog box (Figure 1.51).

HC(S)12 Compiler Manual 83

Introduction
Integration into Microsoft Visual Studio (Visual C++ V5.0 or later)

Figure 1.51 Customize dialog box
Customize E

Commands I Toolbar: Tools | K.eyboard | Add-inz ahd Macro Files |

Menu contents: MW e

Eror Loo&kup
OLE/COM Object &Wiewer
© HIWARE Linker

=l
LCammand: Ic:\hiware\prug\piper.e:-:e J
Argurnents: Ic::\hiware\pmg\linker.exe FIFilePath) j

Initial directony: I ﬂ

¥ Use Output'indow [Prompt for aiguments [Sloee window on exting

Cloge

This allows the active file to be compiled or linked in the Visual Editor

(*$ (FilePath)). Tool messages are reported in a separate Visual output window
(Figure 1.52). Double click on the output entries to jump to the right message position
(message feedback).

Figure 1.52

Top: c:Z\Testhb.prm -

cohTest \b.prm: INFORMATION L4003: Linking c:%WwTesti\b_prm
INFORMATION Lz0OlZ: Beading directories of:

binnb.o

ERROR LEOS4: Pecuired system object main not found
ERROR LZ104: Linking failed.

Tool returned code: 1 -
A =
A J|LE % _Build % Debug % Findin Filez 1 % Find in Filez 2 % HWARE Linkar k| 3

Use the procedure in Listing 1.6 to integrate the Toolbar in Microsoft Visual Studio
(Visual C++).

84 HC(S)12 Compiler Manual

Introduction
Object-File Formats

Listing 1.6 Integration with Visual Studio Toolbar

(1) Start Visual Studio.
Make sure that all tools are integrated as Additional Tools.

(3) Select the menu Tools -> Customize.
(4) Select the Toolbars Tab.

(5) Select New and enter a name (for example, CodeWarrior Build Tools). A new empty toolbar
named CodeWarrior Build Tools appears on your screen.

(6) Select the Commands Tab.

(7) In the Category drop down box, select Tools.

On the right side many ‘hammer’ tool images appear, each with a number. The number corresponds to
the entry in the Tool menu. Usually the first user-defined tool is tool number 7. (The Linker was set up in
Additional Tools above.)

(8) Drag the selected tool image to the CodeWarrior Build Tools toolbar.

All default tool images look the same, making it difficult to know which tool has been launched. You
should associate a name with them.

(a) Right-click on a tool in the CodeWarrior Build Tools to open the context menu of the button.

(b) Select Button Appearance... in the context menu.

(c) Select Image and Text.

(d) Enter the tool name to associate with the image in Button text: (for example, Linker).

(9) Repeat the above for all the desired tools to appear in the toolbar.

(10) Close the Customize dialog box after all the Build Tools are entered into the Toolbar.

This enables the tools to be started from the toolbar.
The Compiler provides the following language settings:

¢ ANSI-C: The compiler can behave as an ANSI-C compiler. It is possible to force the
compiler into a strict ANSI-C compliant mode.

* language extensions that are specially designed for more efficient embedded systems
programming.

Object-File Formats

The Compiler supports two different object-file formats: ELF/DWARF and the vendor-
specific HIWARE object-file format. The object-file format specifies the format of the
object files (* . o extension), the library files (* . 1ib extension), and the absolute files
(* . abs extension).

HC(S)12 Compiler Manual 85

Introduction
Object-File Formats

NOTE Be careful and do not mix object-file formats. Both the HIWARE and the ELF/
DWARF object files use the same filename extensions.

HIWARE Obiject-File Format

The HIWARE Object-File Format is a vendor-specific object-file format defined by
HIWARE AG. This object-file format is very compact. The object file sizes are smaller
than the ELF/DWAREF object files. This smaller size enables faster file operations on the
object files. The object-file format is also easy to support by other tool vendors. The
object-file format supports ANSI-C and Modula-2.

Each other tool vendor must support this object-file format explicitly. Note that there is
also a lack of extensibility, amount of debug information, and C++ support. For example,
using the full flexibility of the Compiler Type Management is not supported in the
HIWARE Object-file Format.

Using the HIWARE object-file format may also result in slower source or debug info
loading. In the HIWARE object-file format, the source position information is provided as
position information (offset in file), and not directly in a file, line, or column format. The
debugger must translate this HTIWARE object-file source information format into a file,
line, or column format. This has the tendency to slow down the source file or debugging
info loading process.

ELF/DWARF Object-File Format

The ELF/DWAREF object-file format originally comes from the UNIX world. This format
is very flexible and is able to support extensions.

Many chip vendors define this object-file format as the standard for tool vendors
supporting their devices. This standard allows inter-tool operability making it possible to
use the compiler from one tool vendor, and the linker from another. The developer has the
choice to select the best tool in the tool chain. In addition, other third parties (for example,
emulator vendors) only have to support this object file to support a wide range of tool
vendors.

Object-file sizes are large compared with the HIWARE object-file format.

NOTE ANSI-C and Modula-2 are supported in this object-file format.

Tools

The CodeWarrior Development Studio contains the following Tools, among others:

Compiler

The same Compiler executable supports both object-file formats. Use the -F (-Fh, -F1,
-Flo, -F2, -F20,-F6, or -F7): Object-File Format compiler option to switch the object-file
format.

86

HC(S)12 Compiler Manual

Introduction
Object-File Formats

Note that not all Compiler backends support both ELF/DWARF and the HIWARE
Object-File formats. Some only support one of the two.
Decoder

Use the same executable ‘decoder . exe’ for both the HIWARE and the ELF/DWARF
object-file formats.

Linker

Use the same executable ‘' 1inker.exe’ for both the HTWARE and the ELF/DWARF
object-file formats.

Simulator or Debugger

The Simulator or Debugger supports both object-file formats.

Mixing Object-File Formats

Mixing HIWARE and ELF object files is not possible. Mixing ELF object files with
DWAREF 1.1 and DWAREF 2.0 debug information is possible. However, the final generated
application does not contain any debug data.

HC(S)12 Compiler Manual 87

Introduction
Object-File Formats

88 HC(S)12 Compiler Manual

Graphical User Interface

The Graphical User Interface (GUI) tool provides both a simple and a powerful user
interface:

Graphical User Interface
Command-Line User Interface
Online Help

Error Feedback

Easy integration into other tools (for example, CodeWarrior, CodeWright, MS
Visual Studio, WinEdit, ...)

This chapter describes the user interface and provides useful hints. Its major elements are:

“Launching the Compiler” on page 89

“Tip of the Day” on page 91

“Main Window” on page 92

“Window Title” on page 92

“Content Area” on page 92

“Toolbar” on page 93

“Status Bar” on page 94

“Menu Bar” on page 94

“Standard Types dialog box” on page 109
“Option Settings dialog box™ on page 110
“Compiler Smart Control dialog box™ on page 112
“Message Settings dialog box” on page 113
“About ... dialog box™ on page 116
“Specifying the Input File” on page 117

Launching the Compiler

Start the compiler using:

The Windows Explorer

HC(S)12 Compiler Manual 89

Graphical User Interface
Launching the Compiler

* An Icon on the desktop
* An Icon in a program group

¢ Batch and command files

Other tools (Editor, Visual Studio, etc.)

Interactive Mode

If the compiler is started with no input (that means no options and no input files), then the
graphical user interface (GUI) is active (interactive mode). This is usually the case if the
compiler is started using the Explorer or using an Icon.

Batch Mode

If the compiler is started with arguments (options and/or input files), then it is started in
batch mode (Listing 2.1).

Listing 2.1 Specify the line associated with an icon on the desktop.

C:\Freescale\prog\chcl2.exe -F2 a.c d.c

In batch mode, the compiler does not open a window. It is displayed in the taskbar only for
the time it processes the input and terminates afterwards (Listing 2.2).

Listing 2.2 Commands are entered to run as shown below.

C:\> C:\Program Files\Freescale\CW for HC12 V4.5\prog\chcl2.exe -F2
a.c d.c

Message output (stdout) of the compiler is redirected using the normal redirection
operators (for example, * >’ to write the message output to a file), as shown in Listing 2.3:

Listing 2.3 Command-line message output is redirected to a file.

C:\> C:\Program Files\Freescale\CW for HC12 V4.5\prog\chcl2.exe -F2
a.c d.c > myoutput.o

The command line process returns after starting the compiling process. It does not wait
until the started process has terminated. To start a process and wait for termination (for
example, for synchronization), use the ‘start’ command under Windows NT/95/98/
Me/2000/XP, or use the * /wait’ options (see windows help *help start’). Using
‘start /wait’ (Listing 2.4) you can write perfect batch files (for example, to process your
files).

90 HC(S)12 Compiler Manual

Graphical User Interface
Tip of the Day

Listing 2.4 Start a compilation process and wait for termination.

C:\> start /wait C:\Freescale\prog\chcl2.exe -F2 a.c d.c

Tip of the Day

When the application is started, a standard Tip of the Day (Figure 2.1) window is opened
containing the last news and tips.

The Next Tip button displays the next tip about the application.

If it is not desired for the Tip of the Day window to open automatically when the
application is started, uncheck the check box Show Tips on StartUp.

NOTE This configuration entry is stored in the local project file.

To enable automatic display from the standard 7ip of the Day window when the
application is started, select the entry Help | Tip of the Day.... The Tip of the Day window
opens. Check the box Show Tips on StartUp.

Click Close to close the Tip of the Day window.

Figure 2.1 Tip of the Day Dialog

Tip of the Day E

@ Did ywou know...

Welcome to the Metrowerks world of embedded systems
toolz. We've got a lot of great tips for getting the most
out of aur taolz, so0 leave Tip of the Day turned on far a
while, 1f pou turm Tip of the Day off, it iz available from
the Help manu.

¥ Show Tips an Startlp Mest Tip I Close

HC(S)12 Compiler Manual 91

Graphical User Interface
Main Window

Main Window

This Main Window (Figure 2.2) is only visible on the screen when a filename is not
specified while starting the application. The application window provides a window title, a
menu bar, a toolbar, a content area, and a status bar.

Figure 2.2 Main Window
Compiler C:\demo\project_pijt = H=] 3
File Compiler iew Help

NEH 28R EEE

Command Line: 'democ.c '
Civdemol deno. ¢
Object file: C:vdemo\demo.o

RN TR =

= in "Civdemohdemo.c™, line 6, col 6, pos 41
Efl):
A
TWARNING Cl501: Implicit parameter-declaration
Code Size: 6

Proceszing ok 14:45:00 2

Window Title

The window title displays the application name and the project name. If there is no project
currently loaded, “Default Configuration” is displayed. An asterisk (*) after the
configuration name is present if any value has changed but has not yet been saved.

NOTE Changes to options, the Editor Configuration, and the application appearance
can make the “* " appear.

Content Area

The content area is used as a text container, where logging information about the process
session is displayed. This logging information consists of:

¢ The name of the file being processed

¢ The whole names (including full path specifications) of the files processed (main C
file and all files included)

* An error, warning, and information message list

92 HC(S)12 Compiler Manual

Graphical User Interface
Toolbar

* The size of the code generated during the process session

When a file is dropped into the application window content area, the corresponding file is
either loaded as configuration data, or processed. It is loaded as configuration data if the
file has the “* . ini” extension. If the file does not contain this extension, the file is
processed with the current option settings.

All text in the application window content area can contain context information. The
context information consists of two items:

* A filename including a position inside of a file
* A message number

File context information is available for all output where a text file is considered. It is also
available for all source and include files, and for messages which do concern a specific
file. If a file context is available, double-clicking on the text or message opens this file in
an editor, as specified in the Editor Configuration. The right mouse button can also be
used to open a context menu. The context menu contains an “Open ...” entry if a file
context is available. If a file cannot be opened although a context menu entry is present,
refer to Global Initialization File (mcutools.ini).

The message number is available for any message output. There are three ways to open the
corresponding entry in the help file.

¢ Select one line of the message and press F1.

If the selected line does not have a message number, the main help is displayed.
* Press Shift-F1 and then click on the message text.

If the point clicked at does not have a message number, the main help is displayed.
* Click with the right mouse at the message text and select “Help on ...".

This entry is available only if a message number is available (Figure 2.3).

Figure 2.3 Online Help Dialog

while (TRUE]
A

INFORMATION C4000: C

Iain Help
Code 5ize: 142

Help on "C4000; Condition abways iz TRUE"
Open file “fibo.c"

Top: fiho.c
LCopy "INFORMATION C4000; Condition always is TRUE"

Toolbar

The three buttons on the left in the Toolbar (Figure 2.4) are linked with the corresponding
entries of the File menu. The next button opens the About... dialog box. After pressing the
context help button (or the shortcut Shift F1), the mouse cursor changes its form and

HC(S)12 Compiler Manual 93

Graphical User Interface
Status Bar

displays a question mark beside the arrow. The help file is called for the next item which is
clicked. It is clicked on menus, toolbar buttons, and on the window area to get help
specific for the selected topic.

Figure 2.4 Toolbar
0= = | T N2 | demo.c

& s FmE R E

The command line history contains a list of the commands executed. Once a command is
selected or entered in history, clicking Compile starts the execution of the command. Use
the F2 keyboard shortcut key to jump directly to the command line. In addition, there is a
context menu associated with the command line (Figure 2.5):

The Stop button stops the current process session.

The next four buttons open the option setting, the smart slider, type setting, and the
message setting dialog box.

The last button clears the content area (Output Window).
Figure 2.5 Command line Context Menu
rida j‘

ik

Copp
Easte

Delete

Select Al

Status Bar

When pointing to a button in the toolbar or a menu entry, the message area displays the
function of the button or menu entry being pointed to.

Figure 2.6 Status Bar
]
Proceszing ok 14:48:00 Al

Menu Bar

Table 2.1 lists and describes the menus available in the menu bar (Figure 2.7):

94 HC(S)12 Compiler Manual

Graphical User Interface
Menu Bar

Table 2.1 Menus in the Menu Bar

Menu Entry Description

File Contains entries to manage application configuration files.

Compiler Contains entries to set the application options.

View Contains entries to customize the application window
output.

Help A standard Windows Help menu.

Figure 2.7 Menu Bar

File Compiler “iew Help

File Menu

Save or load configuration files from the File Menu (Figure 2.8). A configuration file
contains the following information:

The application option settings specified in the application dialog boxes

The Message Settings that specify which messages to display and which messages to
treat as error messages

The list of the last command line executed and the current command line being
executed

The window position

The Tips of the Day settings, including if enabled at startup and which is the current
entry

HC(S)12 Compiler Manual 95

Graphical User Interface

Menu Bar

Figure 2.8 File Menu

LCompile

Hew / Default Configuration Chil+M
Load Configuration
Save Configuration
Sawve Configuration As. ..

Configuration ...

Crrl+01
Chl+5

1 project.ini

E mit

Configuration files are text files which use the standard extension * . ini. A developer
can define as many configuration files as required for a project. The developer can also
switch between the different configuration files using the File > Load Configuration and
File > Save Configuration menu entries or the corresponding toolbar buttons.

Table 2.2 describes all the commands that are available from the File Menu:

Table 2.2 File Menu Commands

Menu entry

Description

Compile

Opens a standard Open File box. The configuration data
stored in the selected file is loaded and used by a future
session.

New / Default
Configuration

Resets the application option settings to the default
value. The application options which are activated per
default are specified in section Command Line Options in
this document

Load Configuration

Opens a standard Open File box. The configuration data
stored in the selected file is loaded and used by a future
session.

Save Configuration

Saves the current settings.

Save Configuration As...

Opens a standard Save As box. The current settings are
saved in a configuration file which has the specified
name. See Local Configuration File (usually project.ini).

Configuration...

Opens the Configuration dialog box to specify the editor
used for error feedback and which parts to save with a
configuration.

96

HC(S)12 Compiler Manual

Graphical User Interface

Menu Bar
Table 2.2 File Menu Commands (continued)
Menu entry Description
1. project.ini Recent project list. This list is accessed to open a
2. ... recently opened project again.
Exit Closes the application.

Editor Settings dialog box

The Editor Settings dialog box has a main selection entry. Depending on the main type of
editor selected, the content below changes.

These main Editor Setting entries are described on the following pages.

Global Editor configuration

The Global Editor (Figure 2.9) is shared among all tools and projects on one work station.
It is stored in the global initialization file “mcutools.ini” inthe “ [Editor]”
section. Some Modifiers are specified in the editor command line.

HC(S)12 Compiler Manual 97

Graphical User Interface
Menu Bar

Figure 2.9 Global Editor configuration
Configuration
Editor Settings | Save Configuration | Environment |
% Global Editor [Shared by all Tools and all Projects)
€ Local Editor [Shared by all Tools]
" Editor started with Command Line
" Editar Cammunication with DDE
" Codewarrior [with COM)

Editor Mame IIDF

Editor Executable Ic:'\ proghide.exe |

Editor Arguments sz 0%l %o

uze Zf for the filename, %1 for the line and %c for the column

Ok I Cancel | Help |

Local Editor configuration

The Local Editor (Figure 2.10) is shared among all tools using the same project file. When
an entry of the Global or Local configuration is stored, the behavior of the other tools
using the same entry also changes when these tools are restarted.

98 HC(S)12 Compiler Manual

Graphical User Interface
Menu Bar

Figure 2.10 Local Editor configuration

Configuration
Editor Settings | Save Eonfiguratinnl Envirnnmentl

" Global Editor [Shared by all Tools and all Projects)
¢ Local Editar [Shared by all Toals)
" Editar started with Command Line
" Editar Communication with DDE
' Code\Wamior [with COM)

E ditar M ame IIDF

Editar Executable Ic:\prng'\idf.exe |

Editar &rqurments sz -g%

5]

uge Zf for the filename, % for the line and Zc for the column

QK I Cancel | Help

Editor started with Command Line

When this editor type (Figure 2.11) is selected, a separate editor is associated with the
application for error feedback. The configured editor is not used for error feedback.

Enter the command that starts the editor.

The format of the editor command depends on the syntax. Some Modifiers are specified in
the editor command line to refer to a line number in the file. (See the Modifiers section

below.)

The format of the editor command depends upon the syntax that is used to start the editor.

HC(S)12 Compiler Manual

99

Graphical User Interface
Menu Bar

Figure 2.11 Editor Started with Command Line
Configuration
Editor Settings | Save Configuration | Enviranment |
" Global Editor [Shared by all Tools and all Projects)
" Local Editar [Shared by all Toals)
' Editor started with Command Line
" Editor Commurication with DD E
' Code\Wamior [with COM)

Command Line

b proghidf exe %I g%l %c |

uge Zf for the filename, % for the line and Zc for the column

QK I Cancel | Help

Examples:

For CodeWright V6.0 version, use (with an adapted path to the cw32 . exe file):
C:\CodeWright\cw32.exe %f -g%1

For the WinEdit 32-bit version, use (with an adapted path to the winedit.exe file):
C:\WinEdit32\WinEdit.exe %f /#:%1

Editor Started with DDE

Enter the service and topic names and the client command for the DDE connection to the
editor (Microsoft Developer Studio - Figure 2.12 or UltraEdit-32 - Figure 2.13). The
entries for Topic Name and Client Command can have modifiers for the filename, line
number, and column number as explained in “Modifiers” on page 103.

100 HC(S)12 Compiler Manual

Graphical User Interface
Menu Bar

Figure 2.12 Editor Started with DDE (Microsoft Developer Studio)
Configuration
Editor Settings | Save Configuration | Enviranment |

" Global Editor [Shared by all Tools and all Projects)
" Local Editar [Shared by all Toals)

" Editar started with Command Line

¢ ‘Editor Communication with DDE:

' Code\Wamior [with COM)

Service Mame Imsdev
Topic Mame IS-"'Stem
Client Command I[Dpen["éf]]

uge Zf for the filename, % for the line and Zc for the column

QK I Cancel Help

For Microsoft Developer Studio, use the settings in Listing 2.5.

Listing 2.5 .Microsoft Developer Studio configuration

Service Name : msdev
Topic Name : system
Client Command : [open(%f)]

UltraEdit-32 is a powerful shareware editor. It is available from www.idmcomp.com or
www.ultraedit.com, email idm@idmcomp.com. For UltraEdit, use the following settings
(Listing 2.6).

Listing 2.6 UltraEdit-32 editor settings.

Service Name : UEDIT32
Topic Name : system
Client Command : [open("$f/%1/%c")]

HC(S)12 Compiler Manual 101

www.idmcomp.com
www.idmcomp.com
www.idmcomp.com
www.ultraedit.com

Graphical User Interface
Menu Bar

NOTE The DDE application (e.g., Microsoft Developer Studio or UltraEdit) has to be
started or otherwise the DDE communication will fail.

Figure 2.13 Editor Started with DDE (UltraEdit-32)
Configuration
Editor Settings | Save Configuration | Enviranment |
" Global Editor [Shared by all Tools and all Projects)
" Local Editar [Shared by all Toals)
" Editor started with Command Line
' Editor Commurication with DD E
' Code\W amior [with COM)

Service Mame IUED|T32

Topic Mame IS-"'Stem

Client Command I[Dpen["foZIa’Xc"]]

uge Zf for the filename, % for the line and Zc for the column

QK I Cancel | Help |

CodeWarrior (with COM)

If CodeWarrior with COM (Figure 2.14) is enabled, the CodeWarrior IDE (registered as
COM server by the installation script) is used as the editor.

102 HC(S)12 Compiler Manual

Graphical User Interface
Menu Bar

Figure 2.14 CodeWarrior (with COM)
Configuration
Editor Settings | Save Configuration | Enviranment |

" Global Editor [Shared by all Tools and all Projects)
" Local Editar [Shared by all Toals)

" Editor started with Command Line

" Editor Commurication with DD E

QK I Cancel Help

Modifiers

The configuration must contain modifiers that instruct the editor which file to open and at
which line.

¢ The % £ modifier refers to the name of the file (including path) where the message
has been detected.

¢ The $1 modifier refers to the line number where the message has been detected.

¢ The $c modifier refers to the column number where the message has been detected.

NOTE The %1 modifier can only be used with an editor which is started with a line
number as a parameter. This is not the case for WinEdit version 3.1 or lower or
for the Notepad. When working with such an editor, start it with the filename
as a parameter and then select the menu entry ‘Go o’ to jump on the line where
the message has been detected. In that case the editor command looks like:
C:\WINAPPS\WINEDIT\Winedit.EXE %f
Please check the editor manual to define the command line which should be
used to start the editor.

HC(S)12 Compiler Manual 103

Graphical User Interface
Menu Bar

Save Configuration dialog box

All save options are located on the second page of the configuration dialog box.

Use the Save Configuration dialog box to configure which parts of your configuration are
stored into a project file.

This Save Configuration dialog box (Figure 2.15) offers the following options:
Figure 2.15 Save Configuration dialog box
Configuration
Editor Settings Save Configuration |Enw1:n‘nert|

ltems to Save
Save |

¥ Cptions

¥ Editor Corfiguration Save As |

¥ Sppearance (Position, Size, Font)
¥ Environment Varizbles

¥ Save on Exit

All marked items are saved. Already contained, not
changed items remain valid

oK I Cancel Help

¢ Options

The current option and message setting is saved when a configuration is written. By
disabling this option, the last saved content remains valid.

* Editor Configuration

The current editor setting is saved when a configuration is written. By disabling this
option, the last saved content remains valid.

¢ Appearance

This saves topics consisting of many parts such as the window position (only loaded
at startup time) and the command line content and history. These settings are saved
when a configuration is written.

104 HC(S)12 Compiler Manual

Graphical User Interface
Menu Bar

¢ Environment Variables

The environment variable changes done in the Environment property sheet are saved.

NOTE

By disabling selective options only some parts of a configuration file are
written. For example, when the best options are found, the save option mark is
removed. Subsequent future save commands will no longer modify the options.

* Save on Exit

The application writes the configuration on exit. No question dialog box appears to
confirm this operation. If this option is not set, the application will not write the
configuration at exit, even if options or another part of the configuration have
changed. No confirmation appears in either case when closing the application.

NOTE

NOTE

Most settings are stored in the configuration file only.
The only exceptions are:

- The recently used configuration list.

- All settings in this dialog box.

The application configurations can (and in fact are intended to) coexist in the
same file as the project configuration of UltraEdit-32. When an editor is
configured by the shell, the application reads this content out of the project file,
if present. The project configuration file of the shell is named project.ini.
This filename is also suggested (but not required) to be used by the application.

Environment Configuration Dialog Box

This Environment Configuration dialog box (Figure 2.16) is used to configure the
environment. The content of the dialog box is read from the actual project file out of the
section [Environment Variables].

The following environment variables are available (Listing 2.1):

Listing 2.7 Environment variables

General Path:
Object Path:
Text Path:
Absolute Path:
Header File Path:

GENPATH
OBJPATH
TEXTPATH
ABSPATH
LIBPATH

Various Environment Variables: other variables not mentioned above.

HC(S)12 Compiler Manual 105

Graphical User Interface
Menu Bar

Figure 2.16 Environment Configuration dialog box
Configuration

Editar Settingsl Save Configuration Enviranment |

General Path

Ohiject Path

Text Path

Abzolute Path

Header File Fath

Wariouz Environment W ariablas

I${INST:ﬂ«LLF'ﬁ?«TH}'\Iib\${EF‘U}c'\Iib |

Hdd | Changel Deletel i]e] | annl

$ANS TALLPATH MBS SICPU bbb
HFINSTALLPATHIMIBASICPU chsre

0k I Cancel Help |

The following buttons are available on this dialog box (Table 2.3):

Table 2.3 Functions of the buttons on the Environment Configuration dialog box

Button Function

Add Adds a new line or entry
Change Changes a line or entry
Delete Deletes a line or entry

Up Moves a line or entry up
Down Moves a line or entry down

The variables are written to the project file only if the Save button is pressed (or use
File->Save Configuration, or CTRL-S). In addition, the environment is specified if it is to
be written to the project in the Save Configuration dialog box.

106 HC(S)12 Compiler Manual

Graphical User Interface
Menu Bar

Compiler Menu

This menu (Figure 2.17) enables the application to be customized. Application options are
graphically set as well as defining the optimization level.

Figure 2.17 Compiler Menu

Compiler

Standard bypez
Meszages Dptions
=1) ! O e = Smart Sliders

Table 2.4 Compiler Menu options

Menu entry Description

Options... Allows you to customize the application. You can graphically set
or reset options. The next three entries are available when
Options... is selected:

Standard Types Allows you to specify the size you want to associate with each
ANSI C standard type. (See “Standard Types dialog box” on
page 109.)

Advanced Allows you to define the options which must be activated when
processing an input file. (See “Option Settings dialog box” on
page 110.).

Smart Slider Allows you to define the optimization level you want to reach
when processing the input file. (See “Compiler Smart Control
dialog box” on page 112.)

Messages Opens a dialog box, where the different error, warning, or
information messages are mapped to another message class.
(See “Message Settings dialog box” on page 113.)

Stop Compilation Immediately stops the current processing session.

View Menu

The View Menu (Figure 2.18) enables you to customize the application window. You can
define things such as displaying or hiding the status or toolbar. You can also define the
font used in the window, or clear the window. Table 2.5 lists the View Menu options.

HC(S)12 Compiler Manual 107

Graphical User Interface
Menu Bar

Figure 2.18 View Menu

v Toolbar |
v Statuzhar
Change Fon
Clear Laog
Table 2.5 View Menu options

Menu entry Description

Toolbar Switches display from the toolbar in the application window.

Status Bar Switches display from the status bar in the application window.

Log... Allows you to customize the output in the application window
content area. The following entries are available when Log... is
selected:

Change Font Opens a standard font selection box. The options selected in the
font dialog box are applied to the application window content
area.

Clear Log Allows you to clear the application window content area.

Help Menu

The Help Menu (Figure 2.19) enables you to either display or not display the Tip of the
Day dialog box application startup. In addition, it provides a standard Windows Help entry
and an entry to an About box. Table 2.6 defines the Help Menu options:

Figure 2.19 Help Menu

Help
Tip af the Day

Help Topics
About ..

108 HC(S)12 Compiler Manual

Graphical User Interface
Standard Types dialog box

Table 2.6 Help Menu Options

Menu entry

Description

Tip of the Day

Switches on or off the display of a Tip of
the Day during startup.

Help Topics

Standard Help topics.

About...

Displays an About box with some
version and license information.

Standard Types dialog box

The Standard Types dialog box (Figure 2.20) enables you to define the size you want to
associate to each ANSI-C standard type. You can also use the -T: Flexible Type
Management compiler option to configure ANSI-C standard type sizes.

NOTE Not all formats may be available for a target. In addition, there has to be at least
one type for each size. For example, it is illegal to specify all types to a size of
32 bits. There is no type for 8 bits and 16 bits available for the Compiler. Note
that if the HIWARE object-file Format is used instead of the ELF/DWARF
object-file Format, the HIWARE Format does not support a size greater than 1

for the char type.

The following rules (Listing 2.8) apply when you modify the size associated with an

ANSI-C standard type:

Listing 2.8 Size relationships for the ANSI-C standard types.

sizeof (char) <= sizeof
sizeof (short) <= sizeof
sizeof (int) <= sizeof
sizeof (long) <= sizeof
sizeof (float) <= sizeof
sizeof (double)<= sizeof

long long)

long double)

Enumerations must be smaller than or equal to ‘int’.

The signed check box enables you to specify whether the char type must be considered

as signed or unsigned for your application.

The Default button resets the size of the ANSI C standard types to their default values.
The ANSI C standard type default values depend on the target processor.

HC(S)12 Compiler Manual

109

Graphical User Interface
Option Settings dialog box

Figure 2.20 Standard Types Dialog Box

ahit 1Ebit 32hit B4bit oK.
char o e . [signed
hart . v . [Defaults |
it . v . [
g . e * [Carcel
longlong ¢ e @ o —l
EnLm & (o g ¥ signed 4|Help
plain bit field [signed

DSF IEEE32 IEEER4

flnat . v .
double . e *
lohg double e e *
lohg long double . e *

Option Settings dialog box

The Option Settings dialog box (Figure 2.21) enables you to set or reset application
options. The possible command line option is also displayed in the lower display area The
available options are arranged into different groups. A sheet is available for each of these
groups. The content of the list box depends on the selected sheet (not all groups may be
available). Table 2.7 lists the Option Settings dialog box selections.

110

HC(S)12 Compiler Manual

Graphical User Interface
Option Settings dialog box

Figure 2.21 Option Settings dialog box

Dption Settings
Host | Code Generation I Meszages I
Optimizations | Cutput I Input I Language

[Mo integral promation on characters

[0o comrmon subeRpreszion glimination
[]Dpnamic options configuration for functions (enter "optionl{option}')
[|Enable inline expanzsion of function [enter [c<n:])

[1Dizable tree optimizer

[J&llov lazy reqgizter optimizations [be carefull]

-O[tls]: Main Optimize T arget

"~ Optimize for execution time

¢ Optimize for code size

0k I Cancel Help

Table 2.7 Option Settings dialog box selections

Group

Description

Optimizations

Lists optimization options.

Output Lists options related to the output files generation (which
kind of file should be generated).

Input Lists options related to the input file.

Language Lists options related to the programming language (ANSI-C)

Target Lists options related to the target processor.

Host Lists options related to the host operating system.

Code Generation

Lists options related to code generation (memory models,
float format, ...).

Messages

Lists options controlling the generation of error messages.

Various

Lists options not related to the above options.

HC(S)12 Compiler Manual

111

Graphical User Interface
Compiler Smart Control dialog box

An application option is set when its check box is checked. To obtain a more detailed
explanation about a specific option, select the option and press the F1 key or the help
button. To select an option, click once on the option text. The option text is then displayed
color-inverted. When the dialog box is opened and no option is selected, pressing the F1
key or the help button shows the help for this dialog box.

NOTE When options requiring additional parameters are selected, you can open an
edit box or an additional sub window where the additional parameter is set. For
example for the option ‘Write statistic output to file...’, available in the Output
sheet.

Compiler Smart Control dialog box

The Compiler Smart Control Dialog Box (Figure 2.22) enables you to define the
optimization level you want to reach during compilation of the input file. Five sliders are
available to define the optimization level. See Table 2.8.

Figure 2.22 Compiler Smart Control dialog box

Compiler Smart Control E2

Code Esecution Diebug Compilation Information

Denzity Speed Complesity Time Level
high

AR [B |

A | :
I - - - - —F

O -Ont AWl w2

QK I Drefaultz Cancel Help

112 HC(S)12 Compiler Manual

Graphical User Interface
Message Settings dialog box

Table 2.8 Compiler Smart Control dialog box controls

Slider Description

Code Density Displays the code density level expected. A high value
indicates highest code efficiency (smallest code size).

Execution Speed Displays the execution speed level expected. A high value
indicates fastest execution of the code generated.

Debug Complexity Displays the debug complexity level expected. A high value
indicates complex debugging. For example, assembly code
corresponds directly to the high-level language code.

Compilation Time Displays the compilation time level expected. A higher
value indicates longer compilation time to produce the
object file, e.g., due to high optimization.

Information Level Displays the level of information messages which are
displayed during a Compiler session. A high value indicates
a verbose behavior of the Compiler. For example, it will
inform with warnings and information messages.

There is a direct link between the first four sliders in this window. When you move one
slider, the positions of the other three are updated according to the modification.

The command line is automatically updated with the options set in accordance with the
settings of the different sliders.

Message Settings dialog box

The Message Settings dialog box (Figure 2.23) enables you to map messages to a different
message class.

Some buttons in the dialog box may be disabled. (For example, if an option cannot be
moved to an Information message, the ‘Move to: Information’ button is disabled.)
Table 2.9 lists and describes the buttons available in this dialog box.

HC(S)12 Compiler Manual 113

Graphical User Interface
Message Settings dialog box

Figure 2.23 Message Settings dialog box

Disabled Information I'W'arningl Errar IFatal I

C4407: Recurzive commentz not allowed

C4800: Implicit cast in azsignement

CHA00; Incompatible pointer operation

CB702: <Variabler: declared in function <Function: b
CH00: Result iz zero

CH307: Result iz one

Al

Meszzage Settings E3 |

— Mowve ta:
Dizabled

i

| Ffarmation

' arning

CHA0NZ: Shift count is zero

il L'l
CRA07: Addition replaced with shift
CHA08: Conztant switch expression
CH303: Azzighment in condition i
|

Error

Drefault

Fezet Al

1

o]

Cancel | Help |

Table 2.9 Message Settings dialog box buttons

Button

Description

Move to: Disabled

The selected messages are disabled. The message will not
occur any longer.

Move to: Information

The selected messages are changed to information
messages.

Move to: Warning

The selected messages are changed to warning messages.

Move to: Error

The selected messages are changed to error messages.

Move to: Default

The selected messages are changed to their default message
type.

Reset All Resets all messages to their default message kind.

OK Exits this dialog box and accepts the changes made.
Cancel Exits this dialog box without accepting the changes made.
Help Displays online help about this dialog box.

114

HC(S)12 Compiler Manual

Graphical User Interface
Message Settings dialog box

A panel is available for each error message class. The content of the list box depends on
the selected panel:.Table 2.10 lists the definitions for the message groups.

Table 2.10 Message Group Definitions

Message group Description

Disabled Lists all disabled messages. That means messages displayed
in the list box will not be displayed by the application.

Information Lists all information messages. Information messages inform
about action taken by the application.

Warning Lists all warning messages. When a warning message is
generated, processing of the input file continues.

Error Lists all error messages. When an error message is
generated, processing of the input file continues.

Fatal Lists all fatal error messages. When a fatal error message is
generated, processing of the input file stops immediately.
Fatal messages cannot be changed and are only listed to call
context help.

Each message has its own prefix (e.g., ‘C” for Compiler messages, ‘A’ for Assembler
messages, ‘L for Linker messages, ‘M’ for Maker messages, ‘LM’ for Libmaker
messages) followed by a 4- or 5-digit number. This number allows an easy search for the
message both in the manual or on-line help.

Changing the Class associated with a
Message

You can configure your own mapping of messages in the different classes. For that
purpose you can use one of the buttons located on the right hand of the dialog box. Each
button refers to a message class. To change the class associated with a message, you have
to select the message in the list box and then click the button associated with the class
where you want to move the message (Listing 2.9).

Listing 2.9 Defining a warning message as an error message

(1) Click the Warning panel to display the list of all warning messages in the list box.

(2) Click on the message you want to change in the list box to select the message.

HC(S)12 Compiler Manual 115

Graphical User Interface
About ... dialog box

(3) Click Error to define this message as an error message.

NOTE Messages cannot be moved to or from the fatal error class.

NOTE The ‘Move to’ buttons are active only when messages that can be moved are
selected. When one message is marked which cannot be moved to a specific
group, the corresponding ‘Move to’ button is disabled (grayed).

If you want to validate the modification you have performed in the error message
mapping, close the 'Message Settings' dialog box using the 'OK" button. If you close it
using the 'Cancel' button, the previous message mapping remains valid.

Retrieving Information about an Error
Message

You can access information about each message displayed in the list box. Select the
message in the list box and then click Help or the FI key. An information box is opened.
The information box contains a more detailed description of the error message, as well as
a small example of code that may have generated the error message. If several messages
are selected, a help for the first is shown. When no message is selected, pressing the F1
key or the help button shows the help for this dialog box.

About ... dialog box

The About ... dialog box is opened by selecting Help->About The About box contains
information regarding your application. The current directory and the versions of subparts
of the application are also shown. The main version is displayed separately on top of the
dialog box.

Use the ‘Extended Information’ button to get license information about all software
components in the same directory as that of the executable file.

Click OK to close this dialog box.

NOTE During processing, the sub-versions of the application parts cannot be
requested. They are only displayed if the application is inactive.

116 HC(S)12 Compiler Manual

Graphical User Interface
Specifying the Input File

Specifying the Input File

There are different ways to specify the input file. During the compilation, the options are
set according to the configuration established in the different dialog boxes.

Before starting to compile a file make sure you have associated a working directory with
your editor.

Use the Command Line in the Toolbar to
Compile

The command line can be used to compile a new file and to open a file that has already
been compiled.

Compiling a new file

A new filename and additional Compiler options are entered in the command line. The
specified file is compiled as soon as the Compile button in the toolbar is selected or the
Enter key is pressed.

Compiling a file which has already been
compiled

The previously executed command is displayed using the arrow on the right side of the
command line. A command is selected by clicking on it. It appears in the command line.
The specified file is compiled as soon as the Compile button in the toolbar is clicked.

Use the Entry File -> Compile

When the menu entry File | Compile is selected, a standard open file box is displayed. Use
this to locate the file you want to compile. The selected file is compiled as soon as the
standard open file box is closed using the Open button.

Use Drag and Drop

A filename is dragged from an external application (for example the File Manager/
Explorer) and dropped into the Compiler window. The dropped file is compiled as soon as
the mouse button is released in the Compiler window. If a file being dragged has the

“* _ini” extension, it is considered to be a configuration and it is immediately loaded and
not compiled. To compile a C file with the “*.ini” extension, use one of the other
methods to compile it.

HC(S)12 Compiler Manual 117

Graphical User Interface
Specifying the Input File

Message/Error Feedback

There are several ways to check where different errors or warnings have been detected
after compilation. Listing 2.10 lists the format of the error messages and Listing 2.11 is a
typical example of an error message.

Listing 2.10 Format of an error message

>> <FileName>, line <line number>, col <column number>, pos <absolute
position in file>

<Portion of code generating the problem>

<message class><message number>: <Message string>

Listing 2.11 Example of an error message

>> in "C:\DEMO\fibo.c", 1line 30, col 10, pos 428
EnableInterrupts
WHILE (TRUE) {
(
INFORMATION C4000: Condition always TRUE

See also the -WmsgFi (-WmsgFiv, -WmsgFim): Set Message Format for Interactive Mode
and -WmsgFb (-WmsgFbi, -WmsgFbm): Set Message File Format for Batch Mode
compiler options for different message formats.

Use Information from the Compiler
Window

Once a file has been compiled, the Compiler window content area displays the list of all
the errors or warnings that were detected.

Use your usual editor to open the source file and correct the errors.

Use a User-Defined Editor

You must first configure the editor you want to use for message/error feedback in the
Configuration dialog box before you begin the compile process. Once a file has been
compiled, double-click on an error message. The selected editor is automatically activated
and points to the line containing the error.

118 HC(S)12 Compiler Manual

Environment

This Chapter describes all the environment variables. Some environment variables are
also used by other tools (e.g., Linker or Assembler). Consult the respective manual for
more information.

The major sections in this chapter are:

“Current Directory” on page 120

“Environment Macros” on page 121

“Global Initialization File (mcutools.ini)”” on page 122
“Local Configuration File (usually project.ini)” on page 122
“Paths” on page 123

“Line Continuation” on page 124

“Environment Variable Details” on page 125

Parameters are set in an environment using environment variables. There are three ways to
specify your environment:

The current project file with the [Environment Variables] section. This file may be
specified on Tool startup using the -Prod: Specify Project File at Startup option.

An optional ‘default.env’ file in the current directory. This file is supported for
backwards compatibility. The filename is specified using the ENVIRONMENT:
Environment File Specification variable. Using the default.env file is not
recommended.

Setting environment variables on system level (DOS level). This is not
recommended.

The syntax for setting an environment variable is (Listing 3.1):

Parameter: <KeyName>"="<ParamDef> (no spaces).

NOTE Normally no white space is allowed in the definition of an environment

variable.

Listing 3.1 Setting the GENPATH environment variable

GENPATH=C: \INSTALL\LIB;D: \PROJECTS\TESTS; /usr/local/lib;
/home/me/my_project

HC(S)12 Compiler Manual 119

Environment
Current Directory

Parameters may be defined in several ways:
* Using system environment variables supported by your operating system.

* Putting the definitions into the actual project file in the section named [Environment
Variables].

» Putting the definitions in a file named default.env in the default directory.

NOTE The maximum length of environment variable entries in the default.env
file is 4096 characters.

» Putting the definitions in a file given by the value of the ENVIRONMENT system
environment variable.

NOTE The default directory mentioned above is set using the DEFAULTDIR: Default
Current Directory system environment variable.

When looking for an environment variable, all programs first search the system
environment, then the default . env file, and finally the global environment file
defined by ENVIRONMENT. If no definition is found, a default value is assumed.

NOTE The environment may also be changed using the -Env: Set Environment
Variable option.

NOTE Make sure that there are no spaces at the end of any environment variable
declaration.

Current Directory

The most important environment for all tools is the current directory. The current
directory is the base search directory where the tool starts to search for files (e.g., for the
default.env file).

The current directory of a tool is determined by the operating system or by the program
which launches another one.

¢ For the UNIX operating system, the current directory of an launched executable is
also the current directory from where the binary file has been started.

* For MS Windows based operating systems, the current directory definition is defined
as follows:

— If the tool is launched using the File Manager or Explorer, the current directory is
the location of the launched executable.

120 HC(S)12 Compiler Manual

Environment
Environment Macros

— If the tool is launched using an Icon on the Desktop, the current directory is the
one specified and associated with the Icon.

— If the tool is launched by another launching tool with its own current directory
specification (e.g., an editor), the current directory is the one specified by the
launching tool (e.g., current directory definition).

* For the tools, the current directory is where the local project file is located. Changing
the current project file also changes the current directory if the other project file is in
a different directory. Note that browsing for a C file does not change the current
directory.

To overwrite this behavior, use the DEFAULTDIR: Default Current Directory
environment variable.

The current directory is displayed, with other information, using the “-V: Prints the
Compiler Version” compiler option and in the About... dialog box.

Environment Macros

You can use macros in your environment settings (Listing 3.2).

Listing 3.2 Using Macros for setting environment variables

MyVAR=C: \test
TEXTPATH=$ (MyVAR) \txt
OBJPATH=$ {MyVAR} \obj

In the example above, TEXTPATH is expanded to *C: \test\txt’ and OBJPATH is
expanded to *C:\test\obj’. Youcanuse $ () or ${}. However, the referenced
variable must be defined.

Special variables are also allowed (special variables are always surrounded by {} and
they are case-sensitive). In addition, the variable content contains the directory separator
*\ ’. The special variables are:

e {Compiler}

That is the path of the executable one directory level up if the executable is
‘C:\Freescale\prog\linker.exe’, and the variable is
‘C:\Freescale\’.

e {Project}

Path of the current project file. This is used if the current project file is
‘C:\demo\project.ini’, and the variable contains ‘C: \demo\’.

e {System}

HC(S)12 Compiler Manual 121

Environment
Global Initialization File (mcutools.ini)

This is the path where your Windows system is installed, e.g., *C: \WINNT\ ‘.

Global Initialization File (mcutools.ini)

All tools store some global data into the file mcutools.ini. The tool first searches for the
mcutools.ini file in the directory of the tool itself (path of the executable). If there is no
mcutools.ini file in this directory, the tool looks for an mcutools.ini file in the MS
Windows installation directory (e.g., C: \WINDOWS).

Listing 3.3 Typical Global Initialization File Locations

C: \WINDOWS\mcutools.ini
D:\INSTALL\prog\mcutools.ini

If a tool is started in the D: \INSTALL\prog directory, the project file that is used is
located in the same directory as the tool (D: \INSTALL\prog\mcutools.ini).

If the tool is started outside the D: \INSTALL\prog directory, the project file in the
Windows directory is used (C: \WINDOWS\mcutools. ini).

Global Configuration-File Entries documents the sections and entries you can include in
the mcutools.ini file.

Local Configuration File (usually project.ini)

All the configuration properties are stored in the configuration file. The same
configuration file is used by different applications.

The shell uses the configuration file with the name “project.ini” in the current
directory only. When the shell uses the same file as the compiler, the Editor Configuration
is written and maintained by the shell and is used by the compiler. Apart from this, the
compiler can use any filename for the project file. The configuration file has the same
format as the windows * . ini files. The compiler stores its own entries with the same
section name as those in the global mcutools.ini file. The compiler backend is encoded
into the section name, so that a different compiler backend can use the same file without
any overlapping. Different versions of the same compiler use the same entries. This plays
arole when options, only available in one version, must be stored in the configuration file.
In such situations, two files must be maintained for each different compiler version. If no
incompatible options are enabled when the file is last saved, the same file may be used for
both compiler versions.

The current directory is always the directory where the configuration file is located. If a
configuration file in a different directory is loaded, the current directory also changes.

122

HC(S)12 Compiler Manual

Environment
Paths

When the current directory changes, the entire default.env file is reloaded. When a
configuration file is loaded or stored, the options in the environment variable
COMPOPTIONS are reloaded and added to the project options. This behavior is noticed
when different default.env files exist in different directories, each containing incompatible
options in the COMPOPTTIONS variable.

When a project is loaded using the first default.env, its COMPOPTIONS are added to the
configuration file. If this configuration is stored in a different directory where a
default.env exists with incompatible options, the compiler adds options and remarks
the inconsistency. You can remove the option from the configuration file with the option
settings dialog box. You can also remove the option from the default.env with the shell or
a text editor, depending which options are used in the future.

At startup, there are two ways to load a configuration:
¢ Use the -Prod: Specify Project File at Startup command line option
e The project. ini file in the current directory.

If the -Prod option is used, the current directory is the directory the project file is in. If the
-Prod option is used with a directory, the project.ini file in this directory is loaded.

Local Configuration-File Entries documents the sections and entries you can include in a
project.ini file.

Paths

A path list is a list of directory names separated by semicolons. Path names are declared
using the following EBNF syntax (Listing 3.4).

Listing 3.4 EBNF path syntax

PathList = DirSpec {";" DirSpec}.
DirSpec = ["*"] DirectoryName.

Most environment variables contain path lists directing where to look for files
(Listing 3.5).

Listing 3.5 Environment variable path list with four possible paths.

GENPATH=C: \INSTALL\LIB; D: \PROJECTS\TESTS; /usr/local/lib;
/home/me/my_project

HC(S)12 Compiler Manual 123

Environment
Line Continuation

If a directory name is preceded by an asterisk (* * ”), the program recursively searches that
entire directory tree for a file, not just the given directory itself. The directories are
searched in the order they appear in the path list.

Listing 3.6 Setting an environment variable using recursive searching

LIBPATH=*C:\INSTALL\LIB

NOTE Some DOS environment variables (like GENPATH, LIBPATH, etc.) are used.

Line Continuation

It is possible to specify an environment variable in an environment file (default.env) over
different lines using the line continuation character ‘\’ (see Listing 3.7).

Listing 3.7 Specifying an environment variable using line continuation characters

OPTIONS=\
-w2 \
-Wpd

This is the same as:
OPTIONS=-W2 -Wpd
But this feature may not work well using it together with paths, e.g.:

GENPATH=.\
TEXTFILE=.\txt

will result in:

GENPATH=.TEXTFILE=.\txt

To avoid such problems, use a semicolon ’ ; * at the end of a path if there is a * \ ’ at the
end (Listing 3.8):

Listing 3.8 Using a semicolon to allow a multiline environment variable

GENPATH=.\;
TEXTFILE=.\txt

124 HC(S)12 Compiler Manual

Environment
Environment Variable Details

Environment Variable Details

The remainder of this chapter describes each of the possible environment variables.
Table 3.1 lists these description topics in their order of appearance for each environment
variable.

Table 3.1 Environment Variables—documentation topics

Topic Description
Tools Lists tools that use this variable.
Synonym A synonym exists for some environment variables. Those synonyms

may be used for older releases of the Compiler and will be removed
in the future. A synonym has lower precedence than the environment

variable.
Syntax Specifies the syntax of the option in an EBNF format.
Arguments Describes and lists optional and required arguments for the variable.
Default Shows the default setting for the variable or none.
Description Provides a detailed description of the option and how to use it.
Example Gives an example of usage, and the effects of the variable where

possible. The example shows an entry in the default.env for a PC.

See also Names related sections.

HC(S)12 Compiler Manual 125

Environment
Environment Variable Details

COMPOPTIONS: Default Compiler Options

Tools

Compiler

Synonym
HICOMPOPTIONS

Syntax
COMPOPTIONS={<option>}

Arguments

<option>: Compiler command-line option

Default

None

Description

If this environment variable is set, the Compiler appends its contents to its
command line each time a file is compiled. It is used to globally specify options
that should always be set. This frees you from having to specify them for every
compilation.

NOTE Itis not recommended to use this environment variable if the Compiler used is
version 5.x, because the Compiler adds the options specified in the
COMPOPTIONS variable to the options stored in the project. ini file.

Listing 3.9 Setting default values for environment variables (not recommended)

COMPOPTIONS=-W2 -Wpd

See also
Compiler Options

126 HC(S)12 Compiler Manual

Environment
Environment Variable Details

COPYRIGHT: Copyright entry in object file

Tools

Compiler, Assembler, Linker, or Librarian

Synonym

None

Syntax
COPYRIGHT=<copyright>

Arguments
<copyright>: copyright entry

Default

None

Description
Each object file contains an entry for a copyright string. This information is
retrieved from the object files using the decoder.

Example
COPYRIGHT=Copyright by Freescale

See also
environmental variables:
¢ USERNAME: User Name in Object File
¢ INCLUDETIME: Creation Time in Object File

HC(S)12 Compiler Manual 127

Environment
Environment Variable Details

DEFAULTDIR: Default Current Directory

Tools

Compiler, Assembler, Linker, Decoder, Debugger, Librarian, Maker, or Burner

Synonym

None

Syntax

DEFAULTDIR=<directory>

Arguments

<directory>: Directory to be the default current directory

Default

None

Description

Specifies the default directory for all tools. All the tools indicated above will take
the specified directory as their current directory instead of the one defined by the
operating system or launching tool (e.g., editor).

NOTE This is an environment variable on a system level (global environment
variable). It cannot be specified in a default environment file
(default.env).

Specifying the default directory for all tools in the CodeWarrior suite:
DEFAULTDIR=C: \INSTALL\PROJECT

See also
Current Directory

Global Initialization File (mcutools.ini)

128 HC(S)12 Compiler Manual

Environment
Environment Variable Details

ENVIRONMENT: Environment File Specification

Tools

Compiler, Linker, Decoder, Debugger, Librarian, Maker, or Burner

Synonym
HIENVIRONMENT

Syntax
ENVIRONMENT=<file>

Arguments

<file>: filename with path specification, without spaces

Default

None

Description

This variable is specified on a system level. The application looks in the current
directory for an environment file named default.env. Using ENVIRONMENT (e.g.,
set in the autoexec.bat (DOS) or * . cshrc (UNIX)), a different filename
may be specified.

NOTE This is an environment variable on a system level (global environment
variable). It cannot be specified in a default environment file
(default.env).

Example
ENVIRONMENT=\Freescale\prog\global.env

HC(S)12 Compiler Manual 129

Environment
Environment Variable Details

ERRORFILE: Error filename Specification

Tools

Compiler, Assembler, Linker, or Burner

Synonym

None

Syntax
ERRORFILE=<filename>

Arguments

<filename>: filename with possible format specifiers

Description
The ERRORFILE environment variable specifies the name for the error file.
Possible format specifiers are:
e '%n': Substitute with the filename, without the path.
e '$p': Substitute with the path of the source file.

e '%f': Substitute with the full filename, i.e., with the path and name (the same
as '%pIn').

* A notification box is shown in the event of an improper error filename.

Examples

ERRORFILE=MyErrors.err
Lists all errors into the MyErrors . err file in the current directory.

ERRORFILE=\tmp\errors
Lists all errors into the errors file in the \ tmp directory.

ERRORFILE=%f.err

Lists all errors into a file with the same name as the source file, but with the * . err
extension, into the same directory as the source file. If you compile a file such as
sources\test.c, an error list file, \sources\test.err, is generated.

ERRORFILE=\dirl\%n.err
For a source file such as test. c, an error list file with the name
\dirl\test.err is generated.

ERRORFILE=%p\errors.txt

130

HC(S)12 Compiler Manual

Environment
Environment Variable Details

For a source file such as \dir1\dir2\test.c, an error list file with the name
\dirl\dir2\errors. txt is generated.

If the ERRORFILE environment variable is not set, the errors are written to the
EDOUT file in the current directory.

HC(S)12 Compiler Manual 131

Environment
Environment Variable Details

GENPATH: #include “File” Path

Tools

Compiler, Linker, Decoder, Debugger, or Burner

Synonym

HIPATH

Syntax
GENPATH= {<path>}

Arguments

<path>: Paths separated by semicolons, without spaces

Default

Current directory

Description

If a header file is included with double quotes, the Compiler searches first in the
current directory, then in the directories listed by GENPATH, and finally in the
directories listed by LIBRARYPATH

NOTE If a directory specification in this environment variable starts with an asterisk
(»*), the whole directory tree is searched recursively depth first, i.e., all
subdirectories and their subdirectories and so on are searched. Search order of
the subdirectories is indeterminate within one level in the tree.

Example

GENPATH=\sources\include; ..\..\headers;\usr\local\lib

See also
LIBRARYPATH: ‘include <File>’ Path environment variable

132

HC(S)12 Compiler Manual

Environment
Environment Variable Details

INCLUDETIME: Creation Time in Object File

Tools

Compiler, Assembler, Linker, or Librarian

Synonym

None

Syntax
INCLUDETIME:(ON|OFF)

Arguments
ON: Include time information into object file

OFF: Do not include time information into object file

Default
ON

Description

Each object file contains a time stamp indicating the creation time and data as
strings. Whenever a new file is created by one of the tools, the new file gets a new
time stamp entry.

This behavior may be undesired if (for Software Quality Assurance reasons) a
binary file compare has to be performed. Even if the information in two object files
is the same, the files do not match exactly as the time stamps are not identical. To
avoid such problems, set this variable to OFF. In this case, the time stamp strings in
the object file for date and time are “none” in the object file.

The time stamp is retrieved from the object files using the decoder.

Example
INCLUDETIME=0OFF

See also
environment variables:
e COPYRIGHT: Copyright entry in object file
¢ USERNAME: User Name in Object File

HC(S)12 Compiler Manual 133

Environment
Environment Variable Details

LIBRARYPATH: ‘include <File>’ Path

Tools

Compiler, ELF tools (Burner, Linker, or Decoder)

Synonym
LIBPATH

Syntax
LIBRARYPATH={<path>}

Arguments

<path>: Paths separated by semicolons, without spaces

Default

Current directory

Description

If a header file is included with double quotes, the Compiler searches first in the
current directory, then in the directories given by GENPATH: #include “File” Path
and finally in the directories given by LIBRARYPATH.

NOTE If a directory specification in this environment variable starts with an asterisk
(“*7), the whole directory tree is searched recursively depth first, i.e., all
subdirectories and their subdirectories and so on are searched. Search order of
the subdirectories is indeterminate within one level in the tree.

Example

LIBRARYPATH=\sources\include; .\.\headers;\usr\local\lib

See also
environment variables:
¢ GENPATH: #include “File” Path
¢ USELIBPATH: Using LIBPATH Environment Variable
* Input Files

134 HC(S)12 Compiler Manual

Environment
Environment Variable Details

OBJPATH: Object File Path

Tools

Compiler, Linker, Decoder, Debugger, or Burner

Synonym

None

Syntax
OBJPATH=<path>

Default

Current directory

Arguments

<path>: Path without spaces

Description

If the Compiler generates an object file, the object file is placed into the directory
specified by OBJPATH. If this environment variable is empty or does not exist, the
object file is stored into the path where the source has been found.

If the Compiler tries to generate an object file specified in the path specified by this
environment variable but fails (e.g., because the file is locked), the Compiler will
issue an error message.

If a tool (e.g., the Linker) looks for an object file, it first checks for an object file
specified by this environment variable, then in GENPATH: #include “File” Path,
and finally in HIPATH.

Example

OBJPATH=\sources\obj

See also
Output Files

HC(S)12 Compiler Manual 135

Environment
Environment Variable Details

TEXTPATH: Text File Path

Tools

Compiler, Linker, or Decoder

Synonym

None

Syntax
TEXTPATH=<path>

Arguments

<path>: Path without spaces

Default

Current directory

Description
If the Compiler generates a textual file, the file is placed into the directory
specified by TEXTPATH. If this environment variable is empty or does not exist,
the text file is stored into the current directory.

Example

TEXTPATH=\sources\txt

See also
Output Files
compiler options:
e -Li: List of Included Files
¢ -Lm: List of Included Files in Make Format
¢ -Lo: Object File List

136 HC(S)12 Compiler Manual

Environment
Environment Variable Details

TMP: Temporary Directory

Tools

Compiler, Assembler, Linker, Debugger, or Librarian

Synonym

None

Syntax

TMP=<directory>

Arguments

<directory>: Directory to be used for temporary files

Default

None

Description

If a temporary file must be created, the ANSI function, tmpnam (), is used. This
library function stores the temporary files created in the directory specified by this
environment variable. If the variable is empty or does not exist, the current
directory is used. Check this variable if you get the error message “Cannot create
temporary file”.

NOTE This is an environment variable on a system level (global environment
variable). It cannot be specified in a default environment file
(default.env).

Example
TMP=C: \TEMP

See also

Current Directory

HC(S)12 Compiler Manual 137

Environment
Environment Variable Details

USELIBPATH: Using LIBPATH Environment Variable

Tools
Compiler, Linker, or Debugger

Synonym

None

Syntax
USELIBPATH= (OFF|ON|NO|YES)

Arguments
ON, YES: The environment variable LIBRARYPATH is used by the Compiler to
look for system header files <* . h>.
NO, OFF: The environment variable LIBRARYPATH is not used by the Compiler.
Default
ON

Description
This environment variable allows a flexible usage of the LIBRARYPATH
environment variable as the LIBRARYPATH variable might be used by other
software (e.g., version management PVCS).

Example
USELIBPATH=ON

See also
LIBRARYPATH: ‘include <File>" Path environment variable

138

HC(S)12 Compiler Manual

Environment
Environment Variable Details

USERNAME: User Name in Object File

Tools

Compiler, Assembler, Linker, or, Librarian

Synonym

None

Syntax

USERNAME=<user>

Arguments

<user>: Name of user

Default

None

Description
Each object file contains an entry identifying the user who created the object file.
This information is retrievable from the object files using the decoder.
Example

USERNAME=The Master

See also
environment variables:
¢ COPYRIGHT: Copyright entry in object file
¢ INCLUDETIME: Creation Time in Object File

HC(S)12 Compiler Manual 139

Environment
Environment Variable Details

140 HC(S)12 Compiler Manual

Files

This chapter describes input and output files and file processing.
* “Input Files” on page 141
¢ “Output Files” on page 142

* “File Processing” on page 143

Input Files

The following input files are described:
* Source Files

¢ Include Files

Source Files

The frontend takes any file as input. It does not require the filename to have a special
extension. However, it is suggested that all your source filenames have the * . ¢ extension
and that all header files use the * .h extension. Source files are searched first in the
Current Directory and then in the GENPATH: #include “File” Path directory.

Include Files

The search for include files is governed by two environment variables: GENPATH:
#include “File” Path and LIBRARYPATH: ‘include <File>’ Path. Include files that are
included using double quotes as in:

#include "test.h"

are searched first in the current directory, then in the directory specified by the -I: Include
File Path option, then in the directories given in the GENPATH: #include “File” Path
environment variable, and finally in those listed in the LIBPATH or LIBRARYPATH:
‘include <File>’ Path environment variable. The current directory is set using the IDE, the
Program Manager, or the DEFAULTDIR: Default Current Directory environment
variable.

Include files that are included using angular brackets as in

#include <stdio.h>

HC(S)12 Compiler Manual 141

Files
Output Files

are searched for first in the current directory, then in the directory specified by the -I
option, and then in the directories given in LIBPATH or LIBRARYPATH. The current
directory is set using the IDE, the Program Manager, or the DEFAULTDIR environment
variable.

Output Files

The following output files are described:
¢ Object Files

e Error Listing

Object Files

After successful compilation, the Compiler generates an object file containing the target
code as well as some debugging information. This file is written to the directory listed in
the OBJPATH: Object File Path environment variable. If that variable contains more than
one path, the object file is written in the first listed directory. If this variable is not set, the
object file is written in the directory the source file was found. Object files always get the
extension *.0.

Error Listing

If the Compiler detects any errors, it does not create an object file. Rather, it creates an
error listing file named err . txt. This file is generated in the directory where the source
file was found (also see ERRORFILE: Error filename Specification environment
variable).

If the Compiler’s window is open, it displays the full path of all header files read. After
successful compilation the number of code bytes generated and the number of global
objects written to the object file are also displayed.

If the Compiler is started from an IDE (with '$£ ' given on the command line) or
CodeWright (with ' $b%e "' given on the command line), this error file is not produced.
Instead, it writes the error messages in a special format in a file called EDOUT using the
Microsoft format by default. You may use the CodeWrights’ Find Next Error command to
display both the error positions and the error messages.

Interactive Mode (Compiler Window Open)

If ERRORFILE is set, the Compiler creates a message file named as specified in this
environment variable.

142

HC(S)12 Compiler Manual

Files

File Processing

If ERRORFILE is not set, a default file named err . txt is generated in the current

directory.

Batch Mode (Compiler Window not Open)

If ERRORFILE is set, the Compiler creates a message file named as specified in this
environment variable.

If ERRORFILE is not set, a default file named EDOUT is generated in the current
directory.

File Processing

Figure 4.1 shows how file processing occurs with the Compiler:

Figure 4.1 Files used with the Compiler

1
2

L b =

e La b =

. current dir
. GENPATH

. current dir
. Option -I
.LIBPATH

. current dir
. Option -I

. GENPATH
. LIBPATH

£
.CPp
.CXX

1. OBJPATH
2. Source file path

< h=

Compiler

7
N

Crror-

file

HC(S)12 Compiler Manual

143

Files
File Processing

144 HC(S)12 Compiler Manual

Compiler Options

The major sections of this chapter are:
¢ Option Recommendation: Advice about the available compiler options.

¢ Compiler Option Details: Description of the layout and format of the compiler
command-line options that are covered in the remainder of the chapter.

The Compiler provides a number of Compiler options that control the Compiler’s
operation. Options consist of a minus sign or dash (* - "), followed by one or more letters
or digits. Anything not starting with a dash or minus sign is the name of a source file to be
compiled. You can specify Compiler options on the command line or in the
COMPOPTIONS variable. Each Compiler option is specified only once per compilation.

Command line options are not case-sensitive, e.g., “—L1i” is the same as “-11i".

NOTE Itis not possible to coalesce options in different groups, e.g., “—Cc
—Li" cannot be abbreviated by the terms *—~Cci” or *—CcLi"!

Another way to set the compiler options is to use the HC12 Compiler Option Settings
dialog box (Figure 5.1).

NOTE Do not use the COMPOPTIONS environment variable if the GUI is used. The
Compiler stores the options in the project.ini file, not in the
default.env file.

HC(S)12 Compiler Manual 145

Compiler Options

Figure 5.1 Option Settings dialog box

HC12 Compiler Option Settings

Code Generation
Output |

Host]

Cptimizations l Input

|

l

Messages]
Language]

[Mo integral promation on characters
[1Loop unrolling
Wain Optimize T arget
[10ptimize dead azsignments
[]Create Sub-Functions with Common Code
[]0ptimize bitfields and wolatile bitfields
[1Dpnamic options configuration for functions
[Inlining

[10ptimize Libram Function

1Ty ta keep loop induction wariables in reqisters

|

Oltls): Main Optimize Tanget

" Optimize for execution time

* Optimize for code size

Os

o |

Cancel

Help

The HC12 Compiler Message Settings dialog box, shown in Figure 5.2, may also be used

to move messages (-Wmsg options).

146

HC(S)12 Compiler Manual

Compiler Options
Option Recommendation

Figure 5.2 HC12 Compiler Message Settings dialog box

HC12 Compiler Message Settings

Disabled] Information Vaming]EITCII'] Fatal]

C4300; Implicit cazt in assignment [destination type <d ~ Move to:

C5500: Incompatible pointer operation W Disabled
CAE51: Local wariable “'<Wariablex"' may be not initializ

CEE60: Removed dead code Information
C5500: Result is zero —_—
CR301: Result iz ohe

; Shift count iz zero

du Emor
L [{]s] with cne B
C550E: Subtraction with zero Defaut
CHI0E: Constant switch exprassion
C5309: Agzignment in condition b’
< | » Reset All

0K | Cance | Help |

Option Recommendation

Depending on the compiled sources, each Compiler optimization may have its advantages
or disadvantages. The following are recommended:

* When using the HIWARE Object-file Format and the -Cc: Allocate Constant Objects

into ROM compiler option, remember to specify ROM_VAR in the Linker parameter
file.

¢ -Wpd: Error for Implicit Parameter Declaration
* -Or: Register Optimization whenever available or possible

The default configuration enables most optimizations in the Compiler. If they cause
problems in your code (e.g., they make the code hard to debug), switch them off (these
options usually have the -On prefix). Candidates for such optimizations are peephole
optimizations.

Some optimizations may produce more code for some functions than for others (e.g.,
-Oi: Inlining or -Cu: Loop Unrolling. Try those options to get the best result for each.

To acquire the best results for each function, compile each module with the -OdocF:
Dynamic Option Configuration for Functions option. An example for this option is
-OdocF="-0r".

HC(S)12 Compiler Manual 147

Compiler Options
Compiler Option Details

For compilers with the ICG optimization engine, the following option combination
provides the best results:

-Ona -OdocF="-Onca|-One|-0r”

Compiler Option Details

Option Groups
Compiler options are grouped by:
e HOST
* LANGUAGE
¢ OPTIMIZATIONS
* CODE GENERATION
« OUTPUT
* INPUT
e TARGET
« MESSAGES
¢ VARIOUS
« STARTUP
See Table 5.1.

A special group is the STARTUP group: The options in this group cannot be specified
interactively; they can only be specified on the command line to start the tool.

Table 5.1 Compiler option groups

Group Description

HOST Lists options related to the host

LANGUAGE Lists options related to the programming language
(e.g., ANSI-C)

OPTIMIZATIONS Lists optimization options

OUTPUT Lists options related to the output files generation (which kind of
file should be generated)

INPUT Lists options related to the input file

148 HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

Table 5.1 Compiler option groups (continued)

Group Description

CODE Lists options related to code generation (memory models, float
GENERATION format, ...)

TARGET Lists options related to the target processor

MESSAGES Lists options controlling the generation of error messages
VARIOUS Lists various options

STARTUP Options which only are specified on tool startup

The group corresponds to the property sheets of the graphical option settings.

NOTE Not all command line options are accessible through the property sheets as they
have a special graphical setting (e.g., the option to set the type sizes).

Option Scopes

Each option has also a scope. See Table 5.2.

Table 5.2 Option Scopes

Scope Description

Application The option has to be set for all files (Compilation Units) of an
application. A typical example is an option to set the memory
model. Mixing object files will have unpredictable results.

Compilation Unit This option is set for each compilation unit for an application
differently. Mixing objects in an application is possible.

Function The option may be set for each function differently. Such an option
may be used with the option: “-OdocF=" “<option>".

None The option scope is not related to a specific code part. A typical
example are the options for the message management.

The available options are arranged into different groups. A sheet is available for each of
these groups. The content of the list box depends on the selected sheets.

HC(S)12 Compiler Manual 149

Compiler Options
Compiler Option Details

Option Detail Description

The remainder of this section describes each of the Compiler options available for the
Compiler. The options are listed in alphabetical order. Each is divided into several
sections listed in Table 5.3.

Table 5.3 Compiler Option—Documentation Topics

Topic Description

Group HOST, LANGUAGE, OPTIMIZATIONS, OUTPUT, INPUT, CODE
GENERATION, MESSAGES, or VARIOUS.

Scope Application, Compilation Unit, Function or None

Syntax Specifies the syntax of the option in an EBNF format

Arguments Describes and lists optional and required arguments for the option

Default Shows the default setting for the option

Defines List of defines related to the compiler option

Pragma List of pragmas related to the compiler option

Description | Provides a detailed description of the option and how to use it

Example Gives an example of usage, and effects of the option where possible.
compiler settings, source code and Linker PRM files are displayed where
applicable. The example shows an entry in the default.env fora
PC.

See also Names related options

Using Special Modifiers

With some options, it is possible to use special modifiers. However, some modifiers may
not make sense for all options. This section describes those modifiers.

Table 5.4 lists the supported modifiers.

Table 5.4 Compiler Option Modifiers

Modifier Description
%op Path including file separator
%N Filename in strict 8.3 format

150

HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

Table 5.4 Compiler Option Modifiers (continued)

Modifier Description

Yon Filename without extension

%E Extension in strict 8.3 format

Y€ Extension

Yof Path + filename without extension

%" A double quote (“) if the filename, the path or the extension contains a
space

%’ A single quote (') if the filename, the path or the extension contains a
space

%(ENV) Replaces it with the contents of an environment variable

%% Generates a single ‘%’

Examples

For the examples in Listing 5.1, the actual base filename for the modifiers is:
C:\Freescale\my demo\TheWholeThing.myEXt.

Listing 5.1 Examples of compiler option modifiers

(1) %p gives the path only with a file separator:
C:\Freescale\my demo\

(2) %N results in the filename in 8.3 format (that is, the name with only 8 characters) :
TheWhole

(3) %n returns just the filename without extension:
TheWholeThing

(4) $E gives the extension in 8.3 format (that is, the extension with only 3 characters)
myE

(5) %e is used for the whole extension:
myExt

(6) % £ gives the path plus the filename:
C:\Freescale\my demo\TheWholeThing

HC(S)12 Compiler Manual 151

Compiler Options
Compiler Option Details

(7) Because the path contains a space, using $" or % is recommended: Thus, $"%$£%" results in: (using
double quotes)
"C:\Freescale\my demo\TheWholeThing"

(8) where %’ %$£% ' results in: (using single quotes)
‘C:\Freescale\my demo\TheWholeThing’

(9) % (envVariable) uses an environment variable. A file separator following after
% (envVariable) isignored if the environment variable is empty or does not exist. In other words, if
TEXTPATH is set to: TEXTPATH=C: \Freescale\txt, $ (TEXTPATH) \myfile. txt is replaced
with:

C:\Freescale\txt\myfile.txt

(10) But if TEXTPATH does not exist or is empty, % (TEXTPATH) \myfile. txt is setto:
myfile.txt

(11) A %% may be used to print a percent sign. Using $e%% results in:
myEXt$%

152 HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

-1: filenames to DOS length

Group
INPUT

Scope

Compilation Unit

Syntax

Arguments

None

Default

None

Defines

None

Pragmas

None

Description

This option, called cut, is very useful when compiling files copied from an
MS-DOS file system. filenames are clipped to DOS length (8 characters).

Listing 5.2 Example of the cut option, -!

The cut option truncates the following include directive:

#include "mylongfilename.h"
to:
#include "mylongfi.h"

HC(S)12 Compiler Manual

153

Compiler Options
Compiler Option Details

-Addincl: Additional Include File

Group
INPUT

Scope

Compilation Unit

Syntax

-AddIncl”<fileName>"

Arguments

<fileName>: name of the file that is included

Default

None

Defines

None

Pragmas

None

Description

The specified file is included at the beginning of the compilation unit. It has the
same effect as it would if written at the beginning of the compilation unit using
double quotes (*. . "):

#include “my headerfile.h”

Example

See Listing 5.3 for the ~-AddIncl compiler option that includes the above header
file.

Listing 5.3 -Addincl example

-AddIncl"my headerfile.h"

154 HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

See also

-I: Include File Path compiler option

HC(S)12 Compiler Manual 155

Compiler Options
Compiler Option Details

-Ansi: Strict ANSI

Group
LANGUAGE

Scope

Function

Syntax

-Ansi

Arguments

None

Default

None

Defines
__STDC__

Pragmas

None

Description

The -Ansi option forces the Compiler to follow strict ANSI C language
conversions. When -Ansi is specified, all non ANSI-compliant keywords (e.g.,
__asm,__ farand__ near) are not accepted by the Compiler, and the Compiler
generates an error.

The ANSI-C compiler also does not allow C++ style comments (those started with
/ /). To allow C++ comments, even with -Ans1i set, the -Cppc: C++ Comments in
ANSI-C compiler option must be set.

The asm keyword is also not allowed if -Ansi is set. To use inline assembly,
even with -Ans1i set, use __asm instead of asm.

The Compiler defines ___STDC___ as 1 if this option is set, or as 0 if this option is
not set.

156

HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

-Asr: It is assumed that HLI code saves written registers

Group
CODE GENERATION

Scope

Function

Syntax

-Asr

Arguments

None

Default

None

Defines

None

Pragmas

None

Description

With this option set, the compiler assumes that registers touched in HLI are saved
or restored in the HLI code as well. If this option is not set, the compiler will save
or restore the H, X, and A registers.

Listing 5.4 Sample source code for the two following examples

void test (void) {
PORT = 4;
asm {
LDD #4
STD PORT
}
CallMe (4) ;
}

HC(S)12 Compiler Manual 157

Compiler Options
Compiler Option Details

Listing 5.5 Without the -Asr option set (default), we get:

Listing 5.6 With the -Asr option set, we get:

0000
0002
0003
0006
0009
000c
000e
000f

c604
87
7c0000
cc0004
7c0000
c604
87
060000

[1]
[1]
[31]
[2]
[31]
[1]
[1]
[3]

LDAB
CLRA
STD
LDD
STD
LDAB
CLRA
JMP

#4

PORT
#4
PORT
#4

CallMe

With the -Asx option set (Listing 5.6), the compiler can assume that the A register
is still the same as before the __asm block. However, in our example we do NOT
save or restore the A register, so the code will be incorrect.

0000
0002
0003
0006
0009
000c

c604
87
7c0000
cc0004
7c0000
060000

LDAB
CLRA
STD
LDD
STD
JMP

#4

PORT
#4
PORT
CallMe

158

HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

-BfaB: Bitfield Byte Allocation

Group
CODE GENERATION

Scope

Function

Syntax
-BfaB (MS|LS)

Arguments
MS: Most significant bit in byte first (left to right)
LS: Least significant bit in byte first (right to left)
Default
-BfaBLS

Defines

_ BITFIELD_MSWORD_FIRST_
_ BITFIELD_LSWORD_FIRST_
__ BITFIELD MSBYTE FIRST
__ BITFIELD LSBYTE FIRST
__ BITFIELD MSBIT FIRST
_ BITFIELD_LSBIT_FIRST

Pragmas

None

Description

Normally, bits in byte bitfields are allocated from the least significant bit to the
most significant bit. This produces less code overhead if a byte bitfield is allocated
only partially.

HC(S)12 Compiler Manual 159

Compiler Options
Compiler Option Details

Example

Listing 5.7 uses the default condition and uses the three least significant bits.

Listing 5.7 Example struct used for the next listing

struct {unsigned char b: 3; } B;
// the default is using the 3 least significant bits

This allows just a mask operation without any shift to access the bitfield.

To change this allocation order, you can use the -BfaBMS or -BfaBLS options,
shown in the Listing 5.8.

Listing 5.8 Examples of changing the bitfield allocation order

struct {
char bl:1;
char b2:1;
char b3:1;
char b4d:1;
char b5:1

} myBitfiel

d;

|b1|b2|b3 | b4 |b5 | ####| (-BfaBMS)

| #4## | b5 |b4 |03 |b2|bl| (-BfaBLS)

See also
Bitfield Allocation

160 HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

-BfaGapLimitBits: Bitfield Gap Limit

Group
CODE GENERATION

Scope

Function

Syntax

-BfaGapLimitBits<number>

Arguments

<number>: positive number specifying the maximum number of bits for a gap

Default
0

Defines

None

Pragmas

None

Description

The bitfield allocation tries to avoid crossing a byte boundary whenever possible.
To achieve optimized accesses, the compiler may insert some padding or gap bits
to reach this. This option enables you to affect the maximum number of gap bits
allowed.

Example

In the example in Listing 5.9, it is assumed that you have specified a 3-bit
maximum gap, i.e., -BfaGapLimitBits3.

HC(S)12 Compiler Manual 161

Compiler Options
Compiler Option Details

Listing 5.9 Bitfield allocation

struct {
unsigned char a: 7;
unsigned char b: 5;
unsigned char c: 4;
} B;

The compiler allocates struct B with 3 bytes. First, the compiler allocates the 7 bits
of a. Then the compiler tries to allocate the 5 bits of b, but this would cross a byte
boundary. Because the gap of 1 bit is smaller than the specified gap of 3 bits, b is
allocated in the next byte. Then the allocation starts for c. After the allocation of b
there are 3 bits left. Because the gap is 3 bits, c is allocated in the next byte. If the
maximum gap size were specified to 0, all 16 bits of B would be allocated in two
bytes.

Listing 5.10 specifies a maximum size of two bits for a gap.

Listing 5.10 Example where the maximum number of gap bits is 2

-BfaGapLimitBits?2

See also
Bitfield Allocation

162 HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

-BfaTSR: Bitfield Type-Size Reduction

Group
CODE GENERATION

Scope

Function

Syntax
-BfaTSR (ON|OFF)

Arguments

ON: Enable Type-Size Reduction
OFF: Disable Type-Size Reduction

Default

-BfaTSRon

Defines

_ BITFIELD_TYPE_SIZE_REDUCTION___
__BITFIELD_NO_TYPE_SIZE_REDUCTION__ _

Pragmas

None

Description

This option is configurable whether or not the compiler uses type-size reduction for
bitfields. Type-size reduction means that the compiler can reduce the type of an
int bitfield to a char bitfield if it fits into a character. This allows the compiler to
allocate memory only for one byte instead of for an integer.

HC(S)12 Compiler Manual 163

Compiler Options
Compiler Option Details

Examples

Listing 5.11 and Listing 5.12 demonstrate the effects of ~-BfaTSRof f and

-BfaTSRon, respectively.

Listing 5.11 -BfaTSRoff

struct{
long bl:4;
long b2:4;
} myBitfield;

-BfaTSRoff

7 3 0
|b2 | bl | -BfaTSRon
Example
-BfaTSRon
See also
Bitfield Type Reduction
164 HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

-C++ (-C++f, -C++e, -C++c): C++ Support

Group
LANGUAGE

Scope

Compilation Unit

Syntax
-C++ (fl|elc)

Arguments
£ Full ANSI Draft C++ support
e Embedded C++ support (EC++)

¢ compactC++ support (cC++)

Default

None

Defines
__cplusplus

Pragmas

None

Description

With this option enabled, the Compiler behaves as a C++ Compiler. You can
choose between 3 different types of C++:

¢ Full ANSI Draft C++ supports the whole C++ language.

¢ Embedded C++ (EC++) supports a constant subset of the C++ language. EC++
does not support inefficient stuff like templates, multiple inheritance, virtual
base classes and exception handling.

¢ compactC++ (cC++) supports a configurable subset of the C++ language. You
can configure this subset with the option -Cn. If the option is not set, the
Compiler behaves as an ANSI-C Compiler.

HC(S)12 Compiler Manual 165

Compiler Options
Compiler Option Details

If the option is enabled and the source file name extension is * . ¢, the Compiler
behaves as a C++ Compiler. If the option is not set, but the source filename
extension is . cpp or . cxx, the Compiler behaves as if the -C++£ option were
set.

Example

COMPOPTIONS=-C++f

See Also

“-Cn: Disable compactC++ features”

166 HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

-Cc: Allocate Constant Objects into ROM

Group
OUTPUT

Scope

Compilation Unit

Syntax
-Cc

Arguments

None

Default

None

Defines

None

Pragmas
#pragma INTO_ROM.: Put Next Variable Definition into ROM

Description

In the HIWARE Object-file Format, variables declared as const are treated just
like any other variable, unless the -~Cc command-line option was used. In that
circumstance, the const objects are put into the ROM_VAR segment, which is
then assigned to a ROM section in the Linker parameter file (please see the Linker
section in the Build Tools manual).

The Linker prepares no initialization for objects allocated into a read-only section.
The startup code does not have to copy the constant data.

You may also put variables into the ROM_VAR segment by using the segment
pragma (please see the Linker manual).

With #pragma CONST_SECTION for constant segment allocation, variables
declared as const are allocated in this segment.

If the current data segment is not the default segment, const objects in that user—
defined segment are not allocated in the ROM_VAR segment but remain in the

HC(S)12 Compiler Manual 167

Compiler Options
Compiler Option Details

segment defined by the user. If that data segment happens to contain only const
objects, it may be allocated in a ROM memory section (refer to the Linker section
of the Build Tools manual for more information).

NOTE This option is useful only for HTWARE object-file formats. In the ELF/
DWAREF object-file format, constants are allocated into the . rodata”
section.

NOTE The Compiler uses the default addressing mode for the constants specified by
the memory model.

Example

Listing 5.13 shows how the —Cc compiler option affects the SECTIONS segment
of a PRM file (HIWARE object-file format only).

Listing 5.13 -Cc example (HIWARE format only)

SECTIONS

MY_ROM READ_ONLY 0x1000 TO 0x2000
PLACEMENT

DEFAULT_ROM, ROM_VAR INTO MY_ROM

See also

Segmentation

Linker section in the Build Tools manual

-F (-Fh, -F1, -Flo, -F2, -F20,-F6, or -F7): Object-File Format option
#pragma INTO_ROM.: Put Next Variable Definition into ROM

168 HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

-Ccx: Cosmic Compatibility Mode for Space Modifiers and Interrupt
Handlers

Group
LANGUAGE

Scope

Compilation Unit

Syntax

-Ccx

Arguments

None

Default

None

Defines

None

Pragmas

None

Description

This option allows Cosmic style @near, @far and @t iny space modifiers as
well as @interrupt in your C code. The —~ANST option must be switched off. It
is not necessary to remove the Cosmic space modifiers from your application code.
There is no need to place the objects to sections addressable by the Cosmic space
modifiers.

The following is done when a Cosmic modifier is parsed:

* The objects declared with the space modifier are always allocated in a special
Cosmic compatibility (_CX...) section (regardless which section pragma is set)
depending on the space modifier, on the const qualifier or if it is a function or
a variable:

HC(S)12 Compiler Manual 169

Compiler Options
Compiler Option Details

* Space modifiers on the left hand side of a pointer declaration specify the pointer
type and pointer size, depending on the target.

See the example in Listing 5.14 for a prm file about how to place the sections
mentioned in the Table 5.5.

Table 5.5 Cosmic Modifier Handling

Definition Placement to _cx section
@tiny int my_var _CX_DATA_TINY

@near int my_var _CX_DATA_NEAR

@far int my_var _CX_DATA_FAR

const @tiny int my_cvar _CX_CONST_TINY

const @near int my_cvar _CX_CONST_NEAR
const @far int my_cvar _CX_CONST_FAR

@tiny void my_fun(void) _CX_CODE_TINY

@near void my_fun(void) _CX_CODE_NEAR

@far void my_fun(void) _CX_CODE_FAR
@interrupt void my_fun(void) _CX_CODE_INTERRUPT

For further information about porting applications from Cosmic to CodeWarrior
please refer to the technical note TN 234. Table 5.6 indicates how space modifiers
are mapped for the HC(S)12:

Table 5.6 Cosmic Space modifier mapping for the HC12

Definition Keyword Mapping
@tiny __near

@near __near

@far __far

170 HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

See Listing 5.14 for an example of the -Ccx compiler option.

Listing 5.14 Cosmic Space Modifiers

volatile @tiny char tiny_ch;

extern @far const int table[100];
static @tiny char * @near ptr_tab[10];
typedef @far int (*@far funptr) (void) ;

funptr my_fun; /* banked and _ far calling conv. */
char @tiny *tptr = &tiny_ ch;
char @far *fptr = (char @far *)&tiny_ch;

Example for a prm file:
(16- and 24-bit addressable ROM;
8-, 16- and 24-bit addressable RAM)

SEGMENTS
MY _ROM READ_ONLY 0x2000 TO Ox7FFF;
MY_BANK READ_ONLY 0x508000 TO Ox50BFFF;
MY_ZP READ_WRITE 0xCO0 TO OxFF;
MY RAM READ WRITE 0xC000 TO OxCFFF;
MY DBANK READ WRITE 0x108000 TO Ox10BFFF;
END
PLACEMENT

DEFAULT ROM, ROM_VAR,
_CX_CODE_NEAR, _CX_CODE_TINY, _CX_CONST_TINY,
_CX_CONST_NEAR INTO MY_ROM;
_CX_CODE_FAR, _CX_CONST_FAR INTO MY BANK;
DEFAULT RAM, _CX DATA NEAR INTO MY RAM;
_CX_DATA_FAR INTO MY_DBANK;
_ZEROPAGE, _CX_DATA_TINY INTO MY_ZP;

END

See also
Cosmic Manuals, Linker Manual, TN 234

HC(S)12 Compiler Manual 171

Compiler Options
Compiler Option Details

-Cf: Float IEEE32, doubles IEEE64

Group
CODE GENERATION

Scope
Application

Syntax
Cf

Arguments

None

Default
By default, float and doubles are IEEE32

Defines

_ FLOAT_IS_TIEEE32_

__ DOUBLE_IS_IEEE64___

__ LONG_DOUBLE_IS_TIEEE64__

__ LONG_LONG_DOUBLE_IS_IEEE64_

Pragmas

None

Description

This option sets the standard type £1oat to the IEEE32 format and all double
types (double, long double, long long double) to the IEEE64 format.

This option is the same as -T£f4d8LdA8LLAS8.

Example
-Cf

See also

-T: Flexible Type Management compiler option

172

HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

-Ci: Tri- and Bigraph Support

Group
LANGUAGE

Scope

Function

Syntax
-ci

Arguments

None

Default

None

Defines
__TRIGRAPHS_

Pragmas

None

Description

If certain tokens are not available on your keyboard, they are replaced with
keywords as shown in Table 5.7.

Table 5.7 Keyword Alternatives for Unavailable Tokens

Bigraph Trigraph Additional Keyword
<% } 7= and &&

%> } 2?2/ and_eq &=

<: [7 bitand &

>] 22(bitor |

%: # ??) compl ~

HC(S)12 Compiler Manual

173

Compiler Options
Compiler Option Details

Table 5.7 Keyword Alternatives for Unavailable Tokens (continued)

Bigraph Trigraph Additional Keyword
Y%o:%: #i# 22! | not !
27< { or Il
27> } or_eq =
??- ~ xor A
xor_eq A=
not_eq 1=

NOTE Additional keywords are not allowed as identifiers if this option is enabled.

Example
-Ci
The example in Listing 5.15 shows the use of trigraphs, bigraphs, and the

additional keywords with the corresponding ‘normal’ C-source.

Listing 5.15 Trigraphs, Bigraphs, and Additional Keywords

int Trigraphs (int argc, char * argv??(??)) ??<
if (argc<l ??!??! *argv??(1??)=='??/0') return 0;
printf ("Hello, %s??/n", argv??(12?));

??7>

%:define TEST_NEW_THIS 5
%:define cat(a,b) a%:%:b
??=define arraycheck(a,b,c) a??(i??) ?2?!?2?! b??(i??)

int 1i;

int cat(a,b);
char a<:10:>;
char b<:10:>;

void Trigraph2 (void) <%
if (1 and ab) <%
i and_eq TEST_NEW_THIS;
= 1 bitand 0x03;
= 1 bitor 0x8;
compl 1i;

R

174 HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

i = not 1i;
%> else 1if (ab or i) <%
i or_eq 0x5;
i = i xor 0x12;
1 xor_eq 99;
%> else if (i not_eqg 5) <%
cat(a,b) = 5;

if (a??(i??) || bli])<%%>
if (arraycheck(a,b,i)) <%
i=0;
%>
%>
%>
/* is the same as ... */
int Trigraphs (int argc, char * argvl[])
if (arge<l || *argv[1l]=='\0') return

printf ("Hello, %s\n", argv[l]);
}

#define TEST NEW_THIS 5
#define cat(a,b) a##b
#defin arraycheck(a,b,c) alil || blil

int 1i;

int cat(a,b);
char a[l1l0];
char b[10];

void Trigraph2 (void) {
if (1 && ab) {

i &= TEST_NEW_THIS;

= i & 0x03;

=1 | 0x8;

= ~j_;

[N
I

= 11;
} else if (ab || 1) {
i |= 0x5;
i =1i " 0x12;
i ~= 99;
} else if (i !'= 5) {
cat(a,b) = 5;
if (alil || bIi]){}
if (arraycheck(a,b,i)) {
i=0;

}

{
0;

HC(S)12 Compiler Manual

175

Compiler Options
Compiler Option Details

}
}

176 HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

-Cn: Disable compactC++ features

Group
LANGUAGE

Scope

Compilation Unit

Syntax
-Cn [= {VE|Tpl|Ptm|Mih|Ctr|Cpr}]

Arguments
V£: Do not allow virtual functions
Tpl: Do not allow templates
Ptm: Do not allow pointer to member
Mih: Do not allow multiple inheritance and virtual base classes
Ctr: Do not create compiler defined functions

Cpr: Do not allow class parameters and class returns

Default

None

Defines

None

Pragmas

None

Description

If the -C++c option is enabled, you can disable the following compactC++
features:

vE Virtual functions are not allowed.
Avoid having virtual tables that consume a lot of memory.
Tpl Templates are not allowed.

Avoid having many generated functions perform similar operations.

HC(S)12 Compiler Manual 177

Compiler Options
Compiler Option Details

Ptm Pointer to member not allowed.
Avoid having pointer-to-member objects that consume a lot of memory.
Mih Multiple inheritance is not allowed.

Avoid having complex class hierarchies. Because virtual base classes are logical
only when used with multiple inheritance, they are also not allowed.

Cctr The C++ Compiler can generate several kinds of functions, if necessary:
¢ Default Constructor

¢ Copy Constructor

¢ Destructor

* Assignment operator

With this option enabled, the Compiler does not create those functions. This is
useful when compiling C sources with the C++ Compiler, assuming you do not
want C structures to acquire member functions.

Cpr Class parameters and class returns are not allowed.

Avoid overhead with Copy Constructor and Destructor calls when passing
parameters, and passing return values of class type.

Example

-C++c -Cn=Ctr

178 HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

-Cni: No Integral Promotion

Group
OPTIMIZATIONS

Scope

Function

Syntax

-Cni

Arguments

None

Default

None

Defines
CNI

Pragmas

None

Description

Enhances code density of character operations by omitting integral promotion.
This option enables a non ANSI-C compliant behavior.

In ANSI-C operations with data types, anything smaller than int must be promoted
to int (integral promotion). With this rule, adding two unsigned character variables
results in a zero-extension of each character operand, and then adding them back in
as int operands. If the result must be stored back into a character, this integral
promotion is not necessary. When this option is set, promotion is avoided where
possible.

The code size may be decreased if this option is set because operations may be
performed on a character base instead of an integer base.

The —Cni option enhances character operation code density by omitting integral
promotion.

HC(S)12 Compiler Manual 179

Compiler Options
Compiler Option Details

Consider the following:

¢ In most expressions, ANSI-C requires char type variables to be extended to the
next larger type int, which is required to be at least 16-bit in size by the ANSI
standard.

* The —Cni option suppresses this ANSI-C behavior and thus allows 'characters'
and 'character sized constants' to be used in expressions. This option does not
conform to ANSI standards. Code compiled with this option is not portable.

¢ The ANSI standard requires that 'old style declarations' of functions using the
char parameter (Listing 5.16) be extended to int. The -Cni option disables
this extension and saves additional RAM.

Example

See Listing 5.16 for an example of “no integer promotion.”

Listing 5.16 Definition of an ‘old style function’ using a char parameter.

old_style_func (a, b, c)
char a, b, c;

{
}

The space reserved for a, b, and c is just one byte each, instead of two.

For expressions containing different types of variables, the following conversion
rules apply:

If both variables are of type signed char, the expression is evaluated signed.

If one of two variables is of type unsigned char, the expression is evaluated
unsigned, regardless of whether the other variable is of type signed or
unsigned char.

If one operand is of another type than signed or unsigned char, the usual ANSI-C
arithmetic conversions are applied.

If constants are in the character range, they are treated as characters. Remember
that the char type is signed and applies to the constants —128 to 127. All constants
greater than 127, i.e., 128, 129 ... are treated as integer. If you want them treated as
characters, they must be casted (Listing 5.17).

Listing 5.17 Casting integers to signed char

signed char a, b;
if (a > b * (signed char)129)

180 HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

NOTE This option is ignored with the —-Ansi Compiler switch active.

NOTE With this option set, the code that is generated does not conform to the ANSI
standard. In other words: the code generated is wrong if you apply the ANSI
standard as reference. Using this option is not recommended in most cases.

HC(S)12 Compiler Manual 181

Compiler Options
Compiler Option Details

-Cppc: C++ Comments in ANSI-C

Group
LANGUAGE

Scope

Function
Syntax
-Cppc

Arguments

None

Default

By default, the Compiler does not allow C++ comments if the -Ansi: Strict ANSI
compiler option is set.

Defines

None

Pragmas

None

Description

The -Ansi option forces the compiler to conform to the ANSI-C standard.
Because a strict ANSI-C compiler rejects any C++ comments (started with //), this
option may be used to allow C++ comments (Listing 5.18).

Listing 5.18 Using -Cppc to allow C++ comments

-Cppc

/* This allows the code containing C++ comments to be compiled with the
-Ansi option set */

void foo(void) // this is a C++ comment

182 HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

See also
-Ansi: Strict ANSI compiler option

HC(S)12 Compiler Manual 183

Compiler Options
Compiler Option Details

-CpDIRECT: DIRECT Register Value

Group
CODE GENERATION

Scope
Application

Syntax
-CpDIRECT<hexAddr>

Arguments

<hexAddr>: Start address of direct window

Default
The Compiler assumes that the DIRECT register contains 0.

Defines

__ DIRECT_ADR__=<adr>

Pragmas

None

Description

This option only has an effect for the HCS12X (if option —~-CpuHCS12X is
specified).

For the HC12/HCS12 families, all direct accesses were using accessing the address
range from 0x0000 to 0x00FF. In this range, the most often resource could be

mapped to benefit from the shorter direct addressing mode compared to the
extended addressing mode.

For the HCS12X, the mapping of the RAM, Registers and EEPROM is no longer
supported. Instead the direct accesses can now be configured to map to any 256
bytes boundary in memory.

Because of this change, the compiler needs to know which part of the address
space is accessible through with the direct addressing mode.

With the -CpDirectO option, the generated code is as for the HC12 or HCS12.

184

HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

Note that this knowledge is only necessary to optimize this if only the address is
known. Variables allocated in a ___ SHORT__SEG section are not affected by this
option.

Example

-CpDIRECT8192
((int)0x2002)=3;

Generates:

0000 c603 LDAB #3

0002 87 CLRA

0003 5c02 STD 2
See also

Compiler options:
¢ -CpDPAGE: Specify DPAGE Register
* -CpEPAGE: Specify EPAGE Register
¢ -CpGPAGE: Specify GPAGE Register
* -CpPPAGE: Specify PPAGE Register
¢ -CpRPAGE: Specify RPAGE Register

HC(S)12 Compiler Manual 185

Compiler Options
Compiler Option Details

-CpDPAGE: Specify DPAGE Register

Group
CODE GENERATION

Scope
Application

Syntax
-CpDPAGE [= (<hexAddr> | RUNTIME)]

Arguments
<hexAddr>: address of the DPAGE register in hex format (e.g., 0x34)

RUNTIME: if runtime routine must be used

Default
By default, the Compiler assumes 0x34 for <hexAddr>

Defines
_ DPAGE___
_ NO_DPAGE_
_ DPAGE_ADR___ = hexAddr

Pragmas

None

Description

Only the HC12 A4 derivative has a DPAGE register. See the Backend chapter for
details.

NOTE The RUNTIME argument for this option is not available when in HCS12X or
HCS12XE mode.

Example
-CpDPAGE=RUNTIME

186 HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

See also
Compiler options:
* -CpEPAGE: Specify EPAGE Register
¢ -CpGPAGE: Specify GPAGE Register
* -CpPPAGE: Specify PPAGE Register
¢ -CpRPAGE: Specify RPAGE Register

HC(S)12 Compiler Manual 187

Compiler Options
Compiler Option Details

-CpEPAGE: Specify EPAGE Register

Group
CODE GENERATION

Scope
Application

Syntax
-CpEPAGE [= (<hexAddr> | RUNTIME)]

Arguments
<hexAddr>: address of the EPAGE register in hex format (e.g., 0x17)

RUNTIME: if runtime routine must be used

Default
Depending on the -Cpu option, 0x36 is used for an HC12 A4 or 0x17 for an
HCS12X.
Defines
__ _EPAGE_
__NO_EPAGE___
_ _EPAGE_ADR__ = hexAddr

Pragmas

None

Description

The HC12 A4 derivative and the HCS12X family have an EPAGE register. See
Backend for details.

NOTE The RUNTIME argument for this option is not available when in HCS12X or
HCS12XE mode.

Example
-CpEPAGE=0x17

188

HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

See also
Compiler options:
* -CpDPAGE: Specify DPAGE Register
¢ -CpGPAGE: Specify GPAGE Register
* -CpPPAGE: Specify PPAGE Register
¢ -CpRPAGE: Specify RPAGE Register

HC(S)12 Compiler Manual 189

Compiler Options
Compiler Option Details

-CpGPAGE: Specify GPAGE Register

Group
CODE GENERATION

Scope
Application

Syntax
-CpGPAGE [= (<hexAddr>)] .

Arguments
<hexAddr>: address of the GPAGE register in hex format (e.g., 0x10)

Default
By default, the Compiler assumes 0x10 for <hexAddr>

Defines
__GPAGE__
__NO_GPAGE__
_ GPAGE_ADR__ = hexAddr

Pragmas

None

Description

Only HCS12X family members have a GPAGE register and support GPAGE
access.

GPAGE accesses are performed with the special G load or store instructions and is
therefore different from the other page accesses which all are using some address
window in the logical address space.

GPAGE accesses are using global addresses and are performed in the global
address space.

See the Backend chapter for details.

190

HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

Example
-CpGPAGE=0%x36

See also
Compiler options:
¢ -CpDPAGE: Specify DPAGE Register
* -CpEPAGE: Specify EPAGE Register
¢ -CpPPAGE: Specify PPAGE Register
* -CpRPAGE: Specify RPAGE Register

HC(S)12 Compiler Manual 191

Compiler Options
Compiler Option Details

-CpPPAGE: Specify PPAGE Register

Group
CODE GENERATION

Scope
Application

Syntax
-CpPPAGE [= (<hexAddr> | RUNTIME)] .

Arguments
<hexAddr>: address of the PPAGE register in hex format (e.g., 0x30)

RUNTIME: if runtime routine must be used

Default
Depending on the -Cpu option, 0x35 is used for an HC12 A4 or 0x30 for an
HCS12 or HCS12X.
Defines
__ _PPAGE_
__NO_PPAGE___
__ _PPAGE_ADR__ = hexAddr

Pragmas

None

Description

The PPAGE value specified with this option is only used for data paging. For code
banking with a CALL instruction, this option is not required. See Backend for
details.

NOTE The RUNTIME argument for this option is not available when in HCS12X or
HCS12XE mode.

192

HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

Example
-CpPPAGE=0x30

See also
Compiler options:
¢ -CpDPAGE: Specify DPAGE Register
* -CpEPAGE: Specify EPAGE Register
¢ -CpGPAGE: Specify GPAGE Register
* -CpRPAGE: Specify RPAGE Register

HC(S)12 Compiler Manual 193

Compiler Options
Compiler Option Details

-CpRPAGE: Specify RPAGE Register

Group
CODE GENERATION

Scope
Application

Syntax
—CpRPAGE[:(<heXAddr>|RUNTIME)].

Arguments
<hexAddr>: address of the RPAGE register in hex format (e.g., 0x16)

RUNTIME: if runtime routine must be used

Default
0x16 for <hexAddr>

Defines
__RPAGE___
_ NO_RPAGE_
_ _RPAGE_ADR___ = hexAddr

Pragmas

None

Description
See the Backend chapter for details.

NOTE The RUNTIME argument for this option is not available when in HCS12X or
HCS12XE mode.

Example
-CpRPAGE=0x16

194 HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

See also
Compiler options:
* -CpDPAGE: Specify DPAGE Register
¢ -CpEPAGE: Specify EPAGE Register
* -CpGPAGE: Specify GPAGE Register
¢ -CpPPAGE: Specify PPAGE Register

HC(S)12 Compiler Manual 195

Compiler Options
Compiler Option Details

-Cpu: Generate code for specific HC(S)12 families

Group
CODE GENERATION

Scope
Application

Syntax
-Cpu (CPU12 |HCS12 |HCS12X | HCS12XE)

Arguments
CPU12: Generate code for a CPU12.
HCS12: Generate code for an HCS12.
HCS12X: Generate code for an HCS12X.
HCS12XE: Generate code for an HCS12XE

Default
The Compiler generates code for a CPU12.

Defines
__HC12__:always defined
___HCS12__ :defined for the -CpuHCS12 and -CpuHCS12X options
__HCS12X__:defined for the ~-CpuHCS12X option
__HCS12XE__: defined for the ~-CpuHCS12XE option

Pragmas

None

Description

This option controls for which family the code should be generated. The two
choices -~-CpuHCS12 and -CpuCPU12 generate almost identical code which is
completely compatible. The HCS12 and the CPU12 cores only differ in their
execution timings and for PC relative MOVB or MOVW operands, which are not used
by C code.

196 HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

The -CpuHCS12X option allows the use of the new instructions of the HCS12X as
well. The code generated is incompatible to an HCS12 or CPU12 core.

Code generated for the HCS12 or CPU12 can be executed on an HCS12X, but does
not utilize the advantages of the new architecture. Mixing modules compiled for
the HCS12X and the HC12 or HCS12 is possible but not recommended. Especially
the representation of __far data pointers is different.

Switching to or from the -~-CpuHCS12X code generation requires the following
adaptations in a project:

¢ Use the -CpuHCS12X option for both the compiler and the assembler.
¢ Use the correct ANSI library.
The libraries for the HCS12X contain an X after ANSI in their filenames.

The HCS12XE is an extension of the HCS12X. The HCS12XE supports mapping
to RAM area 0x4000-0x7FFF, which results in different mapping to logical and
global addresses.

See HC(S)12 Backend for details.

Example
-CpuHCS12Xx

HC(S)12 Compiler Manual 197

Compiler Options
Compiler Option Details

-Cq: Propagate const and volatile qualifiers for structs

Group
LANGUAGE

Scope
Application

Syntax
-Cq

Arguments

None

Default

None

Defines

None

Pragmas

None

Description

This option propagates const and volatile qualifiers for structures. That
means, if all members of a structure are constant, the structure itself is constant as
well. The same happens with the volatile qualifier. If the structure is declared
as constant or volatile, all its members are constant or volatile,
respectively. Consider the following example.

198 HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

Example

The source code in Listing 5.19 declares two structs, each of which has a const
member.

Listing 5.19 Be careful to not write to a constant struct

struct {
const field;
} sl1, s2;

void foo(void) {
sl = s2; // struct copy
sl.field = 3; // error: modifiable lvalue expected

In the above example, the field in the struct is constant, but not the struct itself.
Thus the struct copy ‘s1 = s2’ is legal, even if the field of the struct is constant.
But, a write access to the struct field causes an error message. Using the -Cg
option propagates the qualification (const) of the fields to the whole struct or
array. In the above example, the struct copy would cause an error message.

HC(S)12 Compiler Manual 199

Compiler Options
Compiler Option Details

-CswMaxLF: Maximum Load Factor for Switch Tables

Group
CODE GENERATION

Scope

Function

Syntax

-CswMaxLF<number>

Arguments

<number>: a number in the range of 0 — 100 denoting the maximum load factor

Default
Backend-dependent

Defines

None

Pragmas

None

Description

Allows changing the default strategy of the Compiler to use tables for switch
statements.

NOTE This option is only available if the compiler supports switch tables.

Normally the Compiler uses a table for switches with more than about 8 labels if
the table is filled between 80% (minimum load factor of 80) and 100% (maximum
load factor of 100). If there are not enough labels for a table or the table is not
filled, a branch tree is generated (tree of if-else-if-else). This branch tree is like an
‘unrolled’ binary search in a table which quickly evaluates the associated label for
a switch expression.

Using a branch tree instead of a table improves code execution speed, but may
increase code size. In addition, because the branch tree itself uses no special

200

HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

runtime routine for switch expression evaluation, debugging may be more
seamless.

Specifying a load factor means that tables are generated in specific ‘fuel’ status:
The table in Listing 5.20 is filled to 90% (labels for ‘0’ to ‘9’, except for ‘5°).

Listing 5.20 Load factor example

switch(i) {
case 0
case 1:
case 2:
case 3
case 4: ...
// case 5:
case 6:
case 7:
case 8:
case 9:
default
}
Assumed that the minimum load factor is set to 50% and setting the maximum load
factor for the above case to 80%, a branch tree is generated instead a table. But
setting the maximum load factor to 95% will produce a table.
To guarantee that tables are generated for switches with full tables only, set the
table minimum and maximum load factors to 100:
-CswMinLF100 -CswMaxLF100.
See also

Compiler options:

¢ -CswMinLB: Minimum Number of Labels for Switch Tables

¢ -CswMinSLB: Minimum Number of Labels for Search Switch Tables
¢ -CswMinLF: Minimum Load Factor for Switch Tables

HC(S)12 Compiler Manual 201

Compiler Options
Compiler Option Details

-CswMinLB: Minimum Number of Labels for Switch Tables

Group
CODE GENERATION

Scope

Function

Syntax

-CswMinLB<number>

Arguments

<number>: a positive number denoting the number of labels.

Default
Backend-dependent

Defines

None

Pragmas

None

Description

This option allows changing the default strategy of the Compiler using tables for
switch statements.

NOTE This option is only available if the compiler supports switch tables.

Normally the Compiler uses a table for switches with more than about § labels
(case entries) (actually this number is highly backend-dependent). If there are not
enough labels for a table, a branch tree is generated (tree of if-else-if-else). This
branch tree is like an ‘unrolled’ binary search in a table which evaluates very fast
the associated label for a switch expression.

Using a branch tree instead of a table may increases the code execution speed, but
it probably increases the code size. In addition, because the branch tree itself uses
no special runtime routine for switch expression evaluation, debugging may be
much easier.

202

HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

To disable any tables for switch statements, just set the minimum number of labels
needed for a table to a high value (e.g., 9999):
-CswMinLB9999 -CswMinSLB9999.

When disabling simple tables it usually makes sense also to disable search tables
with the -CswMinSLB option.

See also
Compiler options:
¢ -CswMinLF: Minimum Load Factor for Switch Tables
¢ -CswMinSLB: Minimum Number of Labels for Search Switch Tables
¢ -CswMaxLF: Maximum Load Factor for Switch Tables

HC(S)12 Compiler Manual 203

Compiler Options
Compiler Option Details

-CswMinLF: Minimum Load Factor for Switch Tables

Group
CODE GENERATION

Scope

Function

Syntax

-CswMinLF<number>

Arguments

<number>: a number in the range of 0 — 100 denoting the minimum load factor

Default
Backend-dependent

Defines

None

Pragmas

None

Description

Allows the Compiler to use tables for switch statements.
NOTE This option is only available if the compiler supports switch tables.

Normally the Compiler uses a table for switches with more than about 8 labels and
if the table is filled between 80% (minimum load factor of 80) and 100%
(maximum load factor of 100). If there are not enough labels for a table or the table
is not filled, a branch tree is generated (tree of if-else-if-else). This branch tree is
like an ‘unrolled’ binary search in a table which quickly evaluates the associated
label for a switch expression.

Using a branch tree instead of a table improves code execution speed, but may
increase code size. In addition, because the branch tree itself uses no special
runtime routine for switch expression evaluation, debugging is more seamless.

Specifying a load factor means that tables are generated in specific ‘fuel’ status:

204

HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

The table in Listing 5.21 is filled to 90% (labels for ‘0’ to ‘9’, except for ‘5’).

Listing 5.21 Load factor example

switch(i) {
case 0:
case 1:
case 2:
case 3
case 4: ..
// case 5:
case 6:
case 7:
case 8:
case 9:
default

Assuming that the maximum load factor is set to 100% and the minimum load
factor for the above case is set to 90%, this still generates a table. But setting the
minimum load factor to 95% produces a branch tree.

To guarantee that tables are generated for switches with full tables only, set the
minimum and maximum table load factors to 100: ~-CswMinLF100
-CswMaxLF100.

See also
Compiler options:
¢ -CswMinLB: Minimum Number of Labels for Switch Tables
¢ -CswMinSLB: Minimum Number of Labels for Search Switch Tables
¢ -CswMaxLF: Maximum Load Factor for Switch Tables

HC(S)12 Compiler Manual 205

Compiler Options
Compiler Option Details

-CswMinSLB: Minimum Number of Labels for Search Switch Tables

Group
CODE GENERATION

Scope

Function

Syntax

-CswMinSLB<number>

Arguments

<number>: a positive number denoting the number of labels

Default
Backend-dependent

Defines

None

Pragmas

None

Description

Allows the Compiler to use tables for switch statements.
NOTE This option is only available if the compiler supports search tables.

Switch tables are implemented in different ways. When almost all case entries in
some range are given, a table containing only branch targets is used. Using such a
dense table is efficient because only the correct entry is accessed. When large holes
exist in some areas, a table form can still be used.

But now the case entry and its corresponding branch target are encoded in the
table. This is called a search table. A complex runtime routine must be used to
access a search table. This routine checks all entries until it finds the matching one.
Search tables execute slowly.

Using a search table improves code density, but the execution time increases.
Every time an entry in a search table must be found, all previous entries must be

206

HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

checked first. For a dense table, the right offset is computed and accessed. In
addition, note that all backends implement search tables (if at all) by using a
complex runtime routine. This may make debugging more complex.

To disable search tables for switch statements, set the minimum number of labels
needed for a table to a high value (e.g., 9999): -CswMinSLB9999.

See also
Compiler options:
¢ -CswMinLB: Minimum Number of Labels for Switch Tables
¢ -CswMinLF: Minimum Load Factor for Switch Tables
¢ -CswMaxLF: Maximum Load Factor for Switch Tables

HC(S)12 Compiler Manual 207

Compiler Options
Compiler Option Details

-Cu: Loop Unrolling

Group
OPTIMIZATIONS

Scope

Function

Syntax

-Cu[=i<number>]

Arguments

<number>: number of iterations for unrolling, between 0 and 1024

Default

None

Defines

None

Pragmas

#pragma LOOP_UNROLL.: Force Loop Unrolling
#pragma NO_LOOP_UNROLL: Disable Loop Unrolling

Description
Enables loop unrolling with the following restrictions:
¢ Only simple for statements are unrolled, e.g.,
for (i=0; i<10; i++)
* Initialization and test of the loop counter must be done with a constant.
¢ Only <, >, <=, >= are permitted in a condition.
* Only ++ or — are allowed for the loop variable increment or decrement.
* The loop counter must be integral.
* No change of the loop counter is allowed within the loop.

¢ The loop counter must not be used on the left side of an assignment.

208

HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

¢ No address operator (&) is allowed on the loop counter within the loop.
¢ Only small loops are unrolled:
¢ Loops with few statements within the loop.

* Loops with fewer than 16 increments or decrements of the loop counter.
The bound may be changed with the optional argument =i <number>.
The -Cu=i20 option unrolls loops with a maximum of 20 iterations.

Examples

Listing 5.22 for Loop

-Cu

int i, 3

j = 0;

for (i=0; i<3; i++) {
j += 1i;

}

When the -Cu compiler option is used, the Compiler issues an information
message 'Unrolling loop' and transforms this loop as shown in Listing 5.23.:

Listing 5.23 Transformation of the for Loop in Listing 5.22

+= 1;
+= 2;
3;

[N

The Compiler also transforms some special loops, i.e., loops with a constant condition or
loops with only one pass:

Listing 5.24 Example for a loop with a constant condition

for (i=1; i>3; i++) {
j += 1i;

}

The Compiler issues an information message 'Constant condition found, removing
loop' and transforms the loop into a simple assignment:

i=1;

because the loop body is never executed.

HC(S)12 Compiler Manual 209

Compiler Options
Compiler Option Details

Listing 5.25 Example for a loop with only one pass

for (i=1; i<2; i++) {
j += 1i;

}

The Compiler issues a warning 'Unrolling loop' and transforms the for loop into
j o+=1;
i = 2;

because the loop body is executed only once.

210 HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

-CVolWordAcc: Do not reduce volatile word accesses

Group
CODE GENERATION

Scope

Function

Syntax
-CVolWordAcc

Arguments

None

Default

None

Defines

None

Pragmas

None

Description

Forces the compiler to generate a word access on 16 bit large volatile integral
types. Typical application is the access to 16 bit large 1/O registers. The option has
negative effect on code efficiency because bit set, bit clear and bit test operations
are not used (see example below).

HC(S)12 Compiler Manual 211

Compiler Options
Compiler Option Details

Example
volatile int 1i;
void foo(void) {
if ((1i & 0x200) != 0)
££();

with option -CVolWordAcc

LDD i
CLRB
ANDA #2

TBEQ D,exit
JSR ff
exit:

RTS

without option ~-CVolWordAcc
BRCLR i, #2,exit
JSR ff

exit:

RTS

See also

None

{

212

HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

-Cx: No Code Generation

Group
CODE GENERATION

Scope

Compilation Unit

Syntax
-Cx

Arguments

None

Default

None

Defines

None

Pragmas

None

Description

The -Cx compiler option disables the code generation process of the Compiler. No
object code is generated, though the Compiler performs a syntactical check of the
source code. This allows a quick test if the Compiler accepts the source without

€ITOrS.

HC(S)12 Compiler Manual

213

Compiler Options
Compiler Option Details

-D: Macro Definition

Group
LANGUAGE

Scope

Compilation Unit

Syntax

-D<identifier>[=<value>]

Arguments

<identifier>:identifier to be defined
<value>: value for <identifier>, anything except - and <a blank>

Default

None

Defines

None

Pragmas

None

Description

The Compiler allows the definition of a macro on the command line. The effect is
the same as having a #define directive at the very beginning of the source file.

Listing 5.26 DEBUG macro definition.

-DDEBUG=0

This is the same as writing:

#define DEBUG 0

in the source file.

214

HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

If you need strings with blanks in your macro definition, there are two ways:
escape sequences or double quotes:

-dPath="Path\40with\40spaces"
-d"Path=""Path with spaces"""

NOTE Blanks are not allowed after the —D option — the first blank terminates this
option. Also, macro parameters are not supported.

HC(S)12 Compiler Manual 215

Compiler Options
Compiler Option Details

-Ec: Conversion from 'const T*' to 'T*'

Group
LANGUAGE

Scope

Function

Syntax

-Ec

Arguments

None

Default

None

Description

If this non-ANSI compliant extension is enabled, a pointer to a constant type is
treated like a pointer to the non-constant equivalent of the type. Earlier Compilers
did not check a store to a constant object through a pointer. This option is useful if
some older source has to be compiled.

Defines

None

Pragmas

None

Examples

See Listing 5.27 and Listing 5.28 for examples using -Ec conversions.

Listing 5.27 Conversion from 'const T*' to 'T*

void f() {

int *i;

const int *j;

i=j; /* C++ illegal, but OK with -Ec! */
}

216 HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

struct A {
int 1i;

Y

void g() {

const struct A *a;

a->i=3; /* ANSI C/C++ illegal, but OK with -Ec! */
}

void h() {
const int *i;
i=23; / ANSI-C/C++ illegal, but OK with -Ec! */

Listing 5.28 Assigning a value to a “constant” pointer

-Ec

void foo(const int *p){
*p = 0; // Some Compilers do not issue an error.

HC(S)12 Compiler Manual 217

Compiler Options
Compiler Option Details

-Eencrypt: Encrypt Files

Group
OUTPUT

Scope

Compilation Unit

Syntax

-Eencrypt [=<filename>]

Arguments
<filename>: The name of the file to be generated

It may contain special modifiers (see Using Special Modifiers).

Default

The default filename is $f . e%e. A file named ‘foo.c’ creates an encrypted file
named ‘foo.ec’.

Description
All files passed together with this option are encrypted using the given key with the
-Ekey: Encryption Key option.

NOTE This option is only available or operative with a license for the following
feature: HIxxxx30, where xxxx is the feature number of the compiler for a
specific target.

Defines

None

Pragmas

None

218 HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

Example
foo.c foo.h -Ekeyl234567 -Eencrypt=%n.e%e

encrypts the ‘foo. c’ file using the 1234567 key to the ‘foo . ec’ file and the
‘foo.h’ file to the ‘foo.eh’ file.

The encrypted foo.ec and foo. eh files may be passed to a client. The client is
able to compile the encrypted files without the key compiling the following file:

foo.ec

See also
-Ekey: Encryption Key

HC(S)12 Compiler Manual 219

Compiler Options
Compiler Option Details

-Ekey: Encryption Key

Group
OUTPUT

Scope

Compilation Unit

Syntax

-Ekey<keyNumber>

Arguments

<keyNumber>

Default

The default encryption key is 0. Using this default is not recommended.

Description
This option is used to encrypt files with the given key number (-Eencrypt

option).

NOTE This option is only available or operative with a license for the following
feature: HIxxxx30 where xxxx is the feature number of the compiler for a
specific target.

Defines

None

Pragmas

None

Example
foo.c -Ekeyl234567 -Eencrypt=%n.e%e
encrypts the ‘foo. ¢’ file using the 1234567 key.

See also
-Eencrypt: Encrypt Files

220

HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

-Env: Set Environment Variable

Group
HOST

Scope

Compilation Unit

Syntax

-Env<Environment Variable>=<Variable Setting>

Arguments
<Environment Variable>: Environment variable to be set

<Variable Setting>: Setting of the environment variable

Default

None

Description

This option sets an environment variable. This environment variable may be used
in the maker, or used to overwrite system environment variables.

Defines

None

Pragmas

None

Example
-EnvOBJPATH=\sources\obj
This is the same as:
OBJPATH=\sources\obj
in the default.env file.

Use the following syntax to use an environment variable using filenames with
spaces:

-Env"OBJPATH=\program filesg"

HC(S)12 Compiler Manual 221

Compiler Options
Compiler Option Details

See also

Environment

222 HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

-F (-Fh, -F1, -F1o, -F2, -F20,-F6, or -F7): Object-File Format

Group
OUTPUT

Scope
Application

Syntax
-F(h|1l|1lo|2]|20]|6]7)

Arguments

h: HIWARE object-file format

1: ELF/DWAREF 1.1 object-file format

1lo: compatible ELF/DWAREF 1.1 object-file format
2: ELF/DWAREF 2.0 object-file format

20: compatible ELF/DWAREF 2.0 object-file format
6: strict HIWARE V2.6 object-file format

7: strict HIWARE V2.7 object-file format

NOTE Not all object-file formats may be available for a target.

Default
-F2

Defines

_ HIWARE_OBJECT_FILE_FORMAT_
_ ELF_OBJECT_FILE_FORMAT_

Pragmas

None

Description

The Compiler writes the code and debugging info after compilation into an object
file.

HC(S)12 Compiler Manual 223

Compiler Options
Compiler Option Details

The Compiler uses a HIWARE-proprietary object-file format when the -Fh, -F6,
or —F7 options are set.

The HIWARE Object-file Format (-Fh) has the following limitations:

* The type char is limited to a size of 1 byte.

* Symbolic debugging for enumerations is limited to 16-bit signed enumerations.
* No zero bytes in strings are allowed (a zero byte marks the end of the string).
The HIWARE V2.7 Object-file Format (-F7 option) has some limitations:

* The type char is limited to a size of 1 byte.

¢ Enumerations are limited to a size of 2 bytes and have to be signed.

¢ No symbolic debugging for enumerations.

* The standard type short is encoded as int in the object-file format.

* No zero bytes in strings allowed (a zero byte marks the end of the string).

The Compiler produces an ELE/DWAREF object file when the -F1 or -F2 options
are set. This object-file format may also be supported by other Compiler vendors.

In the Compiler ELF/DWARF 2.0 output, some constructs written in previous
versions were not conforming to the ELF standard because the standard was not
clear enough in this area. Because old versions of the simulator or debugger (V5.2
or earlier) are not able to load the corrected new format, the old behavior can still
be produced by using -£2o0 instead of -£2. Some old versions of the debugger
(simulator or debugger V5.2 or earlier) generate a GPF when a new absolute file is
loaded. If you want to use the older versions, use —-f£2o0 instead of —-£2. New
versions of the debugger are able to load both formats correctly. Also, some older
ELF/DWAREF object file loaders from emulator vendors may require you to set the
-F2o0 option.

The -F1o option is only supported if the target supports the ELF/DWAREF 1.1
format. This option is only used with older debugger versions as a compatibility
option. This option may be discontinued in the future. It is recommended you use
-F1 instead.

Note that it is recommended to use the ELF/DWAREF 2.0 format instead of the
ELF/DWAREF 1.1. The 2.0 format is much more generic. In addition, it supports
multiple include files plus modifications of the basic generic types (e.g., floating
point format). Debug information is also more robust.

224

HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

-H: Short Help

Group
VARIOUS

Scope

None

Syntax
-H

Arguments

None

Default

None

Defines

None

Pragmas

None

Description

The -H option causes the Compiler to display a short list (i.e., help list) of available
options within the Compiler window. Options are grouped into HOST,
LANGUAGE, OPTIMIZATIONS, OUTPUT, INPUT, CODE GENERATION,
MESSAGES, and VARIOUS.

No other option or source file should be specified when the —H option is invoked.

HC(S)12 Compiler Manual 225

Compiler Options
Compiler Option Details

Example
Listing 5.29 lists the short list options.

Listing 5.29 Short Help options

-H may produce the following list:
INPUT:
-1 Filenames are clipped to DOS length

-I Include file path

VARIOUS:

-H Prints this list of options

-V Prints the Compiler version

226 HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

: Include File Path

Group
INPUT

Scope

Compilation Unit

Syntax
-I<path>

Arguments

<path>: path, terminated by a space or end-of-line

Default

None

Defines

None

Pragmas

None

Description

Allows you to set include paths in addition to the LIBPATH, LIBRARYPATH:
‘include <File>’ Path and GENPATH: #include “File” Path environment variables.
Paths specified with this option have precedence over includes in the current
directory, and paths specified in GENPATH, LIBPATH, and LIBRARYPATH.

Example
-I. -I..\h -I\src\include

This directs the Compiler to search for header files first in the current directory (.),
then relative from the current directory in ' . . \h', and then in
"\src\include'". If the file is not found, the search continues with GENPATH,
LIBPATH, and LIBRARYPATH for header files in double quotes
(#include"headerfile.h"), and with LIBPATH and LIBRARYPATH for
header files in angular brackets (#include <stdio.h>).

HC(S)12 Compiler Manual 227

Compiler Options
Compiler Option Details

See also
Input Files
-AddIncl: Additional Include File
LIBRARYPATH: ‘include <File>’ Path

228 HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

-lca: Implicit Comments in HLI-ASM Instructions

Group
LANGUAGE

Scope

Function

Syntax

-Ica

Arguments

None

Default

None

Defines

None

Pragmas

None

Description

Comments in HLI (High-Level Inline) Assembler are either normal High-Level
Language comments (e.g., using ANSI-C comments /* */ or C++ comments

/ /), or HLI comments beginning with ;.

If this option is enabled, the Compiler handles all text as comments after a
complete assembly statement. It is not necessary to start an HLI comment with a
special token (“;’, </ *” or ‘/ /). This is useful when compiling assembly source

from other assemblers that allow this option.

Example

-Ica

HC(S)12 Compiler Manual

229

Compiler Options
Compiler Option Details

-La: Generate Assembler Include File

Group
OUTPUT

Scope

Function

Syntax

-La[=<filename>]

Arguments

<filename>: The name of the file to be generated
It may contain special modifiers (see Using Special Modifiers)

Default

No file created

Defines

None

Pragmas

None

Description

The -La option causes the Compiler to generate an assembler include file when
the CREATE_ASM_LISTING pragma occurs. The name of the created file is
specified by this option. If no name is specified, a default of “%f . inc” is taken.
To put the file into the directory specified by the TEXTPATH: Text File Path
environment variable, use the option -1a=%n. inc. The $£f option already
contains the path of the source file. When % £ is used, the generated file is in the
same directory as the source file.

The content of all modifiers refers to the main input file and not to the actual
header file. The main input file is the one specified on the command line.
Example

-La=asm.inc

230 HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

See also
#pragma CREATE_ASM_LISTING: Create an Assembler Include File Listing

-La: Generate Assembler Include File

HC(S)12 Compiler Manual 231

Compiler Options
Compiler Option Details

-Lasm: Generate Listing File

Group
OUTPUT

Scope

Function

Syntax

-Lasm[=<filename>]

Arguments

<filename>: The name of the file to be generated.

It may contain special modifiers (see Using Special Modifiers).
Default

No file created.

Defines

None

Pragmas

None

Description

The -Lasm option causes the Compiler to generate an assembler listing file
directly. All assembler generated instructions are also printed to this file. The name
of the file is specified by this option. If no name is specified, a default of $n.1st
is taken. The TEXTPATH: Text File Path environment variable is used if the
resulting filename contains no path information.

The syntax does not always conform with the inline assembler or the assembler
syntax. Therefore, this option can only be used to review the generated code. It can
not currently be used to generate a file for assembly.

Example

-Lasm=asm.lst

232 HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

See also

-Lasmc: Configure Listing File

HC(S)12 Compiler Manual 233

Compiler Options
Compiler Option Details

-Lasmc: Configure Listing File

Group
OUTPUT

Scope

Function

Syntax

-Lasmc [={a|c|i|s|h|p|e|v]|y}]

Arguments

: Do not write the address in front of every instruction
: Do not write the hex bytes of the instructions

: Do not write the decoded instructions

: Do not write the source code

: Do not write the function header

: Do not write the source prolog

: Do not write the source epilog

: Do not write the compiler version

: Do not write cycle information

< 0T w0 HEQQ

K

Default
All printed together with the source

Defines

None

Pragmas

None

Description

The -Lasmc option configures the output format of the listing file generated with
the -Lasm: Generate Listing File option. The addresses, the hex bytes, and the
instructions are selectively switched off.

234 HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

The format of the listing file has layout shown in Listing 5.30. The letters in
brackets ([]) indicate which suboption may be used to switch it off:

Listing 5.30 -Lasm configuration options

[v] ANSI-C/cC++ Compiler V-5.0.1
[v]

[p] 1:

[p] 2: wvoid foo(void) {

[h]

[h] Function: foo

[h] Source : C:\Freescale\test.c
[h] Options : -Lasm=%n.lst

[h]

[s] 3: 3}

[a] 0000 [c] 34 [1] RTS
[e] 4:

[e] 5 // comments

[e] 6

Example

-Lasmc=ac

HC(S)12 Compiler Manual

235

Compiler Options
Compiler Option Details

-Ldf: Log Predefined Defines to File

Group
OUTPUT

Scope

Compilation Unit

Syntax
-LAf [="<file>"]

Arguments

<file>: filename for the log file, default is predef . h.

Default
default <file> is predef .h.

Defines

None

Pragmas

None

Description

The -Ldf option causes the Compiler to generate a text file that contains a list of
the compiler-defined #define. The default filename is predef . h, but may be
changed (e.g., -Ldf="myfile.h”). The file is generated in the directory
specified by the TEXTPATH: Text File Path environment variable. The defines
written to this file depend on the actual Compiler option settings (e.g., type size
settings, ANSI compliance, ...).

NOTE The defines specified by the command line (-D: Macro Definition option) are
not included.

This option may be very useful for SQA. With this option it is possible to
document every #define which was used to compile all sources.

236 HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

NOTE This option only has an effect if a file is compiled. This option is unusable if
you are not compiling a file.

Example

Listing 5.31 is an example which lists the contents of a file containing define
directives.

Listing 5.31 Displays the contents of a file where define directives are present

-Ldf

This generates the predef.h filewith the following content:
/* resolved by preprocessor: __ _LINE__ */

/* resolved by preprocessor: __ FILE__ */

/* resolved by preprocessor: _ DATE__ */

/* resolved by preprocessor: __ TIME__ */

#define _ STDC__ 0

#define _ VERSION___ 5004

#define _ VERSION_STR_ _ "V-5.0.4"
#define _ SMALL_

#define _ PTR_SIZE 2_

#define _ BITFIELD_LSBIT FIRST_
#define _ BITFIELD_MSBYTE_FIRST

See also

-D: Macro Definition

HC(S)12 Compiler Manual 237

Compiler Options
Compiler Option Details

-Li: List of Included Files

Group
OUTPUT

Scope
Compilation Unit

Syntax
-Li

Arguments

None

Default

None

Defines

None

Pragmas

None

Description

The -Li option causes the Compiler to generate a text file which contains a list of
the #include files specified in the source. This text file shares the same name as
the source file but with the extension, * . inc. The files are stored in the path

specified by the TEXTPATH: Text File Path environment variable. The generated

file may be used in make files.

Example

Listing 5.32 is an example where the —-Li compiler option can be used to display a
file’s contents when that file contains an included directive.

Listing 5.32 Display contents of a file when include directives are present

-Li
If the source file is: C: \myFiles\b.c:

/* C:\myFiles\b.c */

238

HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

#include <string.h>
Then the generated file is:

:\myFiles\b.c :\
:\Freescale\lib\targetc\include\string.h \
:\Freescale\lib\targetc\include\libdefs.h \
:\Freescale\lib\targetc\include\hidef.h \
:\Freescale\lib\targetc\include\stddef.h \
:\Freescale\lib\targetc\include\stdtypes.h

QN 0O00an

See also

-Lm: List of Included Files in Make Format compiler option

HC(S)12 Compiler Manual 239

Compiler Options
Compiler Option Details

-Lic: License Information

Group
VARIOUS

Scope

None

Syntax

-Lic

Arguments

None

Default

None

Defines

None

Pragmas

None

Description
The -Lic option prints the current license information (e.g., if it is a demo version
or a full version). This information is also displayed in the about box.

Example

-Lic

See also
Compiler options:
¢ -LicA: License Information about every Feature in Directory
* -LicBorrow: Borrow License Feature

e -LicWait: Wait until Floating License is Available from Floating License Server

240 HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

-LicA: License Information about every Feature in Directory

Group
VARIOUS

Scope

None

Syntax

-LicA

Arguments

None

Default

None

Defines

None

Pragmas

None

Description

The -LicA option prints the license information (e.g., if the tool or feature is a
demo version or a full version) of every tool or * .d11 in the directory where the
executable is located. Each file in the directory is analyzed.

Example

-LicA

See also
Compiler options:
¢ -Lic: License Information
¢ -LicBorrow: Borrow License Feature

e -LicWait: Wait until Floating License is Available from Floating License Server

HC(S)12 Compiler Manual 241

Compiler Options
Compiler Option Details

-LicBorrow: Borrow License Feature

Group
HOST

Scope

None

Syntax

-LicBorrow<feature>[;<version>]:<date>

Arguments

<feature>: the feature name to be borrowed (e.g., HI100100).
<version>: optional version of the feature to be borrowed (e.g., 3.000).
<date>: date with optional time until when the feature shall be borrowed (e.g.,
15-Mar-2005:18:35).

Default

None

Defines

None

Pragmas

None

Description

This option allows to borrow a license feature until a given date or time. Borrowing
allows you to use a floating license even if disconnected from the floating license
server.

You need to specify the feature name and the date until you want to borrow the
feature. If the feature you want to borrow is a feature belonging to the tool where
you use this option, then you do not need to specify the version of the feature
(because the tool knows the version). However, if you want to borrow any feature,
you need to specify as well the feature version of it.

You can check the status of currently borrowed features in the tool about box.

242

HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

NOTE You only can borrow features, if you have a floating license and if your
floating license is enabled for borrowing. See as well the provided FLEXIm
documentation about details on borrowing.

Example
-LicBorrowHI100100;3.000:12-Mar-2005:18:25

See also
Compiler options:
¢ -LicA: License Information about every Feature in Directory
¢ -Lic: License Information

* -LicWait: Wait until Floating License is Available from Floating License Server

HC(S)12 Compiler Manual 243

Compiler Options
Compiler Option Details

-LicWait: Wait until Floating License is Available from Floating
License Server

Group
HOST

Scope

None

Syntax

-LicWait

Arguments

None

Default

None

Defines

None

Pragmas

None

Description
By default, if a license is not available from the floating license server, then the
application will immediately return. With -LicWait set, the application will wait
(blocking) until a license is available from the floating license server.

Example

-LicWait

See also
e -Lic: License Information
¢ -LicA: License Information about every Feature in Directory

¢ -LicBorrow: Borrow License Feature

244 HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

-LI: Statistics about Each Function

Group
OUTPUT

Scope

Compilation Unit

Syntax

-Ll[=<filename>]

Arguments

<filename>: file to be used for the output

Default

The default output filename is logfile. txt

Defines

None

Pragmas

None

Description

The -L1 option causes the Compiler to append statistical information about the
compilation session to the specified file. Compiler options, code size (in bytes),
stack usage (in bytes) and compilation time (in seconds) are given for each
procedure of the compiled file. The information is appended to the specified
filename (or the file 'make.txt, if no argument given). If the TEXTPATH: Text File
Path environment variable is set, the file is stored into the path specified by the
environment variable. Otherwise it is stored in the current directory.

HC(S)12 Compiler Manual 245

Compiler Options
Compiler Option Details

Example

Listing 5.33 is an example where the use of the -L.1 compiler options allows
statistical information to be added to the end of an output listing file.

Listing 5.33 Statistical information appended to an assembler listing

-Ll=mylog.txt

/* foo.c */

int Funcl (int b) {
int a = b+3;
return a+2;

}

void Func2 (void) {

}

Appends the following two lines into mylog.txt:
foo.c Funcl -Ll=mylog.txt 11 4 0.055000
foo.c Func2 -Ll=mylog.txt 1 0 0.001000

246

HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

-Lm: List of Included Files in Make Format

Group
OUTPUT

Scope

Compilation Unit

Syntax

-Im[=<filename>]

Arguments

<filename>: file to be used for the output

Default

The default filename is Make . txt

Defines

None

Pragmas

None

Description

The -Lm option causes the Compiler to generate a text file which contains a list of
the #include files specified in the source. The generated list is in a make format.
The -Lm option is useful when creating make files. The output from several source
files may be copied and grouped into one make file. The generated list is in the
make format. The filename does not include the path. After each entry, an empty
line is added. The information is appended to the specified filename (or the
make. txt file, if no argument is given). If the TEXTPATH: Text File Path
environment variable is set, the file is stored into the path specified by the
environment variable. Otherwise it is stored in the current directory.

HC(S)12 Compiler Manual 247

Compiler Options
Compiler Option Details

Example

Listing 5.34 is an example where the —-Lm option generates a make file containing
include directives.

Listing 5.34 Make file construction

COMPOTIONS=-Lm=mymake.txt

Compiling the following sources 'foo.c' and 'second.c':
/* foo.c */

#include <stddef.h>

#include "myheader.h"

/* second.c */
#include "inc.h"

#include "header.h"

This adds the following entries in the 'mymake.txt':

foo.o : foo.c stddef.h myheader.h
second.o : second.c inc.h header.h
See also

-Li: List of Included Files
-Lo: Object File List

248 HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

-LmCfg: Configuration of List of Included Files in Make Format

Group
OUTPUT

Scope

Compilation Unit

Syntax
-LmCfg[={1i|1l|m|o]|u}]

Arguments

: Write path of included files
: Use line continuation

: Write path of main file

: Write path of object file

: Update information

c 0 3B K B

Default

None

Defines

None

Pragmas

None

Description

This option is used when configuring the -Lm: List of Included Files in Make
Format option. The -LmC£g option is operative only if the —Lm option is also
used. The -Lm option produces the ‘dependency’ information for a make file. Each
dependency information grouping is structured as shown in Listing 5.35:

Listing 5.35 Dependency information grouping

<main object file>: <main source file> {<included file>}

HC(S)12 Compiler Manual 249

Compiler Options
Compiler Option Details

Example

If you compile a file named b . ¢, which includes ‘stdio.h’, the output of -Lm
may be:

b.o: b.c stdio.h stddef.h stdarg.h string.h

The 1 suboption uses line continuation for each single entry in the dependency list.
This improves readability as shown in Listing 5.36:

Listing 5.36 | suboption

b.o: \
b.c \
stdio.h \
stddef.h \
stdarg.h \
string.h

With the m suboption, the full path of the main file is written. The main file is the
actual compilation unit (file to be compiled). This is necessary if there are files
with the same name in different directories:

b.o: C:\test\b.c stdio.h stddef.h stdarg.h string.h

The o suboption has the same effect as m, but writes the full name of the target
object file:

C:\test\obj\b.o: b.c stdio.h stddef.h stdarg.h string.h

The i suboption writes the full path of all included files in the dependency list
(Listing 5.37):

Listing 5.37 i suboption

b.o: b.c C:\Freescale\lib\include\stdio.h
C:\Freescale\lib\include\stddef.h C:\Freescale\lib\include\stdarg.h
C:\Freescale\lib\include\ C:\Freescale\lib\include\string.h

The u suboption updates the information in the output file. If the file does not exist,
the file is created. If the file exists and the current information is not yet in the file,
the information is appended to the file. If the information is already present, it is
updated. This allows you to specify this suboption for each compilation ensuring
that the make dependency file is always up to date.

250

HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

Example
COMPOTIONS=-LmCfg=u

See also
Compiler options:
e -Li: List of Included Files
* -Lo: Object File List
¢ -Lm: List of Included Files in Make Format

HC(S)12 Compiler Manual 251

Compiler Options
Compiler Option Details

-Lo: Object File List

Group
OUTPUT

Scope

Compilation Unit

Syntax

-Lo[=<filename>]

Arguments

<filename>: file to be used for the output

Default

The default filename is objlist. txt

Defines

None

Pragmas

None

Description

The -Lo option causes the Compiler to append the object filename to the list in the
specified file.The information is appended to the specified filename (or the file
make. txt file, if no argument given). If the TEXTPATH: Text File Path is set,
the file is stored into the path specified by the environment variable. Otherwise, it
is stored in the current directory.

See also
Compiler options:

e -Li: List of Included Files

e -Lm: List of Included Files in Make Format

252 HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

-Lp: Preprocessor Output

Group
OUTPUT

Scope

Compilation Unit

Syntax

-Lp[=<filename>]

Arguments

<filename>: The name of the file to be generated.

It may contain special modifiers (see Using Special Modifiers).
Default

No file created

Defines

None

Pragmas

None

Description

The -Lp option causes the Compiler to generate a text file which contains the
preprocessor’s output. If no filename is specified, the text file shares the same
name as the source file but with the extension, * . PRE (%n.pre). The TEXTPATH
environment variable is used to store the preprocessor file.

The resultant file is a form of the source file. All preprocessor commands (i.e.,
#include, #define, #1ifdef, etc.) have been resolved. Only source code is
listed with line numbers.

See also

-LpX: Stop after Preprocessor
-LpCfg: Preprocessor Output configuration

HC(S)12 Compiler Manual 253

Compiler Options
Compiler Option Details

-LpCfg: Preprocessor Output configuration

Group
OUTPUT

Scope

Compilation Unit

Syntax
-LpCfg[={c|£|1]|s}]

Arguments

: Do not generate line comments

: Generate empty lines

: Filenames with path

: Generate #line directives in preprocessor output
: Do not generate filenames

: Maintain spaces

n 2 OO

Default

If -LpC £y is specified, all suboptions (arguments) are enabled

Defines

None

Pragmas

None

Description

The -LpC£g option specifies how source file and -line information is formatted in
the preprocessor output. Switching -LpCfg off means that the output is formatted
as in former compiler versions. The effects of the arguments are listed in Table 5.8.

254 HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

Table 5.8 Effects of Source and Line Information Format Control Arguments

Argument | on off
"c" #line 1 "1
2%
#line 10 /~10%
"e" int j; int j;
inti;
inti;
“f! C:\Freescale\include\stdlib.h stdlib.h
" #line 1 "stdlib.h" /**** FILE 'stdlib.h' */
“m" /**** FILE 'stdlib.h' */
"s" r* 1 */int f(void) { /* 1%/ intf(void) {
r* 2* retun 1; * 2* returnt;
/* 3%} * 3%}
all #line 1 "C:\Freescale\include\stdlib.h" /**** FILE 'stdlib.h' */
#line 10 j* ; *j
/*10*
Example
-Lpcfg
-Lpcfg=1fs
See also

-Lp: Preprocessor Output

HC(S)12 Compiler Manual

255

Compiler Options
Compiler Option Details

-LpX: Stop after Preprocessor

Group
OUTPUT

Scope

Compilation Unit

Syntax
-LpX

Arguments

None

Default

None

Defines

None

Pragmas

None

Description
Without this option, the compiler always translates the preprocessor output as C
code. To do only preprocessing, use this option together with the —-Lp option. No
object file is generated.

Example
-LpX

See also
-Lp: Preprocessor Output

256 HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

-M (-Ms, -Mb, -Ml): Memory Model

Group
CODE GENERATION

Scope
Application

Syntax
-M(s|b|1)

Arguments

s: small memory model
b: banked memory model
1: large memory model

Default

-Ms

Defines

_ SMALL___
__ BANKED_
_ LARGE_

Pragmas

None

Description

See the Backend chapter for details (Memory Models).

Example

-Ms

HC(S)12 Compiler Manual

257

Compiler Options
Compiler Option Details

-Map: Define mapping for memory space 0x4000-0x7FFF

Group
CODE GENERATION

Scope
Application

Syntax

-Map (RAM| FLASH | Exernal)

Arguments

RAM: maps accesses to 0x4000-0x7FFF to 0xOF_C000-0xOF_FFFF in the global
memory space (RAM area).

FLASH: maps accesses to 0x4000-0x7FFF to 0x7F_4000-0x7F_7FFF in the
global memory space (FLASH).

External: maps accesses to 0x4000-0x7FFF to 0x14_4000-0x14_7FFF in the
global memory space (external access).

Default
FLASH

Defines

None

Pragmas

None

Description

This option sets the memory mapping for addresses between 0x4000 and Ox7FFF
for HCS12XE. This mapping is determined by the MMC control register (the
ROMHM and RAMHM bits) and the compiler must be aware of the current setting to
correctly perform address translations.

Example

-MapRAM

258 HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

-N: Display Notify Box

Group
MESSAGES

Scope

Function

Syntax
-N

Arguments

None

Default

None

Defines

None

Pragmas

None

Description

Makes the Compiler display an alert box if there was an error during compilation.
This is useful when running a make file (please see Make Utility) because the
Compiler waits for you to acknowledge the message, thus suspending make file
processing. The N stands for “Notify”.

This feature is useful for halting and aborting a build using the Make Utility.

Example
-N

If an error occurs during compilation, a dialog box similar to the one in Figure 5.3
appears.

HC(S)12 Compiler Manual 259

Compiler Options
Compiler Option Details

Figure 5.3 Alert Dialog Box

@ *%% Error occurred while processing! **#*

OK

260 HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

-NoBeep: No Beep in Case of an Error
Group
MESSAGES

Scope

Function

Syntax

-NoBeep

Arguments

None

Default

None

Defines

None

Pragmas

None

Description

There is a ‘beep’ notification at the end of processing if an error was generated. To
implement a silent error, this ‘beep’ may be switched off using this option.

Example

-NoBeep

HC(S)12 Compiler Manual

261

Compiler Options
Compiler Option Details

-NoDebuginfo: Do not Generate Debug Information

Group
OUTPUT

Scope

None

Syntax

-NoDebugInfo

Arguments

None

Default

None

Defines

None

Pragmas

None

Description

The compiler generates debug information by default. When this option is used, the
compiler does not generate debug information.

NOTE To generate an application without debug information in ELF, the linker
provides an option to strip the debug information. By calling the linker twice,
you can generate two versions of the application: one with and one without
debug information. This compiler option has to be used only if object files or
libraries are to be distributed without debug info.

NOTE This option does not affect the generated code. Only the debug information is
excluded.

262 HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

See also
Compiler options:
e -F (-Fh, -F1, -Flo, -F2, -F2o0,-F6, or -F7): Object-File Format
¢ -NoPath: Strip Path Info

HC(S)12 Compiler Manual 263

Compiler Options
Compiler Option Details

-NoEnv: Do not Use Environment

Group
STARTUP. This option cannot be specified interactively.

Scope

None

Syntax

-NoEnv

Arguments

None

Default

None

Defines

None

Pragmas

None

Description

This option can only be specified at the command line while starting the
application. It can not be specified in any other way, including via the default.env
file, the command line, or processes.

When this option is given, the application does not use any environment
(default.env, project.ini, or tips file) data.

Example
compiler.exe -NoEnv

Use the compiler executable name instead of “compiler”.

See also

Local Configuration File (usually project.ini)

264 HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

-NoPath: Strip Path Info

Group
OUTPUT

Scope

Compilation Unit

Syntax
-NoPath

Arguments

None

Default

None

Defines

None

Pragmas

None

Description

With this option set, it is possible to avoid any path information in object files. This
is useful if you want to move object files to another file location, or to hide your
path structure.

See also

-NoDebuglnfo: Do not Generate Debug Information

HC(S)12 Compiler Manual 265

Compiler Options
Compiler Option Details

-0 (-Os, -Ot): Main Optimization Target

Group
OPTIMIZATIONS

Scope

Function

Syntax
-0(s|t)

Arguments

s: Optimization for code size (default)
t: Optimization for execution speed

Default
-0Os

Defines

__ OPTIMIZE FOR_SIZE_
__ _OPTIMIZE FOR_TIME

Pragmas

None

Description

There are various points where the Compiler has to choose between two
possibilities: it can either generate fast, but large code, or small but slower code.

The Compiler generally optimizes on code size. It often has to decide between a
runtime routine or an expanded code. The programmer can decide whether to
choose between the slower and shorter or the faster and longer code sequence by
setting a command line switch.

The -Os option directs the Compiler to optimize the code for smaller code size.
The Compiler trades faster-larger code for slower-smaller code.

266

HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

The -0t option directs the Compiler to optimize the code for faster execution
time. The Compiler will “trade” slower-smaller code for faster-larger code.

NOTE This option only affects some special code sequences. This option has to be set
together with other optimization options (e.g., register optimization) to get best

results.

Example
-0Os

HC(S)12 Compiler Manual 267

Compiler Options
Compiler Option Details

-Obfv: Optimize Bitfields and Volatile Bitfields

Group

OPTIMIZATIONS

Scope

Function

Syntax
-Obfv

Arguments

None

Default

None

Defines

None

Pragmas

None

Description

Optimize bitfields as well as bitfields declared as volatile. The compiler is allowed
to change the access order or to combine many accesses to one, even if the bitfields

are declared as volatile.

268

HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

Example
Listing 5.38 contains bitfields to be optimized with the -Obfv compiler option.

Listing 5.38 Bitfields example

volatile struct {
unsigned int b0:1;
unsigned int bl:1;
unsigned int b2:1;
} bf;
void foo(void) {
bf.b0 = 1; bf.bl = 1; bf.b2 = 1;
}

Listing 5.39 shows the effect of the -Ob£fv option.

Listing 5.39 Results of using the -Obfv option

using -Obfv:
BSET Dbf, #7

without -Obfv:
BSET bf,#1
BSET bf, #2
BSET bf, #4

HC(S)12 Compiler Manual 269

Compiler Options
Compiler Option Details

-ObjN: Object filename Specification

Group
OUTPUT

Scope

Compilation Unit

Syntax
-ObjN=<file>

Arguments

<file>: Object filename

Default
—Oij:% (OBJPATH) \%n.o

Defines

None

Pragmas

None

Description

The object file has the same name as the processed source file, but with the * . o
extension. This option allows a flexible way to define the object filename. It may
contain special modifiers (see Using Special Modifiers). If <file> in the option
contains a path (absolute or relative), the OBJPATH environment variable is
ignored.

270 HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

Example
-ObjN=a.out
The resulting object file is a . out. If the OBJPATH environment variable is set to
\src\obj, the object file is \src\obj\a. out.
fibo.c -ObjN=%n.obj
The resulting object file is “fibo . obj”.

myfile.c -ObjN=..\objects_%n.obj
The object file is named relative to the current directory to
..\objects_myfile.obj. The OBJPATH environment variable is ignored

because the <file> contains a path.

See also
OBJPATH: Object File Path environment variable

HC(S)12 Compiler Manual 271

Compiler Options
Compiler Option Details

-Oc: Common Subexpression Elimination (CSE)

Group
OPTIMIZATIONS

Scope

Function

Syntax
-Oc

Arguments

None

Default

None

Defines

None

Pragmas

None

Description

Performs common subexpression elimination (CSE). The code for common
subexpressions and assignments is generated only once. The result is reused.
Depending on available registers, a common subexpression may produce more
code due to many spills.

NOTE When the CSE is switched on, changes of variables by aliases may generate
incorrect optimizations.

This option is disabled and present only for compatibility reasons for the Freescale
HC(S)12

Example
-Oc

272 HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

Listing 5.40 is an example where the use of the CSE compiler option causes
incorrect optimizations. But, no matter, because this option is not enabled any
longer in any event for the HC(S)12.

Listing 5.40 Example where CSE may produce incorrect results

void main(void) {
int x;
int *p;
x = 7; /* here the value of x is set to 7 */
P = &X;
p = 6; / here x 1s set to 6 by the alias *p */
/* here x is assumed to be equal to 7 and
Error is called */
if(x '= 6) Error();

NOTE This error does not occur if x is declared as volatile.

HC(S)12 Compiler Manual 273

Compiler Options
Compiler Option Details

-OdocF: Dynamic Option Configuration for Functions

Group
OPTIMIZATIONS

Scope

Function

Syntax

-OdocF="<option>"

Arguments

<option>: Set of options, separated by | to be evaluated for each single function.

Default

None

Defines

None

Pragmas

None

Description

Normally, you must set a specific set of Compiler switches for each compilation
unit (file to be compiled). For some files, a specific set of options may decrease the
code size, but for other files, the same set of Compiler options may produce more
code depending on the sources.

Some optimizations may reduce the code size for some functions, but may increase
the code size for other functions in the same compilation unit. Normally it is
impossible to vary options over different functions, or to find the best combination
of options.

This option solves this problem by allowing the Compiler to choose from a set of
options to reach the smallest code size for every function. Without this feature, you
must set some Compiler switches, which are fixed, over the whole compilation
unit. With this feature, the Compiler is free to find the best option combination
from a user-defined set for every function.

274

HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

Standard merging rules applies also for this new option, e.g.,
-Or -OdocF="-Ocu]|-Cu"

is the same as

-OrDOCF="-0Ouc | -Cu"

The Compiler attempts to find the best option combination (of those specified) and
evaluates all possible combinations of all specified sets, e.g., for the option shown
in Listing 5.41:

Listing 5.41 Example of dynamic option configuration

-W2 -0docF="-Or|-Cni -Cul|-Oc"

The code sizes for following option combinations are evaluated:

1. -wW2

2. -W2 -Or

3. -W2 -Cni -Cu

4. -W2 -Or -Cni -Cu

5. -W2 -Oc

6. -W2 -Or -0Oc

7. -W2 -Cni -Cu -0c

8. -W2 -Or -Cni -Cu -Oc

Thus, if the more sets are specified, the longer the Compiler has to evaluate all
combinations, e.g., for 5 sets 32 evaluations.

NOTE No options with scope Application or Compilation Unit (as memory model,
float or double format, or object-file format) or options for the whole
compilation unit (like inlining or macro definition) should be specified in this
option. The generated functions may be incompatible for linking and
executing.

Limitations:

¢ The maximum set of options set is limited to five, e.g.,
-0docF="-0r -Ou|-Cni|-Cu|-0ic2|-W2 -Ob"

* The maximum length of the option is 64 characters.

* The feature is available only for functions and options compatible with
functions. Future extensions will also provide this option for compilation units.

Example
-0docf="-0Or|-Cni"

HC(S)12 Compiler Manual 275

Compiler Options
Compiler Option Details

-Of or -Onf: Create Sub-Functions with Common Code

Group
OPTIMIZATIONS

Scope

Function

Syntax
-Onf

Arguments

None

Default
-0Of default or with -Os; -Onf with -Ot”

Defines

None

Pragmas

None

Description

This option performs the reverse job of inlining. It detects common code parts in
the generated code. The common code is moved to a different place, and all
occurrences are replaced with a JSR to the moved code. At the end of the common
code, an RTS instruction is inserted. All SP usages are increased by an address
size. This optimization takes care of stack allocation, control flow, and of functions
having arguments on the stack. Also, inline assembler code is never treated as
common code.

Example

Consider the following function in Listing 5.42:

276 HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

Listing 5.42 Function example

void f (int);

void g(void) ;
void h(void) ;
void main (void) {

£(1); £(2); £(3);
h();

£(1); £(2); £(3);
gl();

£(1); £(2);

The compiler first detects that "f£ (1) ; £(2); £(3) ;" occurs twice and places
this code separately.

The two code patterns are replaced by a call to the moved code.

This situation can be thought of as the following non-C pseudo code (C does not
support local functions):

void main (void) {
void tmpO (void) {
£(1); £(2); £(3);
}
tmpO () ;
h();
tmpO () ;

In a next step, the Compiler detects that the code "f(1); f(2);" also occurs twice.
The Compiler generates a second internal function:

void main(void) {
void tmpl (void) {

£(1); £(2);

}

void tmpO (void) {
tmpl(); £(3);
}

tmpO () ;

h();

tmpO () ;

g();

HC(S)12 Compiler Manual 277

Compiler Options
Compiler Option Details

tmpl () ;
}

The new code of the tmp1 function (actually tmp1l is not really a function, but it is
a part of main ()) is called once directly from main, and once indirectly by using
tmp0. These two call chains use a different amount of the stack. Because of this
situation, it is not always possible to generate correct debug information. For the
local function tmp1, the compiler cannot state both possible SP values. It will only
state one of them. While debugging the other state, local variables and the call
chain are declared invalid in the debugger. The compiler notes this situation and
issues the message:

“C12056: SP debug info incorrect because of optimization or inline assembler”

Tips
Switch off this optimization to debug your application. The common code makes
the control flow more complicated. Also, the debugger cannot distinguish two
distinct usages of the same code. Setting a breakpoint in common code stops the
application and every use of it. It will also stop the local variables and the call
frame if they are not displayed correctly, as explained above.

Switching off this optimization achieves faster code. For code density, there are
only a few cases where the code gets worse. This situation may only occur when
other optimizations (such as branch tail merging or peepholing) cannot find a
pattern after this optimization occurs.

See also

Message “C12056: SP debug info incorrect because of optimization or inline
assembler”

278 HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

-0i: Inlining

Group
OPTIMIZATIONS

Scope

Compilation unit

Syntax

-0i[=(c<code Size>|OFF)]

Arguments
<code Size>: Limit for inlining in code size
OFF: switching off inlining
Default
None. If no <code Size> is specified, the compiler uses a default code size of
40 bytes
Defines

None

Pragmas

#pragma INLINE

Description

This option enables inline expansion. If there is a #pragma INLINE before a
function definition, all calls of this function are replaced by the code of this
function, if possible.

Using the -0i=c0 option switches off inlining. Functions marked with the

#pragma INLINE are still inlined. To disable inlining, use the -Oi=0FF option.
Example

-01i

#pragma INLINE

static void f(int i) {
/* all calls of function f() are inlined */

HC(S)12 Compiler Manual 279

Compiler Options
Compiler Option Details

VA
}

The option extension [=c<n>] signifies that all functions with a size smaller than
<n> are inlined. For example, compiling with the option -~0i=c100 enables
inline expansion for all functions with a size smaller than 100 bytes.

Restrictions
The following functions are not inlined:
¢ functions with default arguments
» functions with labels inside
¢ functions with an open parameter list (“void f (int 1i,...);”)
¢ functions with inline assembly statements

» functions using local static objects

280 HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

-Oilib: Optimize Library Functions

Group
OPTIMIZATIONS

Scope

Function

Syntax

-Oilib[=<arguments>]

Arguments

<arguments> are one or multiple of following suboptions:
: inline calls to the strcpy () function

: inline calls to the strlen () function

: inline calls to the fabs () or fabsf () functions

: inline calls to the memset () function

: inline calls to the memcpy () function

: replace shifts left of 1 by array lookup

Q O Qo

Default

None

Defines

None

Pragmas

None

Description

This option enables the compiler to optimize specific known library functions to
reduce execution time. The Compiler frequently uses small functions such as
strepy(), stremp(), and so forth. The following functions are optimized:

e strcpy () (only available for ICG-based backends)
 strlen() (e.g., strlen(“abc™))
e abs() or fabs () (e.g., ‘f = fabs(f);’)

HC(S)12 Compiler Manual 281

Compiler Options
Compiler Option Details

* memset()

memset () is optimized only if:

* the result is not used

* memset () is used to zero out

« the size for the zero out is in the range 1 — Oxff

¢ the ANSI library header file <string.h> is included

An example for this is ‘ (void)memset (&buf, 0, 50);’ In this case, the
call tomemset () is replaced with a call to ‘°_memset_clear_8bitCount’
present in the ANSI library (string.c)

memcpy () is optimized only if:

¢ the result is not used,

 the size for the copy out is in the range 0 to Oxf £,

¢ the ANSI library header file <string.h> is included.

An example for this is ‘ (void)memcpy (&buf, &buf2, 30);’
In this case the call to memcpy () is replaced with a call to
‘_memcpy_8bitCount’ present in the ANSI library (string.c)

(char)1l << wvalisreplaced by _PowOfTwo_8[val] if _PowOfTwo_8 is
known at compile time. Similarly, for 16-bit and for 32-bit shifts, the arrays

_PowOfTwo_16 and _PowOfTwo_32 are used. These constant arrays contain the
values 1, 2, 4, 8... . They are declared in hidef£ . h. This optimization is performed

only when optimizing for time.

-011ib without arguments: optimize calls to all supported library functions.

Example

Compiling the f() function with the -0i1lib=a compiler option

(only available for ICG-based backends):
void f(void) {
char *s = strcpy(s, ct);

}

is translated similar to the following function:
void g(void) {

s2 = s;

while (*s2++ = *ct++);

}

282

HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

See also

-Oi: Inlining
Message C5920

HC(S)12 Compiler Manual 283

Compiler Options
Compiler Option Details

-Ol: Try to Keep Loop Induction Variables in Registers

Group
OPTIMIZATIONS

Scope

Function

Syntax

-Ol<number>

Arguments

<number>: number of registers to be used for induction variables

Default

None

Defines

None

Pragmas

None

Description

Try to maintain <number> loop induction variables in registers. Loop induction
variables are variables read and written within the loop (e.g., loop counter). The
Compiler tries to keep loop induction variables in registers to reduce execution
time, and sometimes also code size. This option sets the number of loop induction
variables the Compiler is allowed to keep in registers. The range is from 0 (no
variable) to infinity. If this option is not given, the Compiler takes the optimal
number (code density). Like the option -or, this option may increase code size
(spill and merge code) if too many loop induction variables are specified.

NOTE Disable this option (with —~010) if there are problems when debugging your
code. This optimization could increase the complexity of code debugging on a

High-Level Language level.

The example in Listing 5.43 is used in Listing 5.44 and in Listing 5.45.

284

HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

Listing 5.43 Example (abstract code)

void main(char *s) {
do {
*s = 0;
} while (*++s);

}

Listing 5.44 shows pseudo disassembly with the -010 option:

Listing 5.44 With the -OI0 option (no optimization, pseudo code)

loop:
LD s, Reg0
ST #0, [RegO]
INC RegO
ST Reg0, s
CMP [RegO], #0
BNE loop

Listing 5.45 shows pseudo disassembly without the -O1 option (i.e., optimized)
where the load and stores from or to variable s disappear.

Listing 5.45 Without option (optimized, pseudo assembler)

loop:
ST #0, s
INC s
CMP s, #0
BNE loop

Example
-011

HC(S)12 Compiler Manual 285

Compiler Options
Compiler Option Details

-Ona: Disable Alias Checking

Group
OPTIMIZATIONS

Scope

Function

Syntax

-Ona

Arguments

None

Default

None

Defines

None

Pragmas

None

Description

Variables that may be written by a pointer indirection or an array access are
redefined after the optimization. This option prevents the Compiler from doing this
redefinition, which may allow you to reuse already-loaded variables or equivalent
constants. Use this option only if you are sure you will have no real writes of
aliases to a memory location of a variable.

Example: do not compile with -Ona.
void main (void) {

int a = 0, *p = &a;

*p = 1; // real write by the alias *p
if (a == 0) Error(); // if -Ona is specified,
// Error() is called!

286 HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

Example

-Ona

HC(S)12 Compiler Manual 287

Compiler Options
Compiler Option Details

-OnB: Disable Branch Optimizer

Group
OPTIMIZATIONS

Scope

Function

Syntax

-OnB[=<option Char>{<option Char>}]

Arguments
<option Char> is one of the following:
a: Short BRA optimization
b: Branch JSR to BSR optimization
1: Long branch optimization
t: Branch tail optimization
Default

None

Defines

None

Pragmas

None

Description

See Backend for details.

Example
-OnB

Disables all branch optimizations

288 HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

-Onbf: Disable Optimize Bitfields

Group
OPTIMIZATIONS

Scope

Function

Syntax
-Onbf

Arguments

None

Default

None

Defines

None

Pragmas

None

Description

A sequence of bitfield assignments with constants is not combined if you use
-Onbf. This option simplifies debugging and makes the code more readable.

Example

Listing 5.46 Example bitfield definition

struct {
b0:1;
bl:1;
b2:1;
} bf;

volid main (void) {

bf.b0

0;

HC(S)12 Compiler Manual

289

Compiler Options
Compiler Option Details

bf.bl 0;
bf.b2 = 0;
}

without -Onbf: (pseudo intermediate code)
BITCLR bf, #7 // all 3 bits (the mask is 7)
// are cleared

with -Onbf: (pseudo intermediate code)
BITCLR bf, #1 // clear bit 1 (mask 1)
BITCLR bf, #2 // clear bit 2 (mask 2)
BITCLR bf, #4 // clear bit 3 (mask 4)

Example
-Onbf

290 HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

-Onbt: Disable ICG Level Branch Tail Merging
Group
OPTIMIZATIONS

Scope

Function

Syntax
-Onbt

Arguments

None

Default

None

Defines

None

Pragmas

None

Description

The ICG level branch tail merging is switched off leading to more readable code

and simplified debugging.

The example in Listing 5.47 is used in Listing 5.48 and in Listing 5.49.

Listing 5.47 Example function

void main(void) {
if(x > 0) {

y = 4;
else {
=9

[

7

}
Y
}
}

HC(S)12 Compiler Manual

291

Compiler Options
Compiler Option Details

Without -Onbt, the above example disassembles as in Listing 5.48

Listing 5.48 Case (1) without -Onbt: (pseudo intermediate code)

CMP x, 0
BLE else_label

LOAD reg, #4
BRA branch_tail

else_label: LOAD reg, #9
branch_tail: STORE y, reg
go_on:

With the -Obnt compiler option, Listing 5.47 disassembles as in Listing 5.49.

Listing 5.49 Case (2) with -Onbt: (pseudo intermediate code)

CMP x, 0
BLE else_label

LOAD reg, #4
STORE vy, reg
BRA go_on

else_label: LOAD reg, #9
STORE y, reg
go_on:

Example
-Onbt

292 HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

-Onca: Disable any Constant Folding

Group
OPTIMIZATIONS

Scope

Function

Syntax

-Onca

Arguments

None

Default

None

Defines

None

Pragmas

None

Description

Disables any constant folding over statement boundaries. This option prevents the
Compiler from folding constants. All arithmetical operations are coded. This
option must be set when the library functions, setjmp () and longjmp (), are
present. If this option is not set, the Compiler makes wrong assumptions as in the

example in Listing 5.50:

Listing 5.50 Example with “if condition always true”

void main(void) {
jmp_buf env;

int k = 0;

if (setjmp(env) == 0) {
k =1;
longjmp (env, 0);
Err (1) ;

HC(S)12 Compiler Manual

293

Compiler Options
Compiler Option Details

} else if (k != 1) {/* assumed always TRUE */
Err(0);
}
}

Example

-Onca

294 HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

-Oncn: Disable Constant Folding in case of a New Constant

Group
OPTIMIZATIONS

Scope

Function

Syntax

-Oncn

Arguments

None

Default

None

Defines

None

Pragmas

None

Description

Disables any constant folding in the case of a new constant. This option prevents
the Compiler from folding constants if the resulting constant is new.

The option only has an effect for processors where a constant is difficult to load
(e.g., RISC processors).

Listing 5.51 Example (pseudo code)

void main (void) {
int a =1, b =2, ¢, d;

c
ol

’

a + b;
a*b
}

Case (1) without the -Oncn option(pseudo code):

HC(S)12 Compiler Manual 295

Compiler Options
Compiler Option Details

a MOVE 1
b MOVE 2
c MOVE 3

Case (2) with the -Oncn option (pseudo code):
a MOVE 1

b MOVE 2

c ADD a,b

d MOVE 2

The constant 3 is a new constant that does not appear in the source. The constant 2
is already present, so it is still propagated.

Example

-Oncn

296 HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

-OnCopyDown: Do Generate Copy Down Information for Zero
Values

Group
OPTIMIZATIONS

Scope

Compilation unit

Syntax
-OnCopyDown

Arguments

None

Default

None

Defines

None

Pragmas

None

Description

With usual startup code, all global variables are first set to O (zero out). If the
definition contained an initialization value, this initialization value is copied to the
variable (copy down). Because of this, it is not necessary to copy zero values
unless the usual startup code is modified. If a modified startup code contains a
copy down but not a zero out, use this option to prevent the compiler from
removing the initialization.

NOTE The case of a copy down without a zero out is normally not used. Because the
copy down needs much more space than the zero out, it usually contains copy
down and zero out, zero out alone, or none of them.

HC(S)12 Compiler Manual 297

Compiler Options
Compiler Option Details

In the HIWARE format, the object-file format permits the Compiler to remove
single assignments in a structure or array initialization. In the ELF format, it is
optimized only if the whole array or structure is initialized with 0.

NOTE This option controls the optimizations done in the compiler. However, the
linker itself might further optimize the copy down or the zero out.

Example

int i=0;
int arr[10]={1,0,0,0,0,0,0,0,0,0};

If this option is present, no copy down is generated for i.

For the arr array, the initialization with O can only be optimized in the HIWARE
format. In ELF it is not possible to separate them from the initialization with 1.

298 HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

-OnCstVar: Disable CONST Variable by Constant Replacement

Group
OPTIMIZATIONS

Scope

Compilation Unit

Syntax
-OnCstVar

Arguments

None

Default

None

Defines

None

Pragmas

None

Description

This option provides you with a way to switch OFF the replacement of CONST
variable by the constant value.

Example

const int MyConst = 5;
int 1i;
void foo(void) {
i = MyConst;
}

If the -OnStVar option is not set, the compiler replaces each occurrence of
MyConst with its constant value 5; thatis 1 = MyConst is transformed into i
= 5;. The Memory or ROM needed for the MyConst constant variable is
optimized as well. With the ~-OnCstVar option set, this optimization is avoided.
This is logical only if you want to have unoptimized code.

HC(S)12 Compiler Manual 299

Compiler Options
Compiler Option Details

-One: Disable any low-level Common Subexpression Elimination

Group
OPTIMIZATIONS

Scope

Function

Syntax

-One

Arguments

None

Default

None

Defines

None

Pragmas

None

Description

This option prevents the Compiler from reusing common subexpressions, such as
array indexes and array base addresses. The code size may increase. The low-level
CSE does not have the alias problems of the frontend CSE and is therefore
switched on by default.

The two CSE optimizations do not cover the same cases. The low-level CSE has a
finer granularity but does not handle all cases of the frontend CSE.

Use this option only to generate more readable code for debugging.

300 HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

Listing 5.52 Example: (abstract code)

void main(int 1) {
int a[10];
ali] = ali-171;

}

Listing 5.53 shows the disassembled code without using the —One option, whereas
Listing 5.54 shows the result of not using the -One option.

Listing 5.53 Case (1) without the -One option (optimized)

tmpl LD i

tmp2 LSL tmpl, #1
tmp3 SUB tmp2, #2
tmp4 ADR a

tmp5 ADD tmp3, tmp4
tmp6 LD (tmp5)

2 (tmp5) ST tmp6

Listing 5.54 Case (2) using -One (not optimized, readable)

tmpl LD i
tmp2 LSL tmpl, #1
tmp3 SUB tmp2, #2
tmp4 ADR a
tmp5 ADD tmp3, tmp4
tmp6 LSL tmpl, #1 ;calculated twice
tmp7 ADR a ;calculated twice
tmp8 ADD tmp6, tmp7
tmp9 LD (tmp5)
(tmp8) ST tmp9

Example

-One

HC(S)12 Compiler Manual 301

Compiler Options
Compiler Option Details

-OnP: Disable Peephole Optimization

Group
OPTIMIZATIONS

Scope

Function

Syntax

-OnP[=<option Char>{<option Char>}]

Arguments
<option Char> is one of the following:

: Disable LEAS to PUSH/ POP optimization
: Disable POP PULL optimization

: Disable Compare 0 optimizations

: Disable load/store load/store optimization
Disable LEA LEA optimization

: Disable load/store to POP/PUSH optimization
: Disable load arithm store optimization

: Disable JSR/RTS optimization

: Disable INC/DEC Compare optimizations
: Disable store store optimization

: Disable LEA 0 optimization

: Disable LEA into addressing mode optimization
: Disable RET optimization

: Disable BCLR, BCLR Optimization)

: Disable PULL POP optimization

Disable PSHC PULC optimization

: Disable BRA to RTS optimization

: Disable peephole 8-bit store combining

: Disable TFR TFR optimization

: Disable unused optimization

: Disable peephole index optimization

NETdTUNRQUBEREFAFYEITQ MDD AQOT

Default

None

302

HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

Defines

None

Pragmas

None

Description

If -OnP is specified, the whole peephole optimizer is disabled. To disable only a
single peephole optimization, the optional syntax ~-OnP=<char> may be used,
e.g., ~-OnP=ef disables LEA/LEA and POP/PUSH optimization. Refer to the
Backend chapter for additional details.

Example
-OnP

See also

Peephole Optimizations

HC(S)12 Compiler Manual 303

Compiler Options
Compiler Option Details

-OnPMNC: Disable Code Generation for NULL Pointer to
Member Check

Group
OPTIMIZATIONS

Scope

Compilation Unit

Syntax
-OnPMNC

Arguments

None

Default

None

Defines

None

Pragmas

None

Description

Before assigning a pointer to a member in C++, you must ensure that the pointer to
the member is not NULL in order to generate correct and safe code. In embedded
systems development, the problem is to generate the denser code while avoiding
overhead whenever possible (this NULL check code is a good example). If you can
ensure this pointer to a member will never be NULL, then this NULL check is
useless. This option enables you to switch off the code generation for the NULL
check.

Example
-OnPMNC

304 HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

-Ont: Disable Tree Optimizer
Group
OPTIMIZATIONS

Scope

Function

Syntax

-Ont[={&|&|*|+|-|/[0]1]7|8]9]?[~|a|blc|d]|e]
flglh|i|l[m|nlofp|alr|s|t|ulv|w|]|]~}]

Arguments

oe

: Disable mod optimization

: Disable bit and optimization

: Disable mul optimization

: Disable plus optimization

: Disable minus optimization

: Disable div optimization

: Disable and optimization

: Disable or optimization

: Disable extend optimization

: Disable switch optimization

: Disable assign optimization

: Disable test optimization

: Disable xor optimization

: Disable statement optimization

: Disable constant folding optimization
: Disable compare optimization

: Disable binary operation optimization
: Disable constant swap optimization
: Disable condition optimization

: Disable compare size optimization

: Disable unary minus optimization

: Disable address optimization

: Disable transformations for inlining
: Disable label optimization

: Disable left shift optimization

: Disable right shift optimization

* R

+

> W 0 JF O~ |

BB HUWHDQ RO QOO

HC(S)12 Compiler Manual 305

Compiler Options
Compiler Option Details

: Disable cast optimization

: Disable cut optimization

: Disable 16-32 compare optimization
: Disable 16-32 relative optimization
: Disable indirect optimization

: Disable for optimization

: Disable while optimization

: Disable do optimization

: Disable if optimization

: Disable bit or optimization

: Disable bit neg optimization

i — s < €t RQ T O

Default

If -Ont is specified, all optimizations are disabled

Defines

None

Pragmas

None

Description

The Compiler contains a special optimizer which optimizes the internal tree data
structure. This tree data structure holds the semantic of the program and represents
the parsed statements and expressions.

This option disables the tree optimizer. This may be useful for debugging and for
forcing the Compiler to produce ‘straightforward’ code. Note that the
optimizations below are just examples for the classes of optimizations.

If this option is set, the Compiler will not perform the following optimizations:
-Ont=~

Disable optimization of ‘~~1i’ into ‘1’
-Ont=l

Disable optimization of ‘1 | Oxf£££’ into ‘OxEE£E’

-Ont=w

Disable optimization of ‘if (1) i = 0; into ‘i = 0;

306 HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

-Ont=v

Disable optimization of ‘do ... while(0) into ‘...

-Ont=u

Disable optimization of ‘while (1) ...;’into ‘...;’

-Ont=t

Disable optimization of ‘for (; ;) ...’ into ‘while(1)

-Ont=s

Disable optimization of ‘*&1i’ into ‘1’

-Ont=r

Disable optimization of ‘Li<=4’ into 16-bit compares if 16-bit compares are better

-Ont=q

Reduction of long compares into int compares if int compares are better: (-Ont=gq
to disable it)

if (uL == 0)
is optimized into

if ((int) (uL>>16) == 0 && (int)ulL == 0)

-Ont=p

Disable optimization of ‘ (char) (long)i’into ‘ (char)i’

-Ont=0

Disable optimization of ‘ (short) (int)L’ into ‘ (short)L’ if short and
int have the same size

-Ont=n, -Ont=m:

Optimization of shift optimizations (<<, >>, -Ont=n or -Ont=m to disable it):
Reduction of shift counts to unsigned char:

ul, = uLl >> ul2;
is optimized into

ul, = uLl >> (unsigned char)ul2;

Optimization of zero shift counts:

ul, = uLl >> 0;

HC(S)12 Compiler Manual 307

Compiler Options
Compiler Option Details

is optimized into

ul, = ulLl;

Optimization of shift counts greater than the object to be shifted:

ul, = uLl >> 40;
is optimized into

ul, = 0L;

Strength reduction for operations followed by a cut operation:

ch = ull * ul2;
is optimized into

ch = (char)ulLl * (char)ul2;

Replacing shift operations by load or store
i = ulL >> 16;
is optimized into

i = *(int *) (&ulL);

Shift count reductions:
ch = uL >> 17;
is optimized into

ch = (*(char *) (&ul)+1)>>1;

Optimization of shift combined with binary and:
ch = (uL >> 25) & 0x10;
is optimized into

ch = ((*(char *) (&uL))>>1) & 0x10;

-Ont=I

Disable optimization removal of labels if not used

-Ont=i

Disable optimization of ‘&*p’ into ‘p’

308

HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

-Ont=j

This optimization transforms the syntax tree into an equivalent form in which more
inlining cases can be done. This option only has an effect when inlining is enabled.

-Ont=h

Disable optimization of ‘-~ (-1)’ into ‘i’
-Ont:g

Disable compare size optimization

Examples (assume that ch is a character variable) :

Disable optimization of ((int)8 < (int) (unsigned char)ch)into
(unsigned char) 8 < (unsigned char) ch;

Disable optimization of (int) (unsigned char)ch < (int)8 into
optimized to (unsigned char) ch < (unsigned char) 8;

Disable optimization of ch > (int)8 into ch > (char)8;
-Ont=f

Disable optimization of ‘ (a==0)’into ‘(!a)’
-Ont=e

Disable optimization of ‘2*1i’ into ‘1*2’
-Ont=d

Disable optimization of ‘us & ui’ into ‘us & (unsigned short)ui’
-Ont=c

Disable optimization of ‘if ((long)i)’into ‘if (i)’
-Ont=b

Disable optimization of ‘3+7” into ‘10’

-Ont=a

Disable optimization of last statement in function if result is not used

-Ont=~

Disable optimization of ‘170’ into ‘1’

HC(S)12 Compiler Manual 309

Compiler Options
Compiler Option Details

-Ont=?

Disable optimization of ‘1 = (int) (cond ? L1:L2);’ into
‘1 = cond ? (int)Ll: (int)L2;’

-Ont=9
Disable optimization of ‘i=1i;’
-Ont=8

Disable optimization of empty switch statement

-Ont=7

Disable optimization of ‘ (long) (char)L’ into ‘L’
-Ont=1

Disable optimization of ‘a || 0’ into ‘a’
-Ont=0

Disable optimization of ‘a && 1’ into ‘a’
-Ont=/

Disable optimization of ‘a/1’ into ‘a’
-Ont=-

Disable optimization of ‘a-0’ into ‘a’
-Ont=+

Disable optimization of ‘a+0’ into ‘a’
-Ont=*

Disable optimization of ‘a*1’ into ‘a’
-Ont=&

Disable optimization of ‘a&0’ into ‘0’
-Ont=%

Disable optimization of ‘a%1’ into ‘0’

Example
fibo.c -Ont

310 HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

-Or: Allocate Local Variables into Registers

Group
OPTIMIZATIONS

Scope

Function

Syntax
-Or

Arguments

None

Default

None

Defines
__OPTIMIZE_REG_

Pragmas

None

Description

Allocate local variables (char or int) in registers. The number of local variables
allocated in registers depends on the number of available registers. This option is
useful when using variables as loop counters or switch selectors or if the processor
requires register operands for multiple operations (e.g., RISC processors).
Compiling with this option may increase your code size (spill and merge code).

NOTE This optimization may result in code that could be very hard to debug at the
High-level Language level.

NOTE This optimization will not take effect for some backends.
For some backends the code does not change.

HC(S)12 Compiler Manual 311

Compiler Options
Compiler Option Details

Example

-Or

int main(void) {
int a, b;
return a + b;

}

Case (1) without the -Or option (pseudo code):

tmpl LD a

tmp2 LD b

tmp3 ADD tmpl, tmp2
RET tmp3

Case (2) with the -Or option (pseudo code):
tmpl ADD a,b
RET tmpl

312

HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

-Ou and -Onu: Optimize Dead Assignments

Group
OPTIMIZATIONS

Scope

Function

Syntax

-0 (u|nu)

Arguments

None

Default

Optimization enabled for functions containing no inline assembler code

Defines

None

Pragmas

None

Description

Optimize dead assignments. Assignments to local variables, not referenced later,
are removed by the Compiler.

There are three possible settings for this option:
e -Ouis given

Always optimize dead assignments (even if HLI is present in current function).
Inline assembler accesses are not considered.

NOTE This option is not safe when accesses to local variables are contained in inline
assembler code.

* -Onu is given

The optimization does not take place. This generates the best possible debug
information. The code is larger and slower than without -One.

HC(S)12 Compiler Manual 313

Compiler Options
Compiler Option Details

¢ neither -Ou nor -Onu is given
Optimize dead assignments if HLI is not present in the current function.
NOTE The compiler is not aware of longjmp () or setjmp () calls. These
functions, those that are similar, may generate a control flow which is not

recognized by the compiler. Therefore, be sure to either not use local variables

in functions using longjmp () or setjmp () or switch this optimization off
by using -Onu.

NOTE Dead assignments to volatile declared global objects are never optimized.

Example

-Ou

void main(int x) {
f(x);
x = 1; /* this assignment is dead and is
removed if -Ou is active */

314 HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

-Pe: Preprocessing Escape Sequences in Strings

Group
LANGUAGE

Scope

Compilation Unit

Syntax
-Pe

Arguments

None

Default

None

Defines

None

Pragmas

None

Description

If escape sequences are used in macros, they are handled in an include directive
similar to the way they are handled in a print £ () instruction:

#define STRING "C:\myfile.h"
#include STRING

produces an error:
>> Tllegal escape sequence

but used in:

printf (STRING) ;

produces a carriage return with line feed:
C:

HC(S)12 Compiler Manual 315

Compiler Options
Compiler Option Details

myfile

If the —Pe option is used, escape sequences are ignored in strings that contain a
DOS drive letter ('a—'z', 'A' —'Z") followed by a colon ':' and a backslash "\".

When the -Pe option is enabled, the Compiler handles strings in include directives

differently from other strings. Escape sequences in include directive strings are not
evaluated.

The following example:

#include "C:\names.h"

results in exactly the same include filename as in the source file
(“C:\names.h"). If the filename appears in a macro, the Compiler does not
distinguish between filename usage and normal string usage with escape sequence.
This occurs because the STRING macro has to be the same for both the include and
the printf() call, as shown below:

#define STRING "C:\n.h"
#include STRING /* means: "C:\n.h" *

void main (void) {

printf (STRING);/* means: "C:", new line and ".h" */
}

This option may be used to use macros for include files. This prevents escape
sequence scanning in strings if the string starts with a DOS drive letter ('a’ through
'z' or 'A" through 'Z") followed by a colon ' : ' and a backslash '\ '. With the

option set, the above example includes the C: \n . h file and calls printf () with
"C:\n.h").

Example

-Pe

316 HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

-PEDIV: Use EDIV instruction

Group
CODE GENERATION

Scope

Function

Syntax
-PEDIV[={Div|Mod}]

Arguments

Div: Use EDIV for divisions

Mod: Use EDIV for modulo instructions

Not specifying Div or Mod, ~-PEDIV means the same as specifying
both after the assignment (-PEDIV=DivMod).

Default

None

Defines

None

Pragmas

None

Description

The HC12 instruction set contains an EDIV and an EDIVS instruction. Each
instruction divides a 32-bit value by a 16-bit value giving a 16-bit quotient and a
16-bit remainder. The EDIV instruction handles the unsigned division case and the
EDIVS the signed division case.

With this option enabled, the compiler generates an EDIV instructions instead of
calling a division runtime routine for matching cases. When a 32-bit value is
divided by a 16-bit value, only 16 bits of the result are used.

The EDIV instruction, as implemented in the HC12 hardware, does not calculate a
result when an overflow occurs. When using EDIV to calculate

0x100001 % 0x10, the EDIV instruction does not return 0x01 as a remainder
because the quotient overflows. Therefore, the EDIV instruction cannot be used in

HC(S)12 Compiler Manual 317

Compiler Options
Compiler Option Details

a C-compatible code structure. When this option is enabled, the Compiler
generates this instruction assuming that no overflow occurs. If an overflow occurs,
the Compiler assumes it is insignificant.

Using this option may generate much faster and shorter code. But because this
optimization is not ANSI-C compliant, this option must be enabled separately.

Examples
See Listing 5.55 through Listing 5.58 for examples of the PEDIV compiler option.

Listing 5.55 C source example

long Divisor;
int Dividend;
int Remainder;
void Div(void) {
Remainder= Divisor%Quotient;

}

Listing 5.56 Div with -PEDIV generates the following disassembled code

LDD Divisor:0x2
LDX Dividend
LDY Divisor
EDIVS
STD Remainder
Listing 5.57 Div without -PEDIV generates the following disassembled code
LDD Dividend
JSR _ILSEXT ; calls INT to LONG conversion routine
PSHD
PSHX
LDD Divisor:0x2
LDX Divisor
JSR _LMODS ; calls the slow long division routine
STD Remainder

318

HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

Listing 5.58 Example of usage

void main(void) {

Divisor = 0x12345678;

Dividend = 0x4567;

Div(); /* in these case both version work because */
/* 0x12345678 / 0x4567 == 0x4326 <= O0xX7FFF */

Dividend = 0x10;

Div(); /* here the function compiled with -PEDIV */
/* does not return 8 in Remainder because */
/* 0x12345678 / 0x10 == 0x1234567 > Ox7FFF */

HC(S)12 Compiler Manual 319

Compiler Options
Compiler Option Details

-Pic: Generate Position-Independent Code (PIC)

Group
CODE

Scope

Function

Syntax
-Pic
Arguments

None

Default

None

Defines
__PIC__

Pragmas

None

Description

With this option enabled, the Compiler generates PIC (Position-independent
Code). PIC is generated only for code (call of functions) and not for data. Instead
of using JSR with extended (16-bit) addressing mode for function calls, the
Compiler uses a PC-relative (IDX2) call. This ensures the branch distance is
encoded instead of the absolute address (Listing 5.59).

Also, the Compiler uses an LBRA instead of a JMP for a local unconditional
branch.

Listing 5.59 Function call using PIC

void foo (void) ;

void main(void) {
foo(); // BSR foo instead of JSR foo
}

320 HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

With -pic:
0000 05fa0000 JMP foo, PCR

Without -pic:
0000 060000 JMP foo

NOTE With -Pic, the code is larger and slower. Therefore, this should only be used
whenever necessary.

Example

-Pic

See also

HC(S)12 Backend
-PicRTS: Call Runtime Support Position Independent compiler option
#pragma CODE_SEG: Code Segment Definition

HC(S)12 Compiler Manual 321

Compiler Options
Compiler Option Details

-PicRTS: Call Runtime Support Position Independent

Group
CODE

Scope

Function

Syntax

-PicRTS

Arguments

None

Default

None

Defines

None

Pragmas

None

Description

‘When this option is enabled, the Compiler calls runtime functions independently in
position-independent code position. This requires one additional byte per call and
should only be done when the whole application, including the runtime support,
must be position-independent. This option only affects position-independent
functions. Runtime calls that are not position-independent functions are still done
absolutely. This option is only useful when used together with:

e #pragma CODE_SEG _ PIC_SEG PicSegName or with

¢ the -Pic option.

Example

-PicRTS

322 HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

See also

Position-Independent Code (PIC)
#pragma CODE_SEG: Code Segment Definition
-Pic: Generate Position-Independent Code (PIC)

HC(S)12 Compiler Manual 323

Compiler Options
Compiler Option Details

-Pio: Include Files Only Once

Group
INPUT

Scope

Compilation Unit

Syntax

-Pio

Arguments

None

Default

None

Defines

None

Pragmas

None

Description

Includes every header file only once. Whenever the compiler reaches an #include
directive, it checks if this file to be included was already read. If so, the compiler
ignores the #include directive. It is common practice to protect header files from

multiple inclusion by conditional compilation, as shown in Listing 5.60:

Listing 5.60 Conditional compilation

/* Header file myfile.h */
#ifndef MY FILE H_
#define _MY FILE_H_

/* content */
#endif /* _MY FILE_H_ */

324 HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

When the #1ifndef and #define directives are issued, any header file content is
read only once even when the header file is included several times. This solves
many problems as C-language protocol does not allow you to define structures
(such as enums or typedefs) more than once.

When all header files are protected in this manner, this option can safely accelerate
the compilation.

This option must not be used when a header file must be included twice, e.g., the
file contains macros which are set differently at the different inclusion times. In
those instances, #pragma ONCE: Include Once is used to accelerate the inclusion
of safe header files which do not contain macros of that nature.

Example

-Pio

HC(S)12 Compiler Manual 325

Compiler Options
Compiler Option Details

-Prod: Specify Project File at Startup

Group

Startup - This option cannot be specified interactively.

Scope

None

Syntax

-Prod=<file>

Arguments

<file>: name of a project or project directory

Default

None

Defines

None

Pragmas

None

Description

This option can only be specified at the command line while starting the
application. It cannot be specified in any other circumstances, including the
default.env file, the command line or whatever. When this option is given, the
application opens the file as a configuration file. When <file> names only a
directory instead of a file, the default name project . ini is appended. When the
loading fails, a message box appears.

Example
compiler.exe -prod=project.ini

Use the compiler executable name instead of “compiler”.

See also

Local Configuration File (usually project.ini)

326

HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

-PSeg: Assume Objects are on Same Page

Group
CODE GENERATION

Scope

Function

Syntax
-PSeg (All |NonDef | Obj)

Arguments

None

Default

NonDef

Defines

None

Pragmas

None

Description

The compiler has to generate at least two accesses to access objects allocated in the
__far area. First, the accessed page must be stored in the page register, and then
the actual access takes place.

As an optimization, the compiler tries to avoid unnecessary page stores. If two
memory accesses are using the same page, the second page store is avoided.

This option controls what the compiler assumes about the page of different objects:
¢ -PSegAll

All objects in the same segment share the same page number. As a special case,
all otherwise unallocated objects are in the same default segment.

e -PSegNonDef

All objects in the same user-defined segment share the same page number.
Objects in default segments do not share the same page number.

HC(S)12 Compiler Manual 327

Compiler Options
Compiler Option Details

NOTE

« -PSegObj

Any two objects might have different page numbers. The compiler only
optimizes page stores for the same object.

This option is effective only when directly accessing ___far objects. It does
not change accesses with a runtime routine.

Example

Consider the following example in the large memory model (Listing 5.61).

Listing 5.61 Example using the large memory model:

char 10_def_seg;
char 1l1_def_seg;
#pragma DATA_SEG _ DPAGE_SEG DPAGE_CONTROLLED
char i12_user_seg;
char 13_user_seg;

void main (void)

{

10_def_seg=56;
il_def_seg=56;
12_user_seg=56;
13_user_seg=56;

When compiled with the -PSegAl1l option, the 10_def_seg variable is on the
same page as 11_def_seg, and the 12_user_seg variable is on the same page
as the 13_user_seg variable. Therefore, the compiler sets the page register
twice, as shown in Listing 5.62:

Listing 5.62 Listing 5.61 compiled with the -PSegAll option

Options : -CpDPAGE=0x34 -M1 -PSegAll
0000 c638 LDAB #56
0002 8600 LDAA #i0_def_seg:Page
0004 5a34 STAA 52
0006 7b0000 STAB 1i0_def_seg
0009 7b0000 STAB il_def_seg
000c 8600 LDAA #12_user_seg:Page
000e 5a34 STAA 52
0010 7b0000 STAB 1i2_user_seg
0013 7b0000 STAB 1i3_user_seg
0016 Oa RTC
328 HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

When compiled with the -PSegNonDef option, only the 12_user_seg
variable is on the same page as the 13_user_seg variable. Therefore, the
compiler sets the page register three times, as shown in Listing 5.63:

Listing 5.63 Listing 5.61 compiled with the -PSegNonDef option

Options : -CpDPAGE=0x34 -M1 -PSegNonDef
0000 c638 LDAB #56
0002 8600 LDAA #i0_def_seg:Page
0004 5a34 STAA 52
0006 70000 STAB 1i0_def_seg
0009 8600 LDAA #il_def_seg:Page
000b 5a34 STAA 52
0004 7b0000 STAB il_def_seg
0010 8600 LDAA #i2_user_seg:Page
0012 5a34 STAA 52
0014 7b0000 STAB 1i2_user_seg
0017 7b0000 STAB 1i3_user_seg
00la Oa RTC

Finally, with the -PSegObj option, all variables may be on different pages. The

page is set for every variable (Listing 5.64):

Listing 5.64 Listing 5.61 compiled with the -PSegObj option

Options: -CpDPAGE=0x34 -M1 -PSegObj

0000 c638
0002 8600
0004 5a34
0006 7b0000
0009 8600
000b 5a34
0004 7b0000
0010 8600
0012 5a34
0014 7b0000
0017 8600
0019 5a34
001lb 7b0000
00le Oa

LDAB
LDAA
STAA
STAB
LDAA
STAA
STAB
LDAA
STAA
STAB
LDAA
STAA
STAB
RTC

#56
#10_def_seg:Page
52

10_def_seg
#11_def_seg:Page
52

il_def_seg
#12_user_seg:Page
52

i2_user_seg
#13_user_seg:Page
52

i3_user_seg

HC(S)12 Compiler Manual

329

Compiler Options
Compiler Option Details

-Px4: Do Not Use ?BNE or ?BEQ

Group
CODE GENERATION

Scope

Function

Syntax
-Px4

Arguments

None

Default

None

Defines
_ _PROCESSOR_X4_

Pragmas

None

Description

Some processors do not support all HC12 instructions. The Compiler does not
generate instructions and code patterns which do not work on all available
processors when this option is used. The following points are affected by this
option:

* None of the instructions below is generated:
— TBNE
- TBEQ
— IBNE
- IBEQ
— DBNE
- DBEQ

* Also, the overflow flag is not used after a COM instruction.

330 HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

* With this option set, the inline assembler does not allow the use of the
instructions listed in Item 1, above.

e The _ PROCESSOR_X4__ macro is defined to allow different inline
assembler code with conditional compilation.
Example
-Px4

HC(S)12 Compiler Manual 331

Compiler Options
Compiler Option Details

-Qvtp: Qualifier for Virtual Table Pointers

Group
CODE GENERATION

Scope
Application

Syntax

-Qvtp (none| far |near |rom|uni |paged)

Arguments

None

Default

-Qvptnone

Defines

None

Pragmas

None

Description

Using a virtual function in C++ requires an additional pointer to virtual function
tables. This pointer is not accessible and is generated by the compiler in every class
object when virtual function tables are associated.

NOTE Itis useless to specify a qualifier which is not supported by the Backend (see
Backend), e.g., using a * far’ qualifier if the Backend or CPU does not
support any __far data accesses.

Example
-QvtpFar

This sets the qualifier for virtual table pointers to ___far enabling the virtual tables
to be placed into a __ FAR_ SEG segment (if the Backend or CPU supports
__FAR_SEG segments).

332

HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

-Rp (-Rpe, -Rpt): Large Return Value Type

Group
OPTIMIZATIONS

Scope
Application

Syntax
-Rp (t|e)

Arguments

t: Pass the large return value by pointer
e: Pass the large return value with temporary elimination

Default
-Rpe

Defines

None

Pragmas

None

Description

This option is supported by the Compiler even though returning a ‘large’ return
value may be not as efficient as using an additional pointer. The Compiler
introduces an additional parameter for the return value if the return value could not
be passed in registers.

Consider the following source code in Listing 5.65:

Listing 5.65 Example source code

typedef struct { int i1[10]; } S;

S F(void) ;
S s;

HC(S)12 Compiler Manual 333

Compiler Options
Compiler Option Details

void main(void) {
s = F();
}

In the above case, with -Rpt, the code will look like (Listing 5.66):

Listing 5.66 Pass large return value by pointer

void main(void) {
S tmp;

F(&tmp) ;
s = tmp; /* struct copy */

The above approach is always correct but not efficient. The better solution is to
pass the destination address directly to the callee making it unnecessary to declare
a temporary and a struct copy in the caller (i.e., -Rpe), as shown below:

Listing 5.67 Pass large return value by temporary elimination

void main(void) {
F(&s) ;
}

The above example may produce incorrect results for rare cases, e.g., if the F()
function returns something which overlaps s. Because it is not possible for the
Compiler to detect such rare cases, two options are provided: the -Rpt (always
correct, but inefficient), or -Rpe (efficient) options.

334 HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

-T: Flexible Type Management

Group
LANGUAGE.

Scope
Application

Syntax

-T<Type Format>

Arguments

<Type Format>: See below

Default

Depends on target, see the Backend chapter

Defines

To deal with different type sizes, one of the following define groups in Listing 5.68
is predefined by the Compiler:

Listing 5.68 Predefined define groups

_ CHAR_IS_SIGNED_ _
__ _CHAR_IS_UNSIGNED_ _

__ _CHAR_IS_8BIT

_ CHAR_IS_16BIT_
__ _CHAR_IS_32BIT_
__CHAR_IS_64BIT_

__ SHORT_IS_8BIT_

__ SHORT_IS_16BIT__
_ SHORT_IS_32BIT_
__ SHORT_IS_64BIT_

_ INT IS _8BIT

__ INT IS_16BIT__
__ INT IS_32BIT
_ INT _IS_64BIT__

HC(S)12 Compiler Manual 335

Compiler Options
Compiler Option Details

__ ENUM_IS_S8BIT___

__ENUM_IS_16BIT___
__ENUM_IS_32BIT___
_ _ENUM_TIS_64BIT_

_ ENUM_IS_SIGNED_
__ENUM_IS_UNSIGNED_

_ PLAIN BITFIELD_IS_SIGNED_
__ PLAIN BITFIELD_IS_UNSIGNED_

_ LONG_IS_8BIT_ _

_ LONG_IS_16BIT_
_ LONG_IS_32BIT_
_ LONG_IS_64BIT_

__ LONG_LONG_IS_8BIT__
__ LONG_LONG_IS_16BIT___
_ LONG_LONG_IS_32BIT__
__ LONG_LONG_IS_64BIT___

_ FLOAT_ IS IEEE32
_ FLOAT_IS_IEEE64_
_ FLOAT_IS_DSP__

__ DOUBLE_IS_IEEE32___
__ DOUBLE_IS_IEEE64__
__DOUBLE_IS_DSP___

__ LONG_DOUBLE_IS_IEEE32_
__ LONG_DOUBLE_IS_IEEE64_
__ LONG_DOUBLE_IS_DSP__

__ LONG_LONG_DOUBLE_IS_IEEE32_
__ LONG_LONG_DOUBLE_IS_TEEE64__
_ LONG_LONG_DOUBLE_DSP___

__ VTAB_DELTA_IS_8BIT _

_ VTAB_DELTA_IS_16BIT
__ VTAB_DELTA_ IS 32BIT
__ VTAB_DELTA_IS_64BIT

__ _PTRMBR_OFFSET_IS 8BIT

__ PTRMBR_OFFSET_IS_16BIT_
__ _PTRMBR_OFFSET_IS_32BIT_
__ _PTRMBR_OFFSET_IS 64BIT

336 HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

Pragmas

None

Description
This option allows configurable type settings. The syntax of the option is:
-T{<type><format>}
For <type>, one of the keys listed in Table 5.9 may be specified:

Table 5.9 Data Type Keys

Type Key
char 'c!
short 's'
int 7'
long L'
long long ‘LL
float f!
double 'd'
long double 'Ld'
long long double 'LLd'
enum ‘e’
sign plain bitfield 'b’
virtual table delta size ‘vid'
pointer to member offset size '‘Pmo’

NOTE Keys are not case-sensitive, e.g., both £ or F may be used for the type float.

The sign of the type char or of the enumeration type may be changed with a
prefix placed before the key for the char key. See Table 5.10.

HC(S)12 Compiler Manual 337

Compiler Options
Compiler Option Details

Table 5.10 Keys for Signed and Unsigned Prefixes

Sign prefix Key
signed 's!
unsigned 'u’

The sign of the type “plain bitfield type” is changed with the options shown in
Table 5.11. Plain bitfields are bitfields defined or declared without an explicit
signed or unsigned qualifier, e.g., ‘int field:3’. Using this option, you can
specify if the ‘int’ in the previous example is handled as ‘signed int’ oras
‘unsigned int’. Note that this option may not be available on all targets. Also
the default setting may vary. Refer to Sign of Plain Bitfields.

Table 5.11 Keys for Signed and Unsigned Bitfield Prefixes

Sign prefix Key
plain signed bitfield 'bs'
plain unsigned bitfield ‘bu’

For <format>, one of the keys in Table 5.12 can be specified.

Table 5.12 Data Format Specifier Keys

Format Key
8-bit integral 1!
16-bit integral 2'
24-bit integral '3
32-bit integral '4'
64-bit integral '8’
IEEE32 floating 2!
IEEE®64 floating '4'
DSP (32-bit) ‘0'

338 HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

Not all formats may be available for a target. See the Backend chapter for
supported formats.

NOTE

NOTE

At least one type for each basic size (1, 2, 4 bytes) has to be available. It is
illegal if no type of any sort is not set to at least a size of one. See Backend for
default settings.

Enumeration types have the type ‘signed int’ by default for ANSI-C
compliance.

The -Tpmo option allows you to change the pointer to a member offset value type.
The default setting is 16 bits. The pointer to the member offset is used for C++
pointer to members only.

Examples

-Tsc sets ‘char’ to “signed char’ and
-Tuc sets ‘char’ to “unsigned char’

Listing 5.69 -Tsc1s2i2L4LL4f2d4Ld4LLd4e2 denotes:

signed char with 8 bits (scl)

short and int with 16 bits (s2i2)

long, long long with 32 bits (L4LL4)

float with IEEE32 (f2)

double, long double and long long double with IEEE64 (d4Ld4L1d4)
enum with 16 bits (signed) (e2)

Listing 5.70 Restrictions

For integrity and compliance to ANSI, the following two rules have to be true:

sizeof (char)
sizeof (short)
sizeof (int)
sizeof (long)
sizeof (float)
sizeof (double)
(

<= sizeof (short)

<= sizeof (int)

<= sizeof (long)

<= sizeof (long long)

<= sizeof (double)

<= sizeof (long double)
(

sizeof (long double) <= sizeof (long long double)

NOTE

It is not permitted to set char to 16 bits and int to 8 bits.

HC(S)12 Compiler Manual 339

Compiler Options
Compiler Option Details

Be careful if you change type sizes. Type sizes must be consistent over the whole
application. The libraries delivered with the Compiler are compiled with the
standard type settings.

Also be careful if you change the type sizes for under or overflows, e.g., assigning
a value too large to an object which is smaller now, as shown in the following
example:

int i; /* -Til int has been set to 8 bits! */

i = 0x1234; /* i will set to 0x34! */

Examples

Setting the size of char to 16 bits:

-Tc2

Setting the size of char to 16 bits and plain char is signed:

-Tsc2

Setting char to 8 bits and unsigned, int to 32 bits and long long to 32 bits:
-TuclidLL4

Setting float to IEEE32 and double to IEEE64:

-Tf2d4

The -Tvtd option allows you to change the delta value type inside virtual function
tables. The default setting is 16-bit.

Another way to set this option is using the dialog box in the Graphical User
Interface (Figure 5.4):

340

HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

Figure 5.4 Standard Types Settings dialog box

Standard Types Settings R|
Ghit 16hit 32hit Bdbit
char (. - - fﬁ [v signed
shart C (® C O Detfaults
int - (- - T
lang C C (® O Cancel
long long - - 0 fﬁ
enum - (o - fﬁ [v signed Flels
plain bit field [v
DSP IEEE3Z |EEEG4
float fﬁ 0 -
douhble fﬁ 0 -
long double fﬁ 0 -
long long double fﬁ 0 -
See also
Sign of Plain Bitfields

HC(S)12 Compiler Manual 341

Compiler Options
Compiler Option Details

-V: Prints the Compiler Version

Group
VARIOUS

Scope

None

Syntax
-V

Arguments

None

Default

None

Defines

None

Pragmas

None

Description

Prints the internal subversion numbers of the component parts of the Compiler and
the location of current directory.

NOTE This option can determine the current directory of the Compiler.

Example
-V produces the following list:

Directory: \software\sources\c

ANSI-C Front End, V5.0.1, Date Jan 01 2005
Tree CSE Optimizer, V5.0.1, Date Jan 01 2005
Back End V5.0.1, Date Jan 01 2005

342

HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

-View: Application Standard Occurrence

Group
HOST

Scope

Compilation Unit

Syntax

-View<kind>

Arguments
<kind> is one of:
¢ Window: Application window has default window size
e Min: Application window is minimized
* Max: Application window is maximized

e Hidden: Application window is not visible (only if arguments)

Default

Application started with arguments: Minimized
Application started without arguments: Window

Defines

None

Pragmas

None

Description

The application (e.g., Linker, Compiler, ...) is started as a normal window if no
arguments are given. If the application is started with arguments (e.g., from the
maker to compile or link a file), then the application runs minimized to allow batch
processing.

HC(S)12 Compiler Manual 343

Compiler Options
Compiler Option Details

You can specify the behavior of the application using this option:
¢ Using -ViewWindow, the application is visible with its normal window.
¢ Using -ViewMin, the application is visible iconified (in the task bar).

* Using -ViewMax, the application is visible maximized (filling the whole
screen).

¢ Using -ViewHidden, the application processes arguments (e.g., files to be
compiled or linked) completely invisible in the background (no window or icon
visible in the task bar). However, if you are using the -N: Display Notify Box
option, a dialog box is still possible.

Example

C:\Freescale\linker.exe -ViewHidden fibo.prm

344 HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

-WErrFile: Create "err.log" Error File

Group
MESSAGES

Scope

Compilation Unit

Syntax
-WErrFile (On|Off)

Arguments

None

Default

err.log is created or deleted

Defines

None

Pragmas

None

Description

The error feedback to the tools that are called is done with a return code. In 16-bit
window environments, this was not possible. In the error case, an “err. log” file,
with the numbers of errors written into it, was used to signal an error. To state no
error, the “err. log” file was deleted. Using UNIX or WIN32, there is now a
return code available. The “err. log” file is no longer needed when only UNIX
or WIN32 applications are involved.

NOTE: The error file must be created in order to signal any errors if you use a
16-bit maker with this tool.

Example

-WErrFileOn

HC(S)12 Compiler Manual 345

Compiler Options
Compiler Option Details

The err. log file is created or deleted when the application is finished.
-WErrFileOff

The existing err . log file is not modified.

See also
-WStdout: Write to Standard Output
-WOutFile: Create Error Listing File

346 HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

-Wmsg8x3: Cut filenames in Microsoft Format to 8.3

Group
MESSAGES

Scope

Compilation Unit

Syntax
-Wmsg8x3

Arguments

None

Default

None

Defines

None

Pragmas

None

Description

Some editors (e.g., early versions of WinEdit) expect the filename in the Microsoft
message format (8.3 format). That means the filename can have, at most, eight
characters with not more than a three-character extension. Longer filenames are
possible when you use Win95 or WinNT. This option truncates the filename to the
8.3 format.

Example

x:\mysourcefile.c(3): INFORMATION C2901: Unrolling loop

With the -Wmsg8x3 option set, the above message is:
x:\mysource.c(3): INFORMATION C2901: Unrolling loop

HC(S)12 Compiler Manual 347

Compiler Options
Compiler Option Details

See also
-WmsgFi (-WmsgFiv, -WmsgFim): Set Message Format for Interactive Mode
-WmsgFb (-WmsgFbi, -WmsgFbm): Set Message File Format for Batch Mode

348 HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

-WmsgCE: RGB Color for Error Messages

Group
MESSAGES

Scope

Function

Syntax
-WmsgCE<RGB>

Arguments
<RGB>: 24-bit RGB (red green blue) value

Default
-WmsgCE16711680 (rFF g00 b00, red)

Defines

None

Pragmas

None

Description

This option changes the error message color. The specified value must be an RGB
(Red-Green-Blue) value and must also be specified in decimal.

Example

-WmsgCE255 changes the error messages to blue

HC(S)12 Compiler Manual 349

Compiler Options
Compiler Option Details

-WmsgCF: RGB Color for Fatal Messages

Group
MESSAGES

Scope

Function

Syntax
-WmsgCF<RGB>

Arguments
<RGB>: 24-bit RGB (red green blue) value

Default
-WmsgCF8388608 (r80 g00 b00, dark red)

Defines

None

Pragmas

None

Description

This option changes the color of a fatal message. The specified value must be an
RGB (Red-Green-Blue) value and must also be specified in decimal.

Example

-WmsgCF255 changes the fatal messages to blue

350 HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

-WmsgCl: RGB Color for Information Messages

Group
MESSAGES

Scope

Function

Syntax
-WmsgCI<RGB>

Arguments
<RGB>: 24-bit RGB (red green blue) value

Default
-WmsgCI32768 (r00 g80 b00, green)

Defines

None

Pragmas

None

Description

This option changes the color of an information message. The specified value must
be an RGB (Red-Green-Blue) value and must also be specified in decimal.

Example

-WmsgCI255 changes the information messages to blue

HC(S)12 Compiler Manual 351

Compiler Options
Compiler Option Details

-WmsgCU: RGB Color for User Messages

Group
MESSAGES

Scope

Function

Syntax
-WmsgCU<RGB>

Arguments
<RGB>: 24-bit RGB (red green blue) value

Default
-WmsgCUO (r00 g00 b00, black)

Defines

None

Pragmas

None

Description

This option changes the color of a user message. The specified value must be an
RGB (Red-Green-Blue) value and must also be specified in decimal.

Example

-WmsgCU255 changes the user messages to blue

352 HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

-WmsgCW: RGB Color for Warning Messages

Group
MESSAGES

Scope

Function

Syntax
-WmsgCW<RGB>

Arguments
<RGB>: 24-bit RGB (red green blue) value

Default
-WmsgCw255 (r00 g00 bFF, blue)

Defines

None

Pragmas

None

Description

This option changes the color of a warning message. The specified value must be
an RGB (Red-Green-Blue) value and must also be specified in decimal.

Example

-WmsgCWO changes the warning messages to black

HC(S)12 Compiler Manual 353

Compiler Options
Compiler Option Details

-WmsgFb (-WmsgFbi, -WmsgFbm): Set Message File Format for
Batch Mode

Group
MESSAGES

Scope

Compilation Unit

Syntax
-WmsgFb [v|m]

Arguments

v: Verbose format
m: Microsoft format

Default
-WmsgFbm

Defines

None

Pragmas

None

Description

You can start the Compiler with additional arguments (e.g., files to be compiled
together with Compiler options). If the Compiler has been started with arguments
(e.g., from the Make Tool or with the appropriate argument from an external
editor), the Compiler compiles the files in a batch mode. No Compiler window is
visible and the Compiler terminates after job completion.

If the Compiler is in batch mode, the Compiler messages are written to a file
instead of to the screen. This file contains only the compiler messages (see the

examples in Listing 5.71).

The Compiler uses a Microsoft message format to write the Compiler messages
(errors, warnings, information messages) if the compiler is in batch mode.

354

HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

This option changes the default format from the Microsoft format (only line
information) to a more verbose error format with line, column, and source
information.

NOTE Using the verbose message format may slow down the compilation because the
compiler has to write more information into the message file.

Example

See Listing 5.71 for examples showing the differing message formats.

Listing 5.71 Message file formats (batch mode)

void foo (void) {
int i, J;
for (1=0;i<l;i++);
}
The Compiler may produce the following file if it is running in batch
mode (e.g., started from the Make tool):
X:\C.C(3): INFORMATION C2901: Unrolling loop
X:\C.C(2): INFORMATION C5702: j: declared in function foo but not
referenced

Setting the format to verbose, more information is stored in the file:
-WmsgFbv
>> in "X:\C.C", line 3, col 2, pos 33

int i, J;

for (i=0;i<l;i++);

INFORMATION C2901: Unrolling loop
>> in "X:\C.C", line 2, col 10, pos 28
void foo(void) {

int i, J;

INFORMATION C5702: j: declared in function foo but not referenced

See also
ERROREFILE: Error filename Specification environment variable

-WmsgFi (-WmsgFiv, -WmsgFim): Set Message Format for Interactive Mode

HC(S)12 Compiler Manual 355

Compiler Options
Compiler Option Details

-WmsgFi (-WmsgFiv, -WmsgFim): Set Message Format for

Interactive Mode

Group
MESSAGES

Scope

Compilation Unit

Syntax

-WmsgFi[v|m]

Arguments

v: Verbose format
m: Microsoft format

Default

-WmsgFiv

Defines

None

Pragmas

None

Description

The Compiler operates in the interactive mode (that is, a window is visible) if it is
started without additional arguments (e.g., files to be compiled together with

Compiler options).

The Compiler uses the verbose error file format to write the Compiler messages

(errors, warnings, information messages).

This option changes the default format from the verbose format (with source, line
and column information) to the Microsoft format (only line information).

NOTE Using the Microsoft format may speed up the compilation because the
compiler has to write less information to the screen.

HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

Example

See Listing 5.72 for examples showing the differing message formats.

Listing 5.72 Message file formats (interactive mode)

void foo(void) {
int 1, 3;
for(i=0;1i<1l;i++);
}
The Compiler may produce the following error output in the Compiler
window if it is running in interactive mode:
Top: X:\C.C
Object File: X:\C.O

>> in "X:\C.C", line 3, col 2, pos 33
int i, J;

for (i=0;i<1;i++);

A

INFORMATION C2901: Unrolling loop

Setting the format to Microsoft, less information is displayed:
-WmsgFim

Top: X:\C.C

Object File: X:\C.O

X:\C.C(3): INFORMATION C2901: Unrolling loop

See also
ERROREFILE: Error filename Specification
-WmsgFb (-WmsgFbi, -WmsgFbm): Set Message File Format for Batch Mode

HC(S)12 Compiler Manual 357

Compiler Options
Compiler Option Details

-WmsgFob: Message Format for Batch Mode

Group
MESSAGES

Scope

Function

Syntax

-WmsgFob<string>

Arguments

<string>: format string (see below).

Default

-WmsgFob"%"%£%e%" (

o

1):

o
=
o
[oN)

Defines

None

Pragmas

None

Description

gm\n"

This option modifies the default message format in batch mode. The formats listed
in Table 5.13 are supported (assuming that the source file is
X:\Freescale\mysourcefile.cpph):

Table 5.13 Message Format Specifiers

Format Description Example

%s Source Extract

%p Path X:\Freescale\

%%of Path and name X:\Freescale\mysourcefile
%n filename mysourcefile

358

HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

Table 5.13 Message Format Specifiers (continued)

Format Description Example
%o Extension .cpph
%N File (8 chars) mysource
%E Extension (3 chars) .cpp
%ol Line 3
Y%C Column 47
%0 Pos 1234
%K Uppercase kind ERROR
Yok Lowercase kind error
%d Number C1815
%om Message text
%% Percent %
\n New line
%" A " if the filename, the path, or the
extension contains a space
%' A" if the filename, the path, or the
extension contains a space
Example
-WmsgFob"%f%e(%$1): %k %d: Sm\n"

Produces a message in the following format:
X:\C.C(3): information C2901: Unrolling loop

See also

ERROREFILE: Error filename Specification

-WmsgFb (-WmsgFbi, -WmsgFbm): Set Message File Format for Batch Mode
-WmsgFi (-WmsgFiv, -WmsgFim): Set Message Format for Interactive Mode
-WmsgFonp: Message Format for no Position Information

-WmsgFoi: Message Format for Interactive Mode

HC(S)12 Compiler Manual 359

Compiler Options
Compiler Option Details

-WmsgFoi: Message Format for Interactive Mode

Group
MESSAGES

Scope

Function

Syntax

-WmsgFoi<string>

Arguments

<string>: format string (See below.)

Default

-WmsgFoi"\\n>> in \"%f%e\", line %1,
$o\n%s\n%K $d: Sm\n"

Defines

None

Pragmas

None

Description

col >>%c, pos

This option modifies the default message format in interactive mode. The formats
listed in Table 5.14 are supported (assuming that the source file is

X:\Freescale\mysourcefile.cpph):

Table 5.14 Message Format Specifiers

Format Description Example

%s Source Extract

%p Path X:\sources\

%of Path and name X:\sources\mysourcefile
%on filename mysourcefile

360

HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

Table 5.14 Message Format Specifiers (continued)

Format Description Example
%o Extension .cpph
%N File (8 chars) mysource
%E Extension (3 chars) .cpp
%ol Line 3
Y%C Column 47
%0 Pos 1234
%K Uppercase kind ERROR
Yok Lowercase kind error
%d Number C1815
%om Message text
%% Percent %
\n New line
%" A" if the filename, if the path or
the extension contains a space.
%' A" if the filename, the path or
the extension contains a space

Example
-WmsgFoi"%f%e (%1): %k %d: %m\n"

Produces a message in following format
X:\C.C(3): information C2901: Unrolling loop

See also
ERROREFILE: Error filename Specification
-WmsgFb (-WmsgFbi, -WmsgFbm): Set Message File Format for Batch Mode
-WmsgFi (-WmsgFiv, -WmsgFim): Set Message Format for Interactive Mode
-WmsgFonp: Message Format for no Position Information

-WmsgFob: Message Format for Batch Mode

HC(S)12 Compiler Manual 361

Compiler Options
Compiler Option Details

-WmsgFonf: Message Format for no File Information

Group
MESSAGES

Scope

Function

Syntax

-WmsgFonf<string>

Arguments

<string>: format string (See below.)

Default

-WmsgFonf"%K %d: $m\n"

Defines

None

Pragmas

None

Description

Sometimes there is no file information available for a message (e.g., if a message
not related to a specific file). Then the message format string defined by <string> is
used. Table 5.15 lists the supported formats.

Table 5.15 Message Format Specifiers

Format Description Example
%K Uppercase kind ERROR
Yok Lowercase kind error

%d Number C1815
Yom Message text

362

HC(S)12 Compiler Manual

Compiler Options

Compiler Option Details

Table 5.15 Message Format Specifiers (continued)

Format

Description

Example

%%

Percent

%

\n

New line

%"

A" if the filename, if the path or the extension
contains a space

%!

A" if the filename, the path or the extension
contains a space

Example

-WmsgFonf "%k %d: $m\n"

Produces a message in following format:
information L10324: Linking successful

See also
ERROREFILE: Error filename Specification

Compiler options:
-WmsgFb (-WmsgFbi, -WmsgFbm): Set Message File Format for Batch Mode
-WmsgFi (-WmsgFiv, -WmsgFim): Set Message Format for Interactive Mode

-WmsgFonp: Message Format for no Position Information

-WmsgFoi: Message Format for Interactive Mode

HC(S)12 Compiler Manual

363

Compiler Options
Compiler Option Details

-WmsgFonp: Message Format for no Position Information

Group
MESSAGES

Scope

Function

Syntax

-WmsgFonp<string>

Arguments

<string>: format string (See below.)

Default

-WmsgFonp"%"%$£f%e%": %K

Defines

None

Pragmas

None

Description

Sometimes there is no position information available for a message (e.g., if a
message not related to a certain position). Then the message format string defined
by <string> is used. Table 5.16 lists the supported formats.

Table 5.16 Message Format Specifiers

Format Description Example
%K Uppercase kind ERROR
Yok Lowercase kind error

%d Number C1815
Yom Message text

364

HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

Table 5.16 Message Format Specifiers (continued)

Format

Description

Example

%%

Percent

%

\n

New line

%"

A" if the filename, if the path or the
extension contains a space

%!

A" if the filename, the path, or the
extension contains a space

Example

-WmsgFonf "%k %d: $m\n"

Produces a message in following format:

information L10324:

See also
ERROREFILE: Error filename Specification

Compiler options:
-WmsgFb (-WmsgFbi, -WmsgFbm): Set Message File Format for Batch Mode
-WmsgFi (-WmsgFiv, -WmsgFim): Set Message Format for Interactive Mode

Linking successful

-WmsgFonp: Message Format for no Position Information

-WmsgFoi: Message Format for Interactive Mode

HC(S)12 Compiler Manual

365

Compiler Options
Compiler Option Details

-WmsgNe: Number of Error Messages

Group
MESSAGES

Scope

Compilation Unit

Syntax

-WmsgNe<number>

Arguments

<number>: Maximum number of error messages

Default
50

Defines

None

Pragmas

None

Description
This option sets the number of error messages that are to be displayed while the

Compiler is processing.

NOTE Subsequent error messages which depend upon a previous error message may
not process correctly.

Example
-WmsgNe2

Stops compilation after two error messages

See also

-WmsgNi: Number of Information Messages
-WmsgNw: Number of Warning Messages

366

HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

-WmsgNi: Number of Information Messages

Group
MESSAGES

Scope

Compilation Unit

Syntax

-WmsgNi<number>

Arguments

<number>: Maximum number of information messages

Default
50

Defines

None

Pragmas

None

Description

This option sets the amount of information messages that are logged.

Example
-WmsgNil0

Ten information messages logged

See also
Compiler options:
¢ -WmsgNe: Number of Error Messages
¢ -WmsgNw: Number of Warning Messages

HC(S)12 Compiler Manual 367

Compiler Options
Compiler Option Details

-WmsgNu: Disable User Messages

Group
MESSAGES

Scope

None

Syntax
-WmsgNu[={a|b|c|d}]

Arguments

a: Disable messages about include files

b: Disable messages about reading files

c: Disable messages about generated files

d: Disable messages about processing statistics
e: Disable informal messages

Default

None

Defines

None

Pragmas

None

Description

The application produces messages that are not in the following normal message
categories: WARNING, INFORMATION, ERROR, or FATAL. This option
disables messages that are not in the normal message category by reducing the
amount of messages, and simplifying the error parsing of other tools.

a: Disables the application from generating information about all included files.

b: Disables messages about reading files (e.g., the files used as input) are disabled.
c: Disables messages informing about generated files.

d: Disables information about statistics (e.g., code size, RAM or ROM usage and
SO on).

368

HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

e: Disables informal messages (e.g., memory model, floating point format, ...).

NOTE Depending on the application, the Compiler may not recognize all suboptions.
In this case they are ignored for compatibility.

Example

-WmsgNu=c

HC(S)12 Compiler Manual 369

Compiler Options
Compiler Option Details

-WmsgNw: Number of Warning Messages

Group
MESSAGES

Scope

Compilation Unit

Syntax

-WmsgNw<number>

Arguments

<number>: Maximum number of warning messages

Default
50

Defines

None

Pragmas

None

Description

This option sets the number of warning messages.

Example
-WmsgNwl5

Fifteen warning messages logged

See also
Compiler options:
¢ -WmsgNe: Number of Error Messages

e -WmsgNi: Number of Information Messagesi

370 HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

-WmsgSd: Setting a Message to Disable

Group
MESSAGES

Scope

Function

Syntax

-WmsgSd<number>

Arguments

<number>: Message number to be disabled, e.g., 1801

Default

None

Defines

None

Pragmas

None

Description
This option disables message from appearing in the error output.
This option cannot be used in #pragma OPTION: Additional Options. Use this
option only with #pragma MESSAGE: Message Setting.
Example
-WmsgSdl801

Disables message for implicit parameter declaration

See also
-WmsgSe: Setting a Message to Error
-WmsgSi: Setting a Message to Information

-WmsgSw: Setting a Message to Warning

HC(S)12 Compiler Manual 371

Compiler Options
Compiler Option Details

-WmsgSe: Setting a Message to Error

Group
MESSAGES

Scope

Function

Syntax

-WmsgSe<number>

Arguments

<number>: Message number to be an error, e.g., 1853

Default

None

Defines

None

Pragmas

None

Description
This option changes a message to an error message.
This option cannot be used in #pragma OPTION: Additional Options. Use this
option only with #pragma MESSAGE: Message Setting.
Example
COMPOTIONS=-WmsgSel853

See also
-WmsgSd: Setting a Message to Disable
-WmsgSi: Setting a Message to Information

-WmsgSw: Setting a Message to Warning

372 HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

-WmsgSi: Setting a Message to Information

Group
MESSAGES

Scope

Function

Syntax

-WmsgSi<number>

Arguments

<number>: Message number to be an information, e.g., 1853

Default

None

Defines

None

Pragmas

None

Description
This option sets a message to an information message.
This option cannot be used with #pragma OPTION: Additional Options. Use this
option only with #pragma MESSAGE: Message Setting.
Example
-WmsgSil853

See also
-WmsgSd: Setting a Message to Disable
-WmsgSe: Setting a Message to Error
-WmsgSw: Setting a Message to Warning

HC(S)12 Compiler Manual 373

Compiler Options
Compiler Option Details

-WmsgSw: Setting a Message to Warning

Group
MESSAGES

Scope

Function

Syntax

-WmsgSw<number>

Arguments

<number>: Error number to be a warning, e.g., 2901

Default

None

Defines

None

Pragmas

None

Description
This option sets a message to a warning message.
This option cannot be used with #pragma OPTION: Additional Options. Use this
option only with #pragma MESSAGE: Message Setting.
Example
-WmsgSw2901

See also
-WmsgSd: Setting a Message to Disable
-WmsgSe: Setting a Message to Error

-WmsgSi: Setting a Message to Informationi

374 HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

-WOutFile: Create Error Listing File

Group
MESSAGES

Scope

Compilation Unit

Syntax
-WOutFile (On|Off)

Arguments

None

Default

Error listing file is created

Defines

None

Pragmas

None

Description

This option controls whether an error listing file should be created. The error
listing file contains a list of all messages and errors that are created during
processing. It is possible to obtain this feedback without an explicit file because the
text error feedback can now also be handled with pipes to the calling application.
The name of the listing file is controlled by the ERRORFILE: Error filename
Specification environment variable.

Example
-WOutFileOn
Error file is created as specified with ERRORFILE

-WOutFileOff

No error file created

HC(S)12 Compiler Manual 375

Compiler Options
Compiler Option Details

See also
-WErrFile: Create "err.log" Error File
-WStdout: Write to Standard Output

376

HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

-Wpd: Error for Implicit Parameter Declaration

Group
MESSAGES

Scope

Function

Syntax
-Wpd

Arguments

None

Default

None

Defines

None

Pragmas

None

Description

This option prompts the Compiler to issues an ERROR message instead of a
WARNING message when an implicit declaration is encountered. This occurs if
the Compiler does not have a prototype for the called function.

This option helps to prevent parameter-passing errors, which can only be detected
at runtime. It requires that each function that is called is prototyped before use. The
correct ANSI behavior is to assume that parameters are correct for the stated call.

This option is the same as using -WmsgSe1801.

HC(S)12 Compiler Manual 377

Compiler Options
Compiler Option Details

Example
-Wpd
main() {
char a, b;
func(a, b); // <- Error here - only two parameters

}
func(a, b, c)
char a, b, c;

{
}

See also

Message C1801
-WmsgSe: Setting a Message to Error

378 HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

-WStdout: Write to Standard Output

Group
MESSAGES

Scope

Compilation Unit

Syntax
-WStdout (On|Off)

Arguments

None

Default

Output is written to stdout

Defines

None

Pragmas

None

Description

The usual standard streams are available with Windows applications. Text written
into them does not appear anywhere unless explicitly requested by the calling
application. This option determines if error file text to the error file is also written
into the stdout file.

Example

-WStdoutOn: All messages written to stdout
-WErrFileOff: Nothing written to stdout

See also
-WErrFile: Create "err.log" Error File
-WOutFile: Create Error Listing File

HC(S)12 Compiler Manual 379

Compiler Options
Compiler Option Details

-W1: No Information Messages

Group
MESSAGES

Scope

Function

Syntax
-wl

Arguments

None

Default

None

Defines

None

Pragmas

None

Description
Inhibits printing INFORMATION messages. Only WARNINGs and ERROR
messages are generated.

Example
-Wl

See also

-WmsgNi: Number of Information Messages

380 HC(S)12 Compiler Manual

Compiler Options
Compiler Option Details

-W2: No Information and Warning Messages
Group
MESSAGES

Scope

Function

Syntax
-W2

Arguments

None

Default

None

Defines

None

Pragmas

None

Description

Suppresses all messages of type INFORMATION and WARNING. Only ERRORs

are generated.

Example
-W2

See also
-WmsgNi: Number of Information Messages

-WmsgNw: Number of Warning Messages

HC(S)12 Compiler Manual

381

Compiler Options
Compiler Option Details

382 HC(S)12 Compiler Manual

Compiler Predefined
Macros

The ANSI standard for the C language requires the Compiler to predefine a couple of
macros. The Compiler provides the predefined macros listed in Table 6.1.

Table 6.1 Macros defined by the Compiler

Macro Description

__ LINE__ Line number in the current source file

__FILE__ Name of the source file where it appears

_ DATE___ The date of compilation as a string

__TIME__ The time of compilation as a string

__STDC__ Set to 1 if the -Ansi: Strict ANSI compiler option has been
given. Otherwise, additional keywords are accepted (not in
the ANSI standard).

The following tables lists all Compiler defines with their associated names and options.

NOTE If these macros do not have a value, the Compiler treats them as if they had
been defined as shown: #define _ HIWARE_

It is also possible to log all Compiler predefined defines to a file using the -Ldf: Log
Predefined Defines to File compiler option.

Compiler Vendor Defines

Table 6.2 shows the defines identifying the Compiler vendor. Compilers in the USA may
also be sold by ARCHIMEDES.

HC(S)12 Compiler Manual 383

Compiler Predefined Macros
Product Defines

Table 6.2 Compiler Vendor Identification Defines

Name Defined
__ _HIWARE_ always
_ MWERKS_ always, set to 1

Product Defines

Table 6.3 shows the Defines identifying the Compiler. The Compiler is a HI-CROSS+

Compiler (V5.0.x).

Table 6.3 Compiler Identification Defines

Name

Defined

___PRODUCT_HICROSS_PLUS_ _

defined for V5.0 Compilers

__ DEMO_MODE___ defined if the Compiler is running in demo
mode
_ VERSION_ _ defined and contains the version number,

e.g., itis set to 5013 for a Compiler
V5.0.13, or set to 3140 for a Compiler
V3.1.40

Data Allocation Defines

The Compiler provides two macros that define how data is organized in memory: Little
Endian (least significant byte first in memory) or Big Endian (most significant byte first in
memory). The ‘Intel World’ uses Little Endian and the ‘Non-Intel World’ uses Big

Endian.

The Compiler provides the “endian” macros listed in Table 6.4.

384

HC(S)12 Compiler Manual

Compiler Predefined Macros

Various Defines for Compiler Option Settings

Table 6.4 Compiler macros for defining “endianness”

Name

Defined

_ LITTLE_ENDIAN

defined if the Compiler allocates in Little Endian

order

__BIG_ENDIAN___

defined if the Compiler allocates in Big Endian

order

The following example illustrates the difference between little and big endian

(Listing 6.1).

Listing 6.1 Little vs. big endian

unsigned long L 0x87654321;
unsigned short s

unsigned char c

* (unsiged short*)&L;
* (unsinged char*)&L;

// BE: 0x8765,LE: 0x4321
// BE: 0x87, LE: 0x21

Various Defines for Compiler Option

Settings

The following table lists Defines for miscellaneous compiler option settings.

Table 6.5 Defines for Miscellaneous Compiler Option Settings

Name Defined
__STDC__ -Ansi
__TRIGRAPHS__ -Ci
__CNI__ -Cni
__OPTIMIZE_FOR_TIME__ | -Ot
__OPTIMIZE_FOR_SIZE__ | -Os

HC(S)12 Compiler Manual

385

Compiler Predefined Macros
Option Checking in C Code

Option Checking in C Code

You can also check the source to determine if an option is active. The EBNF syntax is:

OptionActive = "__OPTION_ACTIVE__" " (" string ")".

The above is used in the preprocessor and in C code, as shown:

Listing 6.2 Using _ OPTION__ to check for active options.

#if _ OPTION_ACTIVE_ ("-W2")
// option -W2 is set
#endif

void main (void) {
int 1i;
if (__OPTION_ACTIVE__ ("-or")) {
i=2;
}
}

You can check all preprocessor-valid options (e.g., options given at the command line, via
the default.env orproject. ini files, but not options added with the #pragma
OPTION: Additional Options). You perform the same check in C code using -Odoc £ and
#pragma OPTIONS.

As a parameter, only the option itself is tested and not a specific argument of an option.

For example:

#if _ OPTION_ACTIVE_ ("-D") /* true if any -d option given
*/
#if _ OPTION_ACTIVE__ ("-DABS") /* not allowed */

To check for a specific define use:
#if defined (ABS)

If the specified option cannot be checked to determine if it is active (i.e., options that no
longer exist), the message “C1439: illegal pragma _ OPTION_ACTIVE__” is issued.

ANSI-C Standard Types 'size_t', 'wchar_t'
and 'ptrdiff_t' Defines

ANSI provides some standard defines in 'stddef . h' to deal with the implementation of
defined object sizes.

Listing 6.3 show part of the contents of stdtypes.h (included from stddef . h).

386 HC(S)12 Compiler Manual

Compiler Predefined Macros
ANSI-C Standard Types 'size_t, '‘wchar_t' and ‘ptrdiff_t' Defines

Listing 6.3 Type Definitions of ANSI-C Standard Types

/* size_t: defines the maximum object size type */
#i1if defined(__SIZE T IS _UCHAR_)
typedef unsigned char size_t;
#elif defined(__SIZE_T_IS_USHORT_)
typedef unsigned short size_t;
#elif defined(__ _SIZE_T_IS_UINT)
typedef unsigned int size_ t;
#elif defined(__SIZE_T IS _ULONG_)
typedef unsigned long size_t;
#else
#error "illegal size_t type"
#endif

/* ptrdiff_t: defines the maximum pointer difference type */
#if defined(_ PTRDIFF_T IS_CHAR)
typedef signed char ptrdiff_t;
#elif defined(_ PTRDIFF_T_IS_SHORT_)
typedef signed short ptrdiff_t;
#elif defined(___PTRDIFF_T IS_INT_)
typedef signed int ptrdiff_t;
#elif defined(_ PTRDIFF_T IS_LONG_)
typedef signed long ptrdiff_t;
#else
#error "illegal ptrdiff_t type"
#endif
/* wchar_t: defines the type of wide character */
#if defined(_ WCHAR_T IS_UCHAR_)
typedef unsigned char wchar_t;
#elif defined(_ WCHAR_T_IS_USHORT)
typedef unsigned short wchar_t;
#elif defined(__ WCHAR_T_IS_UINT_)
typedef unsigned int wchar_t;
#elif defined(___WCHAR_T IS _ULONG_)
typedef unsigned long wchar_t;
#else
#error "illegal wchar_t type"
#endif

Table 6.6 lists defines that deal with other possible implementations:

HC(S)12 Compiler Manual 387

Compiler Predefined Macros
ANSI-C Standard Types 'size_t', 'wchar_t' and ‘ptrdiff_t' Defines

Table 6.6 Defines for Other Implementations

Macro

Description

_ SIZE_T_IS_UCHAR__

Defined if the Compiler expects size_t in
stddef.h to be 'unsigned char'.

_ SIZE_T_IS_USHORT__

Defined if the Compiler expects size_tin
stddef.h to be 'unsigned short'.

_ SIZE_T_IS_UINT__

Defined if the Compiler expects size_tin
stddef.h to be 'unsigned int'.

_ SIZE_T_IS_ULONG__

Defined if the Compiler expects size_tin
stddef.h to be 'unsigned long'.

_ WCHAR_T_IS_UCHAR

Defined if the Compiler expects wchar_t in
stddef.h to be 'unsigned char'.

_ WCHAR_T_IS_USHOR
T

Defined if the Compiler expects wchar_t in
stddef.h to be 'unsigned short'.

_ WCHAR_T_IS_UINT__

Defined if the Compiler expects wchar_t in
stddef.h to be 'unsigned int'.

_ WCHAR_T_IS_ULONG

Defined if the Compiler expects wchar_t in
stddef.h to be 'unsigned long'.

_ PTRDIFF_T_IS_CHAR_

Defined if the Compiler expects ptrdiff_t in
stddef.h to be 'char'.

_ PTRDIFF_T_IS_SHOR
T

Defined if the Compiler expects ptrdiff_t in
stddef.h to be 'short'.

_ PTRDIFF_T_IS_INT__

Defined if the Compiler expects ptrdiff_t in
stddef.h to be 'int'.

_ PTRDIFF_T_IS_LONG_

Defined if the Compiler expects ptrdiff_t in
stddef.h to be 'long'

The following tables show the default settings of the ANSI-C Compiler size_t and

ptrdiff_t standard types.

Macros for HC12

Table 6.7 shows the settings for the HC12 target:

388

HC(S)12 Compiler Manual

Compiler Predefined Macros
Division and Modulus

Table 6.7 HC12 Compiler Defines

size_t Macro Defined
_ SIZE_T_IS_UCHAR__ never

_ SIZE_T_IS_USHORT__ never
__SIZE_T_IS_UINT__ always
__SIZE_T_IS_ULONG__ never

Table 6.8 HC12 Compiler Pointer Difference Macros

ptrdiff_t Macro Defined
_ _PTRDIFF_T_IS_CHAR__ never

_ PTRDIFF_T_IS_SHORT__ | never

_ PTRDIFF_T_IS_INT__ always
_ PTRDIFF_T_IS_LONG__ never

Division and Modulus

To ensure that the results of the “/” and “%” operators are defined correctly for signed
arithmetic operations, both operands must be defined positive. (Refer to the backend
chapter.) It is implementation-defined if the result is negative or positive when one of the
operands is defined negative. This is illustrated in the Listing 6.4.

Listing 6.4 Effect of polarity upon division and modulus arithmetic.

#ifdef _ MODULO_IS_POSITIV_ _

22 /7 == 3; 22 % 7 ==1
22 /-7 == -=-3; 22 % -7 == 1
-22 /7 == -4; -22 % 7 == 6
-22 /-7 == 4; -22 % -7 == 6
#else

22 /7T == 3; 22 % 7 == +1
22 /-7 == -3; 22 % -7 == +1
-22 /7 == =-3; -22 % 7 == -1
-22 /-7 == 3; -22 % -7 == -1

HC(S)12 Compiler Manual 389

Compiler Predefined Macros
Object-File Format Defines

#endif

The following sections show how it is implemented in a backend.

Macros for HC12

Table 6.9 HC12 Compiler Modulo Operator Macros

Name Defined

_ MODULO_IS_POSITIV_ never

Object-File Format Defines

The Compiler defines some macros to identify the format (mainly used in the startup code
if it is object file specific), depending on the specified object-file format option.
Table 6.10 lists these defines.

Table 6.10 Object-file Format Defines

Name Defined
_ HIWARE_OBJECT_FILE_FORMAT__ -Fh
_ ELF_OBJECT_FILE_FORMAT__ -F1, -F2

Bitfield Defines

Bitfield Allocation

The Compiler provides six predefined macros to distinguish between the different
allocations:

__ BITFIELD MSBIT_FIRST /* defined if bitfield
allocation starts with MSBit */

_ BITFIELD_ LSBIT_FIRST_ /* defined if bitfield
allocation starts with LSBit */

_ BITFIELD_MSBYTE_FIRST _ /* allocation of bytes starts
with MSByte */

390

HC(S)12 Compiler Manual

Compiler Predefined Macros

Bitfield Defines

_ BITFIELD_LSBYTE_FIRST _ /* allocation of bytes starts
with LSByte */

_ BITFIELD_MSWORD_FIRST _ /* defined if bitfield
allocation starts with MSWord */

_ BITFIELD_LSWORD_FIRST _ /* defined if bitfield
allocation starts with LSWord
*/

Using the above-listed defines, you can write compatible code over different Compiler
vendors even if the bitfield allocation differs. Note that the allocation order of bitfields is
important (Listing 6.5).

Listing 6.5 Compatible bitfield allocation

struct {
/* Memory layout of I/O port:

MSB LSB
name : BITA | CCR | DIR | DATA | DDR2
size: 1 1 1 4 1

*/
#ifdef _ BITFIELD _MSBIT FIRST_
unsigned int BITA:1;
unsigned int CCR :1;
unsigned int DIR :1;
unsigned int DATA:4;
unsigned int DDR2:1;
#elif defined(__BITFIELD LSBIT_FIRST)
unsigned int DDR2:1;
unsigned int DATA:4;
unsigned int DIR :1;
unsigned int CCR :1;
unsigned int BITA:1;

#else

#error "undefined bitfield allocation strategy!"
#endif

} MyIOport;

If the basic allocation unit for bitfields in the Compiler is a byte, the allocation of memory
for bitfields is always from the most significant BYTE to the least significant BYTE. For
example, _ BITFIELD_MSBYTE_FIRST_ _ is defined as shown in Listing 6.6:

HC(S)12 Compiler Manual 391

Compiler Predefined Macros
Bitfield Defines

Listing 6.6 _ BITFIELD_MSBYTE_FIRST__ definition

/* example for _ BITFIELD_MSBYTE_FIRST _ */
struct {

unsigned char a:8§;

unsigned char b:3;

unsigned char c:5;
} MyIOport2;

/* LSBIT FIRST */ /* MSBIT_FIRST */
/* MSByte LSByte */ /* MSByte LSByte */
/* aaaaaaaa cccccbbb */ /* aaaaaaaa bbbccccc */

NOTE There is no standard way to allocate bitfields. Allocation may vary from
compiler to compiler even for the same target. Using bitfields for I/O register
access to is non-portable and, for the masking involved in unpacking individual
fields, inefficient. It is recommended to use regular bit-and (&) and bit-or (I)
operations for I/O port access.

Bitfield Type Reduction

The Compiler provides two predefined macros for enabled/disabled type size reduction.
With type size reduction enabled, the Compiler is free to reduce the type of a bitfield. For
example, if the size of a bitfield is 3, the Compiler uses the char type.

__ BITFIELD_TYPE_SIZE REDUCTION_ _ /* defined if Type Size
Reduction is enabled */

_ BITFIELD_NO_TYPE_SIZE_REDUCTION__ /* defined if Type Size
Reduction is disabled */

It is possible to write compatible code over different Compiler vendors and to get
optimized bitfields (Listing 6.7):

Listing 6.7 Compatible optimized bitfields

struct{
long bl:4;
long b2:4;
} myBitfield;
31 7 3 0

392 HC(S)12 Compiler Manual

Compiler Predefined Macros
Bitfield Defines

Sign of Plain Bitfields

For some architectures, the sign of a plain bitfield does not follow standard rules.
Normally in the following (Listing 6.8):

Listing 6.8 Plain bitfield

struct _bits {
int myBits:3;
} bits;

‘myBits’ is signed, because plain ‘int’ is also signed. To implement it as an unsigned
bitfield, use the following code (Listing 6.9):

Listing 6.9 Unsigned bitfield

struct _bits {
unsigned int myBits:3;

} bits;
However, some architectures need to overwrite this behavior to be compliant to their
EABI (Embedded Application Binary Interface). Under those circumstances, the
-T: Flexible Type Management (if supported) is used. The option affects the following
defines:
_ PLAIN BITFIELD_IS_SIGNED_ /* defined if plain bitfield
is signed */
__ PLAIN_BITFIELD_IS_UNSIGNED__ /* defined if plain bitfield

is unsigned */

Macros for HC12

Table 6.11 identifies the implementation in the Backend.

HC(S)12 Compiler Manual 393

Compiler Predefined Macros
Bitfield Defines

Table 6.11 HC12 Compiler—Backend Macro

Name Defined
__BITFIELD_MSBIT_FIRST__ -BfaBMS
_ BITFIELD_LSBIT_FIRST__ -BfaBLS
__BITFIELD_MSBYTE_FIRST__ always

_ BITFIELD_LSBYTE_FIRST__ never
__BITFIELD_MSWORD_FIRST__ always

__ BITFIELD_LSWORD_FIRST__ never
__BITFIELD_TYPE_SIZE_REDUCTION__ -BfaTSRon
__BITFIELD_NO_TYPE_SIZE_REDUCTION__ -BfaTSRoff
__PLAIN_BITFIELD_IS_SIGNED__ always
__PLAIN_BITFIELD_IS_UNSIGNED__ never

Type Information Defines

The Flexible Type Management sets the defines to identify the type sizes. Table 6.12 lists
these defines.

Table 6.12 Type Information Defines

Name Defined

_ CHAR_IS_SIGNED___ see -T option or Backend
__ CHAR_IS_UNSIGNED__ see -T option or Backend
__CHAR_IS_8BIT__ see -T option or Backend
__CHAR_IS_16BIT__ see -T option or Backend
__CHAR_IS_32BIT__ see -T option or Backend
__CHAR_IS_64BIT__ see -T option or Backend
__SHORT_IS_8BIT__ see -T option or Backend

394 HC(S)12 Compiler Manual

Compiler Predefined Macros
Bitfield Defines

Table 6.12 Type Information Defines (continued)

Name

Defined

_ SHORT_IS_16BIT__

see -T option or Backend

_ SHORT_IS_32BIT__

see -T option or Backend

_ SHORT_IS_64BIT__

see -T option or Backend

__INT_IS_8BIT__ see -T option or Backend
__INT_IS_16BIT__ see -T option or Backend
__INT_IS_32BIT__ see -T option or Backend
__INT_IS_64BIT__ see -T option or Backend
__ENUM_IS_8BIT__ see -T option or Backend

_ ENUM_IS_SIGNED__

see -T option or Backend

_ ENUM_IS_UNSIGNED__

see -T option or Backend

__ENUM_IS_16BIT__

see -T option or Backend

__ENUM_IS_32BIT__

see -T option or Backend

__ENUM_IS_64BIT__

see -T option or Backend

__LONG_IS_8BIT__ see -T option or Backend
__LONG_IS_16BIT__ see -T option or Backend
__LONG_IS_32BIT__ see -T option or Backend
__ LONG_IS_64BIT__ see -T option or Backend

_ LONG_LONG_IS_8BIT__

see -T option or Backend

_ LONG_LONG_IS_16BIT__

see -T option or Backend

_ LONG_LONG_IS_32BIT__

see -T option or Backend

_ LONG_LONG_IS_64BIT__

see -T option or Backend

_ FLOAT_IS_IEEE32__

see -T option or Backend

_ FLOAT_IS_IEEE64__

see -T option or Backend

HC(S)12 Compiler Manual

395

Compiler Predefined Macros
Bitfield Defines

Table 6.12 Type Information Defines (continued)

Name

Defined

_ FLOAT_IS_DSP__

see -T option or Backend

_ DOUBLE_IS_IEEE32__

see -T option or Backend

_ DOUBLE_IS_IEEE64__

see -T option or Backend

_ DOUBLE_IS_DSP__

see -T option or Backend

_ LONG_DOUBLE_IS_IEEE32__

see -T option or Backend

_ LONG_DOUBLE_IS_IEEE64__

see -T option or Backend

_ LONG_DOUBLE_IS_DSP__

see -T option or Backend

_ LONG_LONG_DOUBLE_IS_IEEE32__

see -T option or Backend

_ LONG_LONG_DOUBLE_IS_IEEE64__

see -T option or Backend

_ LONG_LONG_DOUBLE_IS_DSP__

see -T option or Backend

__VTAB_DELTA_IS_8BIT__ see -T option
__VTAB_DELTA_IS_16BIT__ see -T option
__VTAB_DELTA_IS_32BIT__ see -T option
_ _VTAB_DELTA_IS_64BIT__ see -T option

_ PLAIN_BITFIELD_IS_SIGNED__

see option -T or Backend

_ PLAIN_BITFIELD_IS_UNSIGNED__

see option -T or Backend

396

HC(S)12 Compiler Manual

Compiler Pragmas

A pragma (Listing 7.1) defines how information is passed from the Compiler Frontend to
the Compiler Backend, without affecting the parser. In the Compiler, the effect of a
pragma on code generation starts at the point of its definition and ends with the end of the
next function. Exceptions to this rule are the pragmas #pragma ONCE: Include Once and
#pragma NO_STRING_CONSTR: No String Concatenation during preprocessing, which
are valid for one file.

Listing 7.1 The syntax of a pragma

#pragma pragma_name [optional_arguments]

The value for optional_arguments depends on the pragma that you use. Some
pragmas do not take arguments.

NOTE A pragma directive accepts a single pragma with optional arguments. Do not
place more than one pragma name in a pragma directive. The following
example uses incorrect syntax:

#pragma ONCE NO_STRING_CONSTR

This is an invalid directive because two pragma names were combined into one
pragma directive.

The following section describes all of the pragmas that affect the Frontend. All other
pragmas affect only the code generation process and are described in the Backend section.

Pragma Details

This section describes each Compiler-available pragma. The pragmas are listed in
alphabetical order and are divided into separate tables. Table 7.1 lists and defines the
topics that appear in the description of each pragma.

HC(S)12 Compiler Manual 397

Compiler Pragmas
Pragma Detlails

Table 7.1 Pragma documentation topics

Topic Description

Scope Scope of pragma where it is valid. (See Table 7.2, below.)

Syntax Specifies the syntax of the pragma in an EBNF format.

Synonym Lists a synonym for the pragma or none, if a synonym does not exist.
Arguments Describes and lists optional and required arguments for the pragma.
Default Shows the default setting for the pragma or none.

Description Provides a detailed description of the pragma and how to use it.
Example Gives an example of usage and effects of the pragma.

See also Names related sections.

Table 7.2 is a description of the different scopes for pragmas.

Table 7.2 Definition of items that can appear in a pragma’s scope topic

Scope

Description

File

The pragma is valid from the current position until the end of the
source file. For example, if the pragma is in a header file included
from a source file, the pragma is not valid in the source file.

Compilation Unit

The pragma is valid from the current position until the end of the
whole compilation unit. For example, if the pragma is in a header file
included from a source file, it is valid in the source file too.

Data Definition

The pragma affects only the next data definition. Ensure that you
always use a data definition behind this pragma in a header file. If
not, the pragma is used for the first data segment in the next header
file or in the main file.

Function
Definition

The pragma affects only the next function definition. Ensure that you
use this pragma in a header file: The pragma is valid for the first
function in each source file where such a header file is included if
there is no function definition in the header file.

Next pragma
with same name

The pragma is used until the same pragma appears again. If no such
pragma follows this one, it is valid until the end of the file.

398

HC(S)12 Compiler Manual

Compiler Pragmas
Pragma Details

#pragma align (onloff): Turn alignment on or off

Scope

Until the next align pragma

Syntax

#pragma align (on|off)

Synonym

None.

Arguments

on: the HCS12X compiler uses the same alignment as the XGATE compiler
off: the HCS12X compiler uses no alignment

Default
#pragma align off

Description

The pragma align simplifies the sharing of variables between the HCS12X and the
XGATE cores. The HCS12X core does not need any alignment. However, if some
data structures are accessed from both the HCS12X and the XGATE, their layouts
must be identical. This pragma causes the HCS12X compiler to insert the same
alignment bytes as the XGATE compiler. Therefore, enabling it causes potentially
larger data structures.

NOTE This pragma does not ensure that the same data size or encoding is used for the
data representation. The HCS 12X supports 3-byte pointers and 8-byte doubles.
However, the XGATE always allocates pointers as two bytes and doubles as
four bytes.
Also note that the different cores are using a different encoding for pointers.

HC(S)12 Compiler Manual 399

Compiler Pragmas
Pragma Details

Example

#pragma align on
struct {
char ch; /*
int i; /*
} s_aligned;

#pragma align off
struct {
char ch; /*
int 1i; /*
} os;

offset:
offset:

offset:
offset:

o

*/
*/

*/
*/

400

HC(S)12 Compiler Manual

Compiler Pragmas
Pragma Details

#pragma CODE_SEG: Code Segment Definition
Scope
Until the next CODE_SEG pragma

Syntax
#pragma CODE_SEG (<Modif> <Name>|DEFAULT)

Synonym
CODE_SECTION

Arguments

Listing 7.2 Some of the following strings may be used for <Motif>:

__DIRECT_SEG (compatibility alias: DIRECT)

(

__NEAR_SEG (compatibility alias: NEAR)
__ CODE_SEG (compatibility alias: CODE)
_ _FAR_SEG (compatibility alias: FAR)
__ DPAGE_SEG (compatibility alias: DPAGE)
__EPAGE_SEG (compatibility alias: EPAGE)
__PPAGE_SEG (compatibility alias: PPAGE)
__RPAGE_SEG (compatibility alias: RPAGE)
__GPAGE_SEG (compatibility alias: GPAGE)
__PIC_SEG (compatibility alias: PIC)

NOTE The compatibility alias should not be used in new code. It only exists for
backwards compatibility. Some of the compatibility alias names conflict with
defines found in certain header files. Therefore, using them can cause problems
which may be hard to detect. So avoid using compatibility alias names.

The meaning of these segment modifiers are backend-dependent. Refer to the
HC(S)12 Backend chapter for information on supported modifiers and their
definitions.

<Name>: The name of the segment. This name must be used in the link parameter
file on the left side of the assignment in the PLACEMENT section. Refer to the
Linker section of the Build Tools manual for details.

HC(S)12 Compiler Manual 401

Compiler Pragmas
Pragma Detlails

Default
DEFAULT

Description

This pragma specifies where the function segment it is allocated. The segment
modifiers also specify the function’s calling convention. The CODE_SEG pragma
sets the current code segment. This segment places all new function definitions.
Also, all function declarations get the current code segment when they occur. The
segment modifiers of this segment determine the calling convention.

The CODE_SEG pragma affects function declarations as well as definitions. Ensure
that all function declarations and their definitions are in the same segment.

The synonym CODE__SECTION has exactly the same meaning as CODE_SEG.

Listing 7.3 shows program code segments allocated with CODE_SEG pragmas.

Listing 7.3 CODE_SEG examples

/* in a header file */

#pragma CODE_SEG _ FAR_SEG MY_CODE1l
extern void f (void);

#pragma CODE_SEG MY_CODE2

extern void h(void) ;

#pragma CODE_SEG DEFAULT

/* in its corresponding C file: */

#pragma CODE_SEG __ FAR_SEG MY_CODE1l

void f(void){ /* f has FAR calling convention */
h(); /* calls h with default calling convention */

}

#pragma CODE_SEG MY_CODE2

void h(void){ /* f has default calling convention */
£f(); /* calls f£() with the FAR calling convention */

}

#pragma CODE_SEG DEFAULT

NOTE Not all backends support a FAR calling convention.

NOTE The calling convention can also be specified with a supported keyword. The
default calling convention is chosen with the memory model.

402 HC(S)12 Compiler Manual

Compiler Pragmas
Pragma Details

Listing 7.4 has some examples of improper CODE__SEG pragma usage.

Listing 7.4 Improper pragma usage

#pragma DATA_SEG DATA1L
#pragma CODE_SEG DATAl
/* error: same segment name has different types! */

#pragma CODE_SEG DATAl
#pragma CODE_SEG _ FAR_SEG DATAl
/* error: same segment name has modifiers! */

#pragma CODE_SEG DATAl

void g(void) ;

#pragma CODE_SEG DEFAULT

void g(void) {}

/* error: g() is declared in two different segments */

#pragma CODE_SEG __ FAR_SEG DEFAULT

/* error: modifiers for the DEFAULT segment are not allowed */

See also

HC(S)12 Backend chapter

Segmentation

Linker section of the Build Tools manual

#pragma CONST_SEG: Constant Data Segment Definition
#pragma DATA_SEG: Data Segment Definition

#pragma STRING_SEG: String Segment Definition

#pragma STRING_SEG: String Segment Definition compiler option

HC(S)12 Compiler Manual 403

Compiler Pragmas

Pragma Detlails

#pragma CONST_SEG: Constant Data Segment Definition

Scope
Until the next CONST__SEG pragma

Syntax

#pragma CONST_SEG

Synonym
CONST_SECTION

Arguments

(<Modif> <Name>|DEFAULT)

Listing 7.5 Some of the following strings may be used for <Modif>:

__SHORT_SEG (compatibility alias: SHORT)
__DIRECT_SEG (compatibility alias: DIRECT)
_ NEAR_SEG (compatibility alias: NEAR)
__CODE_SEG (compatibility alias: CODE)
__FAR_SEG (compatibility alias: FAR)
__ DPAGE_SEG (compatibility alias: DPAGE)
__EPAGE_SEG (compatibility alias: EPAGE)
__ _PPAGE_SEG (compatibility alias: PPAGE)
__RPAGE_SEG (compatibility alias: RPAGE)
__GPAGE_SEG (compatibility alias: GPAGE)
NOTE A compatibility alias should not be used in new code. It only exists for
backwards compatibility.
Some of the compatibility alias names conflict with defines found in certain
header files. Therefore, using them can cause hard to detect problems. Avoid
using compatibility alias names.
The segment modifiers are backend-dependent. Refer to the HC(S)12 Backend
chapter to find the supported modifiers and their meanings. The __ SHORT_SEG
modifier specifies a segment which is accessed with 8-bit addresses.
<Name>: The name of the segment. This name must be used in the link parameter
file on the left side of the assignment in the PLACEMENT part. Please refer to the
linker section of the Build Tools manual for details.
404 HC(S)12 Compiler Manual

Compiler Pragmas
Pragma Details

Default
DEFAULT

Description

This pragma allocates constant variables into a segment. The segment is then
allocated in the link parameter file to specific addresses. The CONST_SEG pragma
sets the current const segment. All constant data declarations are placed in this
segment. The default segment is set with:

#pragma CONST_SEG DEFAULT

Constants are allocated in the current data segment that is defined with the
#pragma DATA_SEG: Data Segment Definition in the HTWARE object-file
format when the -Cc: Allocate Constant Objects into ROM compiler option is not
specified and until the first #pragma CONST_SEG occurs in the source. With the
-Cc option set, constants are always allocated in constant segments in the ELF
object-file format and after the first #pragma CONST_SEG.

The CONST_SEG pragma also affects constant data declarations as well as
definitions. Ensure that all constant data declarations and definitions are in the
same const segment.

Some compiler optimizations assume that objects having the same segment are
placed together. Backends supporting banked data, for example, may set the page
register only once for two accesses to two different variables in the same segment.
This is also the case for the DEFAULT segment. When using a paged access to
variables, place one segment on one page in the link parameter file.

When #pragma INTO_ROM: Put Next Variable Definition into ROM is active, the
current const segment is not used.

The CONST_SECTION synonym has exactly the same meaning as CONST_SEG.

Examples
Listing 7.6 shows code that uses the CONST_SEG pragma.

Listing 7.6 Examples of the CONST_SEG pragma

/* Use the pragmas in a header file */

#pragma CONST_SEG _ SHORT_SEG SHORT_CONST_MEMORY
extern const int i_short;

#pragma CONST_SEG CUSTOM_CONST_MEMORY

extern const int j_custom;

#pragma CONST_SEG DEFAULT

/* Some C file, which includes the above header file code */
void main(void) {
int k = i; /* may use short access */

HC(S)12 Compiler Manual 405

Compiler Pragmas
Pragma Detlails

k= 3;
}

/* in the C file defining the constants : */
#pragma CONST_SEG __ SHORT_SEG SHORT_CONST_MEMORY
extern const int i_short=7

#pragma CONST_SEG CUSTOM_CONST_MEMORY

extern const int j_custom=8;

#pragma CONST_SEG DEFAULT

Listing 7.7 shows code that uses the CONST__SEG pragma improperly.

Listing 7.7 Improper use of the CONST_SEG pragma

#pragma DATA_SEG CONST1
#pragma CONST_SEG CONST1l /* error: same segment name has different
types!*/

#pragma CONST_SEG C2
#pragma CONST_SEG __ SHORT_SEG C2 // error: segment name has modifiers!

#pragma CONST_SEG CONSTL1

extern int 1i;

#pragma CONST_SEG DEFAULT

int i; /* error: i is declared in different segments */

#pragma CONST_SEG _ SHORT_SEG DEFAULT /* error: no modifiers for the
DEFAULT segment are allowed

See also

HC(S)12 Backend chapter

Segmentation

Linker section of the Build Tools manual

#pragma CODE_SEG: Code Segment Definition

#pragma DATA_SEG: Data Segment Definition

#pragma STRING_SEG: String Segment Definition

#pragma INTO_ROM.: Put Next Variable Definition into ROM
-Cc: Allocate Constant Objects into ROM compiler option

406 HC(S)12 Compiler Manual

Compiler Pragmas
Pragma Details

#pragma CREATE_ASM_LISTING: Create an Assembler Include
File Listing

Scope
Until the next CREATE_ASM_LISTING pragma

Syntax
#pragma CREATE_ASM_LISTING (ON|OFF)

Synonym

None

Arguments
ON: All following defines or objects are generated
OFF: All following defines or objects are not generated
Default
OFF

Description

This pragma determines if the following defines or objects are printed into the
assembler include file.

A new file is only generated when the -La compiler option is specified together
with a header file containing #pragma CREATE_ASM LISTING ON.

Listing 7.8 Example

#pragma CREATE_ASM_LISTING ON
extern int i; /* 1 is accessible from the asm code */

#pragma CREATE_ASM_LISTING OFF
extern int j; /* j is only accessible from the C code */

See also

Generating Assembler Include Files (-La Compiler Option)

HC(S)12 Compiler Manual 407

Compiler Pragmas

Pragma Detlails

#pragma DATA_SEG: Data Segment Definition

Scope
Until the next DATA_SEG pragma

Syntax

#pragma DATA_SEG

Synonym

DATA_SECTION

Arguments

(<Modif> <Name>|DEFAULT)

Listing 7.9 Some of the following strings may be used for <Motif>:

__SHORT_SEG (compatibility alias: SHORT)
__DIRECT_SEG (compatibility alias: DIRECT)
_ NEAR_SEG (compatibility alias: NEAR)
__CODE_SEG (compatibility alias: CODE)
__FAR_SEG (compatibility alias: FAR)

__ DPAGE_SEG (compatibility alias: DPAGE)
__EPAGE_SEG (compatibility alias: EPAGE)
__ _PPAGE_SEG (compatibility alias: PPAGE)
__RPAGE_SEG (compatibility alias: RPAGE)
__GPAGE_SEG (compatibility alias: GPAGE)

NOTE A compatibility alias should not be used in new code. It only exists for
backwards compatibility. Some of the compatibility alias names conflict with
defines found in certain header files. Therefore, using them can cause problems
which may be hard to detect. So avoid using compatibility alias names.

The __ SHORT_ SEG modifier specifies a segment which is accessed with 8-bit
addresses. The meaning of these segment modifiers are backend-dependent. Read
the backend chapter to find the supported modifiers and their meanings.
<Name>: The name of the segment. This name must be used in the link parameter
file on the left side of the assignment in the PLACEMENT part. Please refer to the
linker manual for details.

408 HC(S)12 Compiler Manual

Compiler Pragmas
Pragma Details

Default
DEFAULT

Description

This pragma allocates variables into a segment. This segment is then located in the
link parameter file to specific addresses.

The DATA_SEG pragma sets the current data segment. This segment is used to
place all variable declarations. The default segment is set with:

#pragma DATA_SEG DEFAULT

Constants are also allocated in the current data segment in the HIWARE object-file
format when the option -cc is not specified and no “#pragma CONST_SEG”
occurred in the source. When using the -Cc: Allocate Constant Objects into ROM
compiler option and the ELF object-file format, constants are not allocated in the
data segment.

The DATA_SEG pragma also affects data declarations, as well as definitions.
Ensure that all variable declarations and definitions are in the same segment.

Some compiler optimizations assume that objects having the same segment are
together. Backends supporting banked data, for example, may set the page register
only once if two accesses two different variables in the same segment are done.
This is also the case for the DEFAULT segment. When using a paged access to
constant variables, put one segment on one page in the link parameter file.

When #pragma INTO_ROM: Put Next Variable Definition into ROM is active, the
current data segment is not used.

The DATA_SECTION synonym has exactly the same meaning as DATA_SEG.

Example

Listing 7.10 shows source code that uses the DATA_ SEG pragma.

Listing 7.10 Using the DATA_SEG pragma

/* in a header file */

#pragma DATA_SEG __ SHORT_SEG SHORT_MEMORY
extern int i_short;

#pragma DATA_SEG CUSTOM_MEMORY

extern int j_custom;

#pragma DATA_SEG DEFAULT

/* in the corresponding C file : */
#pragma DATA_SEG __ SHORT_SEG SHORT_MEMORY
int i_short;

#pragma DATA_SEG CUSTOM_MEMORY

int j_custom;

HC(S)12 Compiler Manual 409

Compiler Pragmas
Pragma Detlails

#pragma DATA_SEG DEFAULT

volid main (void) {
i =1; /* may use short access */
j 5;

}

Listing 7.11 shows code that uses the DATA_ SEG pragma improperly.

Listing 7.11 Improper use of the DATA_SEG pragma

#pragma DATA_SEG DATAL
#pragma CONST_SEG DATAl /* error: segment name has different types! */

#pragma DATA_SEG DATAL
#pragma DATA_SEG __ SHORT_SEG DATAl
/* error: segment name has modifiers! */

#pragma DATA_SEG DATAl

extern int 1i;

#pragma DATA_SEG DEFAULT

int i; /* error: i is declared in different segments */

#pragma DATA_SEG __ SHORT_SEG DEFAULT
/* error: modifiers for the DEFAULT segment are not allowed */

See also

HC(S)12 Backend chapter

Segmentation

Linker section of the Build Tools manual

#pragma CODE_SEG: Code Segment Definition

#pragma CONST_SEG: Constant Data Segment Definition
#pragma STRING_SEG: String Segment Definition

#pragma INTO_ROM.: Put Next Variable Definition into ROM
-Cc: Allocate Constant Objects into ROM compiler option

410 HC(S)12 Compiler Manual

Compiler Pragmas
Pragma Details

#pragma INLINE: Inline Next Function Definition

Scope

Function Definition

Syntax

#pragma INLINE
Synonym

None

Arguments

None

Default

None

Description
This pragma directs the Compiler to inline the next function in the source.

The pragma is the same as using the -O1 compiler option.

Listing 7.12 Using an INLINE pragma to inline a function

int 1i;
#pragma INLINE
static void foo (void) {
i =12;
}
volid main (void) {
foo(); // results in inlining ‘i = 12;’

}

See also

#pragma NO_INLINE: Do not Inline next function definition
-Oi: Inlining compiler option

HC(S)12 Compiler Manual 411

Compiler Pragmas
Pragma Detlails

#pragma INTO_ROM: Put Next Variable Definition into ROM

Scope

Data Definition

Syntax
#pragma INTO_ROM

Synonym

None

Arguments

None

Default

None

Description

This pragma forces the next (non-constant) variable definition to be const
(together with the -Cc compiler option).

The pragma is active only for the next single variable definition. A following
segment pragma (CONST_SEG, DATA_SEG, CODE_SEG) disables the pragma.

NOTE This pragma is only useful for the HIWARE object-file format (but not for
ELF/DWAREF).

NOTE This pragma is to force a non-constant (meaning a normal ‘variable’) object to
be recognized as ‘const’ by the compiler. If the variable already is declared
as ‘const’ in the source, this pragma is not needed. This pragma was
introduced to cheat the constant handling of the compiler and shall not be used
any longer. It is supported for legacy reasons only.

412 HC(S)12 Compiler Manual

Compiler Pragmas
Pragma Details

Example

Listing 7.13 presents some examples which use the INTO_ROM pragma.

Listing 7.13 Using the INTO_ROM pragma

#pragma INTO_ROM
char *const B[] = {"hello", "world"};

#pragma INTO_ROM
int constVariable; /* put into ROM_VAR, .rodata */

int other; /* put into default segment */
#pragma INTO_ROM

#pragma DATA_SEG MySeg /* INTO_ROM overwritten! */
int other2; /* put into MySeg */

See also
-Cc: Allocate Constant Objects into ROM compiler option

HC(S)12 Compiler Manual 413

Compiler Pragmas
Pragma Detlails

#pragma LINK_INFO: Pass Information to the Linker

Scope

Function

Syntax
#pragma LINK_INFO NAME “CONTENT”

Synonym

None

Arguments

NAME: Identifier specific to the purpose of this LINK_INFO.
CONTENT: C-style string containing only printable ASCII characters.

Default

None

Description

This pragma instructs the compiler to put the passed name content pair into the
ELF file. For the compiler, the name that is used and its content do have no
meaning other than one name can only contain one content. However, multiple
pragmas with different NAMEs are legal.

For the Linker or for the Debugger, however, NAME might trigger some special
functionality with CONTENT as an argument.

The Linker collects the CONTENT for every NAME in different object files and
issues an message if a different CONTENT is given for different object files.

NOTE This pragma only works with the ELF object-file format.

Example

Apart from extended functionality implemented in the Linker or Debugger, this
feature can also be used for user-defined link-time consistency checks:

Using the code shown in Listing 7.14 in a header file used by all compilation units,
the Linker will issue a message if the object files built with _DEBUG are linked
with object files built without it.

414

HC(S)12 Compiler Manual

Compiler Pragmas
Pragma Details

Listing 7.14 Using pragmas to assist in debugging

#ifdef _DEBUG

#pragma LINK_INFO MY_BUILD_ENV DEBUG
#else

#pragma LINK_INFO MY_BUILD_ENV NO_DEBUG
#endif

HC(S)12 Compiler Manual 415

Compiler Pragmas
Pragma Detlails

#pragma LOOP_UNROLL: Force Loop Unrolling

Scope

Function

Syntax

#pragma LOOP_UNROLL
Synonym

None

Arguments

None

Default

None

Description

If this pragma is present, loop unrolling is performed for the next function. This is
the same as if the —~Cu option is set for the following single function.

Listing 7.15 Using a LOOP_UNROLL pragma to unroll the for loop

#pragma LOOP_UNROLL
void F(void) {
for (i=0; i<5; i++) { // unrolling this loop

See also

#pragma NO_LOOP_UNROLL: Disable Loop Unrolling
-Cu: Loop Unrolling

416 HC(S)12 Compiler Manual

Compiler Pragmas
Pragma Details

#pragma mark: Entry in CodeWarrior IDE Function List

Scope
Line
Syntax
#pragma mark {any text - no quote marks needed}

Synonym

None

Arguments

None

Default

None

Description

This pragma adds an entry into the function list of the CodeWarrior IDE. It also
helps to introduce faster code lookups by providing a menu entry which directly
jumps to a code position. With the special “#pragma mark -", a separator line
is inserted.

NOTE The compiler does not actually handle this pragma. The compiler ignores this
pragma. The CodeWarrior IDE scans opened source files for this pragma. It is
not necessary to recompile a file when this pragma is changed. The IDE
updates its menus instantly.

Example

For the example in Listing 7.16 the pragma accesses declarations and definitions.

Listing 7.16 Using the MARK pragma

#pragma mark local function declarations
static void inc_counter (void) ;
static void inc_ref (void) ;

#pragma mark local variable definitions
static int counter;

HC(S)12 Compiler Manual 417

Compiler Pragmas
Pragma Detlails

static int ref;

#pragma mark -

static void inc_counter (void) {
counter++;

}

static void inc_ref (void) {
ref++;

}

418 HC(S)12 Compiler Manual

Compiler Pragmas
Pragma Details

#pragma MESSAGE: Message Setting

Scope

Compilation Unit or until the next MESSAGE pragma

Syntax

#pragma MESSAGE { (WARNING |ERROR|INFORMATION |DISABLE|DEFAULT) {<CNUM>}}

Synonym

None

Arguments

<CNUM>: Number of messages to be set in the C1234 format

Default

None

Description

Messages are selectively set to an information message, a warning message, a
disable message, or an error message.

NOTE This pragma has no effect for messages which are produced during
preprocessing. The reason is that the pragma parsing has to be done during
normal source parsing but not during preprocessing.

NOTE This pragma (as other pragmas) has to be specified outside of the function’s
scope. For example, it is not possible to change a message inside a function or
for a part of a function.

Example

In the example shown in Listing 7.17, parentheses () were omitted.

HC(S)12 Compiler Manual 419

Compiler Pragmas
Pragma Detlails

Listing 7.17 Using the MESSAGE Pragma

/* treat Cl412: Not a function call, */
/* address of a function, as error */
#pragma MESSAGE ERROR C1412
void f(void) ;
void main(void) {
f; /* () is missing, but still legal in C */
/* ERROR because of pragma MESSAGE */
}

See also
Compiler options:
¢ -WmsgSd: Setting a Message to Disable
* -WmsgSe: Setting a Message to Error
¢ -WmsgSi: Setting a Message to Information

e -WmsgSw: Setting a Message to Warning

420

HC(S)12 Compiler Manual

Compiler Pragmas
Pragma Details

#pragma NO_ENTRY: No Entry Code

Scope

Function

Syntax
#pragma NO_ENTRY

Synonym

None

Arguments

None

Default

None

Description

This pragma suppresses the generation of entry code and is useful for inline
assembler functions. The entry code prepares subsequent C code to run properly. It
usually consists of pushing register arguments on the stack (if necessary), and
allocating the stack space used for local variables and temporaries and storing
callee saved registers according to the calling convention.

The main purpose of this pragma is for functions which contain only High-Level
Inline (HLI) assembler code to suppress the compiler generated entry code.

One use of this pragma is in the startup function _Startup. At the start of this
function the stack pointer is not yet defined. It has to be loaded by custom HLI
code first.

NOTE C code inside of a function compiled with #pragma NO_ENTRY is generated
independently of this pragma. The C code may therefore not work since it
could access variables on the stack which were not allocated.

This pragma is only safe in functions with only HLI code. In functions that contain
C code, using this pragma is a very advanced topic. Usually this pragma is used
together with the pragma NO_FRAME.

HC(S)12 Compiler Manual 421

Compiler Pragmas
Pragma Detlails

TIP HLI only functions should use a #pragma NO_ENTRY and a #pragma
NO_EXIT to avoid generation of any additional frame instructions by the
compiler.

The code generated in a function with #pragma NO_ENTRY may not be safe. It
is assumed that the user ensures stack use.

WARNING! Not all backends support this pragma. Some may still generate entry
code even if this pragma is specified.

Example

Listing 7.18 shows how to use the NO_ENTRY pragma (along with others) to avoid
any generated code by the compiler. All code is written in inline assembler.

Listing 7.18 Blocking compiler-generated function-management instructions

#pragma NO_ENTRY
#pragma NO_EXIT
#pragma NO_FRAME
#pragma NO_RETURN
void FuncO (void) {
__asm {/* No code should be written by the compiler.*/

}

See also
#pragma NO_EXIT: No Exit Code
#pragma NO_FRAME: No Frame Code
#pragma NO_RETURN: No Return Instruction

422 HC(S)12 Compiler Manual

Compiler Pragmas
Pragma Details

#pragma NO_EXIT: No Exit Code

Scope

Function

Syntax
#pragma NO_EXIT

Synonym

None

Arguments

None

Default

None

Description

This pragma suppresses generation of the exit code and is useful for inline
assembler functions. The two pragmas NO_ENTRY and NO_EXIT together avoid
generation of any exit/entry code. Functions written in High-Level Inline (HLI)
assembler can therefore be used as custom entry and exit code.

The compiler can often deduce if a function does not return, but sometimes this is
not possible. This pragma can then be used to avoid the generation of exit code.

TIP HLI only functions should use a #pragma NO_ENTRY and a #pragma

NO_EXIT to avoid generation of any additional frame instructions by the
compiler.

The code generated in a function with #pragma NO_EXIT may not be safe. It is
assumed that the user ensures stack usage.

NOTE Not all backends support this pragma. Some may still generate exit code even
if this pragma is specified.

HC(S)12 Compiler Manual 423

Compiler Pragmas
Pragma Detlails

Example

Listing 7.19 shows how to use the NO_EXIT pragma (along with others) to avoid
any generated code by the compiler. All code is written in inline assembler.

Listing 7.19 Blocking Compiler-generated function management instructions

#pragma NO_ENTRY
#pragma NO_EXIT
#pragma NO_FRAME
#pragma NO_RETURN
void FuncO (void) {
__asm {/* No code should be written by the compiler.*/

}

See also

#pragma NO_ENTRY: No Entry Code
#pragma NO_FRAME: No Frame Code
#pragma NO_RETURN: No Return Instruction

424 HC(S)12 Compiler Manual

Compiler Pragmas
Pragma Details

#pragma NO_FRAME: No Frame Code

Scope

Function

Syntax
#pragma NO_FRAME

Synonym

None

Arguments

None

Default

None

Description

This pragma is accepted for compatibility only. It is replaced by the #pragma
NO_ENTRY and #pragma NO_EXIT pragmas.

For some compilers, using this pragma does not affect the generated code. Use the
two pragmas NO_ENTRY and NO_EXTT instead (or in addition). When the
compiler does consider this pragma, see the #pragma NO_ENTRY and
#pragma NO_EXIT for restrictions that apply.

This pragma suppresses the generation of frame code and is useful for inline
assembler functions.

The code generated in a function with #pragma NO_FRAME may not be safe. It
is assumed that the user ensures stack usage.

NOTE Not all backends support this pragma. Some may still generate frame code
even if this pragma is specified.

Example

Listing 7.20 shows how to use the NO_FRAME pragma (along with others) to avoid
any generated code by the compiler. All code is written in inline assembler.

HC(S)12 Compiler Manual 425

Compiler Pragmas
Pragma Detlails

Listing 7.20 Blocking compiler-generated function management instructions

#pragma NO_ENTRY
#pragma NO_EXIT
#pragma NO_FRAME
#pragma NO_RETURN
void FuncO (void) {
__asm {/* No code should be written by the compiler.*/

}

See also

#pragma NO_ENTRY: No Entry Code
#pragma NO_EXIT: No Exit Code
#pragma NO_RETURN: No Return Instruction

426 HC(S)12 Compiler Manual

Compiler Pragmas
Pragma Details

#pragma NO_INLINE: Do not Inline next function definition

Scope

Function

Syntax

#pragma NO_INLINE

Synonym

None

Arguments

None

Default

None

Description

This pragma prevents the Compiler to inline the next function in the source.
The pragma is used to avoid to inline a function which would be otherwise inlined
because of the —~O1 compiler option.

Listing 7.21 Use of #pragma NO_INLINE to prevent inlining a function.

// (With the -0i option)

int 1i;

#pragma NO_INLINE

static void foo (void) {
i =12;

}

void main(void) {
foo(); // call is not inlined

}

See also

#pragma INLINE: Inline Next Function Definition
-Oi: Inlining compiler option

HC(S)12 Compiler Manual 427

Compiler Pragmas
Pragma Detlails

#pragma NO_LOOP_UNROLL: Disable Loop Unrolling

Scope

Function

Syntax
#pragma NO_LOOP_UNROLL

Synonym

None

Arguments

None

Default

None

Description

If this pragma is present, no loop unrolling is performed for the next function
definition, even if the —~Cu command line option is given.

Example

Listing 7.22 Using the NO_LOOP_UNROLL pragma to temporarily halt loop unrolling

#pragma NO_LOOP_UNROLL
void F(void) {
for (i=0; i<5; i++) { // loop is NOT unrolled

See also

#pragma LOOP_UNROLL: Force Loop Unrolling
-Cu: Loop Unrolling compiler option

428 HC(S)12 Compiler Manual

Compiler Pragmas
Pragma Details

#pragma NO_RETURN: No Return Instruction

Scope

Function

Syntax
#pragma NO_RETURN

Synonym

None

Arguments

None

Default

None

Description

This pragma suppresses the generation of the return instruction (return from a
subroutine or return from an interrupt). This may be useful if you care about the
return instruction itself or if the code has to fall through to the first instruction of
the next function.

This pragma does not suppress the generation of the exit code at all (e.g.,
deallocation of local variables or compiler generated local variables). The pragma
suppresses the generation of the return instruction.

NOTE If this feature is used to fall through to the next function, smart linking has to
be switched off in the Linker, because the next function may be not referenced
from somewhere else. In addition, be careful that both functions are in a linear
segment. To be on the safe side, allocate both functions into a segment that
only has a linear memory area.

Example

The example in Listing 7.23 places some functions into a special named segment.
All functions in this special code segment have to be called from an operating
system every 2 seconds after each other. With the pragma some functions do not
return. They fall directly to the next function to be called, saving code size and
execution time.

HC(S)12 Compiler Manual 429

Compiler Pragmas
Pragma Detlails

Listing 7.23 Blocking compiler-generated function return instructions

#pragma CODE_SEG CallEvery2Secs
#pragma NO_RETURN
void FuncO (void) {

/* first function, called from 0OS */

} /* fall through!!!! */
#pragma NO_RETURN
void Funcl (void) {

} /* fall through */

/* last function has to return, no pragma is used! */
void FuncLast (void) {

}

See also

#pragma NO_ENTRY: No Entry Code
#pragma NO_EXIT: No Exit Code
#pragma NO_FRAME: No Frame Code

430 HC(S)12 Compiler Manual

Compiler Pragmas
Pragma Details

#pragma NO_STRING_CONSTR: No String Concatenation during
preprocessing

Scope

Compilation Unit

Syntax
#pragma NO_STRING_CONSTR

Synonym

None

Arguments

None

Default

None

Description

This pragma is valid for the rest of the file in which it appears. It switches off the
special handling of '#' as a string constructor. This is useful if a macro contains
inline assembler statements using this character, e.g., for IMMEDIATE values.

Example

The following pseudo assembly-code macro shows the use of the pragma. Without
the pragma, ‘#’ is handled as a string constructor, which is not the desired
behavior.

Listing 7.24 Using a NO_STRING_CONSTR pragma in order to alter the meaning of #

#pragma NO_STRING_CONSTR
#define HALT (x) _asm { \
LOAD Reg, #3 \
HALT x, #255\
}

See also
Using the Immediate-Addressing Mode in HLI Assembler Macros

HC(S)12 Compiler Manual 431

Compiler Pragmas
Pragma Detlails

#pragma ONCE: Include Once

Scope

File
Syntax

#pragma ONCE
Synonym

None

Arguments

None

Default

None

Description

If this pragma appears in a header file, the file is opened and read only once. This
increases compilation speed.

Example
#pragma ONCE

See also

-Pio: Include Files Only Once compiler option

432 HC(S)12 Compiler Manual

Compiler Pragmas
Pragma Details

#pragma OPTION: Additional Options

Scope

Compilation Unit or until the next OPTION pragma

Syntax

#pragma OPTION ADD [<Handle>] “<Option>"
#pragma OPTION DEL <Handle>
#pragma OPTION DEL ALL

Synonym

None

Arguments
<Handle>: An identifier - added options can selectively be deleted.

<Option>: A valid option string

Default

None

Description
Options are added inside of the source code while compiling a file.

The options given on the command line or in a configuration file cannot be
changed in any way.

Additional options are added to the current ones with the ADD command. A handle
may be given optionally.

The DEL command either removes all options with a specific handle. It also uses
the ALL keyword to remove all added options regardless if they have a handle or
not. Note that you only can remove options which were added previously with the
OPTION ADD pragma.

All keywords and the handle are case-sensitive.
Restrictions:

¢ The -D: Macro Definition (preprocessor definition) compiler option is not
allowed. Use a “#define” preprocessor directive instead.

HC(S)12 Compiler Manual 433

Compiler Pragmas
Pragma Detlails

¢ The -OdocF: Dynamic Option Configuration for Functions compiler option is
not allowed. Specify this option on the command line or in a configuration file
instead.

* These Message Setting compiler options have no effect:
— -WmsgSd: Setting a Message to Disable,
— -WmsgSe: Setting a Message to Error,
— -WmsgSi: Setting a Message to Information, and
— -WmsgSw: Setting a Message to Warning.
Use #pragma MESSAGE: Message Setting instead.

* Only options concerning tasks during code generation are used. Options
controlling the preprocessor, for example, have no effect.

* No macros are defined for specific options.
¢ Only options having function scope may be used.
* The given options must not specify a conflict to any other given option.

* The pragma is not allowed inside of declarations or definitions.

Example

The example in Listing 7.25 shows how to compile only a single function with the
additional -Oxr option.

Listing 7.25 Using the OPTION Pragma

#pragma OPTION ADD function_main_handle "-Or"

int sum(int max) { /* compiled with -or */
int i, sum=0;
for (1 = 0; 1 < max; i++) {
sum += 1;
}
return sum;

}

#pragma OPTION DEL function_main_handle
/* Now the same options as before #pragma OPTION ADD */
/* are active again. */

434 HC(S)12 Compiler Manual

Compiler Pragmas
Pragma Details

The examples in Listing 7.26 show improper uses of the OPTION pragma.

Listing 7.26 Improper uses of the OPTION pragma

#pragma OPTION ADD -Or /* ERROR, quotes missing; use "-Or" */
#pragma OPTION "-Or" /* ERROR, needs also the ADD keyword */

#pragma OPTION ADD "-Odocf=\"-Or\""
/* ERROR, "-Odocf" not allowed in this pragma */

void f(void) {

#pragma OPTION ADD "-Or"

/* ERROR, pragma not allowed inside of declarations */
}i

#pragma OPTION ADD "-Cni"

#ifdef _ CNI_

/* ERROR, macros are not defined for options */

/* added with the pragma */

#endif

HC(S)12 Compiler Manual 435

Compiler Pragmas
Pragma Detlails

#pragma REALLOC_OBJ: Object Reallocation

Scope

Compilation Unit

Syntax

#pragma REALLOC_OBJ "segment" ["objfile"] object qualifier

Arguments

segment: Name of an already existing segment. This name must have been
previously used by a segment pragma (DATA_SEG, CODE_SEG, CONST_SEG, or
STRING_SEG).

objfile: Name of a object file. If specified, the object is assumed to have static
linkage and to be defined in obj file. The name must be specified without
alteration by the qualifier __namemangle.

object: Name of the object to be reallocated. Here the name as known to the
Linker has to be specified.

qualifier: One of the following:

* _ near,

e _ far,

e _ paged,or

¢ _ namemangle.

Some of the qualifiers are only allowed to backends not supporting a specified
qualifier generating this message. With the special ___namemangle qualifier, the
link name is changed so that the name of the reallocated object does not match the
usual name. This feature detects when a REALLOC_OBJ pragma is not applied to
all uses of one object.

Default

None

Description

This pragma reallocates an object (e.g., affecting its calling convention). This is
used by the linker if the linker has to distribute objects over banks or segments in
an automatic way (code distribution). The linker is able to generate an include file

436 HC(S)12 Compiler Manual

Compiler Pragmas
Pragma Details

containing #pragma RALLOC_OBJ to tell the compiler how to change calling
conventions for each object. See the Linker manual for details.

Example

Listing 7.27 uses the REALLOC_OBJ pragma to reallocate the evaluate.o
object file.

Listing 7.27 Using the REALLOC_OBJ pragma to reallocate an object

#pragma REALLOC_OBJ "DISTRIBUTEl" ("evaluate.o") Eval_Plus _ near
__namemangle

See also

Message C420 in the Online Help
Linker section of the Build Tools manual

HC(S)12 Compiler Manual 437

Compiler Pragmas
Pragma Detlails

#pragma STRING_SEG: String Segment Definition

Scope

Until the next STRING_SEG pragma

Syntax

#pragma STRING_SEG (<Modif><Name> | DEFAULT)

Synonym

STRING_SECTION

Arguments

Listing 7.28 Some of the following strings may be used for <Motif>:

__ DIRECT_SEG

__NEAR_SEG compatibility alias:
__CODE_SEG compatibility alias:
_ _FAR_SEG compatibility alias:

__ EPAGE_SEG compatibility alias:
__PPAGE_SEG compatibility alias:
__ RPAGE_SEG compatibility alias:
__GPAGE_SEG compatibility alias:

compatibility alias:

(
(
(
(
__ DPAGE_SEG (compatibility alias:
(
(
(
(

DIRECT)
NEAR)
CODE)
FAR)

NOTE A compatibility alias should not be used in new code. It only exists for
backwards compatibility.
Some of the compatibility alias names conflict with defines found in certain
header files. So avoid using compatibility alias names.

The __ SHORT_ SEG modifier specifies a segment that accesses using 8-bit
addresses. The definitions of these segment modifiers are backend-dependent.
Read the backend chapter to find the supported modifiers and their definitions.

<Name>: The name of the segment. This name must be used in the link parameter
file on the left side of the assignment in the PLACEMENT part. Please refer to the
linker manual for details.

Default

DEFAULT.

438

HC(S)12 Compiler Manual

Compiler Pragmas
Pragma Details

Description

NOTE

This pragma allocates strings into a segment. Strings are allocated in the linker
segment STRINGS. This pragma allocates strings in special segments. String
segments also may have modifiers. This instructs the Compiler to access them in a
special way when necessary.

Segments defined with the pragma STRING_SEG are treated by the linker like
constant segments defined with #pragma CONST_SEG, so they are allocated in
ROM areas.

The pragma STRING_SEG sets the current string segment. This segment is used to
place all newly occurring strings.

The linker may support a overlapping allocation of strings. e.g., the allocation
of “CDE” inside of the string “ABCDE"”, so that both strings together need only
six bytes. When putting strings into user-defined segments, the linker may no
longer do this optimization. Only use a user-defined string segment when
necessary.

The synonym STRING_SECTION has exactly the same meaning as
STRING_SEG.

Example

Listing 7.29 Using

Listing 7.29 is an example of the STRING_ SEG pragma allocating strings into a
segment with the name, STRING_MEMORY.

a STRING_SEG pragma to allocate a segment for strings

#pragma STRING_SEG STRING_MEMORY

char* p="Stringl";

void f(char*);

void main (void)
f("String2") ;

{

#pragma STRING_SEG DEFAULT

See also

HC(S)12 Backend

Segmentation

Linker section of the Build Tools manual

#pragma CODE_SEG: Code Segment Definition

#pragma CONST_SEG: Constant Data Segment Definition
#pragma DATA_SEG: Data Segment Definition

HC(S)12 Compiler Manual 439

Compiler Pragmas
Pragma Detlails

#pragma TEST_CODE: Check Generated Code

Scope

Function Definition

Syntax
#pragma TEST_CODE CompareOperator <Size> [<HashCode>]
CompareOperator: == | I= | < | > | <= | >=

Arguments

<Size>: Size of the function to be used in a compare operation
<HashCode>: optional value specifying one specific code pattern.

Default

None

Description

This pragma checks the generated code. If the check fails, the message C3601 is
issued.

The following parts are tested:
* Size of the function

The compare operator and the size given as arguments are compared with the
size of the function.

This feature checks that the compiler generates less code than a given boundary.
Or, to be sure that certain code it can also be checked that the compiler produces
more code than specified. To only check the hashcode, use a condition which is
always TRUE, suchas “!= 0".

¢ Hashcode

The compiler produces a 16-bit hashcode from the produced code of the next
function. This hashcode considers:

— The code bytes of the generated functions

— The type, offset, and addend of any fixup.

440 HC(S)12 Compiler Manual

Compiler Pragmas
Pragma Details

To get the hashcode of a certain function, compile the function with an active
#pragma TEST_CODE which will intentionally fail. Then copy the computed
hashcode out of the body of the message C3601.

NOTE The code generated by the compiler may change. If the test fails, it is often not
certain that the topic chosen to be checked was wrong.

Examples

Listing 7.30 and Listing 7.31 present two examples of the TEST_CODE pragma.

Listing 7.30 Using TEST_CODE to check the size of generated object code

/* check that an empty function is smaller */
/* than 10 bytes */

#pragma TEST_CODE < 10

void main(void) {

}

You can also use the TEST_CODE pragma to detect when a different code is
generated (Listing 7.31).

Listing 7.31 Using a Test_Code pragma with the hashcode option

/* If the following pragma fails, check the code. */
/* If the code is OK, add the hashcode to the */
/* list of allowed codes : */
#pragma TEST_CODE != 0 25645 37594
/* check code patterns : */
/* 25645 : shift for *2 */
/* 37594 : mult for *2 */
void main(void) {
f(2*1i);
}

See also
Message C3601 in the Online Help

HC(S)12 Compiler Manual 441

Compiler Pragmas
Pragma Detlails

#pragma TRAP_PROC: Mark function as interrupt function

Scope

Function Definition

Syntax
#pragma TRAP_PROC

Arguments
See Backend

Default

None

Description

This pragma marks a function to be an interrupt function. Because interrupt
functions may need some special entry and exit code, this pragma has to be used
for interrupt functions.

Do not use this pragma for declarations (e.g., in header files) because the pragma is
valid for the next definition.

See the HC(S)12 Backend chapter for details.

Example

Listing 7.32 marks the MyInterrupt () function as an interrupt function.

Listing 7.32 Using the TRAP_PROC pragma to mark an interrupt function

#pragma TRAP_PROC
void MyInterrupt (void) {

}

See also

interrupt keyword

442 HC(S)12 Compiler Manual

ANSI-C Frontend

The Compiler Frontend reads the source files, does all the syntactic and semantic
checking, and produces intermediate representation of the program which then is passed
on to the Backend to generate code.

This chapter discusses features, restrictions, and further properties of the ANSI-C
Compiler Frontend.

¢ “Implementation Features” on page 443

¢ “ANSI-C Standard” on page 464

¢ “Floating-Type Formats” on page 467

¢ “Volatile Objects and Absolute Variables” on page 472
* “Bitfields” on page 472

¢ “Segmentation” on page 474

e “Optimizations” on page 477

* “Using Qualifiers for Pointers” on page 481

* “Defining C Macros Containing HLI Assembler Code” on page 483

Implementation Features

The Compiler provides a series of pragmas instead of introducing additions to the
language to support features such as interrupt procedures. The Compiler implements
ANSI-C according to the X3J11 standard. The reference document is “American National
Standard for Programming Languages — C”, ANSI/ISO 9899-1990.

Keywords
See Listing 8.1 for the complete list of ANCSI-C keywords.

Listing 8.1 ANSI-C keywords

auto
const
doubl
float
int

break case char
continue default do

e else enum extern
for goto if
long register return

HC(S)12 Compiler Manual 443

ANSI-C Frontend
Implementation Features

short signed sizeof static
struct switch typedef union
unsigned void volatile while

Preprocessor Directives

The Compiler supports the full set of preprocessor directives as required by the ANSI
standard (Listing 8.2.

Listing 8.2 ANSI-C preprocessor directives

#if, #ifdef, #ifndef, #else, #elif, #endif
#define, #undef

#include

#pragma

#error, #line

The preprocessor operators defined, #, and ## are also supported. There is a special
non-ANSI directive #warning which is the same as #error, but issues only a warning
message.

Language Extensions

There is a language extension in the Compiler for ANSI-C. You can use keywords to
qualify pointers in order to distinguish them, or to mark interrupt routines.

The Compiler supports the following non-ANSI compliant keywords (see Backend if they
are supported and for their semantics):

Pointer Qualifiers

Pointer qualifiers (Listing 8.3) can be used to distinguish between different pointer types
(e.g., for paging). Some of them are also used to specify the calling convention to be used
(e.g., if banking is available).

Listing 8.3 Pointer qualifiers

__far (alias far)

_ _near (alias near)_ dptr
__eptr

__pptr

444 HC(S)12 Compiler Manual

ANSI-C Frontend
Implementation Features

__rptr

To allow portable programming between different CPUs (or if the target CPU does not
support an additional keyword), you can include the defines listed below in the
‘hidef.h’ header file (Listing 8.4).

Listing 8.4 far and near can be defined in the hidef.h file

#define far /* no far keyword supported */
#define near /* no near keyword supported */

Special Keywords

ANSI-C was not designed with embedded controllers in mind. The listed keywords
(Listing 8.5) do not conform to ANSI standards. However, they do enable an easy way to
achieve good results from code used for embedded applications.

Listing 8.5 Special (non-ANSI) keywords

__alignof_

__va_sizeof

__interrupt (alias interrupt)
__asm (aliases _asm and asm)

NOTE See section Non-ANSI Keywords in the HC(S)12 Backend for more details.

You can use the __interrupt keyword to mark functions as interrupt functions, and to
link the function to a specified interrupt vector number (not supported by all backends).

Binary Constants (0b)

It is as well possible to use the binary notation for constants instead of hexadecimal
constants or normal constants. Note that binary constants are not allowed if the -Ansi:
Strict ANSI compiler option is switched on. Binary constants start with the Ob prefix,
followed by a sequence of Os or 1s (Listing 8.6).

Listing 8.6 Demonstration of a binary constant

#define myBinaryConst 0b01011
int 1i;

HC(S)12 Compiler Manual 445

ANSI-C Frontend
Implementation Features

void main(void) {
i = myBinaryConst;

}

Hexadecimal constants ($)

It is possible to use Hexadecimal constants inside HLI (High Level Inline) Assembly. For
example, instead of 0x1234 you can use $1234. Note that this is valid only for inline
assembly.

#warning directive

The #warning directive (Listing 8.7) is used as it is similar to the #error directive.

Listing 8.7 #warning directive.

#ifndef MY_MACRO

#warning "MY_MACRO set to default™
#define MY_MACRO 1234
#endif

Global Variable Address Modifier (@address)

You can assign global variables to specific addresses with the global variable address
modifier. These variables are called ‘absolute variables’. They are useful for accessing
memory mapped I/O ports and have the following syntax:

Declaration = <TypeSpec> <Declarator>
[@<Address>|@"<Section>"] [= <Initializer>];

where:
* <TypeSpec> is the type specifier, e.g., int, char
* <Declarator> is the identifier of the global object, e.g., i, glob
¢ <Address> is the absolute address of the object, e.g., 0xf£04, 0x00+8
e <Initializer> is the value to which the global variable is initialized.

A segment is created for each global object specified with an absolute address. This
address must not be inside any address range in the SECTIONS entries of the link
parameter file. Otherwise, there would be a linker error (overlapping segments). If the
specified address has a size greater than that used for addressing the default data page,

446 HC(S)12 Compiler Manual

ANSI-C Frontend
Implementation Features

pointers pointing to this global variable must be *___far”. An alternate way to assign
global variables to specific addresses is (Listing 8.8).

Listing 8.8 Assigning global variables to specific addresses

#pragma DATA_SEG [__ SHORT SEG] <segment_name>

setting the PLACEMENT section in the Linker parameter file. An older method of
accomplishing this is shown in Listing 8.9.

Listing 8.9 Another means of assigning global variables to specific addresses

<segment_name> INTO READ_ONLY <Address> ;

Listing 8.10 is an example using correctly and incorrectly the global variable address
modifier and Listing 8.11 is a possible PRM file that corresponds with the example
Listing.

Listing 8.10 Using the global variable address modifier

int glob @0x0500 = 10; // OK, global variable "glob" is
// at 0x0500, initialized with 10

void g() @0x40cO0; // error (the object is a function)
void f£() {
int i @0x40cc; // error (the object is a local variable)

}

Listing 8.11 Corresponding Linker parameter file settings (prm file)

/* the address 0x0500 of "glob" must not be in any address
range of the SECTIONS entries */

SECTIONS
MY RAM = READ_WRITE 0x0800 TO Ox1BFF;
MY ROM = READ_ONLY 0x2000 TO OxFEFF;
MY _STACK = READ_WRITE 0x1C00 TO Ox1FFF;
MY _IO_SEG = READ_WRITE 0x0400 TO Ox4ff;
END
PLACEMENT
I0_SEG INTO MY IO SEG;

DEFAULT_ROM INTO MY_ROM;
DEFAULT_RAM INTO MY_RAM;

HC(S)12 Compiler Manual 447

ANSI-C Frontend
Implementation Features

SSTACK

END

INTO MY_STACK;

Variable Allocation using @“SegmentName”

Sometimes it is useful to have the variable directly allocated in a named segment instead
of using a #pragma. Listing 8.12 is an example of how to do this.

Listing 8.12 Allocation of variables in named segments

#pragma
#pragma
#pragma
#pragma

DATA_SEG _ SHORT_SEG tiny
DATA_SEG not_tiny

DATA_SEG _ SHORT_SEG tiny_b
DATA_SEG DEFAULT

int i@"tiny";
int j@"not_tiny";
int k@"tiny b";

So with some pragmas in a common header file and with another definition for the macro,
it is possible to allocate variables depending on a macro.

Declaration = <TypeSpec> <Declarator>
[@”"<Section>"] [=<Initializer>];

Variables declared and defined with the @”section” syntax behave exactly like
variables declared after their respective pragmas.

e <TypeSpec> is the type specifier, e.g., int or char
¢ <Declarator> is the identifier of your global object, e.g., i, glob

* <Section> is the section name. It should be defined in the link parameter file as
well. E.g., “MyDataSection”.

e <Initializer> is the value to which the global variable is initialized.

The section name used has to be known at the declaration time by a previous section
pragma (Listing 8.13).

Listing 8.13 Examples of section pragmas

#pragma DATA_SEC _ SHORT_SEG MY_SHORT DATA_SEC
#pragma DATA_SEC MY_DATA_SEC
#pragma CONST_SEC MY_CONST_SEC
#pragma DATA_SEC DEFAULT // not necessary,
// but good practice
#pragma CONST_SEC DEFAULT // not necessary,
// but good practice
448 HC(S)12 Compiler Manual

ANSI-C Frontend
Implementation Features

int short_var @"MY_SHORT_DATA_SEC

int ext_var @"MY_DATA_SEC" 10;

int def_var; / OK, goes into DEF
const int cst_var @"MY_ CONST_SEC"

"; // OK, accesses are

short
OK, goes into
MY_DATA_SECT
AULT_RAM
= 10; //
//

OK, goes into
MY_CONST_SECT

Listing 8.14 Corresponding Link Parameter File Settings (prm-file)

SECTIONS
MY_ZRAM = READ_WRITE 0x00FO
MY_RAM = READ_WRITE 0x0100
MY_ROM = READ_ONLY 0x2000
MY_STACK = READ_WRITE 0x0200

END

PLACEMENT

MY_CONST_SEC, DEFAULT_ROM INTO

MY_SHORT_DATA_SEC INTO

MY_DATA_SEC, DEFAULT_RAM INTO

SSTACK INTO
END

TO
TO
TO
TO

0x00FF;
0x01FF;
OXFEFF;
0x03FF;

MY_ROM;
MY ZRAM;
MY RAM;
MY_STACK

Absolute Functions

Sometimes it is useful to call a absolute function (e.g., a special function in ROM).

Listing 8.15 is a simple example o

Listing 8.15 Absolute function

f how this could be done using normal ANSI-C.

((void(*) (void)) (0x
{

#define erase
void main (void)
erase() ;

}

fc06))

/* call function at address Oxfc06 */

Absolute Variables and Linking

Special attention is needed if absolute variables are involved in the linker’s link process.

If an absolute object is not referenced by the application, the absolute variable is not
linked in HIWARE format by default. Instead, it is always linked using the ELF/DWARF

HC(S)12 Compiler Manual

449

ANSI-C Frontend
Implementation Features

format. To force linking, switch off smart linking in the Linker, or using the ENTRIES
command in the linker parameter file.

NOTE Interrupt vector entries are always linked.

The example in Listing 8.16 shows how the linker handles different absolute variables.

Listing 8.16 Linker handling of absolute variables

char 1i; /* zero out */
char j = 1; /* zero out, copy-down */
const char k = 2; /* download */
char 1@0x10; /* no zero out! */
char J@O0x11 = 1;/* copy down */
const char K@O0x1l2 = 2;/* HIWARE: copy down / ELF: download! */
static char L@0Ox13; /* no zero out! */
static char M@0x14 = 3; /* copy down */

static const char N@Ox15 4; /* HIWARE: copy down, ELF: download */

void interrupt 2 MyISRfct(void) {} /* download, always linked! */
/* vector number two is downloaded with &MyISRfct */

void foo(char *p) {} /* download */

void main(void) { /* download */

)
foo(&i); foo(&j); fool(&k);
foo(&I); foo(&J); foo(&K);
foo(&L); foo(&M); foo (&N) ;

Zero out means that the default startup code initializes the variables during startup. Copy
down means that the variable is initialized during the default startup. To download means
that the memory is initialized while downloading the application.

The __far Keyword

The keyword far is a synonym for __far, which is not allowed when the -Ansi: Strict ANSI
compiler option is present.

NOTE See the Non-ANSI Keywords section in the HC12 Backend chapter.

A __far pointer allows access to the whole memory range supported by the processor, not
just to the default data page. You can use it to access memory mapped I/O registers that

450 HC(S)12 Compiler Manual

ANSI-C Frontend
Implementation Features

are not on the data page. You can also use it to allocate constant strings in a ROM not on
the data page.

The __far keyword defines the calling convention for a function. Some backends
support special calling conventions which also set a page register when a function is
called. This enables you to use more code than the address space can usually
accommodate. The special allocation of such functions is not done automatically.

Using the __ far Keyword for Pointers

The keyword ___far is a type qualifier like const and is valid only in the context of
pointer types and functions.The __far keyword (for pointers) always affects the last *' to
its left in a type definition. The declaration of a___far pointer to a __far pointer to a
character is:

char *_ _far *_ far p;

The following is a declaration of a normal (short) pointer to a ___far pointer to a
character:

char *_ far * p;

NOTE To declare a __far pointer, place the __far keyword after the asterisk:
char *__far p;

not
char __ far *p;
The second choice will not work.

__ far and Arrays

The __far keyword does not appear in the context of the '*' type constructor in the
declaration of an array parameter, as shown:

void my_func (char al[37]);

Such a declaration specifies a pointer argument. This is equal to:

void my_func (char *a);

There are two possible uses when declaring such an argument to a __far pointer:
void my_func (char al[37] __far);

or alternately

void my_func (char *_ far a);

In the context of the '[]' type constructor in a direct parameter declaration, the __ far
keyword always affects the first dimension of the array to its left. In the following
declaration, parameter a has type “__far pointer to array of 5 __far pointers to char”:

HC(S)12 Compiler Manual 451

ANSI-C Frontend
Implementation Features

void my_func (char *_ far a[][5] __ far);

__far and typedef Names

If the array type has been defined as a typedef name, as in:
typedef int ARRAY[10];

then a __far parameter declaration is:
void my_func (ARRAY _ far a);

The parameter is a ___far pointer to the first element of the array. This is equal to:
void my_func (int *__ far a);

It is also equal to the following direct declaration:
void my_func (int a[l10] __ far);

It is not the same as specifying a ___far pointer to the array:
void my_func (ARRAY *__ far a);

because a has type “___far pointer to ARRAY” instead of “___far pointer to int”.

___far and Global Variables

The °___far’ keyword can also be used for global variables:

int _ far 1i; // OK for global variables
int _ far *i; // OK for global variables
int _ far *_ far i; // OK for global variables

This forces the Compiler to perform the same addressing mode for this variable as if it has
been declared in a __FAR_ SEG segment. Note that for the above variable declarations or
definitions, the variables are in the DEFAULT_DATA segment if no other data segment is
active. Be careful if you mix ‘°__far’ declarations or definitions within a
non-__FAR_SEG data segment. Assuming that __ FAR_SEG segments have ‘extended’
addressing mode and normal segments have ‘direct’ addressing mode, Listing 8.17 and
Listing 8.18 clarify this behavior:

Listing 8.17 OK - consistent declarations

#pragma DATA_SEG MyDirectSeg

/* use direct addressing mode */

int i; // direct, segment MyDirectSeg
int j; // direct, segment MyDirectSeg

#pragma DATA_SEG __ FAR_SEG MyFarSeg
/* use extended addressing mode */
int k; // extended, segment MyFarSeg
int 1; // extended, segment MyFarSeg

452 HC(S)12 Compiler Manual

ANSI-C Frontend
Implementation Features

int _ far m; // extended, segment MyFarSeg

Listing 8.18 Mixing extended addressing and direct addressing modes

// caution: not consistent!!!!

#pragma DATA_SEG MyDirectSeg

/* use direct-addressing mode */

int 1i; // direct, segment MyDirectSeg
int j; // direct, segment MyDirectSeg
int _ far k; // extended, segment MyDirectSet
int _ far 1; // extended, segment MyDirectSeg
int _ far m // extended, segment MyDirectSeg

NOTE The __far keyword global variables only affect the access to the variable
(addressing mode) and NOT the allocation.

___far and C++ Classes

If a member function gets the modifier ___far, the “this” pointer is a __far pointer.
This is useful, if for instance, if the owner class of the function is not allocated on the
default data page. See Listing 8.19.

Listing 8.19 __far member functions

class A {

public:
void f_far(void) __ far {
/* _ far version of member function A::f() */

}
void f(void) {

/* normal version of member function A::f() */
}
}i
#pragma DATA_SEG MyDirectSeg // use direct addressing mode
A a_normal; // normal instance
#pragma DATA_SEG __FAR_SEG MyFarSeg // use extended addressing mode
A _ far a_far; // __far instance
void main(void) {
a_normal.f(); // call normal version of A::f() for normal instance
a_far.f_far(); // call _ far version of A::f() for _ far instance

HC(S)12 Compiler Manual 453

ANSI-C Frontend
Implementation Features

__far and C++ References

The __far modifier is applied to references. This is useful if it is a reference to an object
outside of the default data page. For example:

int j; // object j allocated outside the default data page
// (must be specified in the link parameter file)
void f(void) {
int & far 1 = j;

Y

Using the __far Keyword for Functions

A special calling convention is specified for the _ far keyword. The __far keyword is
specified in front of the function identifier:

void _ far f(void);

If the function returns a pointer, the __far keyword must be written in front of the first
asterisk (“*”).

int _ far *f(void);

It must, however, be after the int and not before it.

For function pointers, many backends assume that the __far function pointer is pointing
to functions with the __ far calling convention, even if the calling convention was not
specified. Moreover, most backends do not support different function pointer sizes in one

compilation unit. The function pointer size is then dependent only upon the memory
model. See the Backend chapter for details.

Table 8.1 Interpretation of the __far Keyword

Declaration Allowed Type Description

int __far f(); OK __far function returning an int

__farintf(); error

__farf(); OK __far function returning an int

int __far *f(); OK __far function returning a pointer to int

int* __far f(); OK function returning a __far pointer to int
__farint * {(); error

int__far* __farf(); OK __far function returning a __far pointer to int
int __fari; OK global __far object

454 HC(S)12 Compiler Manual

ANSI-C Frontend
Implementation Features

Table 8.1 Interpretation of the __far Keyword (continued)

Declaration Allowed Type Description

int __far *i; OK pointer to a __far object

int*__fari; OK __far pointer to int

int __far* __fari; OK __far pointer to a __far object

__farint *j; OK pointer to a __far integer

int*__far (* __far f)(void) | OK __far pointer to function returning a __far
pointer to int

void * __far (* f)(void) OK pointer to function returning a __far pointer
to void

void __far * (* f)(void) OK pointer to __far function returning a pointer

to void

__near Keyword

NOTE

See the Non-ANSI Keywords section in the HC(S)12 Backend.

The near keyword is a synonym for __near. The near keyword is only allowed when the
-Ansi: Strict ANSI compiler option is present.

The __near keyword can used instead of the __far keyword. It is used in situations
where non qualified pointers are __far and an explicit __near access should be specified
or where the __near calling convention must be explicitly specified.

The __near keyword uses two semantic variations. Either it specifies a small size of a
function or data pointers or it specifies the __near calling convention.

Table 8.2 Interpretation of the __near Keyword

Declaration Allowed | Type Description

int __near f(); OK __near function returning an int

int__near __far f(); error

__near f(); OK __near function returning an int

int__near * __farf(); OK __near function returning a __far
pointer to int

HC(S)12 Compiler Manual

455

ANSI-C Frontend
Implementation Features

Table 8.2 Interpretation of the __near Keyword (continued)

Declaration Allowed | Type Description

int __far *i; OK pointer to a __far object

int*__neari; OK __near pointer to int

int*__far* __nearij OK __near pointer to __far pointer to
int

int *__far (* __near f)(void) OK __near pointer to function

returning a __far pointer to int

void * __near (* f)(void) OK pointer to function returning a
__near pointer to void

void __far *__near (*__near f)(void) OK __near pointer to __far function
returning a __near pointer to void

__dptr, __eptr, __pptr, __rptr pointer qualifier
keywords (HCS12X only)

The pointer qualifiers __dptr, ___eptr, _ pptr, and ___rptr specify which page
register should be used for a certain pointer type. With this information, more efficient
code can be generated to perform the actual access.

NOTE These pointer qualifiers are only supported for code generated for the
HCSI12X.
The __dptr is only provided for symmetry reasons as the HCS12X does not
actually have a DPAGE register.

456

HC(S)12 Compiler Manual

ANSI-C Frontend
Implementation Features

Table 8.3 HCS12X only pointer qualifiers (not for HC12/HCS12)

qualifier | Address Kind | Description

_ far global __far pointers use the HCS12X G-Load and G-Store
instructions. Therefore __far pointers can point to any
address of the HCS12X

Note: as __far pointers use global addressing and the
other pointer types use logical addressing,
assignments to or from far pointers to other pointer
types is relatively expensive

Note: For the HC12/HCS12 __far pointers are also
supported but have a different semantic.

__dptr logical not actually used as only a HC12 A4 does support a
DPAGE register

__eptr logical Pointer to the paged EEProm area of a HCS12X

__pptr logical Pointer to the paged Flash area of a HCS12X

Note: __pptr pointers directly set the page register.

Therefore code using __pptr pointers must not be in
the banked area. If code in the banked area should

access another page, use a __far pointer instead.

__rptr logical Pointer to the paged RAM area of a HCS12X

Compatibility

___far pointers and normal pointers are compatible. If necessary, the normal pointer is
extended to a ___far pointer (subtraction of two pointers or assignmenttoa __far
pointer). In the other case, the __far pointer is clipped to a normal pointer (i.e., the page
part is discarded).

__alignof___ keyword

Some processors align objects according to their type. The unary operator,
__alignof__, determines the alignment of a specific type. By providing any type, this
operator returns its alignment. This operator behaves in the same way as

“sizeof (type-name) ” operator. See the target backend section to check which
alignment corresponds to which fundamental data type (if any is required) or to which
aggregate type (structure, array).

This macro may be useful for the va_arg macro in stdarg.h, e.g., to differentiate the
alignment of a structure containing four objects of four bytes from that of a structure

HC(S)12 Compiler Manual 457

ANSI-C Frontend
Implementation Features

containing two objects of eight bytes. In both cases, the size of the structure is 16 bytes,
but the alignment may differ, as shown (Listing 8.20):

Listing 8.20 va_arg macro

#define va_arg(ap, type) \
(((__alignof__ (type)>=8) ? \
((ap) = (char *) (((int) (ap) \
+ __alignof__ (type) - 1) & (~(__alignof__ (type) - 1)))) \
0), \
((ap) += __va_rounded_size(type)),\

(((type *) (ap))[-11))

__va_sizeof__ keyword

According to the ANSI-C specification, you must promote character arguments in open
parameter lists to int. The use of “char” in the va_arg macro to access this parameter
may not work as per the ANSI-C specification (Listing 8.21).

Listing 8.21 Inappropriate use of char with the va_arg macro

int f(int n, ...) {
int res;
va_list 1= va_start(n, int);
res= va_arg(l, char); /* should be va_arg(l, int) */
va_end (1) ;
return res;

}

volid main (void) {
char c=2;
int res=£f(1l,c);

}

With the __va_sizeof__ operator, the va_arg macro is written the way that £ ()
returns 2.

A safe implementation of the f function is to use “va_arg (1, int)” instead of
“va_arg(l, char)”.

The __va_sizeof__ unary operator, which is used exactly as the sizeof keyword,
returns the size of its argument after promotion as in an open parameter list (Listing 8.22).

458 HC(S)12 Compiler Manual

ANSI-C Frontend
Implementation Features

Listing 8.22 _ va_sizeof _ examples

__va_sizeof_ (char) == sizeof (int)

__va_sizeof_ (float) == sizeof (double)

struct A { char a; };

_ va_sizeof_ (struct A) >= 1 (1 if the target needs no padding bytes)

NOTE It is not possible in ANSI-C to distinguish a 1-byte structure without alignment
or padding from a character variable in a va_arg macro. They need a
different space on the open parameter calls stack for some processors.

interrupt keyword

The __interrupt keyword is a synonym for interrupt, which is allowed when the -Ansi:
Strict ANSI compiler option is present.

NOTE Not all Backends support this keyword. See the Non-ANSI Keywords section in
the HS(S)12 Backend

One of two ways can be used to specify a function as an interrupt routine:

* Use #pragma TRAP_PROC: Mark function as interrupt Function and adapt the
Linker parameter file.

¢ Use the nonstandard interrupt keyword.

Use the nonstandard interrupt keyword like any other type qualifier (Listing 8.23). It
specifies a function to be an interrupt routine. It is followed by a number specifying the
entry in the interrupt vector that should contain the address of the interrupt routine. If it is
not followed by any number, the interrupt keyword has the same effect as the
TRAP_PROC pragma. It specifies a function to be an interrupt routine. However, the
number of the interrupt vector must be associated with the name of the interrupt function
by using the Linker’s VECTOR directive in the Linker parameter file.

Listing 8.23 Examples of the interrupt keyword

interrupt void f(); // OK
// same as #pragma TRAP_PROC,
// please set the entry number in the prm-file

interrupt 2 int g{();
// The 2nd entry (number 2) gets the address of func g().

interrupt 3 int g(); // OK

HC(S)12 Compiler Manual 459

ANSI-C Frontend
Implementation Features

// third entry in vector points to g{()
interrupt int 1; // error: not a function

__asm Keyword

The Compiler supports target processor instructions inside of C functions.

The asm keyword is a synonym for ___asm, which is allowed when the -Ansi: Strict
ANSI compiler option is not present (Listing 8.24).

See the inline assembler section in the backend chapter for details.

Listing 8.24 Examples of the __asm keyword

__asm {
nop
nop ; comment
}
asm ("nop; nop");
__asm("nop\n nop") ;

__asm "nop";
__asm nop;
#asm
nop
nop
#endasm

Implementation-Defined Behavior

The ANSI standard contains a couple of places where the behavior of a particular
Compiler is left undefined. It is possible for different Compilers to implement certain
features in different ways, even if they all comply with the ANSI-C standard.
Subsequently, the following discuss those points and the behavior implemented by the
Compiler.

Right Shifts

The result of E1 >> E2 is implementation-defined for a right shift of an object with a
signed type having a negative value if E1 has a signed type and a negative value.

In this implementation, an arithmetic right shift is performed.

460 HC(S)12 Compiler Manual

ANSI-C Frontend
Implementation Features

Initialization of Aggregates with non Constants

The initialization of aggregates with non-constants is not allowed in the ANSI-C
specification. The Compiler allows it if the -Ansi: Strict ANSI compiler option is not set
(see Listing 8.25).

Listing 8.25 Initialization using a non constant

void main () {
struct A {
struct A *n;
} v={&v}; /* the address of v is not constant */

Sign of char

The ANSI-C standard leaves it open, whether the data type char is signed or unsigned.
Check the Backend chapter for data about default settings.

Division and Modulus

The results of the “/” and “%” operators are also not properly defined for signed
arithmetic operations unless both operands are positive.

NOTE The way a Compiler implements ™/ ” and “%” for negative operands is
determined by the hardware implementation of the target’s division
instructions.

Translation Limitations

This section describes the internal limitations of the Compiler. Some limitations are stack
limitations depending on the operating system used. For example, in some operating
systems, limits depend on whether the compiler is a 32-bit compiler running on a 32-bit
platform (e.g., Windows NT), or if it is a 16-bit Compiler running on a 16-bit platform
(e.g., Windows for Workgroups).

The ANSI-C column in Table 8.4 below shows the recommended limitations of ANSI-C
(5.2.4.1 in ISO/IEC 9899:1990 (E)) standard. These quantities are only guidelines and do
not determine compliance. The ‘Implementation’ column shows the actual
implementation value and the possible message number. ‘-> means that there is no
information available for this topic and ‘n/a’ denotes that this topic is not available.

HC(S)12 Compiler Manual 461

ANSI-C Frontend
Implementation Features

Table 8.4 Translation Limitations (ANSI)

Limitation Implementation ANSI-C
Nesting levels of compound statements, 256 (C1808) 15
iteration control structures, and selection

control structures

Nesting levels of conditional inclusion - 8
Pointer, array, and function decorators (in - 12
any combination) modifying an arithmetic,

structure, union, or incomplete type in a

declaration

Nesting levels of parenthesized 32 (C4006) 32
expressions within a full expression

Number of initial characters in an internal 32,767 31
identifier or macro name

Number of initial characters in an external 32,767 6
identifier

External identifiers in one translation unit - 511
Identifiers with block scope declared in - 127
one block

Macro identifiers simultaneously definedin | 655,360,000 (C4403) 1024
one translation unit

Parameters in one function definition - 31
Arguments in one function call - 31
Parameters in one macro definition 1024 (C4428) 31
Arguments in one macro invocation 2048 (C4411) 31
Characters in one logical source line 2731 509
Characters in a character string literal or 8196 (C3301, C4408, 509
wide string literal (after concatenation) C4421)

Size of an object 32,767 32,767
Nesting levels for #include files 512 (C3000) 8

462

HC(S)12 Compiler Manual

ANSI-C Frontend
Implementation Features

Table 8.4 Translation Limitations (ANSI) (continued)

Limitation Implementation ANSI-C
Case labels for a switch statement 1000 257
(excluding those for any nested switch

statements)

Data members in a single class, structure, - 127

or union

Enumeration constants in a single - 127
enumeration

Levels of nested class, structure, or union 32 15

definitions in a single struct declaration list

Functions registered by atexit() - n/a
Direct and indirect base classes - n/a
Direct base classes for a single class - n/a
Members declared in a single class - n/a
Final overriding virtual functions in a class, | - n/a

accessible or not

Direct and indirect virtual bases of a class - n/a
Static members of a class - n/a
Friend declarations in a class - n/a
Access control declarations in a class - n/a
Member initializers in a constructor - n/a
definition

Scope qualifications of one identifier - n/a
Nested external specifications - n/a
Template arguments in a template - n/a
declaration

Recursively nested template instantiations | - n/a
Handlers per try block - n/a
Throw specifications on a single function - n/a
declaration

HC(S)12 Compiler Manual 463

ANSI-C Frontend
ANSI-C Standard

The table below shows other limitations which are not mentioned in an ANSI standard:

Table 8.5 Translation Limitations (non-ANSI)

ANSI-C Standard

Limitation

Description

Type Declarations

Derived types must not contain more than 100 components.

Labels

There may be at most 16 other labels within one procedure.

Macro Expansion

Expansion of recursive macros is limited to 70 (16-bit OS) or
2048 (32-bit OS) recursive expansions (C4412).

Include Files The total number of include files is limited to 8196 for a single
compilation unit.

Numbers Maximum of 655,360,000 different numbers for a single
compilation unit (C2700, C3302).

Goto M68k only: Maximum of 512 Gotos for a single function

(C15300).

Parsing Recursion

Maximum of 1024 parsing recursions (C2803).

Lexical Tokens

Limited by memory only (C3200).

Internal IDs Maximum of 16,777,216 internal IDs for a single compilation
unit (C3304). Internal IDs are used for additional local or global
variables created by the Compiler (e.g., by using CSE).

Code Size Code size is limited to 32KB for each single function.

filenames Maximum length for filenames (including path) are 128

characters for 16-bit applications or 256 for Win32
applications. UNIX versions support filenames without path of
64 characters in length and 256 in the path. Paths may be 96
characters on 16-bit PC versions, 192 on UNIX versions or 256
on 32-bit PC versions.

This section provides a short overview about the implementation (see also ANSI Standard
6.2) of the ANSI-C conversion rules.

464

HC(S)12 Compiler Manual

ANSI-C Frontend
ANSI-C Standard

Integral Promotions

You may use a char, ashort int, or an int bitfield, or their signed or unsigned
varieties, or an enum type, in an expression wherever an int or unsigned int is used.
If an int represents all values of the original type, the value is converted to an int;
otherwise, it is converted to an unsigned int. Integral promotions preserve value
including sign.

Signed and Unsigned Integers

Promoting a signed integer type to another signed integer type of greater size requires
“sign extension”:Intwo's-complement representation, the bit pattern is unchanged,
except for filling the high order bits with copies of the sign bit.

When converting a signed integer type to an unsigned inter type, if the destination has
equal or greater size, the first signed extension of the signed integer type is performed. If
the destination has a smaller size, the result is the remainder on division by a number, one
greater than the largest unsigned number, that is represented in the type with the smaller
size.

Arithmetic Conversions

The operands of binary operators do implicit conversions:

 If either operand has type long double, the other operand is converted to 1ong
double.

 If either operand has type double, the other operand is converted to double.
 If either operand has type £1oat, the other operand is converted to £loat.
* The integral promotions are performed on both operands.

Then the following rules are applied:

¢ If either operand has type unsigned long int, the other operand is converted to
unsigned long int.

» If one operand has type long int and the other has type unsigned int,ifa
long int can represent all values of an unsigned int, the operand of type
unsigned int isconverted to long int;ifa long int cannot represent all
the values of an unsigned int, both operands are converted to unsigned
long int.

 If either operand has type long int, the other operand is converted to long int.

 If either operand has type unsigned int, the other operand is converted to
unsigned int.

* Both operands have type int.

HC(S)12 Compiler Manual 465

ANSI-C Frontend
ANSI-C Standard

Order of Operand Evaluation

The priority order of operators and their associativity is listed in Listing 8.26.

Listing 8.26 Operator precedence

Operators

O [l ->

I ~ 4+ —— + - * & (type) sizeof
& /%

+ -

<< >>

< <= > >=

== 1=

&

&&

?

= += —-= *= /= %= &= "= = <<= >>=

Associativity
left to right
right to left

left
left
left
left
left
left
left
left
left
left

to
to
to
to
to
to
to
to
to
to

right
right
right
right
right
right
right
right
right
right

right to left
right to left
left to right

Unary +,- and * have higher precedence than the binary forms. Listing 8.27 has some

examples of operator precedence

Listing 8.27 Examples of operator precedence

if (a&3 == 2)

*=='has higher precedence than ‘&’. Thus it is evaluated as:

if (a & (3==2)

which is the same as :
if (a&0)
Furthermore, is the same as :

if (0) => Therefore,the 1f condition is always ‘false’.

Hint: use brackets if you are not sure about associativity!

Rules for Standard-Type Sizes

In ANSI-C, enumerations have the type of ‘int’. In this implementation they have to be

smaller than or equal to “int'.

466

HC(S)12 Compiler Manual

ANSI-C Frontend
Floating-Type Formats

Listing 8.28 Size relationships among the integer types

sizeof (char) <= sizeof (short)
sizeof (short) <= sizeof (int)

sizeof (int) <= sizeof (long)

sizeof (long) <= sizeof(long long)
sizeof (float) <= sizeof (double)
sizeof (double)<= sizeof (long double)

Floating-Type Formats

The Compiler supports two IEEE floating point formats: IEEE32 and IEEE64. There may
also be a DSP format supported by the processor. Figure 8.1 shows these three formats.

Floats are implemented as IEEE32, and doubles as IEEE64. This may vary for a specific
Backend, or possibly, both formats may not be supported. Please check the Backend
chapter for details, default settings and supported formats.

Figure 8.1 Floating-point formats
[EEE 32-bit Format (Precision: 6.5 decimal digits)
| [8-bit expl 23-bit mantissa |
sign bit
value = -15 * 26127 = 1
IEEE 64-bit Format (Precision: 15 decimal digits)

| | 11-bit exp | 52-bit mantissa
sign bit

value = -15 * 2(E-1023) % | 1

DSP Format (Precision: 4.5 decimal digits)
| 16-bit mantissa | 16-bit exponent|

value = m * 2F (no hidden bit)

Negative exponents are in 2’s complement; the mantissa is in
signed fixed-point format.

HC(S)12 Compiler Manual 467

ANSI-C Frontend
Floating-Type Formats

Floating-Point Representation of 500.0 for
IEEE

First, convert 500 . 0 from the decimal representation to a representation with base 2:
value = (-1)"s * m*2"exp

where: s, signis O or 1,
2>m>= 1 for IEEE,
and exp is a integral number.

For 500, this gives:

sign (500.0) =1,
m, mant (500.0, IEEE) = 1.953125, and
exp (500.0, IEEE) = 8

NOTE The number 0 (zero) cannot be represented this way. So for 0, IEEE defines a
special bit pattern consisting of 0 bits only.

Next, convert the mantissa into its binary representation.

mant (500.0, IEEE) = 1.953125

= 1*27°(0) + 1*27(-1) + 1*27(-2) + 1*27(-3) + 1*27(-4)
+ 0*27(-5) + 1*27(-6) + O0*....

= 1.111101000... (binary)

Because this number is converted to be larger or equal to 1 and smaller than 2, there is
always a 1 in front of the decimal point. For the remaining steps, this constant (1) is left
out in order to save space.

mant (500.0, IEEE, cut) = .111101000...
The exponent must also be converted to binary format:
exp (500.0, IEEE) = 8 == 08 (hex) == 1000 (binary)

For the IEEE formats, the sign is encoded as a separate bit (sign magnitude representation)

Representation of 500.0 in IEEE32 Format

The exponent in IEEE32 has a fixed offset of 127 to always have positive values:
exp (500.0,IEEE32) = 8+127 == 87 (hex) == 10000111 (bin)
The fields must be put together as shown Listing 8.29:

468

HC(S)12 Compiler Manual

ANSI-C Frontend
Floating-Type Formats

Listing 8.29 Representation of decimal 500.0 in IEEE32

500.0 (dec) =
0 (sign) 10000111 (exponent)
11110100000000000000000 (mantissa) (IEEE32 as bin)
0100 0011 1111 1010 0000 0000 0000 0000 (IEEE32 as bin)
43 fa 00 00 (IEEE32 as hex)

The IEEE32 representation of decimal -500 is shown in Listing 8.30.

Listing 8.30 Representation of decimal -500.0 in IEEE32

-500.0 (dec) =
1 (sign) 10000111 (exponent)
11111010000000000000000 (mantissa) (IEEE32 as bin)
1100 0011 1111 1010 0000 0000 0000 0000 (IEEE32 as bin)
C3 fa 00 00 (IEEE32 as hex)

Representation of 500.0 in IEEE64 Format

The exponent in IEEE64 has a fixed offset of 1023 to always have positive values:

exp (500.0,IEEE64) = 8 + 1023 == 407 (hex) == 10000000111
(bin)

The IEEE64 format is similar to IEEE32 except that more bits are available to represent
the exponent and the mantissa. The IEEE64 representation of decimal 500 is shown in
Listing 8.31.

Listing 8.31 Representation of decimal 500.0 in IEEE64

500.0 (dec) =
0 (sign) 10000000111 (exponent)
11110100 (mantissa)
(IEEE64 as bin)
0100 0000 0111 1111 0100 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 (IEEE64 as bin)
40 7f 40 00 00 00 00 00 (IEEE64 as hex)

The IEEE64 representation of decimal -500 is shown in Listing 8.32.

HC(S)12 Compiler Manual 469

ANSI-C Frontend
Floating-Type Formats

Listing 8.32 Representation of decimal -500.0 in IEEE64

-500.0 (dec) =
1 (sign) 10000000111 (exponent)
11110100 (mantissa)
(IEEE64 as bin)
1100 0000 0111 1111 0100 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 (IEEE64 as bin)
= c0 7f 40 00 00 00 00 00 (IEEE64 as hex)

NOTE The IEEE formats recognize several special bit patterns for special values. The
number 0 (zero) is encoded by the bit pattern consisting of zero bits only. Other
special values such as “Not a number”, “infinity”, -0 (minus zero) and
denormalized numbers do exist. Please refer to the IEEE standard
documentation for details.

Except for the 0 (zero) and -0 (minus zero) special formats, not all special
formats may be supported for specific backends.

Representation of 500.0 in DSP Format

Convert 500.0 from the decimal representation to a representation with base 2. In
contradiction to IEEE, DSP normalizes the mantissa between 0 and 1 and not between 1
and 2. This makes it possible to also represent 0, which must have a special pattern in
IEEE. Also, the exponent is different from IEEE.

value = (-1)"s * m*2%e
where signis 1 or -1,
1 >m >= 0, and
exp is an integral number.

For 500 this gives:
e sign (500.0) =1
* mant (500.0,DSP) = 0.9765625
¢ exp (500.0,DSP) =9

Next convert the mantissa into its binary representation (Listing 8.33).

470 HC(S)12 Compiler Manual

ANSI-C Frontend
Floating-Type Formats

Listing 8.33 Representation of 500 in DSP format

mant

(500.0, DSP) = 0
= 0*27(0) + 1*2"(-1
(-5

(

0.1111101000...

.9765625 (dec)
+ 1%278(=2) 4+ 1%27(=3) + 1%27(-4)
+ 0%27(=6) + 1%27(=7) + 0*....

)
+ 1*2”)
bin) .

Because this number is computed to be always larger or equal to 0 and smaller than 1,
there is always a 0 in front of the decimal point. For the remaining steps this constant is
left out to save space. There is always a 1 after the decimal point, except for 0 and
intermediate results. This bit is encoded, so the DSP looses one additional bit of precision
compared with IEEE.

mant (500.0, DSP, cut) = .1111101000...
The exponent must also be converted to binary format:

exp (500.0,DSP) = 9 == 09 (hex) == 1001 (bin)
Negative exponents are encoded by the 2’s representation of the positive value.

The sign is encoded into the mantissa by taking the 2’s complement for negative numbers
and adding a 1 bit in the front. For DSP and positive numbers a 0 bit is added at the front.

mant (500.0, DSP) = 0111110100000000 (bin)
The twos complement is taken for negative numbers:
mant (-500.0, DSP) = 1000001100000000 (bin)
Finally the mantissa and the exponent must be joined according to Figure 8.1:

The DSP representation of decimal 500 is shown in Listing 8.34.

Listing 8.34 Representation of decimal 500.0 in DSP

500.0

(dec)

(mantissa) 00 09 (exponent) (DSP as hex)

7D 00 00 09 (DSP as hex)

0111 1101 0000 0000 0000 0000 0000 1001 (DSP as bin)

HC(S)12 Compiler Manual 471

ANSI-C Frontend
Volatile Objects and Absolute Variables

The DSP representation of decimal -500 is shown in Listing 8.35.

Listing 8.35 Representation of decimal -500.0 in DSP

-500.0 (dec)

= 83 00 (mantissa) 00 09 (exponent) (DSP as hex)

83 00 00 09 (DSP as hex)

1000 0011 0000 0000 0000 0000 0000 1001 (DSP as bin)

NOTE The order of the byte representation of a floating point value depends on the
byte ordering of the backend. The first byte in the previous diagrams must be
considered as the most significant byte.

Volatile Objects and Absolute Variables

The Compiler does not do register- and constant tracing on volatile or absolute global
objects. Accesses to volatile or absolute global objects are not eliminated. See Listing 8.36
for one reason to use a volatile declaration.

Listing 8.36 Using volatile to avoid an adverse side effect

volatile int x;
void main(void) {

x = 0;
if (x == 0) { // without volatile attribute, the
// comparison may be optimized away!
Error () ; // Error() is called without compare!

Bitfields

There is no standard way to allocate bitfields. Bitfield allocation varies from Compiler to
Compiler, even for the same target. Using bitfields for access to I/O registers is
non-portable and inefficient for the masking involved in unpacking individual fields. It is
recommended that you use regular bit-and (&) and bit-or (|) operations for I/O port access.

472 HC(S)12 Compiler Manual

ANSI-C Frontend
Bitfields

The maximum width of bitfields is Backend-dependent (see Backend for details), in that
plain int bitfields are signed. A bitfield never crosses a word (2 bytes) boundary. As
stated in Kernighan and Ritchie's “The C Programming Language”, 2P ed., the use of
bitfields is equivalent to using bit masks to which the operators &, |, ~, |= or &= are
applied. In fact, the Compiler translates bitfield operations to bit mask operations.

Signed Bitfields

A common mistake is to use signed bitfields, but testing them as if they were unsigned.
Signed bitfields have a value of -1 or 0. Consider the following example (Listing 8.37).

Listing 8.37 Testing a signed bitfield as being unsigned

typedef struct _B {
signed int b0: 1;} B;
B b;

if (b.b0 == 1)

The Compiler issues a warning and replaces the 1 with -1 because the condition

(b.b0 == 1) does not make sense, i.e., it is always false. The test (b.b0 == -1) is
performed as expected. This substitution is not ANSI compatible and will not be
performed when the -Ansi: Strict ANSI compiler option is active.

The correct way to specify this is with an unsigned bitfield. Unsigned bitfields have the
values 0 or 1 (Listing 8.38).

Listing 8.38 Using unsigned bitfields

typedef struct _B {
unsigned b0: 1;

} B;
B b;
if (b.b0 == 1)

Because b0 is an unsigned bitfield having the values O or 1, the test (b.b0 == 1) is
correct.

Recommendations

In order to save memory, it recommended to implement globally accessible boolean flags
as unsigned bitfields of width 1. However, it is not recommend using bitfields for other
purposes because:

HC(S)12 Compiler Manual 473

ANSI-C Frontend
Segmentation

* Using bitfields to describe a bit pattern in memory is not portable between
Compilers, even on the same target, as different Compilers may allocate bitfields
differently.

For information about how the Compiler allocates bitfields, see the Data Types section in
the HC(S)12 Backend chapter.

Segmentation

The Linker supports the concept of segments in that the memory space may be partitioned
into several segments. The Compiler allows attributing a certain segment name to certain
global variables or functions which then are allocated into that segment by the Linker.
Where that segment actually lies is determined by an entry in the Linker parameter file.

Listing 8.39 Syntax for the segment-specification pragma

SegDhef = #pragma SegmentType ({SegmentMod} SegmentName |

DEFAULT) .
SegmentType: CODE_SEG|CODE_SECTION |
DATA_SEG|DATA_SECTION |
CONST_SEG | CONST_SECTION |
STRING_SEG | STRING_SECTION
SegmentMod: _ DIRECT SEG|__ NEAR_SEG|__CODE_SEG |

__FAR SEG|__BIT_SEG|__Y_ BASED_SEG|

__ 7 BASED_SEG|__ DPAGE_SEG|__PPAGE_SEG |
__ EPAGE_SEG|__RPAGE_SEG|__GPAGE_SEG|
__PIC_SEG|CompatSegmentMod

CompatSegmentMod: DIRECT |NEAR|CODE|FAR|BIT]|
Y_BASED|Z_BASED | DPAGE | PPAGE |
EPAGE | RPAGE | GPAGE | PIC

Because there are two basic types of segments, code and data segments, there are also two
pragmas to specify segments:

#pragma CODE_SEG <segment_name>

#pragma DATA_SEG <segment_name>

In addition there are pragmas for constant data and for strings:
#pragma CONST_SEG <segment_name>

#pragma STRING_SEG <segment_name>

All four pragmas are valid until the next pragma of the same kind is encountered.

474 HC(S)12 Compiler Manual

ANSI-C Frontend
Segmentation

In the HIWARE object file format, constants are put into the DATA_SEG if no
CONST_SEG was specified. In the ELF Object file format, constants are always put into a
constant segment.

Strings are put into the segment STRINGS until a pragma STRING_SEG is specified.
After this pragma, all strings are allocated into this constant segment. The linker then
treats this segment like any other constant segment.

If no segment is specified, the Compiler assumes two default segments named
DEFAULT_ROM (the default code segment) and DEFAULT_RAM (the default data
segment). Use the segment name DEFAULT to explicitly make these default segments the
current segments:

#pragma CODE_SEG DEFAULT
#pragma DATA_SEG DEFAULT
#pragma CONST_SEG DEFAULT
#pragma STRING_SEG DEFAULT

Segments may also be declared as ___ SHORT_SEG by inserting the keyword
___SHORT_SEG just before the segment name (with the exception of the predefined
segment DEFAULT — this segment cannot be qualified with __ SHORT_SEG). This makes
the Compiler use short (i.e., 8 bits or 16 bits, depending on the Backend) absolute
addresses to access global objects, or to call functions. It is the programmer's
responsibility to allocate __ SHORT_SEG segments in the proper memory area.

NOTE The default code and data segments may not be declared as __SHORT_SEG.

The meaning of the other segment modifiers, such as __ NEAR_SEG and __FAR_SEG,
are backend-specific. Modifiers that are not supported by the backend are ignored. Please
refer to the backend chapter for data about which modifiers are supported.

The segment pragmas also have an effect on static local variables. Static local variables
are local variables with the ‘static’ flag set. They are in fact normal global variables but
with scope only to the function in which they are defined:

#pragma DATA_SEG MySeg

static char foo(void) {
static char i = 0; /* place this variable into MySeg */
return i++;

}

#pragma DATA_SEG DEFAULT

HC(S)12 Compiler Manual 475

ANSI-C Frontend

Segmentation
NOTE Using the ELF/DWAREF object file format (-F1 or -F2 compiler option), all
constants are placed into the section .rodata by default unless
#pragma CONST _SEG is used.
NOTE There are aliases to satisfy the ELF naming convention for all segment names:

Use CODE_SECTION instead of CODE_SEG.
Use DATA_SECTION instead of DATA_SEG.
Use CONST_SECTION instead of CONST_SEG
Use STRING_SECTION instead of STRING_SEG.

These aliases behave exactly as do the XXX_SEG name versions.

Example of Segmentation without the -Cc
Compiler Option

static int a;

static const int c0 = 10;
#pragma DATA_SEG MyVarSeg

static int b;

static const int cl = 11;
#pragma DATA_SEG DEFAULT
static int c;

static const int c2 = 12;

#pragma DATA_SEG MyVarSeg
#pragma CONST_SEG MyConstSeg
static int d4d;

static const int c3 = 13;
#pragma DATA_SEG DEFAULT
static int e;

static const int c4 = 14;
#pragma CONST_SEG DEFAULT
static int f;

static const int ¢5 = 15;

/*
/*
/~k

/~k
/*

/*
/*

/~k
/*

/*
/*

/*
/~k

Placed into Segment: */

DEFAULT_RAM(-1) */
DEFAULT _RAM(-1) */
MyVarSeg (0) */
MyVarSeg (0) */
DEFAULT_RAM(-1) */
DEFAULT_RAM(-1) */
MyVarSeg (0) */
MyConstSeg (1) */
DEFAULT_RAM(-1) */
MyConstSeg (1) */
DEFAULT_RAM(-1) */
DEFAULT _RAM(-1) */

476

HC(S)12 Compiler Manual

ANSI-C Frontend
Optimizations

Example of Segmentation with the -Cc
Compiler Option

/* Placed into Segment: */
static int a; /* DEFAULT _RAM(-1) */
static const int c0 = 10; /* ROM_VAR (-2) */
#pragma DATA_SEG MyVarSeg
static int b; /* MyVarSeg(0) */
static const int ¢l = 11; /* MyVarSeg(0) */
#pragma DATA_SEG DEFAULT
static int c¢; /* DEFAULT RAM(-1) */
static const int c2 = 12; /* ROM_VAR (-2) */
#pragma DATA_SEG MyVarSeg
#pragma CONST_SEG MyConstSeg
static int d; /* MyVarSeg (0) */
static const int ¢3 = 13; /* MyConstSeg(l) */
#pragma DATA_SEG DEFAULT
static int e; /* DEFAULT RAM(-1) */
static const int c4 = 14; /* MyConstSeg (1) */
#pragma CONST_SEG DEFAULT
static int £; /* DEFAULT_ _RAM(-1) */
static const int c¢5 = 15; /* ROM_VAR(-2) */

The Compiler applies a variety of code-improving techniques under the term
“optimization”. This section provides a short overview about the most important

optimizations.

Peephole Optimizer

A peephole optimizer is a simple optimizer in a Compiler. A peephole optimizer tries to
optimize specific code patterns on speed or code size. After recognizing these specific
patterns, they are replaced by other optimized patterns.

After code is generated by the backend of an optimizing Compiler, it is still possible that
code patterns may result that are still capable of being optimized. The optimizations of the

HC(S)12 Compiler Manual

477

ANSI-C Frontend
Optimizations

peephole optimizer are highly backend-dependent because the peephole optimizer was
implemented with characteristic code patterns of the backend in mind.

Certain peephole optimizations only make sense in conjunction with other optimizations,
or together with some code patterns. These patterns may have been generated by doing
other optimizations. There are optimizations (e.g., removing of a branch to the next
instructions) that are removed by the peephole optimizer, though they could have been
removed by the branch optimizer as well. Such simple branch optimizations are performed
in the peephole optimizer to reach new optimizable states.

Strength Reduction

Strength reduction is an optimization that strives to replace expensive operations by
cheaper ones, where the cost factor is either execution time or code size. Examples are the
replacement of multiplication and division by constant powers of two with left or right
shifts.

NOTE The compiler can only replace a division by two using a shift operation if either
the target division is implemented the way that -1/2 == -1, or if the value to be
divided is unsigned. The result is different for negative values. To give the
compiler the possibility to use a shift, the C source code should already contain
a shift, or the value to be shifted should be unsigned.

Shift Optimizations

Shifting a byte variable by a constant number of bits is intensively analyzed. The
Compiler always tries to implement such shifts in the most efficient way.

Branch Optimizations

This optimization tries to minimize the span of branch instructions. The Compiler will
never generate a long branch where a short branch would have sufficed. Also, branches to
branches may be resolved into two branches to the same target. Redundant branches (e.g.,
a branch to the instruction immediately following it) may be removed.

Dead-Code Elimination

The Compiler removes dead assignments while generating code. In some programs it may
find additional cases of expressions that are not used.

478

HC(S)12 Compiler Manual

ANSI-C Frontend
Optimizations

Constant-Variable Optimization

If a constant non-volatile variable is used in any expression, the Compiler replaces it by
the constant value it holds. This needs less code than taking the object itself.

The constant non-volatile object itself is removed if there is no expression taking the
address of it (take note of ci in Listing 8.40). This results in using less memory space.

Listing 8.40 Example demonstrating constant-variable optimization

void f(void) {

const int ci

100; // ci removed (no address taken)

const int ci2 = 200; // ci2 not removed (address taken below)
const volatile int c¢i3 = 300; // ci3 not removed (volatile)
int 1i;

int *p;

i = ci; // replaced by i = 100;

i = ci2; // no replacement

&ci2; // address taken

Global constant non-volatile variables are not removed. Their use in expressions are
replaced by the constant value they hold.

Constant non-volatile arrays are also optimized (take note of array[] in Listing 8.41).

Listing 8.41 Example demonstrating the optimization of a constant, non-volatile array

void g(void) {
const int arrayl[] = {1,2,3,4};

int
i =

}

i;
array[2]; // replaced by i=3;

Tree Rewriting

The structure of the intermediate code between Frontend and Backend allows the
Compiler to perform some optimizations on a higher level. Examples are shown in the
following sections.

Switch Statements

Efficient translation of switch statements is mandatory for any C Compiler. The Compiler
applies different strategies, i.e., branch trees, jump tables, and a mixed strategy, depending

HC(S)12 Compiler Manual 479

ANSI-C Frontend
Optimizations

on the case label values and their numbers. Table 8.6 describes how the Compiler
implements these strategies.

Table 8.6 Switch Implementations

Method Description
Branch For small switches with scattered case label values, the Compiler
Sequence generates an if ... elsif ... elsif ... else ... sequence if the Compiler

switch -Os is active.

Branch Tree For small switches with scattered case label values, the Compiler
generates a branch tree. This is the equivalent to unrolling a binary
search loop of a sorted jump table and therefore is very fast.
However, there is a point at which this method is not feasible simply
because it uses too much memory.

Jump Table In such cases, the Compiler creates a table plus a call of a switch
processor. There are two different switch processors. If there are a
lot of labels with more or less consecutive values, a direct jump
table is used. If the label values are scattered, a binary search table
is used.

Mixed Strategy Finally, there may be switches having "clusters" of label values
separated by other labels with scattered values. In this case, a
mixed strategy is applied, generating branch trees or search tables
for the scattered labels and direct jump tables for the clusters.

Absolute Values

Another example for optimization on a higher level is the calculation of absolute values.
In C, the programmer has to write something on the order of:

float x, vy;
x = (y<0.0) ? -y :v;

This results in lengthy and inefficient code. The Compiler recognizes cases like this and
treats them specially in order to generate the most efficient code. Only the most significant
bit has to be cleared.

Combined Assignments

The Compiler can also recognize the equivalence between the three following statements:

=x + 1;

x
X += 1;

480

HC(S)12 Compiler Manual

ANSI-C Frontend
Using Qualifiers for Pointers

X++;

and between:

Therefore, the Compiler generates equally efficient code for either case.

Using Qualifiers for Pointers

The use of qualifiers (const, volatile, ...) for pointers is confusing. This section
provides some examples for the use of const or volatile because const and
volatile are very common for Embedded Programming.

Consider the following example:
int 1i;
const int ci;

The above definitions are: a ‘normal’ variable ‘i’ and a constant variable ‘ci’. Each are
placed into ROM. Note that for C++, the constant ‘ci’ must be initialized.

int *ip;

const int *cip;

‘ip’ is a pointer to an ‘int’, where ‘cip’ is a pointer to a ‘const int’.
int *const icp;

const int *const cicp;

‘icp’isa ‘const pointer’ to an ‘int’, where ‘cicp’ is a ‘const pointer’ to a
‘const int’.

It helps if you know that the qualifier for such pointers is always on the right side of the
*’. Another way is to read the source from right to left.

You can express this rule in the same way to volatile. Consider the following example of
an ‘array of five constant pointers to volatile integers’:

volatile int *const arr[5];

‘arr’ is an array of five constant pointers pointing to volatile integers. Because the array
itself is constant, it is put into ROM. It does not matter if the array is constant or not
regarding where the pointers point to. Consider the next example:

const char *const *buf[] = {&a, &b};

HC(S)12 Compiler Manual 481

ANSI-C Frontend
Using Qualifiers for Pointers

Because the array of pointers is initialized, the array is not constant. ‘buf” is a (non-
constant) array of two pointers to constant pointers which points to constant characters.
Thus ‘buf’ cannot be placed into ROM by the Compiler or Linker.

Consider a constant array of five ordinary function pointers. Assuming that:
void (*fp) (void) ;

is a function pointer ‘fp’ returning void and having void as parameter, you can define it
with:

void (*fparr([5]) (void) ;
It is also possible to use a typedef to separate the function pointer type and the array:

typedef void (*Func) (void) ;
Func fp;
Func fparr[5];

You can write a constant function pointer as:

void (*const cfp) (void);

Consider a constant function pointer having a constant int pointer as a parameter returning
void:

void (*const cfp2) (int *const);

Or a const function pointer returning a pointer to a volatile double having two constant
integers as parameter:

volatile double *(*const fp3) (const int, const int);
And an additional one:
void (*const fp[3]) (void) ;

This is an array of three constant function pointers, having void as parameter and returning
void. ‘fp’ is allocated in ROM because the ‘fp’ array is constant.

Consider an example using function pointers:

int (* (** funcO(int (*f) (void))) (int (*) (void))) (int (*)
(void)) {

return O;
}

It is actually a function called func. This func has one function pointer argument called f.
The return value is more complicated in this example. It is actually a function pointer of a
complex type. Here we do not explain where to put a const so that the destination of the
returned pointer cannot be modified. Alternately, the same function is written more simply
using typedefs:

482

HC(S)12 Compiler Manual

ANSI-C Frontend
Defining C Macros Containing HLI Assembler Code

typedef int (*funcTypel) (void);
typedef int (* funcType2) (funcTypel);
typedef funcType2 (* funcType3) (funcTypel);

funcType3* funcO (funcTypel £f) {
return 0;

}
Now, the places of the const becomes obvious. Just behind the * in funcType3:

typedef funcType2 (* const constFuncType3d) (funcTypel);

constFuncType3* funcl (funcTypel f) {

return O;
}
By the way, also in the first version here is the place where to put the const:
int (* (*const * funcl(int (*f) (void))) (int (*) (void)))
(int (*) (void)) {

return 0;

Defining C Macros Containing HLI
Assembler Code

You can define some ANSI C macros that contain HLI assembler statements when you are
working with the HLI assembler. Because the HLI assembler is heavily Backend-
dependent, the following example uses a pseudo Assembler Language:

CLR RegO0 ; Clear Register zero

CLR Regl ; Clear Register one

CLR var ; Clear variable ‘var’ in memory

LOAD var,Reg0 ; Load the variable ‘var’ into Register 0
LOAD #0, Reg0 ; Load immediate value zero into Register 0

LOAD @var,Regl ; Load address of variable ‘var’ into Regl
STORE Reg0,var ; Store Register 0 into variable ‘var’

The HLI instructions are only used as a possible example. For real applications, you must
replace the above pseudo HLI instructions with the HLI instructions for your target.

Defining a Macro

An HLI assembler macro is defined by using the ‘define’ preprocessor directive.

HC(S)12 Compiler Manual 483

ANSI-C Frontend
Defining C Macros Containing HLI Assembler Code

For example, a macro could be defined to clear the RO register. (Listing 8.42).

Listing 8.42 Defining the ClearR0O macro.

/* The following macro clears RO. */
#define ClearRO {__asm CLR RO;}

The source code invokes the ClearR0 macro in the following manner.

Listing 8.43 Invoking the ClearR0O macro.

ClearRO;

And then the preprocessor expands the macro.

Listing 8.44 Preprocessor expansion of ClearRO0.

{ __asm CLR RO ; } ;

An HLI assembler macro can contain one or several HLI assembler instructions. As the
ANSI-C preprocessor expands a macro on a single line, you cannot define an HLI
assembler block in a macro. You can, however, define a list of HLI assembler instructions
(Listing 8.45).

Listing 8.45 Defining two macros on the same line of source code.

/* The following macro clears RO and R1. */
#define ClearROandl {__asm CLR RO; _ _asm CLR R1l; }

The macro is invoked in the following way in the source code (Listing 8.46).

Listing 8.46

ClearROandl;

The preprocessor expands the macro:

{ _asm CLR RO ; _ asm CLR R1 ; } ;

You can define an HLI assembler macro on several lines using the line separator ‘\’.

NOTE This may enhance the readability of your source file. However, the ANSI-C
preprocessor still expands the macro on a single line.

484 HC(S)12 Compiler Manual

ANSI-C Frontend
Defining C Macros Containing HLI Assembler Code

Listing 8.47 Defining a macro on more than one line of source code

/* The following macro clears RO and R1. */
#define ClearROandR1l {__asm CLR RO; \
__asm CLR R1;}

The macro is invoked in the following way in the source code (Listing 8.48).

Listing 8.48 Calling the ClearROandR1 macro

ClearROandR1;

The preprocessor expands the macro (Listing 8.49).

Listing 8.49 Preprocessor expansion of the ClearROandR1 macro.

{__asm CLR RO; _ _asm CLR R1; };

Using Macro Parameters

An HLI assembler macro may have some parameters which are referenced in the macro
code. Listing 8.50 defines the Clearl macro that uses the var parameter.

Listing 8.50 Clear1 macro definition.
/* This macro initializes the specified variable to 0.*/
#define Clearl(var) {__asm CLR var;}

Listing 8.51 Invoking the Clear1 macro in the source code

Clearl (varl) ;

Listing 8.52 The preprocessor expands the Clear1 macro

{__asm CLR varl ; };

HC(S)12 Compiler Manual 485

ANSI-C Frontend
Defining C Macros Containing HLI Assembler Code

Using the Immediate-Addressing Mode in
HLI Assembler Macros

There may be one ambiguity if you are using the immediate addressing mode inside of a
macro.

For the ANSI-C preprocessor, the symbol # inside of a macro has a specific meaning
(string constructor).

Using #pragma NO_STRING_CONSTR: No String Concatenation during preprocessing,
the Compiler is instructed that in all the macros defined afterward, the instructions should
remain unchanged wherever the symbol # is specified. This macro is valid for the rest of
the file in which it is specified.

Listing 8.53 Definition of the Clear2 macro

/* This macro initializes the specified variable to 0.*/
#pragma NO_STRING_CONSTR
#define Clear2(var){__asm LOAD #0,Reg0;__asm STORE Reg0,var;}

Listing 8.54 Invoking the Clear2 macro in the source code

Clear2 (varl) ;

Listing 8.55 The preprocessor expands the Clear2 macro

{ __asm LOAD #0,RegO0;

asm STORE Reg0,varl; };

Generating Unique Labels in HLI
Assembler Macros

When some labels are defined in HLI Assembler Macros, if you invoke the same macro
twice in the same function, the ANSI C preprocessor generates the same label twice (once
in each macro expansion). Use the special string concatenation operator of the ANSI-C
preprocessor (‘##’) in order to generate unique labels. See Listing 8.56.

486

HC(S)12 Compiler Manual

ANSI-C Frontend
Defining C Macros Containing HLI Assembler Code

Listing 8.56 Using the ANSI-C preprocessor string concatenation operator

/* The following macro copies the string pointed to by 'src'
into the string pointed to by 'dest'.
'src' and 'dest' must be valid arrays of characters.
'inst' is the instance number of the macro call. This
parameter must be different for each invocation of the
macro to allow the generation of unique labels. */

#pragma NO_STRING_CONSTR

#define copyMacro2 (src, dest, inst) { \

__asm LOAD @src,Reg0; /* load src addr */ N\

__asm LOAD @dest,Regl; /* load dst addr */ \

__asm CLR Reg2; /* clear index reg */ \

_ _asm lp##inst: LOADB (Reg2, Reg0); /* load byte reg indir */ \
___asm STOREB (Reg2, Regl); /* store byte reg indir */ \
__asm ADD #1,Reg2; /* increment index register */ \
__asm TST Reg2; /* test if not zero */ 0\
___asm BNE lp##inst; }

Listing 8.57 Invoking the copyMacro2 macro in the source code

copyMacro2 (source2, destination2, 1);
copyMacro2 (source2, destination3, 2);

During expansion of the first macro, the preprocessor generates an ‘1p1’ label. During
expansion of the second macro, an ‘1p2’ label is created.

Generating Assembler Include Files

(-La Compiler Option)

In many projects it often makes sense to use both a C compiler and an assembler. Both
have different advantages. The compiler uses portable and readable code, while the

assembler provides full control for time-critical applications or for direct accessing of the
hardware.

The compiler cannot read the include files of the assembler, and the assembler cannot read
the header files of the compiler.

The assembler’s include file output of the compiler lets both tools use one single source to
share constants, variables or labels, and even structure fields.

The compiler writes an output file in the format of the assembler which contains all
information needed of a C header file.

The current implementation supports the following mappings:

HC(S)12 Compiler Manual 487

ANSI-C Frontend
Defining C Macros Containing HLI Assembler Code

* Macros

C defines are translated to assembler EQU directives.
¢ enum values

C enum values are translated to EQU directives.
¢ Ctypes

The size of any type and the offset of structure fields is generated for all typedefs.
For bitfield structure fields, the bit offset and the bit size are also generated.

* Functions
For each function an XREF entry is generated.
* Variables

C Variables are generated with an XREF. In addition, for structures or unions all
fields are defined with an EQU directive.

¢ Comments

C style comments (/* ... */) are included as assembler comments (;....).

General

A header file must be specially prepared to generate the assembler include file.

Listing 8.58 A pragma anywhere in the header file can enable assembler output

#pragma CREATE_ASM LISTING ON

Only macro definitions and declarations behind this pragma are generated. The compiler
stops generating future elements when #pragma CREATE_ASM_LISTING: Create an
Assembler Include File Listing occurs with an OFF parameter.

#pragma CREATE_ASM_LISTING OFF

Not all entries generate legal assembler constructs. Care must be taken for macros. The
compiler does not check for legal assembler syntax when translating macros. Macros
containing elements not supported by the assembler should be in a section controlled by
“#pragma CREATE_ASM_LISTING OFF”.

The compiler only creates an output file when the -La option is specified and the compiled
sources contain #pragma CREATE_ASM LISTING ON.

488 HC(S)12 Compiler Manual

ANSI-C Frontend
Defining C Macros Containing HLI Assembler Code

Example

Listing 8.59 Header file: a.h

#pragma CREATE_ASM LISTING ON
typedef struct {
short 1i;
short j;
} Struct;
Struct Var;
void f(void);
#pragma CREATE_ASM_LISTING OFF

When the compiler reads this header file with the -La=a.inc a.h option, it generates
the following (Listing 8.60).

Listing 8.60 a.inc file

Struct_SIZE EQU s$4
Struct_i EQU $O0
Struct_j EQU s2
XREF Var
Var_1i EQU Var + $0
Var_j EQU Var + $2
XREF £

You can now use the assembler INCLUDE directive to include this file into any assembler
file. The content of the C variable, Var_ 1, can also be accessed from the assembler
without any uncertain assumptions about the alignment used by the compiler. Also,
whenever a field is added to the structure Struct, the assembler code must not be
altered. You must, however, regenerate the a.inc file with a make tool.

Usually the assembler include file is not created every time the compiler reads the header
file. It is only created in a separate pass when the header file has changed significantly.
The -La option is only specified when the compiler must generate a . inc. If -La is
always present, a . inc is always generated. A make tool will always restart the assembler
because the assembler files depend on a . inc. Such a makefile might be similar to:

Listing 8.61 Sample makefile

a.inc : a.h
$(CC) -La=a.inc a.h
ac.o : a.c.c a.h

HC(S)12 Compiler Manual 489

ANSI-C Frontend
Defining C Macros Containing HLI Assembler Code

$(CC) a_c.c

a_asm.o

a_asm.asm a.inc

$ (ASM) a_asm.asm

Listing 8.62

The order of elements in the header file is the same as the order of the elements in the
created file, except that comments may be inside of elements in the C file. In this case, the
comments may be before or after the whole element.

The order of defines does not matter for the compiler. The order of EQU directives matters
for the assembler. If the assembler has problems with the order of EQU directives in a
generated file, the corresponding header file must be changed accordingly.

Macros

The translation of defines is done lexically and not semantically. So the compiler does not
check the accuracy of the define.

The following example (Listing 8.62) shows some uses of this feature:

Example source code

#pragma CREATE_ASM LISTING ON

int 1i;

#define Usel 1
#define Constant 1
#define Sum Constant+0X1000+01234

The source code in Listing 8.62 produces the following output (Listing 8.63):

Listing 8.63 Assembler listing of Listing 8.62
XREF i

UselI EQU i

Constant EQU 1

Sum EQU Constant + $1000 + @234
The hexadecimal C constant 0x1000 was translated to $1000 while the octal 01234 was
translated to @1234. In addition, the compiler has inserted one space between every two
tokens. These are the only changes the compiler makes in the assembler listing for defines.
Macros with parameters, predefined macros, and macros with no defined value are not
generated.
The following defines (Listing 8.64) do not work or are not generated:

490 HC(S)12 Compiler Manual

ANSI-C Frontend
Defining C Macros Containing HLI Assembler Code

Listing 8.64 Improper defines

#pragma
int 1i;

#define
#define
#define
#define
#define
#define

CREATE_ASM_LISTING ON

AddressOfI &1

ConstantInt ((int)1l)

Mul7(a) a*7

Nothing

useUndef UndefFkt*6

Anything § § / % & % / & + * % ¢ 65467568756 86

The source code in Listing 8.64 produces the following output (Listing 8.65):

Listing 8.65 Assembiler listing of Listing 8.64

AddressO
Constant
useUndef
Anything

XREF 1
fI EQU & i
Int EQU ((int) 1)
EQU UndefFkt * 6
EQU § §8/ % &%/ &+ * % ¢ 65467568756 86

The AddressOfI macro does not assemble because the assembler does not know to
interpret the & C address operator. Also, other C-specific operators such as
dereferenciation (*ptr) must not be used. The compiler generates them into the assembler
listing file without any translation.

The ConstantInt macro does not work because the assembler does not know the cast
syntax and the types.

Macros with parameters are not written to the listing,. Therefore, Mul7 does not occur in
the listing. Also, macros just defined with no actual value as Nothing are not generated.

The C preprocessor does not care about the syntactical content of the macro, though the
assembler EQU directive does. Therefore, the compiler has no problems with the useUndef
macro using the undefined object UndefFkt. The assembler EQU directive requires that
all used objects are defined.

The Anything macro shows that the compiler does not care about the content of a macro.
The assembler, of course, cannot treat these random characters.

These types of macros are in a header file used to generate the assembler include file.
They must only be in a region started with “ #pragma CREATE_ASM_LISTING OFF”
so that the compiler will not generate anything for them.

HC(S)12 Compiler Manual 491

ANSI-C Frontend
Defining C Macros Containing HLI Assembler Code

enums

enums in C have a unique name and a defined value. They are simply generated by the
compiler as an EQU directive.

Listing 8.66 enum
#pragma CREATE_ASM_ LISTING ON
enum {
E1=4,
E2=47,
E3=-1*7
}i
Creates:
Listing 8.67 Resultant EQUs from enums
El EQU s4
E2 EQU S$2F
E3 EQU SFFFFFFF9
NOTE Negative values are generated as 32-bit hex numbers.
Types
As it does not make sense to generate the size of any occurring type, only typedefs are
considered.
The size of the newly defined type is specified for all typedefs. For the name of the size of
a typedef, an additional term “_SIZE” is appended to the end of the typedef’s name. For
structures, the offset of all structure fields is generated relative to the structure’s start. The
names of the structure offsets are generated by appending the structure field’s name after
an underline (*_") to the typedef’s name.
492 HC(S)12 Compiler Manual

ANSI-C Frontend
Defining C Macros Containing HLI Assembler Code

Listing 8.68 typedef and struct

#pragma CREATE_ASM_LISTING ON
typedef long LONG;
struct tagA {
char a;
short b;
Y
typedef struct {
long d;
struct tagA e;
int £:2;
int g:1;
} str;

Creates:

Listing 8.69 Resultant EQUs

LONG_SIZE EQU $4
str SIZE EQU $8
str_d EQU $0
str_e EQU $4
str_e_a EQU $4
str_ e b EQU $5
str_f EQU $7
str_f BIT WIDTH EQU $2
str_f_ BIT OFFSET EQU $0
str_g EQU $7
str_g BIT WIDTH EQU $1
str_g BIT OFFSET EQU $2

All structure fields inside of another structure are contained within that structure. The
generated name contains all the names for all fields listed in the path. If any element of the
path does not have a name (e.g., an anonymous union), this element is not generated.

The width and the offset are also generated for all bitfield members. The offset O specifies
the least significant bit, which is accessed with a 0x1 mask. The offset 2 specifies the most
significant bit, which is accessed with a 0x4 mask. The width specifies the number of bits.

The offsets, bit widths and bit offsets, given here are examples. Different compilers may
generate different values. In C, the structure alignment and the bitfield allocation is
determined by the compiler which specifies the correct values.

HC(S)12 Compiler Manual 493

ANSI-C Frontend
Defining C Macros Containing HLI Assembler Code

Functions

Declared functions are generated by the XREF directive. This enables them to be used
with the assembler. The function to be called from C, but defined in assembler, should not
be generated into the output file as the assembler does not allow the redefinition of labels
declared with XREF. Such function prototypes are placed in an area started with
“#pragma CREATE_ASM_LISTING OFF”, as shown in Listing 8.70.

Listing 8.70 Function prototypes

#pragma CREATE_ASM LISTING ON
void main (void) ;
void f_C(int i, long 1);

#pragma CREATE_ASM_LISTING OFF
void f_asm(void) ;

Creates:

Listing 8.71 Functions defined in assembler

XREF main
XREF f C

Variables

Variables are declared with XREF. In addition, for structures, every field is defined with
an EQU directive. For bitfields, the bit offset and bit size are also defined.

Variables in the __ SHORT_ SEG segment are defined with XREF . B to inform the
assembler about the direct access. Fields in structures in __ SHORT__SEG segments, are
defined with a EQU . B directive.

494 HC(S)12 Compiler Manual

ANSI-C Frontend
Defining C Macros Containing HLI Assembler Code

Listing 8.72 struct and variable

#pragma CREATE_ASM_LISTING ON
struct A {
char a;
int 1:2;
Y
struct A VarA;
#pragma DATA_SEG __ SHORT_SEG ShortSeg
int VarInt;

Creates:

Listing 8.73 Resultant XREFs and EQUs

XREF VarA
VarA_a EQU VarA + $0
VarA_i EQU VarA + $1
VarA_i_BIT WIDTH EQU $2
VarA_i_BIT OFFSET EQU $0

XREF.B VarInt

The variable size is not explicitly written. To generate the variable size, use a typedef with
the variable type.

The offsets, bit widths, and bit offsets, given here are examples. Different compilers may
generate different values. In C, the structure alignment and the bitfield allocation is
determined by the compiler which specifies the correct values.

Comments

Comments inside a region generated with “#pragma CREATE_ASM_LISTING ON”
are also written on a single line in the assembler include file.

Comments inside of a typedef, a structure, or a variable declaration are placed either
before or after the declaration. They are never placed inside the declaration, even if the
declaration contains multiple lines. Therefore, a comment after a structure field in a
typedef is written before or after the whole typedef, not just after the type field. Every
comment is on a single line. An empty comment (/* * /) inserts an empty line into the
created file.

See Listing 8.74 for an example of how C source code with its comments is converted into
HC12 assembly.

HC(S)12 Compiler Manual 495

ANSI-C Frontend
Defining C Macros Containing HLI Assembler Code

Listing 8.74 C source code conversion to HC12 assembly

#pragma CREATE_ASM_LISTING ON
/*
The main() function is called by the startup code.
This function is written in C. Its purpose is
to initialize the application. */
void main(void) ;
/*
The SIZEOF_INT macro specified the size of an integer type
in the compiler. */
typedef int SIZEQOF_INT;
#pragma CREATE_ASM_LISTING OFF

Creates:

; The function main is called by the startup code.
; The function is written in C. Its purpose is
; to initialize the application.
XREF main
: The SIZEOF_INT macro specified the size of an integer type
; in the compiler.
SIZEOF_INT_ SIZE EQU $2

Guidelines

The -La option translates specified parts of header files into an include file to import
labels and defines into an assembler source. Because the -La compiler option is very
powerful, its incorrect use must be avoided using the following guidelines implemented in
areal project. This section describes how the programmer uses this option to combine C
and assembler sources, both using common header files.

The following general implementation recommendations help to avoid problems when
writing software using the common header file technique.

¢ All interface memory reservations or definitions must be made in C source files.
Memory areas, only accessed from assembler files, can still be defined in the
common assembler manner.

* Compile only C header files (and not the C source files) with the -La option to avoid
multiple defines and other problems. The project-related makefile must contain an
inference rules section that defines the C header files-dependent include files to be
created.

¢ Use #pragma CREATE_ASM LISTING ON/OFF only in C header files. This
#pragma selects the objects which should be translated to the assembler include file.

496 HC(S)12 Compiler Manual

ANSI-C Frontend
Defining C Macros Containing HLI Assembler Code

The created assembler include file then holds the corresponding assembler
directives.

* The -La option should not be part of the command line options used for all
compilations. Use this option in combination with the -Cx (no Code Generation).
compiler option. Without this option, the compiler creates an object file which could
accidently overwrite a C source object file.

* Remember to extend the list of dependencies for assembler sources in your make
file.

¢ Check if the compiler-created assembler include file is included into your assembler
source.

NOTE In case of a zero-page declared object (if this is supported by the target), the
compiler translates it into an XREF . B directive for the base address of a
variable or constant. The compiler translates structure fields in the zero page
into an EQU. B directive in order to access them. Explicit zero-page
addressing syntax may be necessary as some assemblers use extended
addresses to EQU. B defined labels.

Project-defined data types must be declared in the C header file by including a
global project header (e.g., global. h). This is necessary as the header file is
compiled in a standalone fashion.

HC(S)12 Compiler Manual 497

ANSI-C Frontend
Defining C Macros Containing HLI Assembler Code

498 HC(S)12 Compiler Manual

9

Generating Compact Code

The Compiler tries whenever possible to generate compact and efficient code. But not
everything is handled directly by the Compiler. With a little help from the programmer, it
is possible to reach denser code. Some Compiler options, or using _ SHORT_SEG
segments (if available), help to generate compact code.

Compiler Options

Using the following compiler options helps to reduce the size of the code generated. Note
that not all options may be available for each target.

-Or: Register Optimization
When accessing pointer fields, this option prevents the compiler from reloading the

address of the pointer for each access. An index register holds the pointer value over
statements where possible.

NOTE This option may not be available for all targets.

-Oi: Inlining: Inline Functions

Use the inline keyword or the command line option -Oi for C/C++ functions. Defining a
function before it is used helps the Compiler to inline it:

/* OK */ /* better! */
void foo (void) ; void foo (void) {
void main(void) { //

foo(); }
} void main(void) {
void foo(void) { fool();

// }
}

This also helps the compiler to use a relative branch instruction instead an absolute.

HC(S)12 Compiler Manual 499

Generating Compact Code
__SHORT_SEG Segments

__SHORT_SEG Segments

Variables allocated on the direct page (between 0 and OxFF) are accessed using the direct
addressing mode. The Compiler will allocate some variables on the direct page if they are
defined in a __ SHORT_SEG segment (Listing 9.1).

Listing 9.1 Allocate frequently-used variables on the direct page
#pragma DATA_SEG __ SHORT_SEG myShortSegment
unsigned int myVarl, myVar2;

#pragma DATA_SEG DEFAULT

unsigned int myvar3, myVar4d.

In the previous example, ‘myVarl’ and ‘myVar2’ are both accessed using the direct
addressing mode. Variables ‘myVar3’ and ‘myVar4’ are accessed using the extended
addressing mode.

When some exported variables are defined in a __SHORT_SEG segment, the external
declaration for these variables must also specify that they are allocated in a
___SHORT_SEG segment. The External definition of the variable defined above looks
like:

#pragma DATA_SEG __ SHORT_SEG myShortSegment
extern unsigned int myVarl, myVar2;

#pragma DATA_SEG DEFAULT

extern unsigned int myvar3, myVar4

The segment must be placed on the direct page in the PRM file (Listing 9.2).

Listing 9.2 Linker parameter file

LINK test.abs
NAMES test.o startup.o ansi.lib END

SECTIONS
Z_RAM = READ_WRITE 0x0080 TO O0xO0OFF;
MY_RAM = READ_WRITE 0x0100 TO OxOl1lFF;
MY_ROM = READ_ONLY 0xF000 TO OXFEFF;
PLACEMENT
DEFAULT_ROM INTO MY_ROM;
DEFAULT_RAM INTO MY_RAM;
_ZEROPAGE, myShortSegment INTO Z_RAM;
END

STACKSIZE 0x60

500 HC(S)12 Compiler Manual

Generating Compact Code
Defining I/O Registers

VECTOR 0 _Startup /* set reset vector on _Startup */

NOTE

Defining I/0 Registers

The linker is case-sensitive. The segment name must be identical in the C and

PRM files.

The I/O Registers are usually based at address 0. In order to tell the compiler it must use
direct addressing mode to access the I/O registers, these registers are defined in a

SHORT_SEG section (if available) based at the specified address.

The I/0O register is defined in the C source file as in Listing 9.3.

Listing 9.3 Definition of an I/O Register

typedef struct {

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
} SCIStruct

’

char
char
char
char
char
char
char

#pragma DATA_SEG

SCIStruct

SCTI;

#pragma DATA_SEG

SCC1;
SCC2;
SCC3;
SCS1;
SCS2;
SCD;

SCBR;

DEFAULT

__ SHORT_SEG SCIRegs

Then the segment must be placed at the appropriate address in the PRM file (Listing 9.4).

Listing 9.4 Linker parameter file Allocating the I/O Register

LINK test.abs

NAMES test.

SECTIONS
SCI_RG
Z_RAM
MY_RAM

o

MY_ROM =

PLACEMENT

startup.o ansi.lib END

READ_WRITE
READ_WRITE
READ_WRITE
READ_ONLY

DEFAULT_ROM
DEFAULT_RAM

0x0013
0x0080
0x0100
0xF000

TO
TO
TO
TO

0x0019;
0x00FF;
0x01FF;
OXFEFF;

INTO MY_ROM;
INTO MY_RAM;

HC(S)12 Compiler Manual

501

Generating Compact Code
Programming Guidelines

_ZEROPAGE INTO Z_RAM;

SCIRegs INTO SCI_RG;
END

STACKSIZE 0x60
VECTOR 0 _Startup /* set reset vector on _Startup */

NOTE The linker is case-sensitive. The segment name must be identical in the C/C++
and PRM files.

Programming Guidelines

Following a few programming guidelines helps to reduce code size. Many things are
optimized by the Compiler. However, if the programming style is very complex or if it
forces the Compiler to perform special code sequences, code efficiency is not would be
expected from a typical optimization.

Constant Function at a Specific Address

Sometimes functions are placed at a specific address, but the sources or information
regarding them are not available. The programmer knows that the function starts at
address 0x1234 and wants to call it. Without having the definition of the function, the
program runs into a linker error due to the lack of the target function code. The solution is
to use a constant function pointer:

void (*const fktPtr) (void) = (void(*) (void))0x1234;
void main(void) {

fktpPtr () ;
}

This gives you efficient code and no linker errors. However, it is necessary that the
function at 0x1234 really exists.

Even a better way (without the need for a function pointer):

#define erase ((void(*) (void)) (0xfc06))
void main(void) {
erase(); /* call function at address 0Oxfc06 */

}

502 HC(S)12 Compiler Manual

Generating Compact Code
Programming Guidelines

HLI Assembly

Do not mix High-level Inline (HLI) Assembly with C declarations and statements (see
Listing 9.5). Using HLI assembly may affect the register trace of the compiler. The
Compiler cannot touch HLI Assembly, and thus it is out of range for any optimizations
(except branch optimization, of course).

Listing 9.5 Mixing HLI Assembly with C Statements (not recommended).
void foo(void) {
/* some local variable declarations */
/* some C/C++ statements */
__asm {
/* some HLI statements */
}

/* maybe other C/C++ statements */

The Compiler in the worst case has to assume that everything has changed. It cannot hold
variables into registers over HLI statements. Normally it is better to place special HLI
code sequences into separate functions. However, there is the drawback of an additional
call or return. Placing HLI instructions into separate functions (and module) simplifies
porting the software to another target (Listing 9.6).

Listing 9.6 HLI Statements are not mixed with C Statements (recommended).

/* hardware.c */
void special_hli(void) {
__asm {
/* some HLI statements */
}
}
/* foo.c */
void foo (void) {
/* some local variable declarations */
/* some C/C++ statements */
special_hli();
/* maybe other C/C++ statements */

HC(S)12 Compiler Manual 503

Generating Compact Code
Programming Guidelines

Post and Pre Operators in Complex
Expressions

Writing a complex program results in complex code. In general it is the job of the
compiler to optimize complex functions. Some rules may help the compiler to generate
efficient code.

If the target does not support powerful postincrement or postdecrement and preincrement
or predecrement instructions, it is not recommended to use the ‘++’ and ‘--” operator in
complex expressions. Especially postincrement or postdecrement may result in additional
code:

ali++] = bl--31;

Write the above statement as:

j--; alil = bl[jl; i++;

Using it in simple expressions as:

1++;

Avoid assignments in parameter passing or side effects (as ‘++’ and ‘--’). The evaluation

order of parameters is undefined (ANSI-C standard 6.3.2.2) and may vary from Compiler
to Compiler, and even from one release to another:

Example
i = 3;
foo(i++, --1i);

In the above example, foo() is called either with ‘foo(3,3)’ or with ‘foo(2,2)’.

Boolean Types

In C, the boolean type of an expression is an ‘int’. A variable or expression evaluating to
‘0’ (zero) is FALSE and everything else (!=0) is TRUE. Instead of using an ‘int’ (usually
16 or 32 bits), it may be better to use an 8-bit type to hold a boolean result. For ANSI-C
compliance, the basic boolean types are declared in stdtypes.h:

typedef int Bool;
#define TRUE 1
#define FALSE 0

Using
typedef Byte Bool_38;

504

HC(S)12 Compiler Manual

Generating Compact Code
Programming Guidelines

from ‘stdtypes.h’ (‘Byte’ is an unsigned 8-bit data type also declared in ‘stdtypes.h’)
reduces memory usage and improves code density.

printf() and scanf()

The printf or scanf code in the ANSI library can be reduced if no floating point support
(%f) is used. Refer to the ANSI library reference and printf.c or scanf.c in your library for
details on how to save code (not using float or doubles in printf may result in half the
code).

Bitfields

Using bitfields to save memory may be a bad idea as bitfields produce a lot of additional
code. For ANSI-C compliance, bitfields have a type of ‘signed int’, thus a bitfield of size 1
is either ‘-1’ or ‘0’. This could force the compiler to ‘sign extend’ operations:

struct {
int b:0; /* -1 or 0 */
} B;

int 1 = B.b; /* load the bit, sign extend it to -1 or 0 */

Sign extensions are normally time- and code-inefficient operations.

Struct Returns

Normally the compiler has first to allocate space on the stack for the return value (1) and
then to call the function (2). Phase (3) is for copying the return value to the variable s. In
the callee ‘foo’ during the return sequence, the Compiler has to copy the return value

(4, struct copy).

Depending on the size of the struct, this may be done inline. After return, the caller ‘main’
has to copy the result back into ‘s’. Depending on the Compiler or Target, it is possible to
optimize some sequences (avoiding some copy operations). However, returning a struct by
value may use a lot of execution time, and this could mean a lot of code and stack usage.

Listing 9.7 Returning a struct can force the Compiler to produce lengthy code.

struct S foo(void)

/* L. %/
return s; // (4)

}

HC(S)12 Compiler Manual 505

Generating Compact Code
Programming Guidelines

void main(void) {
struct S s;

VA
s = foo(); // (1), (2), (3)
VA

With the example in Listing 9.8, the Compiler just has to pass the destination address and
to call ‘foo’ (2). On the callee side, the callee copies the result indirectly into the
destination (4). This approach reduces stack usage, avoids copying structs, and results in
denser code. Note that the Compiler may also inline the above sequence (if supported).
But for rare cases the above sequence may not be exactly the same as returning the struct
by value (e.g., if the destination struct is modified in the callee).

Listing 9.8 A better way is to pass only a pointer to the callee for the return value.

void foo(struct S *sp) {

/* L. */
*sp = s; // (4)
}
void main(void) {
S s;
/* L. */
foo(&s); // (2)
/* ... %/
}

Local Variables

Using local variables instead of global variable results in better manageability of the
application as side effects are reduced or totally avoided. Using local variables or
parameters reduces global memory usage but increases stack usage.

Stack access capabilities of the target influences the code quality. Depending on the target
capabilities, access to local variables may be very inefficient. A reason might be the lack
of a dedicated stack pointer (another address register has to be used instead, thus it might
not be used for other values) or access to local variables is inefficient due the target
architecture (limited offsets, only few addressing modes).

Allocating a huge amount of local variables may be inefficient because the Compiler has
to generate a complex sequence to allocate the stack frame in the beginning of the function
and to deallocate them in the exit part (Listing 9.9):

506 HC(S)12 Compiler Manual

Generating Compact Code
Programming Guidelines

Listing 9.9 Good candidate for global variables

void foo (void) {
/* huge amount of local variables: allocate space! */
/* .. */
/* deallocate huge amount of local variables */

}

If the target provides special entry or exit instructions for such cases, allocation of many
local variables is not a problem. A solution is to use global or static local variables. This
deteriorates maintainability and also may waste global address space.

The Compiler may offer an option to overlap parameter or local variables using a
technique called ‘overlapping’. Local variables or parameters are allocated as global ones.
The linker overlaps them depending on their use. For targets with limited stack (e.g., no
stack addressing capabilities), this often is the only solution. However this solution makes
the code non-reentrant (no recursion is allowed).

Parameter Passing

Avoid parameters which exceed the data passed through registers (see Backend).

Unsigned Data Types

Using unsigned data types is acceptable as signed operations are much more complex than
unsigned ones (e.g., shifts, divisions and bitfield operations). But it is a bad idea to use
unsigned types just because a value is always larger or equal to zero, and because the type
can hold a larger positive number.

Inlining and Macros

abs() and labs()

Use the corresponding macro M_ABS defined in stdlib.h instead of calling abs () and
abs1 () in the stdlib:

/* extract

/* macro definitions of abs() and labs() */
#define M_ABS(3) (((3) >=0) 2 (3) = -(3))
extern int abs (int 3J);

extern long int labs (long int j);

But be careful asM_ABS () 1is a macro,

i = M_ABS(j++);

HC(S)12 Compiler Manual 507

Generating Compact Code
Programming Guidelines

and is not the same as:

i=abs(++);

memcpy() and memcpy2()

ANSI-C requires that the memcpy () library function in ‘strings.h’ returns a pointer of the
destination and handles and is able to also handle a count of zero:

Listing 9.10 Excerpts from the string.h and string.c files relating to memcpy()

/* extract of string.h *
extern void * memcpy(void *dest, const void * source, size_t count);

extern void memcpy?2 (void *dest, const void * source, size_t count);
/* this function does not return dest and assumes count > 0 */

/* extract of string.c */

void * memcpy(void *dest, const void *source, size_t count) {
uchar *sd = dest;
uchar *ss = source;

while (count--)
*sd++ = *ss++;

return (dest);

If the function does not have to return the destination and it has to handle a count of zero,
the memcpy?2 () function in Listing 9.11 is much simpler and faster:

Listing 9.11 Excerpts from the string.c File relating to memcpy2()

/* extract of string.c */
void
memcpy?2 (void *dest, const void* source, size_t count) {
/* this func does not return dest and assumes count > 0 */
do {
*((uchar *)dest)++ = *((uchar*)source) ++;
} while(count--);

Replacing calls to memcpy() with calls to memcpy?2() saves runtime and code size.

508 HC(S)12 Compiler Manual

Generating Compact Code
Programming Guidelines

Data Types

Do not use larger data types than necessary. Use IEEE32 floating point format both for
float and doubles if possible. Set the enum type to a smaller type than ‘int’ using the -T
option. Avoid data types larger than registers.

Short Segments

Whenever possible and available (not all targets support it), place frequently used global
variables into a DIRECT or ___SHORT_SEG segment using

#pragma DATA_SEG _ SHORT_SEG MySeg

Qualifiers

Use the ‘const’ qualifier to help the compiler. The ‘const’ objects are placed into ROM
for the HIWARE object-file format if the -Cc compiler option is given.

HC(S)12 Compiler Manual 509

Generating Compact Code
Programming Guidelines

510 HC(S)12 Compiler Manual

10
HC(S)12 Backend

The Backend is the target—dependent part of a Compiler containing the code generator.
This chapter discusses the technical details of the Backend for the M68HC(S)12 family.

The HC(S)12 backend chapter covers these sections:

e “Memory Models” on page 511

¢ “Non-ANSI Keywords” on page 520

e “Data Types” on page 521

* “Paged Variables” on page 525

* “Position-Independent Code (PIC)” on page 529
* “Register Usage” on page 533

e “Call Protocol and Calling Conventions” on page 533
* “Stack Frames” on page 534

e “Calling a __far Function” on page 536

e “_far and __near” on page 536

¢ “Pragmas” on page 537

¢ “Interrupt Functions” on page 538

¢ “Debug Information” on page 539

* “Segmentation” on page 540

e “Optimizations” on page 541

* “Programming Hints” on page 551

Memory Models

This section describes the following memory models:

¢ “SMALL memory model” on page 511
¢ “BANKED memory model” on page 512
¢ “LARGE memory model” on page 519

SMALL memory model

The Compiler for the MC68HC(S)12 supports three different memory models. The default
is the SMALL memory model, which corresponds to the normal setup, i.e., a 64 kB code-
address space. If you use a code-memory expansion scheme, you may use the BANKED

HC(S)12 Compiler Manual 511

HC(S)12 Backend
Memory Models

memory model. The LARGE memory model supports both data and code expansion. The
different memory models change the default behavior of the compiler.

BANKED memory model

Some microcontrollers of the M6SHC12 family have the ability to extend the address
range of the CPU beyond the 64kB limit given by the 16 CPU address lines. This feature is
provided by a paging scheme using expansion address lines. The exact method to extend
the address space is hardware-dependent.

There are several expansion memory banks. Which bank is active is determined by the
value of a dedicated I/O register in memory (page register). Part of the memory is non—
banked, accessible from all expansion memory banks.

The BANKED memory model is identical to the SMALL memory model in terms of
variable allocation. Part of your code may be allocated to extended memory, thus breaking
the 64 kB limit.

If a function is in extended memory, it has to be called differently than a function in non—
banked memory. In particular, a bank switch has to be done:

¢ The current bank number has to be saved

¢ The called function’s bank number has to be written to the bank register (bank
switch)

¢ The function has to be called.

__far and __near for functions

In order to minimize overhead, functions are separated into two classes: ___far functions
are always called with a CALL, while __near functions are simply called with a
JSR/BSR. If a__near function is called, the callee must be either in non—banked
memory, or in the same memory bank as the caller.

When compiling in the BANKED or the LARGE memory model, all default functions are
__far. To override this default, explicitly declare a function as __near or __far, for
example:

static int _ far my_ func (int *p);

In the BANKED or in the LARGE memory model, function pointers are always 24 bits
wide. The page is allocated differently for 24-bit function pointers than for 24-bit __far
data pointers. For a 24-bit function pointer, the page is allocated at an offset of 2 bytes.
This difference is because of hardware requirements.

512

HC(S)12 Compiler Manual

HC(S)12 Backend

Memory Models
Table 10.1 shows the allocation for a banked function pointer:
Table 10.1 Banked function-pointer allocation
Byte 0 Byte 1 Byte 2
offset highbyte offset lowbyte page
Table 10.2 shows the allocation for a ___far data pointer.:
Table 10.2 __far data pointer allocation
Byte 0 Byte 1 Byte 2
page offset highbyte offset lowbyte

The compiler does not exchange the byte order when assigning a ___far function pointer
to __far data pointer or a ___far data pointer to ___far function pointer. The special
byte ordering is also not automatically adapted when using absolute addresses for ___far
function pointers.

The following two macros (Listing 10.1 and Listing 10.2) can be used to manually assign
and adapt one ___far data pointer to a ___far function pointer (or vice versa). See
Listing 10.3.

Listing 10.1 CONV_FAR_FUN_TO_DATA_PTR macro

#define CONV_FAR_FUN_TO_DATA_PTR(to, from)\
(int) ((char*) &to+l) = *(int*)&from; \
* (char*)&to = *((char*)&from+2) ;

Listing 10.2 CONV_FAR_DATA_TO_FUN_PTR macro

#define CONV_FAR_DATA_TO_FUN_PTR (to, from)\
(int)&to = * (int*) ((char*)&from+1) ;\
((char)&to+2) = *(char*)&from;

Listing 10.3 Using the CONV_FAR_FUN_TO_DATA_PTR and
CONV_FAR_DATA_TO_FUN_PTR macros

#pragma CODE_SEG __ PIC_SEG __ NEAR_SEG PIC_CODE
void __ far Function(void) {

HC(S)12 Compiler Manual 513

HC(S)12 Backend
Memory Models

}
void __ far NextFun(void) {}
#pragma CODE_SEG DEFAULT
char RamBuf[100];
volid Test (void) {
void (*__ far startFunPtr) (void)= Function;

void (*__ far endFunPtr) (void)= NextFun;
void (*__ far bufferFunPtr) (void) ;

char *_ far startDataPtr;

char *__ far endDataPtr;

char *_ far bufferDataPtr= RamBuf;

int 1=0;

CONV_FAR_FUN_TO_DATA_PTR(startDataPtr, startFunPtr);
CONV_FAR_FUN_TO_DATA_ PTR (endDataPtr, endFunPtr) ;
CONV_FAR_DATA_TO_FUN_PTR (bufferFunPtr, bufferDataPtr) ;

while (startDataPtr != endDataPtr) ({
RamBuf [i++]= * (startDataPtr++);

}

bufferFunPtr () ;

NOTE In the previous example, code is executed at a different place than it was
linked. Therefore, this code must be compiled position-independent. However,
PIC code is not supported for the bank part of the address.

NOTE The different byte ordering only causes problems with the __far function
pointer. With the __near calling convention, straightforward code can be used.
Also as PIC is only supported inside of one bank, PIC code is usually using the
__near calling convention.

See also the Position-Independent Code (PIC) section and the -Pic: Generate Position-
Independent Code (PIC) compiler option

Non-Banked Memory

Some parts of an application must always be in non—banked memory, in particular:

* The prestart code (_PRESTART segment)

¢ The startup code (NON_BANKED segment) and the startup descriptors (STARTUP
segment)

¢ All runtime support routines (NON_BANKED segment)
* All interrupt handlers, because trap vectors are only 16 bits wide.

For more information on these segments, see the Linker section in the Build Tools manual.

514 HC(S)12 Compiler Manual

HC(S)12 Backend
Memory Models

Usually, some initial settings are necessary to enable the memory expansion scheme. You
might want to include this initialization code in the startup function.

Using the Banked Memory Model

When the banking memory model is used, some constraints apply to the application’s
linker parameter files.

Definition of the Application Memory Map

The SECTIONS block in the PRM file contains the memory area definitions that are used
by the application. A typical SECTIONS block for a banked application contains at least
one definition for following memory blocks:

* One or several sections for the RAM area

¢ One section for the non-banked ROM area

* One section for each bank used by the application.

Banking is performed through a window. The size or start addresses depend on the
hardware. The address space for each bank is defined the following way in the linker PRM
file:

Ox<bnr><startAddr> TO <bnr><endAddr>
where:

¢ bnr is the bank number.

The value of this number depends on the hardware and is the bit pattern to be written
into the bank register to access this bank. Valid values depend on the hardware
configuration.

* startAddr: is the start address of the bank window. This has to be 4 hex digits.
* endAddr: is the end address of the bank window (inclusive; 4 hex digits).

In the following example, it is assumed that the bank window is defined between address
0x8000 and OxBFFF (Listing 10.4):

HC(S)12 Compiler Manual 515

HC(S)12 Backend
Memory Models

Listing 10.4 Example of a SECTIONS block in a PRM file

SECTIONS
DIRECT_RAM = READ_WRITE 0x00000 TO OxO00OQFF;
RAM_AREA READ_WRITE 0x00800 TO Ox00BFF;
BANK_0 READ_ONLY 0x08000 TO OxOBFFF;
BANK_1 READ_ONLY 0x18000 TO Ox1BFFF;
BANK_2 READ_ONLY 0x28000 TO Ox2BFFF;
BANK_3 READ_ONLY 0x38000 TO Ox3BFFF;
NON_BANKED_ROM = READ_ONLY 0x0C000 TO OxOFFFF;

Segment Allocation

Some predefined sections must be allocated in the NON_BANKED memory area
otherwise the application will not be able to run correctly. The following predefined

sections must always be located in the non-banked ROM memory area:

e _PRESTART: Contains the application’s prestart code.
* STARTUP: Contains the application’s startup structure
* ROM_VAR: Contains the application’s constant variables
e STRINGS: Contains the application’s string constants
¢ COPY: Contains the initialization values for the application’s variables.
* NON_BANKED: Contains the run-time library functions.
In addition, as banked memory is only available for code sections (sections containing

functions), all user-defined data or constant segments must be located on the non-banked
memory area.

As the entry in the vector table is only two bytes wide, all the interrupt functions must also

be allocated in the non-banked memory area.

In the following example (Listing 10.5), it is assumed that the bank window is defined
between address 0x8000 and OxBFFF.

Listing 10.5 Example PRM file

LINK test.abs

NAMES test.o ansib.lib startl2b.o END

SECTIONS
DIRECT_RAM = READ_WRITE 0x00000 TO 0xO000FF;
RAM_AREA READ_WRITE 0x00800 TO 0x00BFF;
BANK_0 READ_ONLY 0x08000 TO OxOBFFF;
BANK_1 READ_ONLY 0x18000 TO Ox1BFFF;
BANK_2 READ_ONLY 0x28000 TO Ox2BFFF;
BANK_3 READ_ONLY 0x38000 TO Ox3BFFF;
516 HC(S)12 Compiler Manual

HC(S)12 Backend

Memory Models
NON_BANKED_ROM = READ_ONLY 0x0C000 TO OxOFFFF;
PLACEMENT
_PRESTART, STARTUP, ROM_VAR,
STRINGS, NON_BANKED,
Int_Function,
COPY INTO NON_BANKED_ROM;
DEFAULT_RAM INTO RAM_AREA;
UserSegl, UserSeg2,
UserSeg3, DEFAULT ROM INTO BANK_0, BANK_1, BANK_2, BANK_3;

END
STACKSIZE 0x50

According to the previous PRM file:

* The NON_BANKED_ROM section contains the six predefined sections enumerated in
the PLACEMENT block plus the Int_Function segment. The user-defined
code segment, 'Int_Function', is where all the interrupt functions are allocated.

* The RAM_AREA section contains all the linker predefined and user-defined data
segments, as well as the stack.

¢ The BANK_0, BANK_1, BANK_2, and BANK_ 3 sections contain the
DEFAULT_ROM segment, as well as the user-defined code 'UserSegl', 'UserSeg?2’,
and 'UserSeg3' segments.

* The linker allocates first all functions implemented in the 'UserSegl' segment, then
the functions from 'UserSeg?2’, then the functions from 'UserSeg3', and finally
the functions defined in the other segments.

* For the allocation of the functions, the linker first uses the BANK_ 0 section. As soon
as this section is full, allocation continues in the BANK_ 1 section, then in BANK_ 2,
and so on until all the functions are allocated. During the allocation, a specific
function is always allocated on a single bank.

Simple example for the HC12DG128

A simple example for the HC12DG128 is shown below. The application uses three code
banks:

¢ Bank 1 contains the code (read-only)

¢ Bank 2 contains constant initialized data (read-only, MyConstSegPage?2)

¢ Bank 3 contains constant initialized data (read-only, MyConstSegPage3)
The source for this is (Listing 10.6):

Listing 10.6 Banked-memory example for the HC12DG128

/* bankcnst.c */

#pragma CONST_SEG __PPAGE_SEG MyConstSegPage?2
volatile const int aa = 3;

#pragma CONST_SEG _ PPAGE_SEG MyConstSegPage3

HC(S)12 Compiler Manual 517

HC(S)12 Backend
Memory Models

volatile const int xx = 2;

#pragma CONST_SEG DEFAULT

void main (void) {
volatile int cc = xx+aa;

}

All variables are declared as volatile to avoid the compiler optimizing many
accesses. The above source is compiled with following Compiler command line:

bankcnst.c -F2 -CpPpage=RUNTIME -Mb

¢ The ELF/DWAREF Object File Format is chosen with -F2

* -CpPage=RUNTIME is used because we are accessing other PPAGE constant data
(MyConstSegPage2, MyConstSegPage3) from the code page (page 1). We
use a runtime routine to switch the (code) pages. This runtime routine has to be
placed in a non-banked area.

e -Mb tells the compiler to use the banked-memory model.

The startup module and the data page module must be recompiled because they are not
delivered by default with the above-listed configuration/option settings:

datapage.c startl2.c -F2 -CpPpage=RUNTIME -Mb -DDG128

¢ The reasons for -F2, -CpPpage, and -Mb are listed above.

* The option -DDG128 is not for the startup code, it is for datapage . c. Because of
this define, datapage. c is aware that the page register is at 0xf f£. And
datapage. ¢ also uses a more efficient version which only considers one page
register.

* Recompiling datapage. ¢ is necessary because the page register is for the DG128
at a different location.

* The startl2.c startup code is recompiled even if it is not really necessary here.
Recompiling start12.c is necessary only because the startup code does not
initialize variables in pages by default in the small or banked memory models. In
the example above, the initialized variables are constant and thus initialized during
downloading.

* Note that some segments in the prm file must not be in a paged area (e.g.,
NON_BANKED).

Now the application is linked. In the linker parameter file in Listing 10.7, all three pages
are declared. The Bank Window for PPAGE is in the range of 0x8000 to OxBFFF:

Listing 10.7 PRM file for previous example

LINK bankcnst.abs

NAMES bankcnst.o datapage.o startl2.o ansib.lib END

SECTIONS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x810 TO OxAFF;

518 HC(S)12 Compiler Manual

HC(S)12 Backend

MY PAG

MY_PAG

MY_PAG

MY_STK
END

PLACEMENT
DEFAUL
MyCons
MyCons
_PREST

Memory Models
El = READ_ONLY 0x18000 TO Ox1BFFF;
E2 = READ_ONLY 0x28000 TO Ox2BFFF;
E3 = READ_ONLY 0x38000 TO Ox3BFFF;
= READ_WRITE 0xBO0O TO OxBFF;
T_ROM INTO MY_PAGE]L;
tSegPage2 INTO MY_PAGE2;

tSegPage3 INTO MY_PAGE3;
ART, STARTUP,

ROM_VAR, STRINGS,
NON_BANKED, COPY INTO MY_ROM;

DEFAUL
SSTACK
END

T_RAM INTO MY_RAM;
INTO MY_STK;

VECTOR 0 _Startup

Finally, load the application into the simulator to simulate it, or download it onto the
HC12DG128.

LARGE memory model

The default large memory model supports both extended data and code. See the BANKED
memory model section for code-banking constraints. See the Paged Variables section for
data-paging support.

Because paged variables are not directly supported by the HC(S)12 instruction set, the
LARGE memory model has significant overhead compared with the SMALL or
BANKED memory models.

Note that ___far functions and paged variables are possible in all memory models. If they
are not defaulted to by the memory model, the code is adapted to use these features. If only
a small part of the application actually needs paged variables, for example, then using a
smaller memory model and adapting the small model generates smaller and faster code.

Implicit __near pointer conversions

In the large memory model, the stack pointer is 16 bits wide. The default allocation for any
objects on the stack is __near. In the example in Listing 10.8, i_global is accessed
with a __far access, while 1_local is accessed directly.

HC(S)12 Compiler Manual 519

HC(S)12 Backend
Non-ANSI Keywords

Listing 10.8 Example with both __near and __far memory accesses

int i_global;
void main(void) {
int i_local;

}

The HC12 casts __near pointers to standard pointers for all implicit parameter
declarations and for open parameter arguments. The following code in Listing 10.9 will
only work with this extension:

Listing 10.9 Example with implicit parameter declaration

void main (void) {
int 1i;
sscanf (“3”,“%d"”,&1) ;

}

NOTE The size of a __near pointer only differs in the LARGE memory model from
the size of the standard pointer type. Therefore, applications using the SMALL
or BANKED memory models are not similarly affected.

Non-ANSI Keywords

Table 10.3 gives an overview about the supported non-ANSI keywords:

Table 10.3 Supported non-ANSI Keywords

Kevword Data Supported for
y Pointer | Function Pointer | Function

_ far yes supported for ELF or | yes
BANKED/LARGE
Memory model

__near yes supported for ELF or | yes
SMALL memory
model

__dptr (valid with -cpuhcs12x option) | yes yes no

__rptr (valid with -cpuhcs12x option) yes yes no

520 HC(S)12 Compiler Manual

HC(S)12 Backend
Data Types

Table 10.3 Supported non-ANSI Keywords (continued)

Keyword Da?a Suppc_;rted fc_:r _
Pointer | Function Pointer | Function

__eptr (valid with -cpuhcs12x option) | yes yes no

__pptr (valid with -cpuhcs12x option) | yes yes no

interrupt no no yes

Data Types

This section describes how the basic types of ANSI-C are implemented by the
MC68HC(S)12 Backend.

Scalar Types

All basic types may be changed with the -T: Flexible Type Management compiler option.
All scalar types (except char) are without a signed/unsigned qualifier, and their default
values are signed (e.g., ‘int’ is the same as ‘signed int’).

Table 10.4 gives the sizes of the simple types together with the possible formats using the
-T option.

Table 10.4 Types and Formats for the -T Option

Type Default | Default Value Range Formats
Format - available
Min Max with the -T
Option
char (unsigned) 8-bit 0 255 8-, 16-, & 32-bit
signed char 8-bit -128 127 8-, 16-, & 32-bit
unsigned char 8-bit 0 255 8-, 16-, & 32-bit
signed short 16-bit -32,768 32,767 8-, 16-, & 32-bit
unsigned short 16-bit 0 65,535 8-, 16-, & 32-bit
enum (signed) 16-bit -32,768 32,767 8-, 16-, & 32-bit
signed int 16-bit -32,768 32,767 8-, 16-, & 32-bit

HC(S)12 Compiler Manual 521

HC(S)12 Backend
Data Types

Table 10.4 Types and Formats for the -T Option (continued)

Type Default | Default Value Range Formats

Format - available

Min Max with the -T
Option

unsigned int 16-bit 0 65,535 8-, 16-, & 32-bit
signed long 32-bit -2,147,483,648 | 2,147,483,647 8-, 16-, & 32-bit
unsigned long 32-bit 0 4,294,967,295 8-, 16-, & 32-bit
signed long long 32-bit -2,147,483,648 | 2,147,483,647 8-, 16-, & 32-bit
unsigned long 32-bit 0 4,294,967,295 8-, 16-, & 32-bit
long

NOTE

Floating-Point Types

The Compiler supports the two IEEE standard formats (32 and 64 bits wide) for floating
point types. By default, the Compiler uses the IEEE32 format both for float and double.

Plain type char is unsigned. This default can be changed by the -T option.

The -T: Flexible Type Management option may be used to change the default format of

float/double.

Table 10.5 Floating-Point Representation

Default Value Range Formats
Type Default Available
Format Min Max With t.he -T
Option

float IEEE32 -1.17549435E-38F | 3.402823466E+38F | IEEE32,
|IEEE64
double IEEE32 1.17549435E-38F | 3.402823466E+38F | IEEE32,
|IEEE64

522

HC(S)12 Compiler Manual

HC(S)12 Backend

Data Types
Table 10.5 Floating-Point Representation (continued)
Default Value Range Formats
Type Default Available
Format Min Max With t.he -T
Option

long IEEE32 1.17549435E-38F | 3.402823466E+38F | IEEE32,
double |IEEE64
long long IEEE32 1.17549435E-38F | 3.402823466E+38F | IEEE32,
double IEEE64

Pointer Types and Function Pointers

The size of pointer types depends on the memory model selected. Table 10.6 gives an
overview.

Table 10.6 Pointer sizes

Type Example Size
SMALL | BANKED | LARGE

default data pointer char* 2 bytes 2 bytes 3 bytes
__near data pointer char* __near 2 bytes 2 bytes 2 bytes
__far data pointer char* __far 3 bytes 3 bytes 3 bytes
default function pointer | void (*)(void) 2 bytes 3 bytes 3 bytes

__near function pointer | void (*__near)(void) | 2 bytes 2 bytes(?) 2 bytes(”)

__far function pointer void (*__far)(void) 3 bytes(?) | 3 bytes 3 bytes

OF Only supported in the ELF Object File Format.

HC(S)12 Compiler Manual 523

HC(S)12 Backend

Data Types

Pointer Arithmetic

The HCS12(X) compiler performs 16-bit pointer arithmetic. The page part of a 24-bit
pointer type is not affected by pointer arithmetic, therefore it is not possible to change the
referenced page by incrementing or decrementing a 24-bit pointer. When using pointer
arithmetic, keep these items in mind:

* Do not allocate objects in more than one page (i.e., the must not cross a page
boundary). The linker does not split objects into multiple pages.

* Write special assembly routines or macros to use 24-bit pointer arithmetic.
* Split larger objects into multiple parts.
¢ The maximum object size is:

— 64 kilobyte for GPAGE

— 16 kilobyte for PPAGE

— 4 kilobyte for RPAGE

— 1 kilobyte for EPAGE

Listing 10.10 Pointer Arithmetic Example

char array[1000];

int 1i;

char *__far pf = array;

for (1 =

0; 1 < 1000; i++) *(pf++) =0

In this preceding example, the global variable array must be located in one single page.

Structured Types, Alignment

Local variables are allocated on the stack (which grows downwards). The order of
allocation of local variables depends on how often the variables are used. More often used
variables are closer to the stack top. This reordering is done to take advantage of the
shorter index addressing modes. The most significant part of a simple variable always is
stored at the low memory address (big endian).

Bitfields

The maximum width of bitfields is 32 bits. The allocation unit is a byte. The Compiler
uses words only if a bitfield is wider than eight bits, or if using bytes would cause more
than two unused bits. Allocation order is from the least significant bit up to the most
significant bit in the order of declaration. Figure 10.1 illustrates this allocation scheme.

524

HC(S)12 Compiler Manual

HC(S)12 Backend

Paged Variables

Figure 10.1 Bitfield allocation scheme

struct |
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

bos;

int

~

int

Eyte 0O | Byte 1

Byte 2

.

int

= |d| cl bl a

int
int

e e

.
(S NY - VT ¥ Y
=

By

[P o T o

int

unused

Paged Variables

The HC(S)12 has several page registers that control different areas of the 64 kB address
space. The following table gives an overview about the page register names, their memory
addressing capabilities and their default location.

Table 10.7 Page-register memory areas for HC12 A4

P Default Port
a_ge Start Address End Address erauft Fo
Register Address
DPAGE 0x7000 Ox7FFF 0x34
EPAGE 0x0400 0x07FF 0x36
or 0x0000 or OxO3FF
PPAGE 0x8000 OxBFFF 0x35

Table 10.8 Page-register memory areas for HCS12X DP series

R::igfer Start Address End Address D?::::,te::rt
PPAGE 0x8000 OxBFFF 0x30
RPAGE 0x1000 Ox1FFF 0x16
EPAGE 0x0800 Ox0BFF 0x17

The Compiler supports variable accesses with the DPAGE, the EPAGE, and with the
PPAGE page registers. Variables in paged memory areas must be defined after one of the

following pragmas:

HC(S)12 Compiler Manual

525

HC(S)12 Backend
Paged Variables

#pragma DATA_SEG _ DPAGE_SEG segment_name
#pragma DATA_SEG __ EPAGE_SEG segment_name
#pragma DATA_SEG _ PPAGE_SEG segment_name
#pragma DATA_SEG _ RPAGE_SEG segment_name
#pragma DATA_SEG _ GPAGE_SEG segment_name

Segment_name must be allocated with the Linker at a memory area which is controlled by
the corresponding page register.

The Compiler supports the __far data pointer, which may point to all variables
independent of their page register. The __far keyword is written immediately after the

Cespor

Example:

#pragma DATA_SEG __ DPAGE_SEG my_ DPAGE

int a; /* variable in memory controlled by DPAGE reg.*/
int*_ _far p = &a; /* _ far pointer to access any variable*/

For the following topics, the Compiler must know which page register is used for data
paging:
* interrupt routines:
An interrupt routine saves, by default, those page registers given by the command
line option “-Cp”.
e _ far data pointer accesses
If only one page register is used, then the __far data pointer accesses is inlined
because the page register is obvious. If several page registers are possible, a runtime

routine determines the correct page register. The page register is determined from the
offset portion of the address.

The are two ways to access a variable in paged memory:
» Store the page into the page register and then perform the usual assembler
instructions.
* Use a runtime routine.
The first method is faster and denser than the second. If code and paged variables are in
memory areas that are controlled by the same page register, the page register must not be
modified. In this case a runtime routine for memory accesses must be used. Runtime

routines must be in a non-paged memory area. By default, the first method is used except
for PPAGE accesses in the BANKED memory model where a runtime routine is used.

-CpDPAGE["=" (address| "RUNTIME")]
-CpEPAGE["=" (address| "RUNTIME")]
-CpPPAGE["=" (address| "RUNTIME")]

526

HC(S)12 Compiler Manual

HC(S)12 Backend
Paged Variables

Example:
-CpDPAGE=0x34

Variable accesses to DPAGE segments are inlined. The address 0x34 is also a built-in
default, so “~CpDPAGE” is equivalent to this argument.

NOTE With the form -CpDPAGE=0x34 is implied that code could be inlined. If a
runtime routine must be taken, then the address is not necessary.

To use a different page address than the default, the datapage . c library file must be
adapted. It contains a define for the specific page register address. To use a modified
datapage. c file, compile it with the correct options set and then specify the generated
object file in front of the ANSI library in the link parameter file’s NAMES section.

Example:
-CpEPAGE=RUNTIME

Variable accesses to the EPAGE segments are done with a runtime routine.

NOTE The runtime routine is adapted to special requirements. The runtime routines
are written for the most general case. If only one PAGE register is used, the
runtime routines could be made faster and shorter. The runtime routines for
paged data memory access are in the datapage. c file. Take care to
implement the same interface, i.e., to save all registers as stated in the source
code. Especially when using a RUNTIME access, which is the default in the
large memory model. Adapting the datapage. c file’s routines can result in
a time improvement of a factor of 2 or more.

Example:
-CpPPAGE

In the SMALL memory model, variable accesses to PPAGE segments are inlined. No code
of this compilation unit must be linked between 0x8000 and Oxbftf. In the BANKED
memory model variable accesses are done with a runtime routine. Therefore there are no
restrictions in linking the code between 0x8000 and Oxbfff.

NOTE The Compiler defines the macros __ RPAGE__, _ GPAGE__, __ DPAGE__,
__EPAGE___and ___PPAGE___if the corresponding compiler options are
used.

For example, consider the following situation:

* The page registers are mapped to 0x2000 to be able to use the zero page.

¢ Variables are placed from 0x7000 up to Ox9FFF in different pages using the DPAGE
and the PPAGE register.

HC(S)12 Compiler Manual 527

HC(S)12 Backend
Paged Variables

¢ The code is placed from 0x2000 up to 0x7000 and from Ox9fff up to Obfff.

The area controlled by the PPAGE register is used for functions and for variables. The
following Compiler options should be used:

-CpDPAGE=0x2034 -CpPPAGE=RUNTIME

Variable accesses to the DPAGE are also done with the runtime routine, but the code is
larger. Variable accesses to the PPAGE must be done with a runtime routine.

NOTE Several page registers could be used for data paging in the same compilation
unit.

NOTE The RUNTIME option must be given in the SMALL memory model. In the
BANKED and in the Large memory model it is the default and could be
avoided. Nevertheless it is good practice to specify it.

Another point to consider about banked variables is the initialization. For the large
memory model, paged variables are initialized correctly by default. In the small and
banked memory models, the startup code and the Linker must be explicitly set up to use
24-bit addresses instead of 16-bit addresses. To produce startup code which handles 24-bit
addresses, the startup code must be compiled with one of the Compiler options “-Cp. . .”
as explained above.

For the HIWARE object file format, the Linker must be told to produce 24-bit addresses
with the “HAS_BANKED_DATA” command in the link parameter file. For the ELF object
file format, the Linker reads the size of the pointers for the startup structure by analyzing
the debug info of the startup code. Only the startup code must be recompiled with the
correct Compiler options for the ELF object file format.

The reason that the initialization for banked variables must be specified explicitly is that
no overhead of banked data should occur as long as banked variables are not used.

By default the compiler assumes that objects in the default segment are distributed into
different pages. However, objects in user-defined segments are on only one page. This
behavior is changed with the -PSeg: Assume Objects are on Same Page compiler option.

NOTE The HCS12X architecture has an enhanced data paging mechanism. For data
paging on HCS12X devices see TN238 and TN240.

528 HC(S)12 Compiler Manual

HC(S)12 Backend
Position-Independent Code (PIC)

Position-Independent Code (PIC)

The HC(S)12 compiler supports position-independent code. PIC functions are larger and
slower than non-pic functions, therefore PIC code should only be generated when
necessary.

To compile one function as PIC, use the #pragma CODE_SEG: Code Segment Definition
environment variable with the __ PTC_ SEG modifier. To compile one compilation unit as
PIC, use the -Pic: Generate Position-Independent Code (PIC) compiler option. The
pragma has the advantage that it allows PIC and non-PIC functions and function calls in
the same compilation unit. With this option, all functions and all calls (except runtime
routine calls) are position-independent (Listing 10.11).

Listing 10.11 Compiling a Function or Compilation Unit as PIC

#pragma CODE_SEG __ PIC_SEG PIC_CODE
void f_PIC(void); /* declare f_PIC to be in specific PIC segment */

#pragma CODE_SEG DEFAULT
void f_NonPic (void) {

f_PIC(); /* NON pic call, calls PIC function at link address only */
}

#pragma CODE_SEG _ PIC_SEG PIC_CODE
void g_PIC(void) {}

int 1i;
void f_PIC(void) {
if (1) { /* global variables are accessed absolute */
g_PIC(); /* calls g_PIC relative to current location */
f_NonPic(); /* calls function at link time address */

}

Listing 10.12 shows the disassembled code produced by the previous Listing.

Listing 10.12 Machine Code Generated by the Source Code Listed Above

f_NonPic:
0000 060000 JMP f_PIC
g_PIC:
0000 34 RTS
f_PIC:
0000 f£c0000 LDD i
0003 2707 BEQ *+9 ;abs = 000c

HC(S)12 Compiler Manual 529

HC(S)12 Backend
Position-Independent Code (PIC)

0005 15fa0000 JSR g_PIC,PCR
0009 160000 JSR f_NonPic
000c 3d RTS

Note that the call from the £_ PTIC PIC function to the g_ PIC PIC function is done with a
PC-relative JSR instead of an shorter extended JSR. The calls from the non-PIC function
to £_PIC and back are encoded with absolute calls.

Taking the address of a function returns the link time address of this function.

Listing 10.13 shows a small application that copies a part of itself into RAM. Then the
RAM copy is started and executed until a HALT occurs (which is implemented with a
HC12 SWT instruction).

Listing 10.13 Taking the address of a function

#include <hidef.h> /* for HALT */
#include <string.h> /* for memmove */

#pragma CODE_SEG __ PIC_SEG _ NEAR_SEG PIC_CODE
/* declarations of PIC functions */
void f0(void) ;
void f1(void);
void f2 (void);
/* implementation of PIC functions */
void f£0(void) {
/* here we calculate the address of the RAM copy of fl1 */
/* by using inline assembly */
void (*pfl) (void);
__asm LEAX f1,pcr;
__asm STX pfl;
pfl();
}
void f1(void) { /* just call f2 */
£2();
}
void f£2(void) {
HALT; /* finished, call the user/debugger */
}
void end(void) {} /* dummy function to calculate the end of */
/* the PIC_CODE segment */

/* implementation of main module. Copies and starts the PIC code */
#pragma CODE_SEG DEFAULT
char buf[100]; /* RAM area into which to copy the PIC functions */

530 HC(S)12 Compiler Manual

HC(S)12 Backend
Position-Independent Code (PIC)

void main(void) {
/* copy PIC functions */
memmove (buf, (char*)f0, (char*)end- (char*)f0);
/* start £0 */
((void(*) (void))buf) (); /* cast buf to fnct pointer and call it */

Listing 10.14 shows the disassembled code from the previous Listing.

Listing 10.14 Machine Code Generated by the Source Code Listed Above

f0:
0000 3b PSHD
0001 1afa0000 LEAX f1,PCR
0005 6e80 STX 0,SP
0007 15£30000 JSR [0,SP]
000b 3a PULD
000c 3d RTS
f1:
0000 05£fa0000 JMP f2,PCR
f2:
0000 c7 CLRB
0001 3f SWI
0002 3d RTS
end:
0000 3d RTS
main:
0000 cc0000 LDD #bouf
0003 3b PSHD
0004 ce0000 LDX #f0
0007 34 PSHX
0008 cc0000 LDD #end
000b 830000 SUBD #f0
000e 160000 JSR memmove
0011 1b84 LEAS 4,SP
0013 060000 JMP buf

With the -Pic: Generate Position-Independent Code (PIC) compiler option, runtime
functions are still called absolutely. In order to generate PIC runtime calls, use the
additional -PicRTS: Call Runtime Support Position Independent compiler option.

HC(S)12 Compiler Manual 531

HC(S)12 Backend
Position-Independent Code (PIC)

The delivered libraries are not built position-independent. In order to move them together
with your code, rebuild your code with the -Pic -PicRts compiler option. There is a
make file to build the library. Please check the maker section in the Build Tools manual
for details.

PIC Impacts on generated code:

* Absolute calls are encoded PC-relative. Calls via function pointers are not affected.
* Long branches are done with the LBRA instruction instead of an extended JMP.

¢ The indexed 16-bit Constant Indirect ([IDX2]) addressing mode using the PC
register is not used by the compiler to access via absolute pointers.

* Switches are encoded by binary search trees instead of tables (which contain absolute
addresses).

Restrictions

The compiler does not support position-independent data. To use position-independent
data, a local variable or parameter pointing to a moveable structure containing all global
data must be used. If the whole application, including constants, should be position-
independent, this restriction has the following implications:

¢ The startup code accesses the global data structure _startupData absolutely. In order
to build a completely PIC application, do not use this startup code. Without the
startup code, global variables won't be initialized.

* Strings as in 'PutString(“Hello World”);" are considered as global data and can
therefore not be moved together with the code. Use a pointer pointing to the actual
string instead. For example, “PutString(dataPtr->hello_world);” with dataPtr set the
actual position before.

» The debug info is only generated for the link time version of the functions. Without
any debugger extension, copied PIC functions will not have debug info.

¢ Only __near (16-bit address space) functions are fully supported for PIC code. For
calls to __far (24-bit) functions, only the 16-bit offset of the address is position
independent. The page is hard encoded into the call instructions. Therefore __ far
functions can be moved in the same page and to a non-paged area. They cannot be
moved into a different page.

* Runtime routine calls have are always __near. They are absolute, unless the
-PicRTS compiler option is specified also. Note that the message C3605 is issued
whenever a runtime routine is called. By setting this message to an error, you can
check if your code uses runtime routines.

* Some ANSI routines are using global data, like the error variable “errno”. The
memory allocation functions do access the global memory and the strtok ()
ANSI function also has a global state. These functions require to have fix placed
data.

See also
Compiler options:
¢ -Pic: Generate Position-Independent Code (PIC)

532 HC(S)12 Compiler Manual

HC(S)12 Backend
Register Usage

¢ -PicRTS: Call Runtime Support Position Independent
» #pragma CODE_SEG: Code Segment Definition

Register Usage

The Compiler uses all registers of the MC68HC12 except the TMP2 and the TMP3
registers. These registers are never accessed from C code.

Call Protocol and Calling Conventions

This section covers the following topics:

¢ “Argument Passing” on page 533
¢ “Return Values” on page 534
¢ “Returning Large Results” on page 534

Argument Passing

The Pascal calling convention is used for functions with a fixed number of parameters:
The caller pushes the arguments from left to right. After the call, the caller removes the
parameters from the stack.

The C calling convention is used for functions with a variable number of parameters. In
this case, the caller pushes the arguments from right to left. If the last parameter of a
function with a fixed number of arguments has a simple type, it is not pushed but passed in
a register.

This results in shorter code because pushing the last parameter is saved. Table 10.9 gives

an overview of the registers used for argument passing.

Table 10.9 HC(S)12 registers employed in passing arguments

Size of Last Parameter Type Example Register
1 byte char B
2 bytes int, array D
3 bytes __far data pointer X(L), B(H)
4 bytes long D(L), X(H)

HC(S)12 Compiler Manual 533

HC(S)12 Backend
Stack Frames

Parameters having a type not listed above are passed on the stack (i.e., all types having a
size greater than four bytes).

Return Values

Function results are returned in registers, except if the function returns a result larger than
one word (see below). Depending on the return type, different registers are used
(Table 10.10).

Table 10.10 HC(S)12 registers employed in function returns

Stack

Size of Return Value Type Example Register
1 byte char B
2 bytes int D
3 bytes __far data pointer X(L), B(H)
4 bytes long D(L), X(H)

Returning Large Results

Functions returning a result larger than two words are called with an additional parameter.
This parameter is the address where the result should get copied.

Frames

Functions have a stack frame containing all their local data. The Compiler uses the stack
pointer as the base address for accessing local data.

If one of the NO_ENTRY, NO_EXIT, or NO_FRAME pragmas is active, the Compiler
does not generate code to set up a stack frame for this function. In this case the function
must have neither local variables nor parameters.

Figure 10.2 shows the stack frame of a normal function, i.e., compiled with above
pragmas inactive.

534

HC(S)12 Compiler Manual

HC(S)12 Backend

Stack Frames

Figure 10.2 Normal stack frame

High memory addresses

Parameters

Return Address 2 or 3 bytes

Address of large
result plus regis- | (] 1o 6 bytes)
ter parameters i

Local Variables

Temporaries

g 5

Low memory addresses

\

The stack grows
downwards.

Entry Code

Normal entry code is a sequence of instructions reserving space for local variables and
writing eventually the register parameter to the stack:

for a 1-byte register parameter:

PSHB

for a 2-byte register parameter:

PSHD

for a 3-byte register parameter:

PSHX
PSHB

for a 4-byte register parameter:

PSHD
PSHX

HC(S)12 Compiler Manual

535

HC(S)12 Backend
Calling a __far Function

In addition, the entry code also allocates space for local variables. This may be done
before or after the push for the register parameter. If it is done before the push of the
register parameter, the push and the allocation may be optimized into a single store
instruction with auto-decrement. Also, space for one or two bytes may be allocated by a
push instruction instead of an LEAS to save space.

Exit Code

Exit code removes local variables from the stack before returning to the caller. The exit
code is optimized depending on the -Os (optimize for size, default) or -Ot (optimize for
time) compiler command-line switches:

-0Os -0t

1 byte to release:
PULA or PULB LEAS #1, SP

2 bytes to release:
PULX, PULY or PULD LEAS #2, SP

3 bytes or more to release:
LEAS #size, SP LEAS #size, SP

If the TRAP_PROC pragma is active, then RTC/RTS is replaced by an RTI instruction.

Calling a __far Function

Calling a normal __far function is done with CALL/RTC. The return address for a __far
function is three bytes large. The offset of parameters not passed in a register is one larger
than for __near functions.

__farand _ near

The __near and ___far keywords enable you to control the calling convention
(Listing 10.15).

Listing 10.15 __near and __far keywords

void _ far f(void);
void _ near g(void);
#pragma DATA_SEG _ NEAR_SEG my_near_seg

536 HC(S)12 Compiler Manual

HC(S)12 Backend
Pragmas

void h(void) {
£0);
g();

}

The h () function is compiled with the __near calling convention, i.e., it ends with an
RTS instruction. The call to £ () is done with the __far calling convention, i.e., with a
CALL instruction. The call to g () is done with the __near calling convention, i.e., with
either a BSR or a JSR instruction. The difference between using the __near and the
__far keywords to using the pragma is that the pragma also specifies a segment. With
the __ far keyword it is up to you to place a___near function at a reachable address.

The default calling convention depends on the memory model. Itis __neaxr for the
SMALL memory model and __far for the BANKED memory model.

The __far keyword can also be used to specify a ___far data pointer. The __far
keyword is placed immediately after the “*” like the const type qualifier. If no __far
keyword is used, a data pointer is 16 bits wide.

Pragmas

The Compiler provides a couple of pragmas that control the allocation of stack frames and
the generation of entry and exit code.

TRAP_PROC

The procedure terminates with an RTT instruction instead of an RTS.

NO_ENTRY

Omits generation of procedure entry code.

NO_EXIT

Does not generate procedure exit code. It's the programmer's responsibility that the
function returns somehow!

NO_FRAME

No stack frame is set up, but the Compiler generates an RTS/RTC (or RTI, if the
TRAP_PROC pragma is active).

HC(S)12 Compiler Manual 537

HC(S)12 Backend
Interrupt Functions

Interrupt Functions

For interrupt procedures the compiler must handle two topics differently. First, the
function returns with an RTI. Second, all modified registers must be saved. The processor
D, X, and Y registers are saved by the hardware. The Compiler must additionally save the
page registers if they are to be modified inside of the function.

#pragma TRAP_PROC

Which page registers are saved is determined by the TRAP_ PROC pragma. The syntax of
this pragma is

#pragma TRAP_PROC [SAVE_ALL_REGS | SAVE_NO_REGS]

If TRAP_PROC SAVE_ALL_REGS is used, all page registers are saved, whether or not
they are used in the interrupt procedure. If TRAP_PROC SAVE_NO_REGS is given, no

page registers are saved. If only TRAP_ PROC is given, all page registers specified with the
—Cp option are saved. It is up to you to ensure that no other page registers are modified.

NOTE The page registers are changed by paged data accesses. For details, see the
Paged Variables section.

Interrupt Vector Table Allocation

The Compiler provides a non-ANSI compliant way to directly specify the interrupt vector
number in the source:

void interrupt 0 ResetFunction (void) {
/* reset handler */

}

The Compiler uses the following translation from interrupt vector number to interrupt
vector address (Table 10.11).

Table 10.11 Vector relationships

Vector Number Vector Address Vector Address Size
0 OxFFFE, OxFFFF 2
1 OxFFFC, OxFFFD 2
2 OxFFFA, OxFFFB 2

538

HC(S)12 Compiler Manual

HC(S)12 Backend
Debug Information

Table 10.11 Vector relationships

Vector Number Vector Address Vector Address Size

OXFFFF - (n*2) 2

Debug Information

The following debug information must be considered for the HC12 Compiler.

» There is no debug information for variables held in a register. This may happen if
either register variables are enabled (-Or compiler option to switch on), or
variables are allocated by the induction variable optimization (-O010 compiler
option to switch it off, it is enabled - the default). In addition, the —Ou compiler
option removes stores to local variables when possible. The last parameter of a
function is passed in a register if its size is smaller or equal to four bytes. When this
parameter is accessed while it is still in the register at the start of a function, it is
never stored to the stack. When a variable is never stored to the stack, no space is
allocated for it and the debug information says that this variable is not allocated.

The common code optimization does not generate any source positions inside
common code. Some linear sequences may not contain any marker at all. Previous
compiler versions did generate source position inside of common code. Then single
stepping inside of such code did move the whole function. Seeing the source code,
it is often not obvious which code is common code. The common-code
optimization is switched off with -Onf.

The BRA to RET peephole optimization (-OnP=r) and the JSR/RTS optimization
causes the final RTS instruction at the end of a function to not always be executed.
Setting a breakpoint at the last RTS will not always stop the application.

The JSR/RTS peephole optimization removes the stack frame of a function from the
stack before it is logically finished. Such functions disappear from the call chain. A
step out from the last called function steps out two functions wide.

The Debugger is not aware of constants in the code. Those constants may come from
DC instructions (Assembler/HLI Assembler) or from tables used for switch
processing. The disassembly module of the debugger tries to decode those
constants as normal processor instructions.

The Debugger is unaware of switch runtime routines. A step over a call of a switch
runtime routine does not stop at the next statement. But source stepping works.
When the runtime routine is found, the debugger will step in. When the runtime
routine is finished, the debugger will continue at the right place. It is not
recommended to use step over at the switch selector.

The long-branch optimization replaces a long branch with a short one to a place
which also branches to the same target. When debugging the intermediate branch
instruction this also occurs, although there seems to be no relation to the code
actually executed. Use -OnB=1 to switch this optimization off.

The short-branch optimization replaces a branch always over two bytes or one byte
with the opcodes “BNE” or “CPS #”. In the second and third byte of this

HC(S)12 Compiler Manual 539

HC(S)12 Backend
Segmentation

instruction, other assembler instructions are encoded. This situation is not known
by the decoder or the assembly window of the simulator/debugger. It seems that
some branches are targeting inside of BNE and CPS instructions. Please see the
manual for details about this optimization. Use -OnB=a to switch this optimization
off.

* The HIWARE object file format and ELF/DWAREF 1.1 do not support multiple C
source files. When several source files in one compilation unit contain code, the
debug information is correct only for the main file (the one noted on the command
line). This problem arises from the fact that debug information formats do not
support multiple source files. This is no limitation of the compiler/simulator/
debugger. ELF/DWAREF 2.0 fully supports this situation, where correct debugging
is also possible. Please note that source code in header files is the usual case for
C++ inline functions.

* ELF/DWAREF object files do not yet handle smart linking for data objects. Objects
not linked by a smart linker just have address zero as debug information. In
embedded applications, an object is placed at address zero so the debugger cannot
detect that such an object has been removed. Therefore, it lists such an object as a
normal object.

Segmentation

The Linker memory space may be partitioned into several segments. The Compiler allows
attributing a certain segment name to certain global variables or functions which then are
allocated into that segment by the Linker. Where that segment actually lies is determined
by an entry in the Linker parameter file.

There are two basic types of segments, code and data segments, each with a matching
pragma (Listing 10.16):

Listing 10.16 CODE_SEG and DATA_SEG pragmas

#pragma CODE_SEG [_NEAR_SEG|_FAR_SEG|_SHORT_SEG] <name>

#pragma DATA_SEG [__GPAGE_SEG

RPAGE_SEG| DPAGE_SEG|__PPAGE_SEG|

__ EPAGE_SEG|__SHORT_SEG] <name>

Both are valid until the next pragma of the same type is encountered. If no segment is
specified, the Compiler assumes two default segments named DEFAULT_ROM (the default
code segment) and DEFAULT_RAM (the default data segment). To explicitly make current
these default segments, use the segment name DEFAULT:

#pragma CODE_SEG DEFAULT
#pragma DATA_SEG DEFAULT

540

HC(S)12 Compiler Manual

HC(S)12 Backend
Optimizations

The additional ___SHORT_SEG keyword informs the Compiler that a data segment is
allocated in the zero page (address range from 0x0000 to 0x00FF):

#pragma DATA_SEG __ SHORT_SEG <segment_name>
or
#pragma DATA_SEG __ SHORT_SEG DEFAULT

Using the zero page enables the Compiler to generate much denser code because the
DIRECT addressing mode is used instead of EXTENDED.

NOTE It is the programmer’s responsibility to actually allocate ___ SHORT_SEG
segments in the zero page in the Linker parameter file. For more information,
see the Linker section in the Build Tools manual.

The __far and __near keywords specify the calling convention for functions. __far
function calls set the PPAGE register. __near function calls must stay in the same page.
In the BANKED memory model, functions are __far - the default. In the SMALL
memory model, functions are __near - the default case.

The DPAGE, EPAGE, and PPAGE keywords are used to specify the page register for paged
variables. For details see Paged Variables.

Optimizations

The Compiler applies a variety of code improving techniques commonly defined as
“optimizations”. This section gives a short overview about the most important
optimizations.

Lazy Instruction Selection

Lazy instruction selection is a very simple optimization that replaces certain instructions
by shorter or faster equivalents. Examples are the use of TSTA instead of CMPA #0 or
using COMB instead of EORB ~ #0xFF.

Peephole Optimizations

The peephole optimizer replaces longer code patterns with shorter ones. All peephole
optimizations are switched off together with —~OnP or each peephole optimization is
switched off separately with the -OnP={<char>} command line option. Peephole
optimizations are not done for inline assembler code.

HC(S)12 Compiler Manual 541

HC(S)12 Backend
Optimizations

LEAS to PUSH/POP Optimization (-OnP=a to
disable it)

LEAS -2,8SP
is optimized to:
PSHD

This optimizations uses PULL or POP for small SP changes instead of using LEAS. This
optimization is switched off by the ~Ot command line option, optimize for time.

POP PULL Optimization (-OnP=b to disable it)

PSHA
PULA

A value is pushed and immediately afterwards popped again, so both instructions are
removed.

Compare 0 Optimization (-OnP=c to disable it)

L2: LDD a
CPD #0
BNE L2

is optimized to:

L2: LDD a
BNE L2

This optimization avoids compares to 0 if the flags are already set by another instruction.

Load/Store Optimization (-OnP=d to disable it)

STD a

LDD a
is optimized to:

STD a

This optimization removes redundant loads and stores. The load/store optimization traces
the used registers and the memory. The optimization is only done if neither the registers
are modified nor the memory is accessed.

542

HC(S)12 Compiler Manual

HC(S)12 Backend
Optimizations

LEA/LEA Optimization (-OnP=e to disable it)

This optimization does not work if there are instructions between the two LEAs (for that
case, use the Load/Store optimization).

LEAX 2,X
LEAX 2,X
is optimized to:

LEAX 4,X

Load/Store to POP/PUSH Optimization (-OnP=f
to disable it)

STD 2,-SP
is optimized to:
PSHD

Instead of creating PULL and POP instruction, the Compiler generates normal load and
stores to the stack with explicit stack pointer changes. Such instructions can sometimes be
combined with explicit stack pointer changes. Otherwise, the load and store operations are
converted by peephole optimization into PULL and POP instructions.

Load Arithm Store Optimization (-OnP=g to
disable it)

LDAA c
INCA
STAA cC

is optimized to:
INC c

and
LbAA 0,Y
ANDA #0x0f
STAA O0,Y

is optimized to:
BCLR 0,Y,#240
LDAA O0,Y

HC(S)12 Compiler Manual 543

HC(S)12 Backend
Optimizations

JSR/RTS Optimization (-OnP=h to disable it)

JSR function
RTS
is optimized to:
JMP function
NOTE This optimization removes stack frames before calling other functions. While
debugging, this optimization removes functions from the call chain when the
last function is called, but not when this function is actually finished. For better

debug information, this optimization can selectively be switched off by using
the -OnP=h option.

INC/DEC Compare Optimization (-OnP=i to
disable it)

L3: ADDD #1
BNE L3

is optimized to:

L3: IBNE D,L3

Store/Store Optimization (-OnP=j to disable it)

STD b
INCA
STD b

is optimized to:
INCA
STD b

The store/store optimization traces only the memory accesses. The optimization is done
only if no memory access occurs between the two stores.

LEA 0 Optimization (-OnP=k to disable it)

LEAS O0,SP
is optimized to:

/* no instruction */

544

HC(S)12 Compiler Manual

HC(S)12 Backend
Optimizations

LEA into Addressing Mode Optimization(-OnP=I
to disable it)

LEAS 2,SP
STD 0,SPp

is optimized to:

STD 2,+SP

and

LEAS 2,SP
STD 2,+SP

is optimized to:

STD 4,+SP

The compiles tries to move LEAX, LEAY, and LEAS instructions into register indirect
memory accesses. The LEA into addressing mode optimization includes also an LEA/LEA
optimization. The other LEA/LEA optimization does not handle instructions between the
two LEAS.

LEAX 2,X
NOP
LEAX 2,X

is optimized to:

NOP
LEAX 4,X

RTS/RTS Optimization (-OnP=m to disable it)

RTS
RTS

is optimized to:

RTS

HC(S)12 Compiler Manual 545

HC(S)12 Backend
Optimizations

BCLR, BCLR Optimization (-OnP=n to disable it)

BCLR 0,Y, 0xO01
BCLR 0,Y, 0x02

is optimized to:

BCLR 0,Y,#3

PULL POP Optimization (-OnP=p to disable it)

PULA
PSHA
CLRA

is optimized to:

CLRA

PSHC PULC optimization (-OnP=q to disable it)

With the -Or: Allocate Local Variables into Registers or -Ol: Try to Keep Loop Induction
Variables in Registers compiler options, the compiler sometimes generates unnecessary
PSHC and PULC instructions during code generation. When some stores, loads and
transfers are done before the instruction sets some flags, PSHC and PULC are not
necessary. The compiler does this in order for the peephole optimizer to remove them,
wherever possible. This optimization actually improves intentionally generated code
patterns. This optimization moves the loads, stores, and transfers and removes the PSHC
and PULC, if possible.

LDAA 0,SP
PSHC
LDX 2,5P
PULC

is optimized to:

LDX 1,SP
LbaAA O0,SP

546 HC(S)12 Compiler Manual

HC(S)12 Backend
Optimizations

BRA to RTS Optimization (-OnP=r to disable it)

BRA 1rts
lrts: RTS
is optimized to:

RTS

lrts: RTS
Unconditional branches to an RTS are directly replaced with an RTS.

NOTE When debugging, it may happen that a function finishes although there is a
breakpoint at the last instruction. This is avoided with this option.

TFR/TFR Optimization (-OnP=t to disable it)

TFR D, X
TFR D,X

is optimized to:

TFR D,X

Unused Optimization (-OnP=u to disable it)

INCA
CLRA
STAA a

is optimized to:

CLRA
STAA a

HC(S)12 Compiler Manual 547

HC(S)12 Backend
Optimizations

Removing unnecessary compare instruction
(-OnP=v to disable it)

This optimization removes unnecessary compare instructions in Listing 10.17:

Listing 10.17 Example of the “removing unnecessary-compare instruction” optimization

With -OnP=v:
CPX <opr>
BLE L1
CPX <opr> ; This 1is the unnecessary compare Iinstruction.
BNE L2

Without -OnP=v:
CPX <opr>
BLE L1
BNE L2

The optimization may also be disabled by setting the 'volatile'attribute for <opr>.

Peephole index optimization (-OnP=x to
disable it)

This optimization uses the Accumulator-Offset Indexed Addressing mode
(Listing 10.18) instead of using one of the Constant-Offset Indexed Addressing modes.

Listing 10.18 Example of peephole index optimization

unsigned char arr[12];

unsigned char index;

unsigned char test(void) {
return arr[index];

}

With -OnP=x:
LDAB index
CLRA
TFR D, X
LDAB arr,X
RTS

Without -OnP=x:

548 HC(S)12 Compiler Manual

HC(S)12 Backend
Optimizations

LDABR index
LDX #arr
LDAB B,X
RTS

Branch Optimizations

The Compiler uses branch instructions with 1-byte offsets whenever possible. In addition,
other optimizations for branches are also available.

Short BRA Optimization (-OnB=a to disable it)

A branch over one byte is replaced with the opcode of "BRN". A branch over two bytes is
replaced with the opcode of “CPS #” (Listing 10.19).

Listing 10.19 Short BRA optimization example

int g(void) {
if (£(0)) |
return 1;
} else {
return O;
}
}

The code produced with this optimization:
0000 160000 JSR £

0003 044403 TBEQ D,3 ;abs = 0009
0006 C601 LDAB #1

0008 21cC7 BRN -57 ;abs = FFD1
000A 87 CLRA

000B 3D RTS

With the -OnB=a (disable short BRA optimization) option the Compiler produces one
more byte:
0000 160000 JSR £

0003 044404 TBEQ D,4 ;abs = 000A
0006 C601 LDAB #1

0008 2001 BRA 1 ;abs = 000B
000A C7 CLRB

000B 87 CLRA

000C 3D RTS

HC(S)12 Compiler Manual 549

HC(S)12 Backend
Optimizations

The branch optimizer replaces the *"BRA 1" in the second example with the opcode of
“BRN”, 0x21. Then the Decoder joins the BRN with the CLRB to one BRN. Actually the
Decoder writes something like the following:

0008 21 “BRA 1”
000A C7 CLRB

The CLRB out of the second code disappears in the first listing into the offset of the BRN
instruction. The same type of optimization is also done with a “BRA 2". Then the
opcode of a “CPS #7 is taken.

NOTE BRN and CPS in a Decoder listing are often the result of this optimization. If
s0, one or two additional machine instructions are hidden after the opcode. The
compiler will write this as SKIP1 or SKIP2 pseudo opcode to the listing file.

Branch JSR to BSR Optimization (-OnB=b to
disable it)

This optimization uses a BSR instead of a JSR, if the offset is small enough and known.

Long Branch Optimization (-OnB=I to disable it)

This optimization tries to replace a long branch with a short branch to another branch,
which branches to the same target (Listing 10.20).

Listing 10.20 Long branch optimization example

LBNE 10
LBNE 10
// more than 0x80 bytes of code
10:
This situation is recognized and replaced with the following:
BNE 11
11: LBNE 10
// more than 0x80 bytes of code
10:

550 HC(S)12 Compiler Manual

HC(S)12 Backend
Programming Hints

Branch Tail Optimization (-OnB=t to disable it)

Branch tail merging removes common code if the common code patterns branch to the
same place.

Constant Folding

Constant folding options only affect constant folding over statements. The constant
folding inside of expressions is always done.

Volatile Objects

The Compiler does not do register tracing on volatile objects. Accesses to volatile objects
are not eliminated. It also does not change word operations to byte operations on volatile
objects (as it does for other memory accesses) when the option —~-CVolWordAcc is
specified.

Programming Hints

The MC68HC(S)12 is an 8/16-bit processor not designed with high-level languages in
mind. You must observe certain points in order for the Compiler to generate reasonably
efficient code. The following list provides an idea of what is “good” programming from
the processor’s point of view.

* Allocate frequently used static variables in the zero page using __SHORT_SEG
segments.

* Use variables of type char if the value range is large enough for your purpose (0 to
255 forunsigned char; -128to 127 for signed char).

Consider however that expressions containing both char and int variables usually are
worse than equivalent expressions containing only int variables because the char
variables have to be extended first. The same also holds for certain expressions on
characters like:

7

char a, b, c, d;
a=(b+c) / d

or

if (a+l < b)

because they must be evaluated to 16 bits to comply to the semantics of ANSI-C.

Using unsigned types instead of signed types is better in the following cases:

HC(S)12 Compiler Manual 551

HC(S)12 Backend
Programming Hints

» Implicit or explicit extensions from char to int or from int to long.

¢ Use types long, float, or double only when absolutely necessary. They produce a lot
of code!

¢ Avoid stack frames larger than 256 bytes. The stack frame includes the parameters,
local variables, and usually some additional bytes for temporary values.

* Avoid structs larger than 256 bytes if the fields are accessed via pointers.

552 HC(S)12 Compiler Manual

11

High-Level Inline Assembler
for the Freescale HC(S)12

The HLI (High Level Inline) Assembler provides a means to make full use of the
properties of the target processor right within a C program. There is no need to write a
separate assembly file, assemble it and later bind it with the rest of the application written
in ANSI-C/C++ with the inline assembler. The Compiler does all that work for you. For
further information, please refer to the HC12 Reference Manual.

Syntax

Inline assembly statements can appear anywhere a C statement can appear (an __asm
statement must be inside a C function). Inline assembly statements take one of two forms,
shown in various configurations (Listing 11.1 through Listing 11.5.

Listing 11.1 Inline assembly - version #1

__asm <Assembly Instruction> ; [/* Comment */]
__asm <Assembly Instruction> ; [// Comment]

Listing 11.2 Inline assembly - version #2

__asm {
{ <Assembly Instruction> [; Comment] \n}

}

NOTE (In above syntax, the closing ’}’ has to be on a new line.

Listing 11.3 Inline assembly - version #3

__asm (<Assembly Instruction> [; Comment]) ;

HC(S)12 Compiler Manual 553

High-Level Inline Assembler for the Freescale HC(S)12

Syntax

Listing 11.4 Inline assembly - version #4

__asm [(] <string Assembly instruction> [)] [;]

where the <string Assembly instruction> =

<Assembly Instruction> [; <Assembly instruction>]

Listing 11.5 Inline assembly - version #5

#asm

<Assembly Instruction> [; Comment] \n
#endasm

If you use the first form, multiple __asm statements are contained on one line and
comments are delimited like regular C or C++ comments. If you use the second form, one
to several assembly instructions are contained within the __asm block, but only one
assembly instruction per line is possible and the semicolon starts an assembly comment.

Mixing HLI Assembly and HLL

Mixing High Level Inline (HLI) Assembly with a High Level Language (HLL, e.g., C or
C++) requires special attention. The Compiler does not care about used or modified
registers in HLI Assembly, thus you have save or restore registers which are used in HLI.
This is not a problem if a function contains HLI Assembly only. It is recommended to
place complex HLI Assembly code, or HLI Assembly code modifying any registers, into
separate functions. See Listing 11.6 for a problematic case mixing C and HLI assembly.

Listing 11.6 Function whereby HLI assembly code modifies a register

void foo (void) {
/* some C statements */

p->v =
__asm {

1;

/* some HLI statements destroying registers */

}

/* some C statements */
p->v = 2;

In the above sequence, the Compiler holds the value of p in a register. If the register is
modified in the HLI block, this may crash your code.

554

HC(S)12 Compiler Manual

High-Level Inline Assembler for the Freescale HC(S)12
Syntax

A simple example illustrates the use of the HLI-Assembler (Listing 11.7). Assume the
following:

¢ from points to some memory area
¢ to points to some other, non-overlapping memory area.

Then we can write a simple string copying function in assembly language as follows (we
assume the SMALL memory model):

Listing 11.7 HLI Assembler example

#pragma NO_ENTRY
void strcpy (char *from, char *to)
/* 'to' 1s passed in D
'from' is passed on the stack SP:2 */

{
__asm {
TFR D,X
LDY 2,SP
loop:
LDAA 1,Y+
STAA 1,X+
BNE loop
}
}

NOTE If #pragma NO_ENTRY is not set, the Compiler takes care of entry and exit
code. You do not have to worry about setting up a stack frame.

C Macros

The C macros are expanded inside of inline assembler code as they are expanded in C.
One special point to note is the syntax of a __asm directive generated by macros. As
macros always expand to one single line, only the first form of the __asm keyword is
used in macros:

__asm NOP;
For example,

#define SPACE_OK { _ _asm NOP; _ asm NOP; }

HC(S)12 Compiler Manual 555

High-Level Inline Assembler for the Freescale HC(S)12

Syntax

Using the second form is not allowed (Listing 11.8):

Listing 11.8 Unallowed C macro form

#define NOT_OK { __asm { \

NOP; \
NOP; \

The NOT_OK macro is expanded by the preprocessor to one single line, which is then
incorrectly translated because every assembly instruction must be explicitly terminated by
a new line. Use #pragma NO_STRING_CONSTR: No String Concatenation during
preprocessing to build immediates by using # inside macros.

Special Features

Caller/Callee Saved Registers

Because the compiler does not save any registers on the caller/callee side, you do not have
to save or restore any registers in the HLI over function calls.

Reserved Words

The inline assembler knows a couple of reserved words, which must not collide with user
defined identifiers such as variable names. These reserved words are:

* All opcodes (LDAA, STX, ...)
¢ All register names (A, B, D, X, Y, CCR, SP)
¢ The identifier PAGE

For these reserved words, the inline assembler is not case-sensitive, i.e., LDAB is the same
as 1dab or even LdADb. For all other identifiers (labels, variable names, and so on) the
inline assembler is case-sensitive.

Pseudo—-Opcodes

The inline assembler provides some pseudo opcodes to put constant bytes into the
instruction stream. These are listed in Listing 11.9:

556

HC(S)12 Compiler Manual

High-Level Inline Assembler for the Freescale HC(S)12
Syntax

Listing 11.9 Pseudo opcodes for constants

DC.B
DC.B
DC.W
DC.L

1 ; Byte constant 1
0 ; Byte constant 0
12 ; Word constant 12
20,23 ; Longword constants

Accessing Variables

The inline assembler allows accessing local and global variables declared in C by using
their names in the instruction. Global variable names are translated into the EXTENDED
or DIRECT addressing mode, depending upon which segment the variable is located.

Constant Expressions

Constant expressions may be used anywhere an IMMEDIATE value is expected. They
may contain the binary operators for addition (“+”), subtraction (“-""), multiplication
(“*”), and division (“/”). Also, the unary operator “-” is allowed. Round brackets may be
used to force an evaluation order other than the normal one. The syntax of numbers is the
same as in ANSI-C.

NOTE You cannot use ’$’ for hexadecimal constants.

Addresses of Variables

A constant expression may also be the address of a global variable or the offset of a local
variable.

AddrOfvar = "@|#"<Variable.
As examples:

ILDX @g ; Load X with address of global variable
LDY #1 ; Load Y with frame offset of local variable or
parameter

For HCS12X devices the @ and # operators generate relocations for the logical address
space. If you want to have a relocation for the global address space you need to specify the
name of the global relocation type (only the # operator is accepted for relocation
specifications), i.e., #GLOBAL

HC(S)12 Compiler Manual 557

High-Level Inline Assembler for the Freescale HC(S)12

Syntax

LDX #GLOBAL(g) ; Load X with address of global variable
NOTE For HCS12X devices the #LOGICAL operator is the same as the # operator.

It is also possible to access the fields of a struct or a union by using the normal
ANSI-C notation.

LDD r.f ; Load D with content of field f.

The inline assembler enables you to specify an offset from the address of a variable in
order to access the low word of a long or a float variable:

Offset = ":" ConstExpr.
Variable = Ident {"." Ident}.

Below are some examples (assuming all variables are long):

LDY @Qg:2 ; Load Y with ((address of g) + 2)
LDX g:2 ; Load X with the value stored there
LDD r.f:2 ; Load D with low word of field f.

This feature may also be used to access array elements with a constant index:

int al20] ;
LDD a:24 ; Load a[l2] into D

In the BANKED memory model, it is sometimes necessary to specify the bank number of
the memory bank where a particular function is allocated. This can be done with the
#PAGE relocation operator:

LDAB #PAGE(g); Load B with page address of global variable

For the HCS12X devices #PAGE generates a page relocation for the logical address
space. If you want to have a page relocation for the global address space you need to
specify #GLOBAL_PAGE:

LDAB #GLOBAL_PAGE(g); Load B with global page address of
global variable

NOTE For HCS12X devices the #LOGICAL_PAGE operator is the same as the
#PAGE operator.

558

HC(S)12 Compiler Manual

ANSI-C Library Reference

This section covers the ANSI-C Library.
¢ Library Files: Description of the types of library files

* Special Features: Description of special considerations of the ANSI-C standard
library relating to embedded systems programming

¢ Library Structure: Examination of the various elements of the ANSI-C library,
grouped by category.

* Types and Macros in the Standard Library: Discussion of all types and macros
defined in the ANSI-C standard library.

» The Standard Functions: Description of all functions in the ANSI-C library

HC(S)12 Compiler Manual 559

560 HC(S)12 Compiler Manual

12
Library Files

Directory Structure

The library files are delivered in the following structure (:Listing 12.1).

Listing 12.1 Layout of files after a CodeWarrior installation/

<install>\lib\<target>c\ /* readme files, make files */
<install>\lib\<target>c\src /* C library source files */
<install>\lib\<target>c\include /* library include files */
<install>\lib\<tartet>c\lib /* default library files */
<install>\lib\<target>c\prm /* Linker parameter files */

Check out the README . TXT located in the library folder with additional information on
memory models and library filenames.

How to Generate a Library

In the directory structure above, a CodeWarrior * . mcp file is provided to build all the
libraries and the startup code object files. Simply load the <target>_1ib.mcp file into
CodeWarrior and build all the targets.

Common Source Files

Table 12.1 lists the source and header files of the Standard ANSI Library that are not
target-dependent.

Table 12.1 Standard ANSI Library—Target Independent Source and Header Files

Source File Header File
alloc.c
assert.c assert.h

HC(S)12 Compiler Manual 561

Library Files

Common Source Files

Table 12.1 Standard ANSI Library—Target Independent Source and Header Files

Source File Header File

ctype.c ctype.h
errno.h

heap.c heap.h
limits.h

math.c, mathf.c

limits.h, ieemath.h, float.h

printf.c, scanf.c stdio.h
signal.c signal.h
stdarg.h
stddef.h
stdlib.c stdlib.h
string.c string.h
time.h

Target Dependent Files for HC12
Table 12.2 lists the target dependent Standard ANSI Library files.
Table 12.2 Standard ANSI Library—Target Dependent Source and Header Files

Source File Header File | Description
default.sgm Segment file
hidef.h HI-CROSS+ specific definitions
math.h part of ANSI library
non_bank.sg Segment file
m

setjimp.c setjimp.h part of ANSI library

signal.c part of ANSI library

start12.c start12.h Startup

562

HC(S)12 Compiler Manual

Library Files

Startup Files

Table 12.2 Standard ANSI Library—Target Dependent Source and Header Files

Source File Header File | Description

system.h Runtime prototypes
dadd.c part of runtime support (IEEE64)
dansi.c part of runtime support (IEEE64)
datapage.c part of runtime support (far pointers)
demp.c part of runtime support (IEEE64)
dconv.c dconf.h part of runtime support (IEEE64)
dconv.c dconv.h part of runtime support (IEEE64)
dmul.c part of runtime support (IEEE64)
dregs.c dregs.h part of runtime support (IEEE64)
fadd.c part of runtime support (IEEE32)
fansi.c part of runtime support (IEEE32)
fcmp.c part of runtime support (IEEE32)
fconv.c part of runtime support (IEEE32)
fmul.c part of runtime support (IEEE32)
fregs.c fregs.h part of runtime support (IEEE32)
rtshc12.c part of runtime support (integer, long,

switches)

runtime.sgm Segment declaration for runtime functions

vregs.c vregs.h part of runtime support

Startup Files

Because every memory model needs special startup initialization, there are also startup
object files compiled with different Compiler option settings (see Compiler options for

details).

The correct startup file has to be linked with the application depending on the memory
model chosen. The floating point format used does not matter for the startup code.

HC(S)12 Compiler Manual

563

Library Files

Startup Files

Note that the library files contain a generic startup written in C as an example of doing all
the tasks needed for a startup:

e Zero Out

e Copy Down

* Register initialization

¢ Handling ROM libraries

Because not all of the above tasks may be needed for an application and for efficiency
reasons, special startup is provided as well (e.g., written in HLI). However, the version
written in C could be used as well. For example, just compile the ‘startup.c’ file with
the memory/options settings and link it to the application.

Startup Files for the Freescale HC12

To initialize global variables either a pre-built startup object file has to be linked or the
start12.c source file has to be compiled with your project. Adding start12.c is
recommended as the correct setup is automatically detected at compile time.

Depending on the memory model, a different startup object file has to be linked to the
application. See Table 12.3

Table 12.3 Startup Object File Required by Each Memory Model

Startup Core Memory | Source Compiler Options
Obiject File Model File
start12s.0 HC12/ Small start12.c -Ms
HCS12
start12b.o HC12/ Banked start12.c -Mb
HCS12
start12l.o HC12/ Large start12.c -MI
HCS12
strt12sp.o HC12/ Small () start12.c -Ms -C++f
HCS12
strt12bp.o HC12/ Banked start12.c -Mb -C++f
HCS12 (1)
strt12lp.o HC12/ Large (M start12.c -MI -C++f
HCS12
start12xs.o HCS12X Small start12.c -Ms -CpuHCS12X
start12xb.o HCS12X Banked start12.c -Mb -CpuHCS12X

564

HC(S)12 Compiler Manual

Library Files

Library Files
Table 12.3 Startup Object File Required by Each Memory Model

Startup Core Memory | Source Compiler Options
Obiject File Model File
start12xl.o HCS12X Large start12.c -MI -CpuHCS12X
start12xsp.o HCS12X Small (1 start1i2.c -Ms -C++f -

CpuHCS12X
start12xbp.o HCS12X Banked start12.c -Mb -C++f -

M CpuHCS12X

start12xIp.o HCS12X Large (M start12.c -MI-C++f -

CpuHCS12X

@: C++ global constructors are called

Library Files

Most of the object files of the ANSI library are delivered in the form of an object library
(see below).

Several Library files are bundled with the Compiler. The reasons for having different
library files are due to different memory models or floating point formats.

The library files contain all necessary runtime functions used by the compiler and the
ANSI Standard Library as well. The list files (* . 1st extension) contains a summary of
all objects in the library file.

To link against a modified file which also exists in the library, it must be specified first in
the link order.

Please check out the readme.txt located in the library structure
(lib\<target>c\README.TXT) for a list of all delivered library files and memory model
or options used.

HC(S)12 Compiler Manual 565

Library Files
Library Files

566 HC(S)12 Compiler Manual

13

Special Features

Not everything defined in the ANSI standard library makes sense in embedded systems
programming. Therefore, not all functions have been implemented, and some have been
left open to be implemented because they strongly depend on the actual setup of the target
system.

This chapter describes and explains these points.

NOTE All functions not implemented do a HALT when called. All functions are
reentrant, except rand() and srand() because these use a global variable to store
the seed, which might give problems with light-weight processes. Another
function using a global variable is strtok(), because it has been defined that way
in the ANSI standard.

Memory Management -- malloc(), free(),
calloc(), realloc(); alloc.c, and heap.c

File 'alloc.c' provides a full implementation of these functions. The only problems
remaining are the question of where to put the heap, how big should it be, and what should
happen when the heap memory runs out.

All these points can be solved in the “heap . c” file. The heap simply is viewed as a large
array, and there is a default error handling function. Feel free to modify this function or the
size of the heap to suit the needs of the application. The size of the heap is defined in
libdefs.h, LIBDEF_HEAPSIZE.

Signals - signal.c

Signals have been implemented in a very rudimentary way - as traps. This means, the
signal() function allows you to set a vector to some function of your own (which of course
should be a TRAP_ PROC), while the raise() function is not implemented. If you decide to
ignore a certain signal, a default handler is installed that does nothing.

HC(S)12 Compiler Manual 567

Special Features
Multi-byte Characters - mblen(), mbtowc(), wetomb(), mbstowces(), westombs(); stdlib.c

Multi-byte Characters - mblen(), mbtowc(),
wctomb(), mbstowcs(), westombs(); stdlib.c

Because the compiler does not support multi-byte characters, all routines in
“stdlib.c” dealing with those have not been implemented. If these functions are
needed, the programmer will have to specifically write them.

Program Termination - abort(), exit(),
atexit(); stdlib.c

Because programs in embedded systems usually are not expected to terminate, we only
provide a minimum implementation of the first two functions, while atexit() is not
implemented at all. Both abort() and exit() simply perform a HALT.

I/O - printf.c

The printf() library function is not implemented in the current version of the library sets in
the ANSI libraries, but it is found in the “terminal.c” file.

This difference has been planned because often no terminal is available at all or a terminal
depends highly on the user hardware.

The ANSI library contains several functions which makes it simple to implement the
printf () function with all its special cases in a few lines.

The first, ANSI-compliant way is to allocate a buffer and then use the vsprintf ()
ANSI function (Listing 13.1).

Listing 13.1 An implementation of the printf() function

int printf (const char *format, ...) {
char outbuf [MAXLINE] ;
int 1i;
va_list args;
va_start (args, format);
i = vsprintf (outbuf, format, args);
va_end(args) ;
WriteString (outbuf) ;
return 1i;

568 HC(S)12 Compiler Manual

Special Features
/O - printf.c

The value of MAXLINE defines the maximum size of any value of print£ (). The
WriteString () function is assumed to write one string to a terminal. There are
several disadvantages of this solution:

¢ A buffer is needed which alone may use a large amount of RAM.

¢ As unimportant how large the buffer (MAXLINE) is, it is always possible that a
buffer overflow occurs. Therefore this solution is not safe.

Two non-ANSI functions - vprintf () and set_printf () - are provided in its
newer library versions in order to avoid both disadvantages.

Because these functions are a non-ANSI extension, they are not contained in the “stdio.h”
header file.

Therefore, their prototypes must be specified before they are used (Listing 13.2):

Listing 13.2 Prototypes of vprintf() and set_printf()

int vprintf (const char *pformat, va_list args);
void set_printf(void (*f) (char));

The set_printf () function installs a callback function, which is called later for every
character which should be printed by vprintf ().

Be advised that the standard ANSI C printf () derivatives functions, sprintf() and
vsprintf (), are also implemented by calls to set_printf () and vprintf ().
This way much of the code for all printf derivatives can be shared across them.

There is also a limitation of the current implementation of printf(). Because the callback
function is not passed as an argument to vprint £ (), but held in a global variable, all the
printf () derivatives are not reentrant. Even calls to different derivatives at the same
time are not allowed.

For example, a simple implementation of a printf () with vprintf () and
set_printf () is shown in Listing 13.3:

Listing 13.3 Implementation of prinft() with vprintf() and set_printf()

int printf (const char *format, ...){
int 1i;
va_list args;

set_printf (PutChar) ;
va_start (args, format);

i = vprintf (format, args);
va_end(args) ;

return 1i;

HC(S)12 Compiler Manual 569

Special Features
Locales - locale.”

The PutChar () function is assumed to print one character to the terminal.

Another remark has to be made about the printf () and scanf() functions. The full
source code is provided of all printf () derivatives in “printf.c” and of scanf ()
in “scanf.c”. Usually many of the features of printf () and scanf () are not used
by a specific application. The source code of the library modules printf and scanf contains
switches (defines) to allow the use to switch off unused parts of the code. This especially
includes the large floating-point parts of vprintf () and vsscanf ().

Locales - locale.*

ctype

Has not been implemented.

ctype contains two sets of implementations for all functions. The standard is a set of
macros which translate into accesses to a lookup table.

This table uses 257 bytes of memory, so an implementation using real functions is
provided. These are accessible if the macros are undefined first. After “#undef
isupper”, isupper is translated into a call to function " i supper () ”. Without the
“undef”, “isupper” is replaced by the corresponding macro.

Using the functions instead of the macros of course saves RAM and code size - at the
expense of some additional function call overhead.

String Conversions - strtol(), strtoul(),
strtod(), and stdlib.c

To follow the ANSI requirements for string conversions, range checking has to be done.
The variable “errno” is set accordingly and special limit values are returned. The macro
“ENABLE_OVERFLOW_CHECK” is set to 1 by default. To reduce code size it is
recommended to switch off this macro (set ENABLE_OVERFLOW_CHECK to 0).

570

HC(S)12 Compiler Manual

14

Library Structure

In this section, the various parts of the ANSI-C standard library are examined, grouped by
category. This library not only contains a rich set of functions, but also numerous types
and macros.

Error Handling

Error handling in the ANSI library is done using a global variable errno that is set by the
library routines and may be tested by a user program. There also are a few functions for
error handling (Listing 14.1):

Listing 14.1 Error handling functions

void assert(int expr) ;
void perror(const char *msg);
char * strerror (int errno);

String Handling Functions

Strings in ANSI-C always are null-terminated character sequences. The ANSI library
provides the following functions to manipulate such strings (Listing 14.2).

Listing 14.2 ANSI-C string manipulation functions

size_t strlen(const char *s);
char * strcpy(char *to, const char *from);

char * strncpy(char *to, const char *from, size_t size);
char * strcat(char *to, const char *from);

char * strncat(char *to, const char *from, size_t size);
int strcmp (const char *p, const char *q);

int strncmp (const char *p, const char *g, size_t size);
char strchr (const char *s, int ch);

*

char * strrchr (const char *s, int ch);

char * strstr(const char *p, const char *q);

size_t strspn(const char *s, const char *set);
t strcspn(const char *s, const char *set);

HC(S)12 Compiler Manual 571

Library Structure
Memory Block Functions

char *
char *

strpbrk (const char *s, const char *set);
strtok (char *s, const char *delim);

Memory Block Functions

Closely related to the string handling functions are those operating on memory blocks.
The main difference to the string functions is that they operate on any block of memory,
whether it is null-terminated or not. The length of the block must be given as an additional
parameter. Also, these functions work with void pointers instead of char pointers
(Listing 14.3).

Listing 14.3 ANSI-C Memory Block functions

void *
void *
int

void *
void *

memcpy (void *to, const void *from, size_t size);
memmove (void *to, const void *from, size_t size);
memcmp (const void *p, const void *qg, size_t size);
memchr (const void *adr, int byte, size_t size);
memset (void *adr, int byte, size_t size);

Mathematical Functions

The ANSI library contains a variety of floating point functions. The standard interface,
which is defined for type double (Listing 14.4), has been augmented by an alternate
interface (and implementation) using type £loat.

Listing 14.4 ANSI-C Double-Precision mathematical functions

double
double
double
double
double
double
double
double
double
double
double
double
double

7

double x
double x

acos)
asin)
atan (double x)
atan2 (double x
ceil (double x)
cos (double x);
cosh (double x);

exp (double x);

fabs (double x);

floor (double x);

fmod (double x, double vy);
frexp (double x, int *exp);
ldexp (double x, int exp);

(
(.

7

7

double v);

’
7

572

HC(S)12 Compiler Manual

Library Structure
Mathematical Functions

double log(double x);

double 1loglO (double x);

double modf (double x, double *ip);
double pow(double x, double vy);
double sin(double x);

double sinh (double x);

double sgrt (double x);

double tan(double x);

double tanh (double x);

The functions using the float type have the same names with an "f"
appended (Listing 14.5).

Listing 14.5 ANSI-C Single-Precision mathematical functions

7

float acosf(float x)
float asinf (float x)
float atanf (float x)
float atan2f(float x
float ceilf (float x)
float cosf(float x);

float coshf (float x);

float expf(float x);

float fabsf(float x);

float floorf (float x);

float fmodf (float x, float y);
float frexpf(float x, int *exp);
float ldexpf(float x, int exp) ;
float logf(float x);

float loglOf (float x);

float modff (float x, float *ip);
float powf (float x, float vy);
float sinf (float x);
float sinhf (float x);
float sqgrtf(float x)
float tanf(float x);
float tanhf (float x);

7

7

float vy);

’
7

i

In addition, the ANSI library also defines a couple of functions operating on integral
values (Listing 14.6):

HC(S)12 Compiler Manual 573

Library Structure
Memory Management

Listing 14.6 ANSI-C Integral functions

int abs (int 1);

div_t div(int a, int b);
long labs(long 1);

ldiv_t 1div(long a, long b);

Furthermore, the ANSI-C library contains a simple pseudo random number generator
(Listing 14.7) and a function for generating a seed to start the random-number generator:

Listing 14.7 Random number generator functions

int rand(void) ;
void srand(unsigned int seed);

Memory Management

To allocate and deallocate memory blocks, the ANSI library provides the following
functions (Listing 14.8):

Listing 14.8 Memory allocation functions

void* malloc(size_t size);

void* calloc(size_t n, size_t size);
void* realloc(void* ptr, size_t size);
void free(void* ptr);

Because it is not possible to implement these functions in a way that suits all possible
target processors and memory configurations, all these functions are based on the system
module heap.c £ile, which can be modified by the user to fit a particular memory
layout.

Searching and Sorting

The ANSI library contains both a generalized searching and a generalized sorting
procedure (Listing 14.9):

574 HC(S)12 Compiler Manual

Library Structure
Searching and Sorting

Listing 14.9 Generalized searching and sorting functions

void* bsearch(const void *key,

void gsort(void *array,

const void *array,
size_t size, cmp_func f);
size_t n, size_t size, cmp_func f);

size_t n,

Character Functions

These functions test or convert characters. All these functions are implemented both as
macros and as functions, and, by default, the macros are active. To use the corresponding
function, you have to #undefine the macro.

Listing 14.10 ANSI-C character functions

int
int
int
int
int
int
int
int
int
int
int
int
int

isalnum(int
isalpha (int
iscntrl (int
isdigit (int
isgraph (int
islower (int
isprint (int
ispunct (int
isspace (int
isupper (int
isxdigit(int c
tolower (int ch
toupper (int ch

7

The ANSI library also defines an interface for multibyte and wide characters. The
implementation only offers minimum support for this feature: the maximum length of a
multibyte character is one byte (Listing 14.11).

Listing 14.11 Interface for multibyte and wide characters

int

size_t mbstowcs (wchar_t *wcs,

int

size_t wcstombs (char *mbs,

int

size_t n);

const char *mbs, size_t n);
const char *mbc, size_t n);
const wchar_ t *wcs size_t n);
wchar_t wc) ;

mblen (char *mbs,
mbtowc (wchar_t *wc,

wctomb (char *mbc,

HC(S)12 Compiler Manual

575

Library Structure
System Functions

System Functions

The ANSI standard includes some system functions for raising and responding to signals,
non-local jumping, and so on.

Listing 14.12 ANSI-C system functions

void

int

void
char*

int

int

void
_sig_func
int

abort (void) ;

atexit (void(* func) (void));

exit (int status) ;

getenv (const char* name) ;
system(const char* cmd) ;

setjmp (jmp_buf env) ;

longjmp (jmp_buf env, int wval);
signal (int sig, _sig_func handler) ;
raise(int sig);

To process variable-length argument lists, the ANSI library provides the following
“functions” (Listing 14.13). (They are implemented as macros):

Listing 14.13 Macros with variable-length arguments

void va_start(va_list args, param);
type va_arg(va_list args, type);
void va_end(va_list args);

Time Functions

In the ANSI library, there also are several function to get the current time. In an embedded
systems environment, implementations for these functions cannot be provided because
different targets may use different ways to count the time (Listing 14.14).

Listing 14.14 ANSI-C time functions

clock_t clock (void) ;

time_t time(time_t *time_val);

struct tm * localtime(const time_t *time_val);

time_t mktime (struct tm *time_rec) ;

char * asctime(const struct tm *time_rec);

char ctime (const time *time_val);

size_t strftime (char *s, size_t n,

576 HC(S)12 Compiler Manual

Library Structure
Locale Functions

const char *format,

const struct tm *time_rec);
double difftime(time_t tl, time_t t2);
struct tm * gmtime(const time_t *time_val);

Locale Functions

These functions are for handling locales. The ANSI-C library only supports the minimal
“C” environment (Listing 14.15).

Listing 14.15 ANSI-C locale functions

struct lconv *localeconv(void) ;

char *setlocale(int cat, const char *locale);
int strcoll (const char *p, const char *q);
size_t strxfrm(const char *p, const char *g, size_t n);

Conversion Functions

Functions for converting strings to numbers are found in Listing 14.16.

Listing 14.16 ANSI-C string/number conversion functions

int atoi (const char *s);

long atol (const char *s);

double atof (const char *s);

long strtol (const char *s, char **end, int base);
unsigned long strtoul (const char *s, char **end, int base);
double strtod(const char *s, char **end);

printf() and scanf()

More conversions are possible for the C functions for reading and writing formatted data.
These functions are shown in Listing 14.17.

HC(S)12 Compiler Manual 577

Library Structure
File I/O

Listing 14.17 ANSI-C read and write functions

int sprintf (char *s, const char *format, ...);
int vsprintf (char *s, const char *format, va_list args);
int sscanf (const char *s, const char *format, ...);

File I/O

The ANSI-C library contains a fairly large interface for file I/O. In microcontroller
applications however, one usually does not need file I/O. In the few cases where one
would need it, the implementation depends on the actual setup of the target system.
Therefore, is therefore impossible for Freescale to provide an implementation for these
features that the user has to specifically implement.

Listing 14.18 contains file I/O functions while Listing 14.19 has functions for the reading
and writing of characters. The functions for reading and writing blocks of data are found
in Listing 14.20. Functions for formatted I/O on files are found in Listing 14.21, and
Listing 14.22 has functions for positioning data within files.

Listing 14.18 ANSI-C file I/O functions

FILE* fopen(const char *name, const char *mode);

FILE* freopen(const char *name, const char *mode, FILE *f);
int fflush(FILE *f);

int fclose (FILE *f);

int feof (FILE *f);

int ferror (FILE *f);

void clearerr (FILE *f);

int remove (const char *name) ;

int rename (const char *old, const char *new);

FILE* tmpfile(void);

char* tmpnam(char *name) ;

void setbuf(FILE *f, char *buf);

int setvbuf (FILE *f, char *buf, int mode, size_t size);

Listing 14.19 ANSI-C functions for writing and reading characters

int fgetc (FILE *f);

char* fgets(char *s, int n, FILE *f);
int fputc(int ¢, FILE *f);

int fputs (const char *s, FILE *f);
int getc (FILE *f);

578 HC(S)12 Compiler Manual

Library Structure
File I/O

int getchar (void) ;

char* gets(char *s);

int putc(int ¢, FILE *f);
int puts (const char *s);
int ungetc(int ¢, FILE *f);

Listing 14.20 ANSI-C functions for reading and writing blocks of data

size_t fread(void *buf, size_t size, size_t n, FILE *f);
size t fwrite(void *buf, size_ t size, size_t n, FILE *f);

Listing 14.21 ANSI-C formatted I/O functions on files

int fprintf(FILE *f, const char *format, ...);

int vfprintf (FILE *f, const char *format, va_list args);
int fscanf (FILE *f, const char *format, ...);

int printf (const char *format, ...);

int vprintf (const char *format, va_list args);

int scanf (const char *format, ...);

Listing 14.22 ANSI-C positioning functions

int fgetpos(FILE *f, fpos_t *pos);

int fsetpos(FILE *f, const fpos_t *pos);
int fseek(FILE *f, long offset, int mode);
long ftell (FILE *f);

void rewind (

HC(S)12 Compiler Manual 579

Library Structure
File I/O

580 HC(S)12 Compiler Manual

15

Types and Macros in the
Standard Library

This section discusses all types and macros defined in the ANSI standard library. We
cover each of the header files, in alphabetical order.

errno.h

This header file just declared two constants, that are used
as error indicators in the global variable errno.

extern int errno;

#define EDOM -1
#define ERANGE -2

float.h

Defines constants describing the properties of floating point arithmetic. See Table 15.1
and Table 15.2.

Table 15.1 Rounding and Radix Constants

Constant Description
FLT_ROUNDS Gives the rounding mode implemented
FLT_RADIX The base of the exponent

All other constants are prefixed by either FLT_, DBL_ or LDBL_. FLT__ is a constant for
type £loat, DBL_ for double and LDBL_ for long double.

HC(S)12 Compiler Manual 581

Types and Macros in the Standard Library

limits.h

Table 15.2 Other constants defined in float.h

Constant Description

DIG Number of significant digits.

EPSILON Smallest positive x for which 1.0 + x I= x.

MANT_DIG Number of binary mantissa digits.

MAX Largest normalized finite value.

MAX_EXP Maximum exponent such that FLT_RADIXMAX_EXPjs 5
finite normalized value.

MAX_10_EXP Maximum exponent such that 10MAX-10_EXP js 5 finjte
normalized value.

MIN Smallest positive normalized value.

MIN_EXP Smallest negative exponent such that
FLT_RADIXMIN-EXP i5 3 normalized value.

MIN_10_EXP Smallest negative exponent such that 10MIN-10_EXP 5 5
normalized value.

limits.h

Defines a couple of constants for the maximum and minimum values that are allowed for

certain types. See Table 15.3.

Table 15.3 Constants Defined in limits.h

Constant Description

CHAR_BIT Number of bits in a character
SCHAR_MIN Minimum value for signed char
SCHAR_MAX Maximum value for signed char
UCHAR_MAX Maximum value for unsigned char
CHAR_MIN Minimum value for char
CHAR_MAX Maximum value for char

582

HC(S)12 Compiler Manual

Types and Macros in the Standard Library

locale.h

Table 15.3 Constants Defined in limits.h (continued)

Constant Description

MB_LEN_MAX Maximum number of bytes for a multi-byte character.

SHRT_MIN Minimum value for short int

SHRT_MAX Maximum value for short int

USHRT_MAX Maximum value for unsigned short int

INT_MIN Minimum value for int

INT_MAX Maximum value for int

UINT_MAX Maximum value for unsigned int

LONG_MIN Minimum value for long int

LONG_MAX Maximum value for long int

ULONG_MAX Maximum value for unsigned long int

locale.h

The header file in Listing 15.1 defines a struct containing all the locale specific values.

Listing 15.1 Locale-specific values

struct lconv { /* "C" locale (default) */
char *decimal_point; VA

/* Decimal point character to use for non-monetary numbers */
char *thousands_sep; Jxonnoxy

/* Character to use to separate digit groups in
the integral part of a non-monetary number. */
char *grouping; /* "\CHAR_MAX" */

/* Number of digits that form a group. CHAR_MAX
means “no grouping”, '\0' means take previous
value. For example, the string "\3\0" specifies the
repeated use of groups of three digits. */

char *int_curr_symbol; Jxonnoxy

/* 4d-character string for the international
currency symbol according to ISO 4217. The

HC(S)12 Compiler Manual 583

Types and Macros in the Standard Library

locale.h

last character is the separator between currency symbol

and amount.

/* National currency symbol.
char *mon_decimal_point;
char *mon_thousands_sep;
char *mon_grouping;

/* Same as decimal_point etc.,
for monetary numbers.
char *positive_sign;

/* String to use

char *negative_sign;

/* String to use
char

*/
char *currency_symbol;

int_frac_digits;

Jxom ok
*/
/xorLn %/
/* nn */
/* "\CHAR_MAX" */
but
*/
/xom ok

for positive monetary numbers.*/
/* non */

for negative monetary numbers. */
/* CHAR_MAX */

/* Number of fractional digits to print in a

monetary number according to international format.
frac_digits;

har

/*
char

The same for national format.
p_cs_precedes;

*/
/* CHAR_MAX */
*/

/* 1 */

/* 1 indicates that the currency symbol is left of a

positive monetary amount;
p_sep_by_space;

char

0 indicates it is on the right. */

/* 1 o*/

/* 1 indicates that the currency symbol is
separated from the number by a space for

positive monetary amounts. */
char n_cs_precedes; /* 1 */
char n_sep_by_ space; /* 1 */
/* The same for negative monetary amounts. */
char p_sign_posn; /x4 x/
char n_sign_posn; /x4 x/

/* Defines the position of the sign for positive
and negative monetary numbers:

0 amount and
1 sign comes
2 sign comes
3 sign comes
4 sign comes

currency are in parentheses
before amount and currency

after the amount

immediately before the currency
immediately after the currency */

584

HC(S)12 Compiler Manual

Types and Macros in the Standard Library
math.h

There also are several constants that can be used in setlocale() to define which part of the
locale should be set. See Table 15.4.

Table 15.4 Constants used with setlocal()

Constant Description

LC_ALL Changes the complete locale

LC_COLLATE Only changes the locale for the strcoll() and strxfrm()
functions

LC_MONETARY Changes the locale for formatting monetary numbers

LC_NUMERIC Changes the locale for numeric, i.e., non—monetary
formatting

LC_TIME Changes the locale for the strftime() function

LC_TYPE Changes the locale for character handling and multi-byte
character functions

This implementation only supports the minimum “C” locale.

math.h

Defines just this constant:
HUGE_VAL

Large value that is returned if overflow occurs.

setjmp.h

Contains just this type definition:
typedef jmp_buf;

A buffer for setjmp() to store the current program state.

HC(S)12 Compiler Manual 585

Types and Macros in the Standard Library
signal.h

signal.h

Defines signal handling constants and types. See Table 15.5 and Table 15.6.
typedef sig_atomic_t;

Table 15.5 Constants defined in signal.h

Constant Definition

SIG_DFL If passed as the second argument to signal,
the default response is installed.

SIG_ERR Return value of signal(), if the handler could
not be installed.

SIG_IGN If passed as the second argument to signal(),
the signal is ignored.

Signal Type Constants. (Table 15.6).

Table 15.6 Signal Type Constants

Constant Definition

SIGABRT Abort program abnormally
SIGFPE Floating point error

SIGILL lllegal instruction

SIGINT Interrupt

SIGSEGV Segmentation violation
SIGTERM Terminate program normally

stddef.h

Defines a few generally useful types and constants. See Table 15.7.

586 HC(S)12 Compiler Manual

Types and Macros in the Standard Library

stdio.h
Table 15.7 Constants Defined in stddef.h
Constant Description
ptrdiff_t The result type of the subtraction of two
pointers.
size_t Unsigned type for the result of sizeof.
wchar_t Integral type for wide characters.
#define NULL ((void *) 0)
size_t offsetof (Returns the offset of field struct_member
type, struct_member) in struct type.
stdio.h
There are two type declarations in this header file. See Table 15.8.
Table 15.8 Type definitions in stdio.h
Type Definition Description
FILE Defines a type for a file descriptor.
fpos_t A type to hold the position in the file as
needed by fgetpos() and fsetpos().
Table 15.9 lists the constants defined in stdio.h.
Table 15.9 Constants defined in stdio.h
Constant Description
BUFSIZ Buffer size for setbuf().
EOF Negative constant to indicate end—offile.
FILENAME_MAX Maximum length of a filename.
FOPEN_MAX Maximum number of open files.
_IOFBF To set full buffering in setvbuf().
_IOLBF To set line buffering in setvbuf().

HC(S)12 Compiler Manual 587

Types and Macros in the Standard Library
stdlib.h

Table 15.9 Constants defined in stdio.h (continued)

Constant Description

_IONBF To switch off buffering in setvbuf().

SEEK_CUR fseek() positions relative from current
position.

SEEK_END fseek() positions from the end of the file.L

SEEK_SET fseek() positions from the start of the file.

TMP_MAX Maximum number of unique filenames
tmpnam() can generate.

In addition, there are three variables for the standard I/O streams:

extern FILE *stderr, *stdin, *stdout;

stdlib.h

Besides a redefinition of NULL, size_t and wchar_t, this header file contains the type
definitions listed in Table 15.10.

Table 15.10 Type Definitions in stdlib.h

Type Definition Description
typedef div_t; A struct for the return value of div().
typedef Idiv_t; A struct for the return value of Idiv().

Table 15.11 lists the constants defined in stdlib.h

Table 15.11 Constants Defined in stdlib.h

Constant Definition
EXIT_FAILURE Exit code for unsuccessful termination.
EXIT_SUCCESS Exit code for successful termination.

588 HC(S)12 Compiler Manual

Types and Macros in the Standard Library

time.h
Table 15.11 Constants Defined in stdlib.h (continued)
Constant Definition
RAND_MAX Maximum return value of rand().
MB_LEN_MAX Maximum number of bytes in a multi-byte
character.

time.h

This header files defines types and constants for time management. See Listing 15.2.

Listing 15.2 time.h—Type Definitions and Constants

typedef clock_t;

typedef time_t;

struct tm {

int
int
int
int
int
int
int
int
int

tm_sec;
tm_min;
tm_hour;
tm_mday;
tm_mon;
tm_year;
tm_wday;
tm_vyday;
tm_isdst;

/*
/*
/*
/*
/*
/*
/*
/*
/*

Seconds */
Minutes */

Hours */

Day of month: 0 .. 31 */

Month: 0 .. 11 */

Year since 1900 */

Day of week: 0 .. 6 (Sunday == 0) */
day of year: 0 .. 365 */

Daylight saving time flag:
> 0 It is DST

0 It is not DST
< 0 unknown */

The constant CLOCKS_PER_SEC gives the number of clock ticks per second.

string.h

The file string.h defines only functions and not types or special defines.

The functions are explained below together with all other ANSI functions.

HC(S)12 Compiler Manual

589

Types and Macros in the Standard Library
assert.h

assert.h

The file assert . h defines the assert() macro. If the NDEBUG macro is defined, then
assert does nothing. Otherwise, assert calls the auxiliary function _assert if the one macro
parameter of assert evaluates to 0 (FALSE) . See Listing 15.3.

Listing 15.3 Use assert() to assist in debugging

#ifdef NDEBUG

#define assert (EX)
#else

#define assert(EX) ((EX) ? 0 : _assert(_LINE__, _ FILE_))
#endif

stdarg.h

The file stdarg.h defines the type va_1ist and the va_arg(), va_end(), and va_start()
macros. The va_1list type implements a pointer to one argument of a open parameter
list. The va_start () macro initializes a variable of type va_1list to point to the first
open parameter, given the last explicit parameter and its type as arguments. The

va_arg () macro returns one open parameter, given its type and also makes the
va_list argument pointing to the next parameter. The va_end () macro finally
releases the actual pointer. For all implementations, the va_end () macro does nothing
because va_1list is implemented as an elementary data type and therefore it must not be
released. The va_start () and the va_arg () macros have a type parameter, which is
accessed only with sizeof (). So type, but also variables can be used. See Listing 15.4
for an example using stdarg.h

590 HC(S)12 Compiler Manual

Types and Macros in the Standard Library
ctype.h

Listing 15.4 Example using stdarg.h

char sum/(
char re
va_list

long p, ...) {
s=0;
list= va_start() (p, long);

res= va_arg(list, int); // (*)

va_end (
return

}

void main
char c¢
if (f£(1

list);
res;

(void) {
= 2;

0L, c) != 2) Error();

In the line (*) wva_arg must be called with int, not with char. Because of the default
argument-promotion rules of C, for integral types at least an int is passed and for floating
types at least a double is passed. In other words, the result of using

va_arg (..., char) orva_arg(..., short) isundefinedin C. Be especially
careful when using variables instead of types for va_arg (). In the example above,
“res= va_arg(list, res)” would not be correct unless res would have the type
int and not char.

ctype.h

The ctype.h file defines functions to check properties of characters, as if a character is a
digit - isdigit (), a space - isspace (), and many others. These functions are either
implemented as macros, or as real functions. The macro version is used when the -Ot
compiler option is used or the macro __ OPTIMIZE_FOR_TIME__ is defined. The
macros use a table called _ctype.whose length is 257 bytes. In this array, all properties
tested by the various functions are encoded by single bits, taking the character as indices
into the array. The function implementations otherwise do not use this table. They save
memory by using the shorter call to the function (compared with the expanded macro).

The functions in Listing 15.5 are explained below together with all other ANSI functions.

Listing 15.5 Macros defined in ctypes.h

extern un
#define
#define
#define
#define

signed char _ctypell;

_U (1<<0) /* Uppercase */
L (1<<1) /* Lowercase */
N (1<<2) /* Numeral (digit) */
_S (1<<3) /* Spacing character */
P (1l<<4) /* Punctuation */

#define

HC(S)12 Compiler Manual 591

Types and Macros in the Standard Library

ctype.h

#define
#define
#define

#ifdef

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

#endif /*

_C (1<<5)
_B (1<<b6)
X (1<<7)

isalnum(c)
isalpha(c
iscntrl (
isdigit (
isgraph (
islower (
isprint (
ispunct (
isspace (
isupper (
isxdigit
tolower (
toupper (
isascii(
toascii (c)

)
c)
c)
c)
c)
c)
c)
c)
c)
(c
c)
c)
c)

/* Control character */

/* Blank

/* hexadecimal digit */

_ctype| (unsigned
_ctype| (unsigned
_ctype| (unsigned

ctypel[(unsigned

isupper(c) ? ((c¢)
islower(c) ? ((c)
1((c) & ~127))

c & 127)

__OPTIMIZE_FOR_TIME__ */

__ OPTIMIZE_FOR_TIME__ /* -Ot defines this macro */
_ctype| (unsigned
_ctype| (unsigned
_ctype| (unsigned
_ctype| (unsigned
_ctype| (unsigned
_ctype| (unsigned
_ctype| (unsigned

(

(

(

(

(c

(c

& (LU|_L|_N))
& (_U|_L))

& _C)

& _N)

& (_P| Ul L]
& _L)

& (_P|_U|_L|_N]|
& _P)

& _S)

& _U)

& _X)

) (c))

) (c))

592

HC(S)12 Compiler Manual

16

The Standard Functions

This section describes all the standard functions in the ANSI-C library. Each function
description contains the subsections listed in Table 16.1.

Table 16.1 Function Description Subsections

Subsection Description

Syntax Shows the function’s prototype and also which
header file to include.

Description A description of how to use the function.

Return Describes what the function returns in which
case. If the global variable errno is modified by
the function, possible values are also described.

See also Contains cross—references to related functions.

Functions not implemented because the implementation would be hardware-specific
anyway (e.g., clock ()) are marked by:

Hardware w
specific
appearing in the right margin next to the function’s name. Functions for file I/O, which

also depend on the particular hardware’s setup and therefore also are not implemented, are
marked by:

in the right margin.

HC(S)12 Compiler Manual 593

The Standard Functions

abort()

Syntax
#include <stdlib.h>

void abort (void) ;

Description
abort () terminates the program. It does the following (in this order):

e raises signal SIGABRT

e flushes all open output streams
e closes all open files

e removes all temporary files

¢ calls HALT
If your application handles STGABRT and the signal handler does not return (e.g.,
because it does a longjmp ()), the application is not halted.

See also
atexit(),
exit(),
raise(), and

signal()

594 HC(S)12 Compiler Manual

The Standard Functions

abs()

Syntax
#include <stdlib.h>

int abs (int 1i);

Description

abs () computes the absolute value of 1.

Return
The absolute value of i;i.e., 1 if i is positive and -1 if i is negative. If 1 is
-32768, this value is returned and errno is set to ERANGE.

See also
fabs() and fabsf()

HC(S)12 Compiler Manual 595

The Standard Functions

acos() and acosf()

Syntax

#include <math.h>

double acos (double Xx);
float acosf(float x);

Description

acos () computes the principal value of the arc cosine of x.

Return

The arc cosine cos” (-1) (x) of x in the range between 0 and Pi if x is in the
range -1 <= x <= 1.Ifxisnotin this range, NAN is returned and errno is set
to EDOM.

See also
asin() and asinf(),
atan() and atanf(),
atan2() and atan2f(),
cos() and cosf(),
sin() and sinf(), and

tan() and tanf()

596 HC(S)12 Compiler Manual

The Standard Functions

asctime() Hardware S

Syntax

#include <time.h>

char * asctime(const struct tm* timeptr) ;

Description

asctime () converts the time, broken down in timeptr, into a string.

Return

A pointer to a string containing the time string.

See also
localtime(),
mktime(), and

time()

HC(S)12 Compiler Manual 597

The Standard Functions

asin() and asinf()

Syntax

#include <math.h>

double asin(double x);
float asinf(float x);

Description

asin () computes the principal value of the arc sine of x.

Return

The arc sine sin” (-1) (x) of x in the range between -Pi/2 and Pi/2 if x isin
therange -1 <= x <= 1.Ifxisnotin this range, NAN is returned and errno is
set to EDOM.

See also
acos() and acosf(),
atan() and atanf(),
atan2() and atan2f(),
cos() and cosf(), and

tan() and tanf()

598 HC(S)12 Compiler Manual

The Standard Functions

assert()

Syntax

#include <assert.h>

void assert (int expr) ;

Description

assert () is a macro that indicates expression expr is expected to be true at this
point in the program. If expr is false (0), assert () halts the program.
Compiling with option -DNDEBUG or placing the preprocessor control statement

#define NDEBUG

before the #include <assert.h> statement effectively deletes all assertions
from the program.

See also
abort() and
exit()

HC(S)12 Compiler Manual 599

The Standard Functions

atan() and atanf()

Syntax
#include <math.h>

double atan (double Xx);
float atanf(float x);

Description

atan () computes the principal value of the arc tangent of x.

Return

The arc tangent tan” (-1) (x), in the range from -P1i/2 to Pi/2 radian

See also
acos() and acosf(),
asin() and asinf(),
atan2() and atan2f(),
cos() and cosf(),
sin() and sinf(), and

tan() and tanf()

600 HC(S)12 Compiler Manual

The Standard Functions

atan2() and atan2f()

Syntax

#include <math.h>

double atan2 (double y, double x);
float atan2f(float y, float x);

Description

atan2 () computes the principal value of the arc tangent of y/x. It uses the sign
of both operands to determine the quadrant of the result.

Return

The arc tangent tan” (-1) (y/x), in the range from -P1i to Pi radian, if not
both x and y are 0. If both x and vy are 0, it returns 0.

See also
acos() and acosf(),
asin() and asinf(),
atan() and atanf(),
_cos() and cosf(),

sin() and sinf(), and

tan() and tanf()

HC(S)12 Compiler Manual 601

The Standard Functions

atexit()

Syntax
#include <stdlib.h>

int atexit (void (*func) (void));

Description
atexit () lets you install a function that is to be executed just before the normal
termination of the program. You can register at most 32 functions with
atexit (). These functions are called in the reverse order they were registered.
Return
atexit () returns O if it could register the function, otherwise it returns a non—
zero value.
See also
abort() and
exit()

602 HC(S)12 Compiler Manual

The Standard Functions

atof()

Syntax
#include <stdlib.h>

double atof (const char *s);

Description

atof () converts the string s to a double floating point value, skipping over
white space at the beginning of s. It stops converting when it reaches either the end
of the string or a character that cannot be part of the number. The number format
accepted by atof is the following:

FloatNum = Sign{Digit}[.{Digit}] [Exp]
Sign = [+]-]
Digit = <any decimal digit from 0 to 9>
Exp = (e|E) SignDigit{Digit}
Return

atof () returns the converted double floating point value.

See also
atoi(),
strtod(),
strtol(), and
strtoul()

HC(S)12 Compiler Manual 603

The Standard Functions

atoi()

Syntax
#include <stdlib.h>

int atoi(const char *s);

Description

atoi () converts the string s to an integer value, skipping over white space at the
beginning of s. It stops converting when it reaches either the end of the string or a
character that cannot be part of the number. The number format accepted by atoi
is the following:

Number = [+|-]1Digit{Digit}

Return

atoi () returns the converted integer value.

See also
atof(),
atol(),
strtod(),
strtol(), and
strtoul()

604 HC(S)12 Compiler Manual

The Standard Functions

atol()

Syntax
#include <stdlib.h>

long atol (const char *s);

Description

atol () converts the string s to an 1ong value, skipping over white space at the
beginning of s. It stops converting when it reaches either the end of the string or a
character that cannot be part of the number. The number format accepted by
atol () is the following:

Number = [+|-]1Digit{Digit}

Return

atol () returns the converted 1ong value.

See also
atoi(),
atof(),
strtod(),
strtol(), and
strtoul()

HC(S)12 Compiler Manual 605

The Standard Functions

bsearch()

Syntax

#include <stdlib.h>

void *bsearch(const void *key,
const void *array,
size_t n,
size t size,
cmp_func cmp ()) ;

Description

bsearch () performs a binary search in a sorted array. It calls the comparison
function cmp () with two arguments: a pointer to the key element that is to be
found and a pointer to an array element. Thus, the type cmp_ func can be declared
as:

typedef int (*cmp_func) (const void *key,
const void *data) ;

The comparison function should return an integer according to (Table 16.2):

Table 16.2 Return value from the comparison function, cmp_func()

If the key element is... the return value should be...
less than the array element less than zero (negative)
equal to the array element zero

greater than the array element greater than zero (positive)

606 HC(S)12 Compiler Manual

The Standard Functions

The arguments (Table 16.3) of bsearch () are:

Table 16.3 Possible arguments to the bsearch() function

Parameter
Name

Meaning

key

A pointer to the key data you are seeking

array

A pointer to the beginning (i.e., the first element) of the
array that is searched

n

The number of elements in the array

size

The size (in bytes) of one element in the table

cmp()

The comparison function

NOTE Make sure the array contains only elements of the same size. bsearch () also
assumes that the array is sorted in ascending order with respect to the
comparison function cmp () .

Return

bsearch () returns a pointer to an element of the array that matches the key, if
there is one. If the comparison function never returns zero, i.e., there is no
matching array element, bsearch () returns NULL.

HC(S)12 Compiler Manual

607

The Standard Functions

Hardware
Cﬂ"OC() specific @
Syntax
#include <stdlib.h>

void *calloc(size_t n, size_t size);

Description

calloc () allocates a block of memory for an array containing n elements of size
size. All bytes in the memory block are initialized to zero. To deallocate the
block, use free (). The default implementation is not reentrant and should
therefore not be used in interrupt routines.

Return
calloc () returns a pointer to the allocated memory block. If the block could not

be allocated, the return value is NULL.

See also
malloc() and

realloc()

608 HC(S)12 Compiler Manual

The Standard Functions

ceil() and ceilf()

Syntax
#include <math.h>
double ceil (double x);

float ceilf(float x);

Description

ceil () returns the smallest integral number larger than x.

See also
floor() and floorf() and
fmod() and fmodf()

HC(S)12 Compiler Manual

609

The Standard Functions

clearerr() File /0 H

Syntax

#include <stdio.h>

void clearerr (FILE *f);

Description

clearerr () resets the error flag and the EOF marker of file £.

610 HC(S)12 Compiler Manual

The Standard Functions

Hard
clock() i;!ﬁ?jéi @

Syntax

#include <time.h>

clock_t clock(void) ;

Description

clock () determines the amount of time since your system started, in clock ticks.
To convert to seconds, divide by CLOCKS_PER_SEC.

Return

clock () returns the amount of time since system startup.

See also

time()

HC(S)12 Compiler Manual 611

The Standard Functions

cos() and cosf()

Syntax
#include <time.h>

double cos(double x);
float cosf(float x);

Description
cos () computes the principal value of the cosine of x. x should be expressed in
radians.

Return

The cosine cos (x)

See also
acos() and acosf(),
asin() and asinf(),
atan() and atanf(),
atan2() and atan2f(),
sin() and sinf(), and

tan() and tanf()

612 HC(S)12 Compiler Manual

The Standard Functions

cosh() and coshf()

Syntax
#include <time.h>

double cosh (double Xx);
float coshf(float x);

Description

cosh () computes the hyperbolic cosine of x.

Return

The hyperbolic cosine cosh (x) . If the computation fails because the value is too
large, HUGE_VAL is returned and errno is set to ERANGE.

See also
cos() and cosf(),

sinh() and sinhf(), and
tanh() and tanhf()

HC(S)12 Compiler Manual 613

The Standard Functions

ctime() Hardware |

Syntax

#include <time.h>

char *ctime(const time_t *timer);

Description

ctime () converts the calendar time timer to a character string.

Return

The string containing the ASCII representation of the date.

See also
asctime(),
mktime(), and

time()

614 HC(S)12 Compiler Manual

The Standard Functions

difftime() Hardware

specific

Syntax

#include <time.h>

double difftime(time_t *tl, time_t tO0);

Description

-

difftime () calculates the number of seconds between any two calendar times.

Return

The number of seconds between the two times, as a double.

See also
mktime() and

time()

HC(S)12 Compiler Manual

615

The Standard Functions

div()
Syntax
#include <stdlib.h>

div_t div(int x, int vy);

Description

div () computes both the quotient and the modulus of the division x/y.

Return

A structure with the results of the division.

See also
1div()

616 HC(S)12 Compiler Manual

The Standard Functions

exit()

Syntax

#include <stdlib.h>

void exit (int status);

Description

exit () terminates the program normally. It does the following, in this order:

executes all functions registered with atexit()
flushes all open output streams

closes all open files

removes all temporary files

calls HALT

The status argument is ignored.

See also
abort()

HC(S)12 Compiler Manual

617

The Standard Functions

exp() and expf()

Syntax
#include <math.h>

double exp (double Xx);
float expf(float x);

Description

exp () computes e, where e is the base of natural logarithms.

Return

e*. If the computation fails because the value is too large, HUGE_VAL is returned
and errno is set to ERANGE.

See also
log() and logf(),

log10() and log10£(), and
pow() and powf()

618 HC(S)12 Compiler Manual

The Standard Functions

fabs() and fabsf()

Syntax

#include <math.h>

double fabs (double Xx);
float fabsf(float x);

Description

fabs () computes the absolute value of x.

Return

The absolute value of x for any value of x.

See also
abs() and
labs()

HC(S)12 Compiler Manual

619

The Standard Functions

fclose() File /O H

Syntax
#include <stdlib.h>

int fclose(FILE *f);

Description
fclose () closes file f. Before doing so, it does the following:

e flushes the stream, if the file was not opened in
read-only mode

e discards and deallocates any buffers that were
allocated automatically, i.e., not using setbuf ().

Return

Zero, if the function succeeds; EOF otherwise.

See also
fopen()

620 HC(S)12 Compiler Manual

The Standard Functions

feof() File /O H

Syntax

#include <stdio.h>

int feof (FILE *f);

Description

feof () tests whether previous I/O calls on file £ tried to do anything beyond the
end of the file.

NOTE Calling clearerr () or £seek () clears the file’s end-of-file flag;
therefore feof () returns 0.

Return

Zero, if you are not at the end of the file; EOF otherwise.

HC(S)12 Compiler Manual 621

The Standard Functions

ferror() File /0 H

Syntax

#include <stdio.h>

int ferror (FILE *f);

Description

ferror () tests whether an error had occurred on file £. To clear the error
indicator of a file, use clearerr (). rewind () automatically resets the file’s
error flag.

NOTE Do not use ferror () to test for end-of-file. Use feof () instead.

Return

Zero, if there was no error; non—zero otherwise.

622 HC(S)12 Compiler Manual

The Standard Functions

fflush() File /O H

Syntax

#include <stdio.h>

int fflush(FILE *f);

Description

fflush () flushes the I/O buffer of file £, allowing a clean switch between
reading and writing the same file. If the program was writing to file £, £f1ush ()
writes all buffered data to the file. If it was reading, £f1ush () discards any
buffered data. If £ is NULL, all files open for writing are flushed.

Return

Zero, if there was no error; EOF otherwise.

See also
setbuf() and
setvbuf()

HC(S)12 Compiler Manual 623

The Standard Functions

fgetc() File /O H

Syntax

#include <stdio.h>

int fgetc(FILE *f);

Description

fgetc () reads the next character from file f.

NOTE If file £ had been opened as a text file, the end—of-line character combination
is read as one ' \n' character.

Return

The character is read as an integer in the range from 0 to 255. If there was a read
error, fgetc () returns EOF and sets the file’s error flag, so that a subsequent call
to ferror () will return a non—zero value. If an attempt is made to read beyond
the end of the file, fgetc () also returns EOF, but sets the end—of-file flag
instead of the error flag so that feof () will return EOF, but ferror() will return 0.

See also
fgets(),
fopen(),
fread(),
fscanf(), and

gete()

624 HC(S)12 Compiler Manual

The Standard Functions

fgetpos() File /O H

Syntax

#include <stdio.h>

int fgetpos (FILE *f, fpos_t *pos);

Description

fgetpos () returns the current file position in *pos. This value can be used to
later set the position to this one using fsetpos ().

NOTE Do not assume the value in *pos to have any particular meaning such as a
byte offset from the beginning of the file. The ANSI standard does not require
this, and in fact any value may be put into *pos as long as there is a
fsetpos () with that value resets the position in the file correctly.

Return

Non-zero, if there was an error; zero otherwise.

See also
fseek() and
ftell()

HC(S)12 Compiler Manual 625

The Standard Functions

fgets() File /O H

Syntax

#include <stdio.h>

char *fgets(char *s, int n, FILE *f);

Description

fgets () reads a string of at most n-1 characters from file f into s. Immediately

after the last character read, a ' \ 0 ' is appended. If fgets () reads a line break

("\n") or reaches the end of the file before having read n-1 characters, the

following happens:

e If fgets () reads a line break, it adds the '\n' plus a '\ 0" to s and returns
successfully.

1

* Ifitreaches the end of the file after having read at least 1 character, it adds a '\ 0
to s and returns successfully.

* Ifitreaches EOF without having read any character, it sets the file’s end—of—file
flag and returns unsuccessfully. (s is left unchanged.)

Return

NULL, if there was an error; s otherwise.

See also
fgetc() and
fputs()

626 HC(S)12 Compiler Manual

The Standard Functions

floor() and floorf()

Syntax

#include <math.h>

double floor (double x);
float floorf(float x);

Description

floor () calculates the largest integral number not larger than x.

Return

The largest integral number not larger than x.

See also
ceil() and ceilf() and
modf() and modff()

HC(S)12 Compiler Manual

627

The Standard Functions

fmod() and fmodf()

Syntax

#include <math.h>

double fmod (double x, double y);
float fmodf (float x, float vy);

Description

fmod () calculates the floating point remainder of x/y.

Return

The floating point remainder of x /vy, with the same sign as x. If y is 0, it returns 0
and sets errno to EDOM.

See also
div(),
1div(),
Idexp() and ldexpf(), and
modf() and modff()

628 HC(S)12 Compiler Manual

The Standard Functions

fopen()

Syntax

#include <stdio.h>

FILE *fopen(const char *name, const char *mode) ;

Description

fopen () opens a file with the given name and mode. It automatically allocates an
I/0 buffer for the file.

There are three main modes: read, write, and update (i.e., both read and write)

accesses. Each can be combined with either text or binary mode to read a text file
or update a binary file. Opening a file for text accesses translates the end—of-line

character (combination) into ' \n' when reading and vice versa when writing.

Table 16.4 lists all possible modes.

Table 16.4 Operating modes of the file opening function, fopen()

Mode

Effect

r

Open the file as a text file for reading.

w

Create a text file and open it for writing.

a

Open the file as a text file for appending

rb

Open the file as a binary file for reading.

wb

Create a file and open as a binary file for writing.

ab

Open the file as a binary file for appending.

r+

Open a text file for updating.

W+

Create a text file and open for updating.

a+

Open a text file for updating. Append all writes to the end.

r+b, or rb+

Open a binary file for updating.

w+b, or wb+

Create a binary file and open for updating.

a+b, or ab+

Open a binary file for updating, appending all writes to the end.

HC(S)12 Compiler Manual

629

The Standard Functions

(T3]

If the mode contains an “r”, but the file does not exist, fopen () returns
unsuccessfully. Opening a file for appending (mode contains “a”) always appends
writing to the end, even if fseek (), fsetpos (), or rewind () is called.
Opening a file for updating allows both read and write accesses on the file.
However, fseek (), fsetpos () or rewind () must be called in order to write
after a read or to read after a write.

Return

A pointer to the file descriptor of the file. If the file could not be created, the
function returns NULL.

See also
fclose(),
freopen(),
setbuf() and
setvbuf()

630 HC(S)12 Compiler Manual

The Standard Functions

fprintf()

Syntax

#include <stdio.h>

int fprintf(FILE *f, const char *format, ...);

Description

fprintf () isthe same as sprintf (), but the output goes to file f instead of a
string.

For a detailed format description see sprintf ().

Return

The number of characters written. If some error occurred, EOF is returned.

See also
printf() and

viprintf (), vprintf(), and vsprintf ()

HC(S)12 Compiler Manual 631

The Standard Functions

fputc() File /O H

Syntax

#include <stdio.h>

int fputc(int ch, FILE *f);

Description

fputc () writes a character to file f.

Return

The integer value of ch. If an error occurred, fputc () returns EOF.

See also
fputs()

632 HC(S)12 Compiler Manual

The Standard Functions

fputs() File /O H

Syntax

#include <stdio.h>

int fputs(const char *s, FILE *f);

Description
fputs () writes the zero—terminated string s to file £ (without the terminating
"\0"'.

Return

EOF, if there was an error; zero otherwise.

See also
fputc()

HC(S)12 Compiler Manual 633

The Standard Functions

fread() File /O H

Syntax

#include <stdio.h>

size_t fread(void *ptr, size_t size, size_t n, FILE *f);

Description

fread () reads a contiguous block of data. It attempts to read n items of size
size from file £ and stores them in the array to which ptr points. If either n or
sizeis 0, nothing is read from the file and the array is left unchanged.

Return

The number of items successfully read.

See also
fgetc(),
fgets(), and
fwrite()

634 HC(S)12 Compiler Manual

The Standard Functions

Hardware
free() specific @
Syntax
#include <stdlib.h>

void free(void *ptr);

Description

free () deallocates a memory block that had previously been allocated by
calloc(),malloc(),orrealloc ().If ptr is NULL, nothing happens. The
default implementation is not reentrant and should therefore not be used in
interrupt routines.

HC(S)12 Compiler Manual 635

The Standard Functions

freopen()

Syntax

#include <stdio.h>

void freopen (const char *name,
const char *mode,
FILE *f);

Description

freopen () opens a file using a specific file descriptor. This can be useful for
redirecting stdin, stdout, or stderr. About possible modes, see fopen ().

See also
fclose()

636

HC(S)12 Compiler Manual

The Standard Functions

frexp() and frexpf()

Syntax

#include <math.h>

double frexp(double x, int *exp);
float frexpf(float x, int *exp) ;

Description

frexp () splits a floating point number into mantissa and exponent. The relation
isx = m * 2%exp.malways is normalized to therange 0.5 < m <= 1.0.
The mantissa has the same sign as x.

Return
The mantissa of x (the exponent is written to *exp). If x is 0 . 0, both the mantissa
(the return value) and the exponent are 0.

See also
exp() and expf(),

Idexp() and ldexpf(), and
modf() and modff()

HC(S)12 Compiler Manual 637

The Standard Functions

fscanf() File I/0 H

Syntax

#include <stdio.h>

int fscanf (FILE *f, const char *format, ...);

Description
fscanf () isthe same as scanf () but the input comes from file f instead of a
string.

Return
The number of data arguments read, if any input was converted. If not, it returns
EOF.

See also
fgetc(),
fgets(), and

scanf()

638 HC(S)12 Compiler Manual

The Standard Functions

fseek() File /O H

Syntax

#include <stdio.h>

int fseek(FILE *f, long offset, int mode);

Description
fseek () sets the current position in file £.

For binary files, the position can be set in three ways, as shown in Table 16.5.

Table 16.5 Offset position into the file for the fseek() function

mode Position is set to...

SEEK_SET of fset bytes from the beginning of the file.
SEEK_CUR offset bytes from the current position.
SEEK_END of fset bytes from the end of the file.

For text files, either of fset must be zero or mode is SEEK_SET and offset a
value returned by a previous call to ftell ().

If £seek () is successful, it clears the file’s end—of —file flag. The position cannot
be set beyond the end of the file.
Return

Zero, if successful; non—zero otherwise.

See also
fgetpos(), and
fsetpos()

HC(S)12 Compiler Manual 639

The Standard Functions

fsetpos() File /O H

Syntax

#include <stdio.h>

int fsetpos(FILE *f, const fpos_t *pos);

Description

fsetpos () sets the file position to pos, which must be a value returned by a
previous call to fgetpos () on the same file. If the function is successful, it

clears the file’s end—of-file flag.

The position cannot be set beyond the end of the file.

Return

Zero, if it was successful; non—zero otherwise.

See also
fgetpos(),
fseek(), and
ftell()

640 HC(S)12 Compiler Manual

The Standard Functions

ftell() File I/0 H

Syntax

#include <stdio.h>

long ftell (FILE *f);

Description

ftell () returns the current file position. For binary files, this is the byte offset
from the beginning of the file; for text files, this value should not be used except as
argument to £seek ().

Return

-1, if an error occurred; otherwise the current file position.

See also
fgetpos() and
fsetpos()

HC(S)12 Compiler Manual 641

The Standard Functions

fwrite() File /O H

Syntax

#include <stdio.h>

size_t fwrite(const void *p,
size t size,
size_t n,
FILE *f);

Description
fwrite () writes a block of data to file f. It writes n items of size size, starting
at address ptr.

Return

The number of items successfully written.

See also
fpute(),
fputs(), and
fread()

642 HC(S)12 Compiler Manual

The Standard Functions

getc()

Syntax

#include <stdio.h>

int getc(FILE *f);

Description

File I/O

getc () is the same as fgetc (), but may be implemented as a macro. Therefore,
make sure that f is not an expression having side effects! See fgetc () for more

information.

HC(S)12 Compiler Manual

643

The Standard Functions

getchar() File /O H
Syntax
#include <stdio.h>
int getchar (void) ;
Description
getchar () is the same as getc () (stdin). See fgetc () for more
information.
644 HC(S)12 Compiler Manual

The Standard Functions

getenv()

Syntax

#include <stdio.h>

char *getenv(const char *name) ;

Description

getenv () returns the value of environment variable name.

Return
NULL

File I/O

HC(S)12 Compiler Manual

645

The Standard Functions

gets() File 1/O H

Syntax

#include <stdio.h>

char *gets(char *s);

Description

gets () reads a string from stdin and stores it in s. It stops reading when it
reaches a line break or EOF character. This character is not appended to the string.
The string is zero—terminated.

If the function reads EOF before any other character, it sets stdin’s end—of—file
flag and returns unsuccessfully without changing string s.
Return

NULL, if there was an error; s otherwise.

See also
fgetc() and
puts()

646 HC(S)12 Compiler Manual

The Standard Functions

. Hard
gmtime() “peci | €M

Syntax

#include <time.h>

struct tm *gmtime(const time_t *time) ;

Description
gmtime () converts *time to UTC (Universal Coordinated Time), which is
equivalent to GMT (Greenwich Mean Time).

Return

NULL, if UTC is not available; a pointer to a struct containing UTC otherwise.

See also
ctime() and

time()

HC(S)12 Compiler Manual 647

The Standard Functions

isalnum(), isalpha(), iscntrl(), isdigit(), isgraph(), islower(), isprint(),
ispunct(), isspace(), isupper(), and isxdigit()

Syntax

#include <ctype.h>

int isalnum (int ch);
int isalpha (int ch);

int isxdigit(int ch);

Description

These functions determine whether character ch belongs to a certain set of
characters. Table 16.6 describes the character ranges tested by the functions.

Table 16.6 Appropriate character range for the testing functions

Function

Tests whether ch is in the range...

isalnum()

alphanumeric character, i.e., 'A'-'Z', 'a’-'z' or '0'-'9".

isalpha()

an alphabetic character, i.e., 'A'-'Z"' or 'a'-'z'.

iscntrl()

a control character, i.e., \000-\037' or \177' (DEL).

isdigit()

a decimal digit, i.e., '0'-'9".

isgraph()

a printable character except space ('!'-'~').

islower()

a lower case letter, i.e., 'a'-'z".

isprint()

a printable character (' -'~").

ispunct()

a punctuation character, i.e., 'I'-'/', '-'@", T-"" and '{-'~".

isspace()

a white space character, i.e.,' ", \f', \n', '\r', \t' and "\v".

isupper()

an upper case letter, i.e., 'A-'Z".

isxdigit()

a hexadecimal digit, i.e., '0-'9', 'A'-'F' or 'a'-'f".

648

HC(S)12 Compiler Manual

The Standard Functions

Return

TRUE (i.e., 1), if ch is in the character class; zero otherwise.

See also
tolower() and

toupper()

HC(S)12 Compiler Manual 649

The Standard Functions

labs()

Syntax
#include <stdlib.h>

long labs(long 1i);

Description

labs () computes the absolute value of i.

Return
The absolute value of i, i.e., 1 if 1 is positive and -1 if i is negative. If 1 is
-2,147,483, 648, this value is returned and errno is set to ERANGE.
See also
abs()

650 HC(S)12 Compiler Manual

The Standard Functions

Idexp() and Idexpf()

Syntax

#include <math.h>

double ldexp (double x, int exp);
float 1ldexpf(float x, int exp);

Description
ldexp () multiplies x by 2*F.

Return

x * 2%¥P_If it fails because the result would be too large, HUGE_VAL is returned
and errno is set to ERANGE.

See also
exp() and expf(),
frexp() and frexpf(),
log() and logf(),
log10() and log10f£(), and
modf() and modff()

HC(S)12 Compiler Manual 651

The Standard Functions

Idiv()
Syntax
#include <stdlib.h>

ldiv_t 1div(long x, long v);

Description

1div () computes both the quotient and the modulus of the division x/y.

Return

A structure with the results of the division.

See also
div()

652 HC(S)12 Compiler Manual

The Standard Functions

localeconv() Hardware @

specific

Syntax

#include <locale.h>

struct lconv *localeconv(void) ;

Description

localeconv () returns a pointer to a struct containing information about the
current locale, e.g., how to format monetary quantities.

Return

A pointer to a struct containing the desired information.

See also

setlocale()

HC(S)12 Compiler Manual 653

The Standard Functions

localtime() Hardware |

specific

Syntax

#include <time.h>

struct tm *localetime(const time_t *time);

Description

localtime () converts *time into broken—down time.

Return

A pointer to a struct containing the broken—down time.

See also
asctime(),
mktime(), and

time()

654 HC(S)12 Compiler Manual

The Standard Functions

log() and logf()

Syntax
#include <math.h>

double log (double x);
float logf(float x);

Description

log () computes the natural logarithm of x.

Return

1n (x), if x is greater than zero. If x is smaller then zero, NAN is returned; if it is
equal to zero, 1og () returns negative infinity. In both cases, errno is set to
EDOM.

See also
exp() and expf() and
log10() and log10£()

HC(S)12 Compiler Manual 655

The Standard Functions

log10() and log10f()

Syntax
#include <math.h>

double 1loglO (double x);
float 1loglOf(float x);

Description
1logl0 () computes the decadic logarithm (the logarithm to base 10) of x.

Return

logl0 (x),if x is greater than zero. If x is smaller then zero, NAN is returned; if it
is equal to zero, 1og10 () returns negative infinity. In both cases, errno is set to
EDOM.

See also
exp() and expf() and
log10() and log10£()

656 HC(S)12 Compiler Manual

The Standard Functions

longjmp()

Syntax
#include <setjmp.h>
void longjmp (jmp_buf env, int val);

Description
longjmp () performs a non—local jump to some location earlier in the call chain.
That location must have been marked by a call to setjmp () . The environment at
the time of that call to setjmp () - env, which also was the parameter to
setjmp () - is restored and your application continues as if the call to
setjmp () just had returned the value val.

See also

setjmp()

HC(S)12 Compiler Manual 657

The Standard Functions

malloc() Hardware |

Syntax

#include <stdlib.h>

void *malloc(size_t size);

Description

malloc () allocates a block of memory for an object of size size bytes. The
content of this memory block is undefined. To deallocate the block, use free ().
The default implementation is not reentrant and should therefore not be used in
interrupt routines.

Return
malloc () returns a pointer to the allocated memory block. If the block could not
be allocated, the return value is NULL.

See also
calloc() and

realloc()

658 HC(S)12 Compiler Manual

The Standard Functions

Hardware
mblen() specific @
Syntax
#include <stdlib.h>

int mblen(const char *s, size_t n);

Description
mblen () determines the number of bytes the multi—byte character pointed to by s
occupies.

Return

0, if sisNULL.
-1, if the first n bytes of *s do not form a valid multi-byte character.
n, the number of bytes of the multi—byte character otherwise.

See also
mbtowc() and

mbstowcs()

HC(S)12 Compiler Manual 659

The Standard Functions

mbstowcs() Hardware @

specific

Syntax

#include <stdlib.h>

size_t mbstowcs (wchar_t *wcs,
const char *mbs,
size_t n);

Description

mbstowcs () converts a multi-byte character string mbs to a wide character
string wcs. Only the first n elements are converted.

Return

The number of elements converted, or (size_t) - 1 if there was an error.

See also
mblen() and

mbtowc()

660 HC(S)12 Compiler Manual

The Standard Functions

m thWC() Hardware @

specific

Syntax
#include <stdlib.h>

int mbtowc (wchar_ t *wc, const char *s, size_t n);

Description
mbtowc () converts a multi-byte character s to a wide character code wc. Only
the first n bytes of *s are taken into consideration.

Return
The number of bytes of the multi-byte character converted (size_t) if
successful or -1 if there was an error.

See also
mblen(), and

mbstowcs()

HC(S)12 Compiler Manual 661

The Standard Functions

memchr()
Syntax
#include <string.h>
void *memchr (const void *p, int ch, size_t n);
Description
memchr () looks for the first occurrence of a byte containing (ch & O0xFF)in
the first n bytes of the memory are pointed to by p.
Return
A pointer to the byte found, or NULL if no such byte was found.
See also

mememp(),
strchr(), and
strrchr()

662 HC(S)12 Compiler Manual

The Standard Functions

memcmp()

Syntax

#include <string.h>

void *memcmp (const void *p,
const void *g,
size_t n);

Description
memcmp () compares the first n bytes of the two memory areas pointed to by p
and q.

Return
A positive integer, if p is considered greater than g; a negative integer if p is
considered smaller than g or zero if the two memory areas are equal.

See also
memchr(),
stremp(), and

strncmp()

HC(S)12 Compiler Manual 663

The Standard Functions

memcpy() and memmove()

Syntax

#include <string.h>

void *memcpy (const void *p,
const void *g,
size_t n);

void *memmove (const void *p,
const void *qg,
size_t n);

Description

Both functions copy n bytes from g to p. memmove () also works if the two
memory areas overlap.

Return
I

See also
strepy() and
strnepy()

664 HC(S)12 Compiler Manual

The Standard Functions

memset()

Syntax
#include <string.h>
void *memset (void *p, int val, size_t n);

Description
memset () sets the first n bytes of the memory area pointed to by p to the value
(val & OxFF).

Return
P

See also

calloc() and

memcpy () and memmove ()

HC(S)12 Compiler Manual 665

The Standard Functions

mktime() Hardware |

Syntax

#include <string.h>

time_t mktime (struct tm *time);

Description

mktime () converts *time to a time_t. The fields of *t ime may have any
value; they are not restricted to the ranges given time . h. If the conversion was
successful, mktime () restricts the fields of *time to these ranges and also sets
the tm_wday and tm_yday fields correctly.

Return

*time asa time_t.

See also
ctime(),
gmtime(), and

time()

666 HC(S)12 Compiler Manual

The Standard Functions

modf() and modff()

Syntax
#include <math.h>

double modf (double x, double *i);
float modff(float x, float *i);

Description
modf () splits the floating-point number x into an integral part (returned in *1)
and a fractional part. Both parts have the same sign as x.

Return

The fractional part of x.

See also
floor() and floorf(),
fmod() and fmodf(),
frexp() and frexpf(), and
Idexp() and ldexpf()

HC(S)12 Compiler Manual 667

The Standard Functions

perror()

Syntax

#include <stdio.h>

void perror (const char *msg);

Description
perror () writes an error message appropriate for the current value of errno to
stderr. The character string msg is part of perror’s output.

See also
assert() and

strerror()

668 HC(S)12 Compiler Manual

The Standard Functions

pow() and powf()

Syntax

#include <math.h>

double pow (double x, double v);
float powf (float x, float vy);

Description

pow () computes x to the power of v, i.e., xY.

Return

xY, ifx > 0

1, ify ==

+X, if (x ==0&& vy < 0)

NAN, if(x < 0 && yisnotintegral). Also, errno is set to EDOM.

X, with the same sign as x, if the result is too large.
See also

exp() and expf(),

Idexp() and ldexpf(),

log() and logf(), and

modf() and modff()

HC(S)12 Compiler Manual 669

The Standard Functions

printf() File /0 H

Syntax

#include <stdio.h>

int printf (const char *format, ...);

Description

printf () isthe same as sprintf (), but the output goes to stdout instead of
a string.

For a detailed format description see sprintf ().

Return

The number of characters written. If some error occurred, EOF is returned.

See also
fprintf() and
viprintf(), vprintf(), and vsprintf()

670 HC(S)12 Compiler Manual

The Standard Functions

putc() File I/0 H

Syntax

#include <stdio.h>

int putc(char ch, FILE *f);

Description

putc () isthe same as fputc (), but may be implemented as a macro. Therefore,
you should make sure that £ is not an expression having side effects! See
fputc () for more information.

HC(S)12 Compiler Manual 671

The Standard Functions

putchar() File /O H

Syntax

#include <stdio.h>

int putchar (char ch);

Description

putchar (ch) is the same as putc (ch, stdin). See fputc () for more
information.

672 HC(S)12 Compiler Manual

The Standard Functions

puts() File I/0 H

Syntax

#include <stdio.h>

int puts(const char *s);

Description

puts () writes string s followed by a newline '\n' to stdout.

Return

EOF, if there was an error; zero otherwise.

See also
fputc() and
putc()

HC(S)12 Compiler Manual 673

The Standard Functions

qgsort()

Syntax

#include <stdlib.h>

void *gsort (const void *array,
size_t n,
size_t size,
cmp_func cmp) ;

Description

gsort () sorts the array according to the ordering implemented by the
comparison function. It calls the comparison function cmp() with two pointers to
array elements. Thus, the type cmp_ func () can be declared as:

typedef int (*cmp_func) (const void *key,
const void *other) ;

The comparison function should return an integer according to Table 16.7.

Table 16.7 Return value from the comparison function, cmp_func()

If the key element is... The return value should be...
less than the other one less than zero (negative)

equal to the other one zero

greater than the other one greater than zero (positive)

674 HC(S)12 Compiler Manual

The Standard Functions

The arguments to gsort () are listed in Table 16.8.

Table 16.8 Possible arguments to the sorting function, gqsort()

Argument Name Meaning

array A pointer to the beginning (i.e., the first
element) of the array to be sorted

n The number of elements in the array

size The size (in bytes) of one element in the table

cmp() The comparison function

NOTE Make sure the array contains elements of equal size.

HC(S)12 Compiler Manual 675

The Standard Functions

raise()

Syntax

#include <signal.h>

int raise(int sig);

Description

raise () raises the given signal, invoking the signal handler or performing the
defined response to the signal. If a response was not defined or a signal handler
was not installed, the application is aborted.

Return

Non-zero, if there was an error; zero otherwise.

See also
signal()

676 HC(S)12 Compiler Manual

The Standard Functions

rand()

Syntax
#include <stdlib.h>

int rand(void) ;

Description

rand () generates a pseudo random number in the range from 0 to RAND_MAX.
The numbers generated are based on a seed, which initially is 1. To change the
seed, use srand ().

The same seeds always lead to the same sequence of pseudo random numbers.

Return
A pseudo random integer in the range from 0 to RAND_MAX.

HC(S)12 Compiler Manual 677

The Standard Functions

realloc() Hardware |

Syntax
#include <stdlib.h>

void *realloc(void *ptr, size_t size);

Description

realloc () changes the size of a block of memory, preserving its contents. ptr
must be a pointer returned by calloc (),malloc (), realloc (), or NULL. In
the latter case, realloc () is equivalenttomalloc () .

If the new size of the memory block is smaller than the old size, realloc ()
discards that memory at the end of the block. If size is zero (and ptr is not NULL),
realloc () frees the whole memory block.

If there is not enough memory to perform the realloc (), the old memory block
is left unchanged, and realloc () returns NULL. The default implementation is
not reentrant and should therefore not be used in interrupt routines.

Return
realloc () returns a pointer to the new memory block. If the operation could not
be performed, the return value is NULL.

See also
free()

678 HC(S)12 Compiler Manual

The Standard Functions

remove() File I/0
Syntax
#include <stdio.h>
int remove (const char *filename) ;
Description
remove () deletes the file £ilename. If the file is open, remove () does not
delete it and returns unsuccessfully.
Return
Non-zero, if there was an error; zero otherwise.
See also
tmpfile() and
tmpnam()

HC(S)12 Compiler Manual

679

The Standard Functions

rename() File I/O H

Syntax

#include <stdio.h>

int rename (const char *from, const char *to);

Description
rename () renames the from file to to. If there already is a to file, rename ()
does not change anything and returns with an error code.

Return

Non-zero, if there was an error; zero otherwise.

See also
tmpfile() and

tmpnam()

680 HC(S)12 Compiler Manual

The Standard Functions

rewind() File /O H

Syntax

#include <stdio.h>

void rewind(FILE *f);

Description
rewind () resets the current position in file f to the beginning of the file. It also
clears the file’s error indicator.
See also
fopen(),
fseek(), and
fsetpos()

HC(S)12 Compiler Manual 681

The Standard Functions

scanf() File /O H

Syntax

#include <stdio.h>

int scanf (const char *format, ...);

Description
scanf () is the same as sscanf (), but the input comes from stdin instead of
a string.
Return
The number of data arguments read, if any input was converted. If not, it returns
EOF.
See also
fgetc(),
fgets(), and
fscanf()

682 HC(S)12 Compiler Manual

The Standard Functions

setbuf() File I/0 H

Syntax

#include <stdio.h>

void setbuf (FILE *f, char *buf);

Description

setbuf () lets you specify how a file is buffered. If buf is NULL, the file is
unbuffered; i.e., all input or output goes directly to and comes directly from the
file. If buf is not NULL, it is used as a buffer (buf should point to an array of
BUFSIZ bytes).

See also
fflush() and
setvbuf()

HC(S)12 Compiler Manual 683

The Standard Functions

setjmp()

Syntax

#include <setjmp.h>

int setjmp (jmp_buf env);

Description

setjmp () saves the current program state in the environment buffer env and
returns zero. This buffer can be used as a parameter to a later call to longjmp (),
which then restores the program state and jumps back to the location of the setjmp.
This time, setjmp () returns a non-zero value, which is equal to the second
parameter to longjmp ().

Return

Zero if called directly - non-zero if called by a longjmp ().

See also
longjmp()

684 HC(S)12 Compiler Manual

The Standard Functions

setlocale() e S

Syntax

#include <locale.h>

char *setlocale(int class, const char *loc);

Description

setlocale () changes the program’s locale — either all or just part of it,
depending on class. The new locale is given by the character string 1oc. The
classes allowed are given by Table 16.9.

Table 16.9 Allowable classes for the setlocale() function

Class Changes the locale...
LC_ALL for all classes.
LC_COLLATE for the strcoll() and strxfrm() functions.

LC_MONETARY for monetary formatting.

LC_NUMERIC for numeric formatting.
LC_TIME for the strftime() function.
LC_TYPE for character handling and multi-byte character functions.

CodeWarrior supports only the minimum locale “C” (see locale.h) so this function
has no effect.

Return
”C”, if loc is “C” or NULL; NULL otherwise.

See also
localeconv(),
strcoll(),
strftime(), and
strxfrm()

HC(S)12 Compiler Manual 685

The Standard Functions

setvbuf() File 1/0 H

Syntax

#include <stdio.h>

void setvbuf (FILE *f,
char *buf,
int mode,
size_t size);

Description

setvbuf () is used to specify how a file is buffered. mode determines how the
file is buffered.

Table 16.10 Operating Modes for the setvbuf() Function

Mode Buffering
_IOFBF Fully buffered
_IOLBF Line buffered
_IONBF Unbuffered

To make a file unbuffered, call setvbuf () with mode _ TONBF; the other
arguments (buf and size) are ignored.

In all other modes, the file uses buffer buf of size size. If buf is NULL, the
function allocates a buffer of size size itself.

See also
fflush() and
setbuf()

686 HC(S)12 Compiler Manual

The Standard Functions

signal()

Syntax

#include <signal.h>

_sig_func signal (int sig, _sig_func handler) ;

Description

signal () defines how the application shall respond to the sig signal. The
various responses are given in Table 16.11.

Table 16.11 Various responses to the signal() function’s input signal

Handler Response to the signal

SIG_IGN The signal is ignored.

SIG_DFL The default response (HALT).

a function The function is called with sig as parameter.

The signal handling function is defined as:
typedef void (*_sig_func) (int sig);

The signal can be raised using the raise () function. Before the handler is called,
the response is reset to STG_DFL.

In CodeWarrior, there are only two signals: STGABRT indicates an abnormal
program termination, and SIGTERM a normal program termination.

Return

If signal succeeds, it returns the previous response for the signal; otherwise it
returns SIG_ERR and sets errno to a positive non—zero value.

See also

raise()

HC(S)12 Compiler Manual 687

The Standard Functions

sin() and sinf()

Syntax
#include <math.h>

double sin(double x);
float sinf (float x);

Description

sin () computes the sine of x.

Return

The sine sin (x) of x in radians.

See also
asin() and asinf(),
acos() and acosf(),
atan() and atanf(),
atan2() and atan2f(),
cos() and cosf(), and

tan() and tanf()

688 HC(S)12 Compiler Manual

The Standard Functions

sinh() and sinhf()

Syntax
#include <math.h>

double sinh(double x);
float sinhf (float x);

Description

sinh () computes the hyperbolic sine of x.

Return

The hyperbolic sine sinh (x) of x. If it fails because the value is too large, it
returns infinity with the same sign as x and sets errno to ERANGE.

See also
asin() and asinf(),
cosh() and coshf(),

sin() and sinf(), and

tan() and tanf()

HC(S)12 Compiler Manual 689

The Standard Functions

sprintf()

Syntax

#include <stdio.h>

int sprintf (char *s, const char *format, ...);

Description

sprintf () writes formatted output to the s string. It evaluates the arguments,
converts them according to the specified format, and writes the result to s,
terminated with a zero character.

The format string contains the text to be printed. Any character sequence in a
format starting with '%' is a format specifier that is replaced by the corresponding
argument. The first format specifier is replaced with the first argument after
format, the second format specifier by the second argument, and so on.

A format specifier has the form:

FormatSpec = %${Format} [Width] [.Precision]
[Length]Conversion

where:

+ Format = -|+|<a blank>|#

Format defines justification and sign information (the latter only for numerical
arguments). A “-” left-justifies the output, a “+” forces output of the sign, and a
blank outputs a blank if the number is positive and a *—" if it is negative. The
effect of “#” depends on the Conversion character (Table 16.12).

Table 16.12 Effect of # in the Format specification

Conversion Effect of "#"

e E f The value of the argument always is printed with decimal point,
even if there are no fractional digits.

9,G As above, but In addition zeroes are appended to the fraction
until the specified width is reached.

o] A zero is printed before the number to indicate an octal value.

690

HC(S)12 Compiler Manual

The Standard Functions

Table 16.12 Effect of # in the Format specification (continued)

Conversion Effect of "#"

x, X "0x" (if the conversion is "x") or "0X" (if it is "X") is printed
before the number to indicate a hexadecimal value.

others undefined.

A 0" as format specifier adds leading zeroes to the number until the desired
width is reached, if the conversion character specifies a numerical argument.

If both * ” and “+" are given, only “+” is active; if both “0” and “-" are
specified, only “—” is active. If there is a precision specification for integral
conversions, “0” is ignored.

» Width = *|Number | ONumber

Number defines the minimum field width into which the output is to be put. If
the argument is smaller, the space is filled as defined by the format characters.

ONumber is the same as above, but Os are used instead of blanks.

If an asterisk “*” is given, the field width is taken from the next argument,
which of course must be a number. If that number is negative, the output is left-
justified.

e Precision = [Number]

The effect of the Precision specification depends on the conversion character
(Table 16.13).

Table 16.13 Effect of the Precision specification

Conversion Precision

d,i,o,u,x, X The minimum number of digits to print.

e E f The number of fractional digits to print.

g, G The maximum number of significant digits to print.
S The maximum number of characters to print.
others undefined.

If the Precision specifier is “ * ”, the precision is taken from the next argument,
which must be an int. If that value is negative, the precision is ignored.

« Length = h|1l|L

HC(S)12 Compiler Manual 691

The Standard Functions

A length specifier tells sprintf () what type the argument has. The first two
length specifiers can be used in connection with all conversion characters for
integral numbers. “*h” defines short; “1” defines 1ong. Specifier *L” is
used in conjunction with the conversion characters for floating point numbers
and specifies long double.

Conversion = c|d|e|E|f]|g]|
Gli|n|o|p|s|
u|x|x|%

The conversion characters have the following meanings (Table 16.14):

Table 16.14 Meaning of the Conversion Characters

Conversion Description

c The int argument is converted to unsigned char; the resulting
character is printed.

d,i An int argument is printed.

e E The argument must be a double. It is printed in the form
[-]d.ddde+dd (scientific notation). The precision determines
the number of fractional digits, the digit to the left of the
decimal is i 0 unless the argument is 0.0. The default
precision is 6 digits. If the precision is zero and the format
specifier “#” is not given, no decimal point is printed. The
exponent always has at least 2 digits; the conversion
character is printed just before the exponent.

f The argument must be a double. It is printed in the form
[-]ddd.ddd. See above. If the decimal point is printed, there is
at least one digit to the left of it.

9,G The argument must be a double. sprintf chooses either
format “” or “e” (or “E” if “G” is given), depending on the
magnitude of the value. Scientific notation is used only if the
exponent is < —4 or greater than or equal to the precision.

n The argument must be a pointer to an int. sprintf() writes the
number of characters written so far to that address. If “n” is
used together with length specifier “h” or “I”, the argument
must be a pointer to a short int or a long int.

o The argument, which must be an unsigned int; is printed in
octal notation.

692 HC(S)12 Compiler Manual

The Standard Functions

Table 16.14 Meaning of the Conversion Characters (continued)

Conversion

Description

p

The argument must be a pointer; its value is printed in
hexadecimal notation.

The argument must be a char *; sprintf() writes the string.

The argument, which must be an unsigned int; is written in
decimal notation.

x, X

The argument, which must be an unsigned int; is written in
hexadecimal notation. “x” uses lower case letters “a” to “f",
while “X” uses upper case letters.

%

Prints a "%" sign. Should only be given as "%%".

9 W

Conversion characters for integral types are “d”, “*1”, *o”, “u”, “x”, and “*X";
for floating point types “e”, “E”, “£”, “g”, and “G".

If sprintf () finds an incorrect format specification, it stops processing,
terminates the string with a zero character, and returns successfully.

NOTE Floating point support increases the sprintf () size considerably, and
therefore the define “LLIBDEF_PRINTF_FLOATING” exists which should be
set if no floating point support is used. Some targets contain special libraries
without floating point support.

The IEEE64 floating point implementation only supports printing numbers
with up to 9 decimal digits. This limitation occurs because the implementation
is using unsigned long internally which cannot hold more digits. Supporting
more digits would increase the print £ () size still more and would also
cause the application to run considerably slower.

Return

The number of characters written to s.

See also

sscanf()

HC(S)12 Compiler Manual

693

The Standard Functions

sqrt() and sqrtf()
Syntax
#include <math.h>

double sqgrt (double Xx);
float sqgrtf(float x);

Description

sqgrt () computes the square root of x.

Return

The square root of x. If x is negative, it returns 0 and sets errno to EDOM.

See also
pow() and powf()

694 HC(S)12 Compiler Manual

The Standard Functions

srand()
Syntax
#include <stdlib.h>

void srand(unsigned int seed) ;

Description
srand () initializes the seed of the random number generator. The default seed
is 1.

See also
rand()

HC(S)12 Compiler Manual 695

The Standard Functions

sscanf()

Syntax
#include <stdio.h>

int sscanf (const char *s, const char *format, ...);

Description

sscanf () scans string s according to the given format, storing the values in the
given parameters. The format specifiers in the format tell sscanf () what to
expect next. A format specifier has the format:

FormatSpec = “%” [Flag] [Width] [Size] Conversion.
where:
° Flag P

If the »%” sign which starts a format specification is followed by a » * ", the
scanned value is not assigned to the corresponding parameter.

« Width = Number

Specifies the maximum number of characters to read when scanning the value.
Scanning also stops if white space or a character not matching the expected syntax
is reached.

e Size = h|1l|L

Specifies the size of the argument to read. The meaning is given in Table 16.15.

696 HC(S)12 Compiler Manual

The Standard Functions

Table 16.15 Relationship of the Size parameter with allowable conversions and types

Size | Allowable Parameter Type
Conversions

h d,i,n short int * (instead of int *)

h o, u, X, X unsigned short int * (instead of unsigned int *)

| d, i, n long int * (instead of int *)

| o, u, x, X unsigned long int * (instead of unsigned int *)

| e, E f,g,G double * (instead of float *)

L e, E f,0,G long double * (instead of float *)
Conversion = c|d|el|E|f]|g]

Gli|n|o|p|s|
u|x|X|%|Range

These conversion characters tell sscanf () what to read and how to store it in a
parameter. Their meaning is shown in Table 16.16.

Table 16.16 Description of the action taken for each conversion.

Conversion

Description

Reads a string of exactly width characters and stores it in the
parameter. If no width is given, one character is read. The
argument must be a char *. The string read is not zero—
terminated.

A decimal number (syntax below) is read and stored in the
parameter. The parameter must be a pointer to an integral type.

As "d", but also reads octal and hexadecimal numbers (syntax
below).

e, E, f,g,0r

Reads a floating point number (syntax below). The parameter
must be a pointer to a floating-point type.

The argument must be a pointer to an int. sscanf () writes
the number of characters read so far to that address. If “n” is
used together with length specifier “h” or “1”, the argument

must be a pointer to a short int ora long int.

HC(S)12 Compiler Manual

697

The Standard Functions

Table 16.16 Description of the action taken for each conversion.

Conversion | Description

o Reads an octal number (syntax below). The parameter must be
a pointer to an integral type.

D Reads a pointer in the same format as sprintf () prints it.
The parameter must be a void **.

s Reads a character string up to the next white space character
or at most width characters. The string is zero—terminated.
The argument must be of type char *.

u As "d", but the parameter must be a pointer to an unsigned
integral type.

x, X As "u", but reads a hexadecimal number.

% Skips a "$" sign in the input. Should only be given as "$%".
° Range = n [l| [ll/\ll]LiStll] n
¢ List = Element {Element}
e« Element = <any char> ["-"<any char>]

You can also use a scan set to read a character string that either contains only the
given characters or contains only characters not in the set. A scan set always is
bracketed by left and right brackets. If the first character in the setis *~ ", the set is
inverted (i.e., only characters not in the set are allowed). You can specify whole
character ranges, e.g., “A-Z" specifies all upper-case letters. If you want to
include a right bracket in the scan set, it must be the first element in the list, a dash
(“-") must be either the first or the last element. A “~” that shall be included in
the list instead of indicating an inverted list must not be the first character after the
left bracket.

Some examples are:
e [A-Za-z]

Allows all upper- and lower-case characters.
e ["A-Z]

Allows any character that is not an uppercase
character.

¢ [labc]
Allows], a, b and c.

698

HC(S)12 Compiler Manual

The Standard Functions

e ["]abc] Allows any char except "]", "a", "b" and "c".
. [—abc] Allows ||_||I uaul "b" and "c".

A white space in the format string skips all white space characters up to the next
non—-white—space character. Any other character in the format must be exactly
matched by the input; otherwise sscanf () stops scanning.

The syntax for numbers as scanned by sscanf () is the following:

Number
IntNumber
DecNumber
OctNumber
HexNumber
FloatNumber
Exponent
OctDigit
Digit
HexDigit

FloatNumber | IntNumber
DecNumber | OctNumber | HexNumber
Sign Digit {Digit}

Sign 0 {OctDigit}

0 (x|X) HexDigit{HexDigit}

Sign {Digit} [.{Digit}] [Exponent]
(e|E) DecNumber

0]1]2|3]4]|5]6|7

OctDigit |8]9

= Digit |A|B|C|D|E|F|

albl|c|dle|£

Return

EOF, if s is NULL; otherwise it returns the number of arguments filled in.

NOTE If sscanf () finds an illegal input (i.e., not matching the required syntax), it

simply stops scanning and returns successfully!

HC(S)12 Compiler Manual 699

The Standard Functions

strcat()

Syntax

#include <string.h>

char *strcat(char *p, const char *q);

Description

strcat () appends string g to the end of string p. Both strings and the resulting
concatenation are zero—terminated.

Return
p

See also
memcpy() and memmove(),

strepy (),
strncat(), and

strncpy()

700 HC(S)12 Compiler Manual

The Standard Functions

strchr()

Syntax

#include <string.h>

char *strchr (const char *p, int ch);

Description
strchr () looks for character ch in string p. If ch is '\ 0', the function looks for
the end of the string.

Return
A pointer to the character, if found; if there is no such character in *p, NULL is
returned.

See also
memchr(),
strrchr(), and

strstr()

HC(S)12 Compiler Manual 701

The Standard Functions

stremp()

Syntax
#include <string.h>
int strcmp (const char *p, const char *q);

Description
strcmp () compares the two strings, using the character ordering given by the
ASCII character set.

Return

A negative integer, if p is smaller than g; zero, if both strings are equal; or a
positive integer if p is greater than g.

NOTE The return value of strcmp () is such that it could be used as a comparison
function in bsearch () and gsort ().

See also
mememp(),
strcoll(), and
strncmp()

702 HC(S)12 Compiler Manual

The Standard Functions

strcoll()

Syntax

#include <string.h>

int strcoll (const char *p, const char *q);

Description
strcoll () compares the two strings interpreting them according to the current
locale, using the character ordering given by the ASCII character set.
Return
A negative integer, if p is smaller than g; zero, if both strings are equal; or a
positive integer if p is greater than g.
See also
mememp(),
strepy(), and
strncmp()

HC(S)12 Compiler Manual 703

The Standard Functions

strcpy()

Syntax
#include <string.h>

char *strcpy(char *p, const char *q);

Description

strcpy () copies string g into string p (including the terminating ' \0").

Return
p

See also
memcpy() and memmove() and

strnepy()

704 HC(S)12 Compiler Manual

The Standard Functions

strcspn()

Syntax

#include <string.h>

size_t strcspn(const char *p, const char *q);

Description

strcspn () searches p for the first character that also appears in g.

Return

The length of the initial segment of p that contains only characters not in g.

See also
strchr(),
strpbrk(),
strrchr(), and

strspn()

HC(S)12 Compiler Manual 705

The Standard Functions

strerror()
Syntax
#include <string.h>
char *strerror(int errno);
Description
strerror () returns an error message appropriate for error number errno.
Return
A pointer to the message string.
See also

perror()

706 HC(S)12 Compiler Manual

The Standard Functions

strftime()

Syntax

#include <time.h>

size_t strftime (char *s,
size_t max,
const char *format,
const struct tm *time);

Description

strftime () converts time to a character string s. If the conversion results in a
string longer than max characters (including the terminating ' \0"'), s is left
unchanged and the function returns unsuccessfully. How the conversion is done is
determined by the format string. This string contains text, which is copied
one-to—one to s, and format specifiers. The latter always start with a '$' sign and
are replaced by the following (Table 16.17):

Table 16.17 strftime() output string content and format

Format Replaced with

%a Abbreviated name of the weekday of the current locale, e.g., “Fri”.
%A Full name of the weekday of the current locale, e.g., “Friday”.
%b Abbreviated name of the month of the current locale, e.g., “Feb”.
%B Full name of the month of the current locale, e.g., “February”.
%C Date and time in the form given by the current locale.

%d Day of the month in the range from 0 to 31.

%H Hour, in 24—hour—clock format.

%l Hour, in 12-hour-clock format.

Yoj Day of the year, in the range from 0 to 366.

%m Month, as a decimal number from 0 to 12.

HC(S)12 Compiler Manual 707

The Standard Functions

Table 16.17 strftime() output string content and format (continued)

Format Replaced with

%M Minutes

%p AM/PM specification of a 12—hour clock or equivalent of current
locale.

%S Seconds

%U Week number in the range from 0 to 53, with Sunday as the first

day of the first week.

YW Day of the week (Sunday = 0, Saturday = 6).

%W Week number in the range from 0 to 53, with Monday as the first
day of the first week.

YoX The date in format given by current locale.
%X The time in format given by current locale.
%oy The year in short format, e.g., “93".
%Y The year, including the century (e.g., “1993").
YL The time zone, if it can be determined.
%% A single '%' sign.

Return

If the resulting string would have had more than max characters, zero is returned;
otherwise the length of the created string is returned.

See also
mktime(),

setlocale(), and

time()

708 HC(S)12 Compiler Manual

The Standard Functions

strlen()

Syntax

#include <string.h>

size_t strlen(const char *s);

Description

strlen () returns the number of characters in string s.

Return
The length of the string.

HC(S)12 Compiler Manual

709

The Standard Functions

strncat()
Syntax
#include <string.h>
char *strncat(char *p, const char *qg, size_t n);
Description
strncat () appends string g to string p. If g contains more than n characters,
only the first n characters of g are appended to p. The two strings and the result all
are zero—terminated.
Return
I
See also
strcat()

710 HC(S)12 Compiler Manual

The Standard Functions

strnecmp()
Syntax
#include <string.h>
char *strncmp(char *p, const char *qg, size_t n);
Description
strncmp () compares at most the first n characters of the two strings.
Return
A negative integer, if p is smaller than g; zero, if both strings are equal; or a
positive integer if p is greater than g.
See also

memcmp() and

stremp()

HC(S)12 Compiler Manual 711

The Standard Functions

strncpy()

Syntax

#include <string.h>

char *strncpy(char *p, const char *qg, size_t n);

Description
strncpy () copies at most the first n characters of string g to string p,
overwriting p’s previous contents. If g contains less than n characters,a ' \0 ' is
appended.

Return

o

See also
memcpy() and memmove() and

strepy()

712 HC(S)12 Compiler Manual

The Standard Functions

strpbrk()

Syntax

#include <string.h>

char *strpbrk(const char *p, const char *q);

Description

strpbrk () searches for the first character in p that also appears in g.

Return

NULL, if there is no such character in p; a pointer to the character otherwise.

See also
strchr(),
strespn(),
strrchr(), and

strspn()

HC(S)12 Compiler Manual 713

The Standard Functions

strrchr()

Syntax

#include <string.h>

char *strrchr (const char *s, int c);

Description

strpbrk () searches for the last occurrence of character ch in s.

Return

NULL, if there is no such character in p; a pointer to the character otherwise.

See also
strchr(),
strespn(),
strpbrk(), and
strspn()

714 HC(S)12 Compiler Manual

The Standard Functions

strspn()

Syntax

#include <string.h>

size_t strspn(const char *p, const char *q);

Description
strspn () returns the length of the initial part of p that contains only characters
also appearing in g.

Return

The position of the first character in p that is not in g.

See also
strchr(),
strespn(),
strpbrk(), and
strrchr()

HC(S)12 Compiler Manual 715

The Standard Functions

strstr()

Syntax

#include <string.h>

char *strstr(const char *p, const char *q);

Description

strstr () looks for substring g appearing in string p.

Return
A pointer to the beginning of the first occurrence of string g in p, or NULL, if g
does not appear in p.
See also
strchr(),
strespn(),
strpbrk(),
strrchr(), and

strspn()

716 HC(S)12 Compiler Manual

The Standard Functions

strtod()

Syntax
#include <stdlib.h>

double strtod(const char *s, char **end);

Description

strtod () converts string s into a floating point number, skipping over any white
space at the beginning of s. It stops scanning when it reaches a character not
matching the required syntax and returns a pointer to that character in *end. The
number format strtod () accepts is:

FloatNum = Sign{Digit}[.{Digit}] [Exp]

Sign = [+]-]

Exp = (e|E) SignDigit{Digit}

Digit = <any decimal digit from 0 to 9>
Return

The floating point number read. If an underflow occurred, 0. 0 is returned. If the
value causes an overflow, HUGE_ VAL is returned. In both cases, errno is set to
ERANGE.

See also
atof(),
scanf(),
strtol(), and
strtoul()

HC(S)12 Compiler Manual 717

The Standard Functions

strtok()

Syntax

#include <string.h>

char *strtok(char *p, const char *q);

Description

strtok () breaks the string p into tokens which are separated by at least one
character appearing in g. The first time, call strtok () using the original string
as the first parameter. Afterwards, pass NULL as first parameter: strtok () will
continue at the position it stopped the previous time. strtok () saves the string p
if it is not NULL.

NOTE This function is not re—entrant because it uses a global variable for saving
string p. ANSI defines this function in this way.

Return

A pointer to the token found, or NULL, if no token was found.

See also
strchr(),
strespn(),
strpbrk().
strrchr(),
strspn(), and
strstr()

718 HC(S)12 Compiler Manual

The Standard Functions

strtol()

Syntax

#include <stdlib.h>

long strtol (const char *s, char **end, int base);

Description

strtol () converts string s into a Long int of base base, skipping over any
white space at the beginning of s. It stops scanning when it reaches a character not
matching the required syntax (or a character too large for a given base) and returns
a pointer to that character in *end. The number format strtol () accepts is:

Int_Number

Dec_Number
Oct_Number
Hex_Number
Other_Num
Oct_Digit
Digit

Hex_ Digit

Other_Digit

= Dec_Number | Oct_Number |
Hex_Number | Other_Num

= SignDigit{Digit}

= Sign0{OctDigit}

= 0(x|X)Hex_Digit{Hex Digit}

= SignOther_Digit{Other_Digit}

= 0]|1]2|3]|4]|5]6]|7

= Oct_Digit [8]9

= Digit |A|B|C|D|E|F|

alb|c|dle|£

= Hex Digit |
<any char between 'G' and 'Z'>
<any char between 'g' and 'z'>

The base must be 0 or in the range from 2 to 36. If it is between 2 and 36, strtol
converts a number in that base (digits larger than 9 are represented by upper or
lower case characters from 'A'to 'Z"). If base is zero, the function uses the prefix
to find the base. If the prefix is *0”, base 8 (octal) is assumed. If it is *0x" or
“0X", base 16 (hexadecimal) is taken. Any other prefixes make strtol () scana
decimal number.

Return

The number read. If no number is found, zero is returned; if the value is smaller
than LONG_MIN or larger than LONG_MAX, LONG_MIN or LONG_MAX is returned
and errno is set to ERANGE.

HC(S)12 Compiler Manual 719

The Standard Functions

See also
atoi(),
atol(),
scanf(),
strtod(), and
strtoul()

720 HC(S)12 Compiler Manual

The Standard Functions

strtoul()

Syntax

#include <stdlib.h>

unsigned long strtoul (const char *s,
char **end,
int base) ;

Description

strtoul () converts string s into an unsigned long int of base base,
skipping over any white space at the beginning of s. It stops scanning when it
reaches a character not matching the required syntax (or a character too large for a
given base) and returns a pointer to that character in *end. The number format
strtoul () accepts is the same as for strtol () except that the negative sign is
not allowed, and so are the possible values for base.

Return

The number read. If no number is found, zero is returned; if the value is larger than
ULONG_MAX, ULONG_MAX is returned and errno is set to ERANGE.

See also
atoi(),
atol(),
scanf(),
strtod(), and
strtol()

HC(S)12 Compiler Manual 721

The Standard Functions

strxfrm()

Syntax

#include <string.h>

size_t strxfrm(char *p, const char *g, size_t n);

Description

strxfrm () transforms string g according to the current locale, such that the
comparison of two strings converted with strxfrm () using strcmp () yields
the same result as a comparison using strcoll (). If the resulting string would

be longer than n characters, p is left unchanged.

Return
The length of the converted string.

See also
setlocale(),
stremp(), and

strcoll()

722 HC(S)12 Compiler Manual

The Standard Functions

Hardware
system() specific
Syntax
#include <string.h>
int system(const char *cmd) ;
Description
system () executes the cmd command line
Return

Zero

-

HC(S)12 Compiler Manual

723

The Standard Functions

tan() and tanf()

Syntax

#include <math.h>

double tan(double x);
float tanf (float x);

Description

tan () computes the tangent of x. x should be in radians.

Return

tan (x). If x is an odd multiple of Pi/2, it returns infinity and sets errno to
EDOM.

See also
acos() and acosf(),
asin() and asinf(),
atan() and atanf(),
atan2() and atan2f(),
cosh() and coshf(),
sin() and sinf(), and

tan() and tanf()

724 HC(S)12 Compiler Manual

The Standard Functions

tanh() and tanhf()

Syntax
#include <math.h>

double tanh(double x);
float tanhf(float x);

Description

tanh () computes the hyperbolic tangent of x.

Return
tanh (x).

See also
atan() and atanf(),
atan2() and atan2f(),
cosh() and coshf(),
sin() and sinf(), and

tan() and tanf()

HC(S)12 Compiler Manual 725

The Standard Functions

. Hard
time() i;!ﬁ?jéi @

Syntax

#include <time.h>

time_t time(time_t *timer);

Description

time () gets the current calendar time. If timer is not NULL, it is assigned to it.

Return

The current calendar time.

See also
clock(),
mktime(), and

strftime()

726 HC(S)12 Compiler Manual

The Standard Functions

tmpfile() File I/O H

Syntax

#include <stdio.h>

FILE *tmpfile(void) ;

Description

tmpfile () creates a new temporary file using mode “wb+” . Temporary files
automatically are deleted when they are closed or the application ends.

Return

A pointer to the file descriptor if the file could be created; NULL otherwise.

See also
fopen() and

tmpnam()

HC(S)12 Compiler Manual 727

The Standard Functions

tmpnam() File I/0 H

Syntax

#include <stdio.h>

char *tmpnam(char *s);

Description

tmpnam () creates a new unique filename. If s is not NULL, this name is assigned
to it.

Return

A unique filename.

See also
tmpfile()

728 HC(S)12 Compiler Manual

The Standard Functions

tolower()

Syntax
#include <ctype.h>

int tolower (int ch);

Description
tolower () converts any upper-case character in the range from ‘A’ to 'Z ' into
a lower-case character from 'a' to 'z'.

Return

If ch is an upper-case character, the corresponding lower-case letter. Otherwise,
ch is returned (unchanged).

See also

isalnum(), isalpha(), iscntrl(), isdigit(), isgraph(), islower(), isprint(), ispunct(),
isspace(), isupper(), and isxdigit(),

toupper ()

HC(S)12 Compiler Manual 729

The Standard Functions

toupper()

Syntax
#include <ctype.h>

int toupper (int ch);

Description

tolower () converts any lower-case character in the range from 'a' to 'z ' into
an upper-case character from 'A' to 'Z"'.

Return
If ch is a lower-case character, the corresponding upper-case letter. Otherwise, ch
is returned (unchanged).

See also

isalnum(), isalpha(), iscntrl(), isdigit(), isgraph(), islower(), isprint(), ispunct(),
isspace(), isupper(), and isxdigit(),

tolower()

730 HC(S)12 Compiler Manual

The Standard Functions

ungetc() File I/0 H

Syntax

#include <stdio.h>

int ungetc(int ch, FILE *f);

Description
ungetc () pushes the single character ch back onto the input stream f. The next
read from f will read that character.

Return
ch

See also
fgets(),
fopen(),
getc(), and
getchar()

HC(S)12 Compiler Manual 731

The Standard Functions

va_arg(), va_end(), and va_start()

Syntax
#include <stdarg.h>

void va_start(va_list args, param);
type va_arg(va_list args, type);
void va_end(va_list args);

Description

These macros can be used to get the parameters into an open parameter list. Calls
to va_arg () get a parameter of the given type. Listing 16.1 shows how to do it:

Listing 16.1 Calling an open-parameter function

void my_func (char *s, ...) {
va_list args;
int i;
char *q;

va_start (args, s);

/* First call to 'va_arg' gets the first arg. */
i = va_arg (args, int);

/* Second call gets the second argument. */

g = va_arg(args, char *);

va_end (args) ;

732 HC(S)12 Compiler Manual

The Standard Functions

viprintf(), vprintf(), and vsprintf() File /O H

Syntax

#include <stdio.h>

int vfprintf (FILE *f,
const char *format,
va_list args);
int vprintf (const char *format, va_list args);
int vsprintf (char *s,
const char *format,
va_list args);

Description

These functions are the same as fprintf (), printf (), and sprintf (),
except that they take a va_11ist instead of an open parameter list as argument.

For a detailed format description see sprintf ().

NOTE Only vsprintf () is implemented because the other two functions depend
on the actual setup and environment of the target.

Return

The number of characters written, if successful; a negative number otherwise.

See also

va_arg(), va_end(), and va_start()

HC(S)12 Compiler Manual 733

The Standard Functions

wctomb()
Syntax
#include <stdlib.h>

int wctomb (char *s, wchar_t wchar);

Description

wctomb () converts wchar to a multi-byte character, stores that character in s,
and returns the length in bytes of s.

Return

The length of s in bytes after the conversion.

See also

wcstombs()

734 HC(S)12 Compiler Manual

The Standard Functions

wcstombs() Hardware @

specific

Syntax
#include <stdlib.h>

int wcstombs (char *s, const wchar_ t *ws, size_t n);

Description

wcstombs () converts the first n wide character codes in ws to multi-byte
characters, stores them character in s, and returns the number of wide characters
converted.

Return

The number of wide characters converted.

See also

wctomb()

HC(S)12 Compiler Manual 735

The Standard Functions

736 HC(S)12 Compiler Manual

Appendices

The appendices covered in this manual are:

* Porting Tips and FAQs: Hints about EBNF notation used by the linker and about
porting applications from other Compiler vendors to this Compiler

¢ Global Configuration-File Entries: Documentation for the entries in the mcutools.ini
file

¢ Local Configuration-File Entries: Documentation for the entries in the project.ini
file.

HC(S)12 Compiler Manual 737

738 HC(S)12 Compiler Manual

A
Porting Tips and FAQs

This appendix describes some FAQs and provides tips on the syntax of EBNF or how to
port the application from a different tool vendor.

e “Migration Hints” on page 739

¢ “How to Use Variables in EEPROM” on page 751

* “General Optimization Hints” on page 754

* “Executing an Application from RAM” on page 755

¢ “Frequently Asked Questions (FAQs), Troubleshooting” on page 759
* “EBNF Notation” on page 765

* “Abbreviations, Lexical Conventions” on page 768

¢ “Number Formats” on page 768

* “Precedence and Associativity of Operators for ANSI-C” on page 769
* “List of all Escape Sequences” on page 770

Migration Hints

This section describes the differences between this compiler and the compilers of other
vendors. It also provides information about porting sources and how to adapt them.

Porting from Cosmic

If your current application is written for Cosmic compilers, there are some special things
to consider.

How to Get Started...

The best way is if you create a new project using the New Project Wizard (in the
CodeWarrior IDE: Menu File > New) or a project from a stationery template. This will set
up a project for you with all the default options and library files included. Then add the
existing files used for Cosmic to the project (e.g., through drag & drop from the Windows
Explorer or using in the CodeWarrior IDE: the menu Project > Add Files. Make sure that
the right memory model and CPU type are used as for the Cosmic project.

HC(S)12 Compiler Manual 739

Porting Tips and FAQs
Migration Hints

Cosmic Compatibility Mode Switch

The latest compiler offers a Cosmic compatibility mode switch (-Ccx: Cosmic
Compatibility Mode for Space Modifiers and Interrupt Handlers). Enable this compiler
option so the compiler accepts most Cosmic constructs.

Assembly Equates

For the Cosmic compiler, you need to define equates for the inline assembly using equ. If
you want to use an equate or value in C as well, you need to define it using #define as
well. For this compiler, you only need one version (i.e., use #define) both for C and for
inline assembly (Listing A.1). The equ directive is not supported in normal C code.

Listing A.1 An example using the EQU directive

#ifdef _ MWERKS_
#define CLKSRC_B 0x00 /*; Clock source */
#else

CLKSRC_B : equ $00 ; Clock source
#endif

Inline Assembly Identifiers

For the Cosmic compiler, you need to place an underscore (‘_") in front of each identifier,
but for this compiler you can use the same name both for C and inline assembly. In
addition, for better type-safety with this compiler you need to place a ‘@’ in front of
variables if you want to use the address of a variable. Using a conditional block like the
one below in Listing A.2.

Listing A.2 Using a conditional block to account for different compilers

#ifdef _ MWERKS_
1ldx @myVariable, x
jsr MyFunction

#else
ldx _myVariable,x
jsr _MyFunction

#endif

may be really painful. Using macros which deal with the cases below (Listing A.3) is a
better way to deal with this.

740 HC(S)12 Compiler Manual

Porting Tips and FAQs
Migration Hints

Listing A.3 Using a macro to account for different compilers

#ifdef _ MWERKS_
#define USCR (ident) ident
#define USCRA (ident) @ ident

#else /* for COSMIC, add a _ (underscore) to each ident */
#define USCR (ident) _##ident
#define USCRA (ident) _##ident

#endif

so the source can use the macros:
1dx USCRA (myVariable) ,x

jsr USCR (MyFunction)

Pragma Sections

Cosmic uses the #pragma section syntax, while this compiler employs either
#pragma DATA_SEG (Listing A.4) or #pragma CONST_SEG (Listing A.5).

or another example (for the data section):

Listing A.4 #pragma DATA_SEG

#ifdef _ MWERKS_

#pragma DATA_SEG APPLDATA_SEG
#else

#pragma section {APPLDATA}
#endif

Listing A.5 #pragma CONST_SEG

#ifdef _ MWERKS_

#pragma CONST_SEG CONSTVECT_ SEG
#else

#pragma section const {CONSTVECT}
#endif

Do not forget to use the segments (in the examples above CONSTVECT_SEG and
APPLDATA_SEG) in the linker * . prm file in the PLACEMENT block

Inline Assembly Constants

Cosmic uses an assembly constant syntax, whereas this compiler employs the normal C
constant syntax (Listing A.6):

HC(S)12 Compiler Manual 741

Porting Tips and FAQs
Migration Hints

Listing A.6 Normal C constant syntax

#ifdef _ MWERKS_
and O0xF8

#else
and #SF8

#endif

Inline Assembly and Index Calculation

Cosmic uses the + operator to calculate offsets into arrays. For CodeWarrior, you have to
use a colon (:) instead:

Listing A.7 Using a colon for offset

1dx array:7
#else

1dx array+7
#endif

Inline Assembly and Tabs

Cosmic lets you use TAB characters in normal C strings (surrounded by double quotes):
asm("This string contains hidden tabs!");

Because the compiler rejects hidden tab characters in C strings according to the ANSI-C
standard, you need to remove the tab characters from such strings.

Inline Assembly and Operators

Cosmic’s and this compiler’s inline assembly may not support the same amount or level of
operators. But in most cases it is simple to rewrite or transform them (Listing A.8)

Listing A.8 Accounting for different operators among different compilers

#ifdef _ MWERKS_

1dx # (BOFFIE + WUPIE) ; enable Interrupts
#else

lax #(BOFFIE | WUPIE) ; enable Interrupts
#endif

#ifdef _ MWERKS_

lda # (_TxBuf2+Datal)

1ldx #((_TxBuf2+Datal) / 256)
#else

742 HC(S)12 Compiler Manual

Porting Tips and FAQs
Migration Hints

lda #((_TxBuf2+Datal) & S$ff)

1ldx #(((_TxBuf2+Datal) >> 8) & Sff)
#endif

@interrupt

Cosmic uses the @interrupt syntax, whereas this compiler employs the interrupt
syntax. In order to keep the source base portable, a macro can be used (e.g., in a main
header file which selects the correct syntax depending on the compiler used:

Listing A.9 interrupt syntax

/* place the following in a header file: */
#ifdef _ MWERKS_
#define INTERRUPT interrupt
#else
#define INTERRUPT @interrupt
#endif

/* now for each @interrupt we use the INTERRUPT macro: */

void INTERRUPT myISRFunction(void) {

Inline Assembly and Conditional Blocks

In most cases, the (-Ccx: Cosmic Compatibility Mode for Space Modifiers and Interrupt
Handlers) will handle the #asm blocks used in Cosmic inline assembly code Cosmic
compatibility switch. However, if #asm is used with conditional blocks like #ifdef or
#1f, then the C parser may not accept it (Listing A.10).

Listing A.10 Use of Conditional Blocks without asm { and } Block Markers

void foo (void) {
#asm
nop
#if 1
#endasm
foo();
#asm
#endif
nop
#endasm

HC(S)12 Compiler Manual 743

Porting Tips and FAQs
Migration Hints

In such case, the #asm and #endasm must be ported to asm { and } block markers
(Listing A.11)

Listing A.11 Use of Conditional Blocks with asm { and } Block Markers

void foo(void) {
asm { // asm #1
nop
#if 1
} // end of asm #1
fool();
asm { // asm #2
#endif
nop
} // end of asm #2

Compiler Warnings

Check carefully the warnings produced by the compiler. The Cosmic compiler does not
warn about many cases where your application code may contain a bug. Later on the
warnings can be switched off if they are OK (e.g., using the -W2: No Information
and Warning Messages option or using #pragma MESSAGE: Message Setting in
the source code).

Linker *.Icf File (for the Cosmic compiler) and
Linker *.prm File (for this compiler)

Cosmic uses a *.Icf file for the linker with a special syntax. This compiler uses a linker
parameter file with a *.prm file extension. The syntax is not the same format, but most
things are straightforward to port. For this compiler, you must declare the RAM or ROM
areas in the SEGMENTS ... END block and place the sections into the SEGMENTS in
the PLACEMENT. . . END block.

Make sure that all your segments you declared in your application (through #pragma
DATA_SEG, #pragma CONST_SEG, and #pragma CODE_SEG) are used in the
PLACEMENT block of the linker prm file.

Check the linker warnings or errors carefully. They may indicate what you need to adjust
or correct in your application. E.g., you may have allocated the vectors in the linker .prm
file (using VECTOR or ADDRESS syntax) and allocated them as well in the application
itself (e.g., with the #pragma CONST_SEG or with the @address syntax). Allocating
objects twice is an error, so these objects must be allocated one or the other way, but not
both.

744 HC(S)12 Compiler Manual

Porting Tips and FAQs
Migration Hints

Consult your map file produced by the linker to check that everything is correctly
allocated.

Remember that the linker is a smart linker. This means that objects not used or referenced
are not linked to the application. The Cosmic linker may link objects even if they are not
used or referenced, but, nevertheless, these objects may still be required to be linked to the
application for some reason not required by the linker. In order to have objects linked to
the application regardless if they are used or not, use the ENTRIES ... END block in
the linker .prm file:

ENTRIES /* the following objects or variables need to be
linked even if not referenced by the application */

_vectab ApplHeader FlashEraseTable
END

Allocation of Bitfields

Allocation of bitfields is very compiler-dependent. Some compilers allocate the bits first
from right (LSByte) to left (MSByte), and others allocate from left to right. Also,
alignment and byte or word crossing of bitfields is not implemented consistently. Some
possibilities are to:

¢ Check the different allocation strategies,
* Check if there is an option to change the allocation strategy in the compiler, or
¢ Use the compiler defines to hold sources portable:

- _ BITFIELD_LSBIT FIRST_

- __BITFIELD_MSBIT_FIRST___

- _ BITFIELD_LSBYTE_FIRST _

- __ _BITFIELD_MSBYTE_FIRST___

- _ BITFIELD_LSWORD_FIRST

- __ _BITFIELD_MSWORD_FIRST___

— __ BITFIELD_TYPE_SIZE_REDUCTION_ _

— __ _BITFIELD_NO_TYPE_SIZE_REDUCTION__ _

Type Sizes and Sign of char

Carefully check the type sizes that a particular compiler uses. Some compilers implement
the sizes for the standard types (char, short, int, long, float, or double)
differently. For instance, the size for an int is 16 bits for some compilers and 32 bits for
others.

HC(S)12 Compiler Manual 745

Porting Tips and FAQs
Migration Hints

The sign of plain char is also not consistent for all compilers. If the software program
requires that char be signed or unsigned, either change all plain char types to the signed
or unsigned types or change the sign of char with the -T: Flexible Type Management
option.

@bool Qualifier

Some compiler vendors provide a special keyword @boo1l to specify that a function
returns a boolean value:

@bool int foo(void) ;

Because this special keyword is not supported, remove @bool or use a define such as
this:

#define _BOOL /*@bool*/
_BOOL int foo(void);

@tiny and @far Qualifier for Variables

Some compiler vendors provide special keywords to place variables in absolute locations.
Such absolute locations can be expressed in ANSI-C as constant pointers:

#ifdef _ HIWARE
#define REG_PTB (*(volatile char*) (0x01))
#else /* other compiler vendors use non-ANSI features */
@tiny volatile char REG_PTB @0x01; /* port B */
#endif

The Compiler does not need the @tiny qualifier directly. The Compiler is smart enough to
take the right addressing mode depending on the address:

/* compiler uses the correct addressing mode */
volatile char REG_PTB @0x01;

Arrays with Unknown Size

Some compilers accept the following non-ANSI compliant statement to declare an array
with an unknown size:

extern char buf[0];

However, the compiler will issue an error message for this because an object with size
zero (even if declared as extern) is illegal. Use the legal version:

extern char bufl[];

746

HC(S)12 Compiler Manual

Porting Tips and FAQs
Migration Hints

Missing Prototype

Many compilers accept a function-call usage without a prototype. This compiler will issue
a warning for this. However if the prototype of a function with open arguments is missing
or this function is called with a different number of arguments, this is clearly an error:

printf("hello world!"); // compiler assumes void
printf (char*) ;

// error, argument number mismatch!
printf("hello %s!", "world");

To avoid such programming bugs use the -Wpd: Error for Implicit Parameter Declaration
compiler option and always include or provide a prototype.

_asm(“sequence”)

Some compilers use _asm("string") to write inline assembly code in normal C
source code: _asm("nop");

This can be rewritten with asmor asm {}: asm nop;

Recursive Comments

Some compilers accept recursive comments without any warnings. The Compiler will
issue a warning for each such recursive comment:

/* this is a recursive comment /*
int a;
/* */
The Compiler will treat the above source completely as one single comment, so the
definition of ‘a’ is inside the comment. That is, the Compiler treats everything between

the first opening comment ‘/ *’ until the closing comment token ‘*/’ as a comment. If
there are such recursive comments, correct them.

Interrupt Function, @interrupt

Interrupt functions have to be marked with #pragma TRAP_PROC or using the interrupt
keyword (Listing A.12).

Listing A.12 Using the TRAP_PROC pragma with an Interrupt Function

#ifdef _ HIWARE_
#pragma TRAP_PROC
void MyTrapProc (void)
#else /* other compiler-vendor non-ANSI declaration of interrupt

HC(S)12 Compiler Manual 747

Porting Tips and FAQs
Migration Hints

function */

@interrupt void MyTrapProc (void)

#endif
{

/* code follows here */

}

Defining Interrupt Functions

This manual section discusses some important topics related to the handling of interrupt
functions:

¢ Definition of an interrupt function
¢ Initialization of the vector table

* Placing an interrupt function in a special section

Defining an Interrupt Function

The compiler provides two ways to define an interrupt function:
¢ Using pragma TRAP_PROC.
¢ Using the keyword interrupt.

Using the “TRAP_PROC” Pragma

The TRAP_PROC pragma informs the compiler that the following function is an interrupt
function (Listing A.13). In that case, the compiler should terminate the function by a
special interrupt return sequence (for many processors, an RTI instead of an RTS).

Listing A.13 Example of using the TRAP_PROC pragma

#pragma TRAP_PROC
void INCcount (void) {
tcount++;

}

Using the “interrupt” keyword

The “interrupt” keyword is non-standard ANSI-C and therefore is not supported by all
ANSI-C compiler vendors. In the same way, the syntax for the usage of this keyword may
change between different compilers. The keyword interrupt informs the compiler that the
following function is an interrupt function (Listing A.14).

748

HC(S)12 Compiler Manual

Porting Tips and FAQs
Migration Hints

Listing A.14 Example of using the “interrupt” keyword

interrupt void INCcount (void) {
tcount++;

}

Initializing the Vector Table

Once the code for an interrupt function has been written, you must associated this function
with an interrupt vector. This is done through initialization of the vector table. You can
initialize the vector table in the following ways:

¢ Using the VECTOR ADDRESS or VECTOR command in the PRM file
* Using the “interrupt” keyword.

Using the Linker Commands

The Linker provides two commands to initialize the vector table: VECTOR ADDRESS or
VECTOR. You use the VECTOR ADDRESS command to write the address of a function
at a specific address in the vector table.

In order to enter the address of the INCcount() function at address Ox8 A, insert the
following command in the application’s PRM file (Listing A.15).

Listing A.15 Using the VECTOR ADDRESS command

VECTOR ADDRESS 0x8A INCcount

The VECTOR command is used to associate a function with a specific vector, identified
with its number. The mapping from the vector number is target-specific.

In order to associate the address of the INCcount() function with the vector number 69,
insert the following command in the application’s PRM file (Listing A.16).

Listing A.16 Using the VECTOR command

VECTOR 69 INCcount

Using the “interrupt Keyword”

When you are using the keyword “interrupt”, you may directly associate your interrupt
function with a vector number in the ANSI C-source file. For that purpose, just specify the
vector number next to the keyword interrupt.

In order to associate the address of the INCcount function with the vector number 69,
define the function as in Listing A.17.

HC(S)12 Compiler Manual 749

Porting Tips and FAQs
Migration Hints

Listing A.17 Definition of the INCcount() interrupt function

interrupt 69 void INCcount (void) ({
int cardl;
tcount++;

}

Placing an Interrupt Function in a Special
Section

For all targets supporting paging, allocate the interrupt function in an area that is
accessible all the time. You can do this by placing the interrupt function in a specific
segment.

Defining a Function in a Specific Segment

In order to define a function in a specific segment, use the CODE_SEG pragma (Listing
A.18).

Listing A.18 Defining a Function in a Specific Segment

/* This function is defined in segment ‘int_Function’*/
#pragma CODE_SEG Int_Function
#pragma TRAP_PROC
void INCcount (void) {
tcount++;

}
#pragma CODE_SEG DEFAULT /* Back to default code segment.*/

Allocating a Segment in Specific Memory

In the PRM file, you can define where you want to allocate each segment you have
defined in your source code. In order to place a segment in a specific memory area, just
add the segment name in the PLACEMENT block of your PRM file. Be careful, as the
linker is case-sensitive. Pay special attention to the upper and lower cases in your segment
name (Listing A.19).

Listing A.19 Allocating a Segment in Specific Memory

LINK test.abs

NAMES test.o ... END

SECTIONS

750 HC(S)12 Compiler Manual

Porting Tips and FAQs
How to Use Variables in EEPROM

INTERRUPT_ROM = READ_ONLY 0x4000 TO Ox5FFF;

MY_RAM = READ_WRITE

PLACEMENT
Int_Function INTO INTERRUPT_ROM;
DEFAULT_RAM INTO MY_RAM;

END

How to Use Variables in EEPROM

Placing variables into EEPROM is not explicitly supported in the C language. However,
because EEPROM is widely available in embedded processors, a development tool for
Embedded Systems must support it.

The examples are processor-specific. However, it is very easy to adapt them for any other
processor.

Linker Parameter File

You have to define your RAM or ROM areas in your linker parameter file (Listing A.20).
However, you should declare the EEROM memory as NO_INIT to avoid initializing the
memory range during normal startup.

Listing A.20 Linker Parameter File

LINK test.abs

NAMES test.o startup.o ansi.lib END

SECTIONS
MY_RAM = READ_WRITE 0x800 TO 0x801;
MY _ROM = READ_ONLY 0x810 TO OxAFF;
MY_STK = READ_WRITE 0xB00 TO OxBFF;
EEPROM = NO_INIT 0xD00 TO 0xDO1;
PLACEMENT

DEFAULT_ROM INTO MY_ROM;
DEFAULT_RAM INTO MY_RAM;

SSTACK INTO MY_STK;
EEPROM_DATA INTO EEPROM;
END

/* set reset vector to the _Startup function defined in startup code */
VECTOR ADDRESS OxFFFE _Startup

HC(S)12 Compiler Manual 751

Porting Tips and FAQs
How to Use Variables in EEPROM

The Application

The example in Listing A.21 shows an example which erases or writes an EEPROM word.
The example is specific to the processor used, but it is easy to adapt if you consult the
technical documentation about the EEPROM used for your derivative or CPU.

NOTE There are only a limited number of write operations guaranteed for EEPROMs
so avoid writing to an EEPROM cell too frequently.

Listing A.21 Erasing and Writing an EEPROM

/*
Definition of a variable in EEPROM.

The variable VAR is located in EEPROM.
- It is defined in a user-defined segment EEPROM_DATA
- In the PRM file, EEPROM_DATA is placed at address 0xDO0O.

Be careful, the EEPROM can only be written a limited number of times.
Running this application too frequently may surpass this limit and the
EEPROM may be unusable afterwards.

*/
#include <hidef.h>
#include <stdio.h>
#include <math.h>
/* INIT register. */
typedef struct {
union {
struct {
unsigned int bit0:
unsigned int bitl:
unsigned int bit2:
unsigned int bit3:
unsigned int bitd:
unsigned int bith:
unsigned int bit6:
unsigned int bit7:
} INITEE_Bits;
unsigned char INITEE_Byte;
} INITEE;

} INIT;
volatile INIT INITEE @O0x0012;

#define EEON INITEE.INITEE.INITEE_Bits.bitO
/* EEPROG register. */
volatile struct {

unsigned int EEPGM:1;

unsigned int EELAT:1;

PR RRERRERER

752 HC(S)12 Compiler Manual

Porting Tips and FAQs
How to Use Variables in EEPROM

unsigned int ERASE:1;
unsigned int ROW:1;
unsigned int BYTE:1;
unsigned int dummyl:1;
unsigned int dummy?2 :1;
unsigned int BULKP:1;
} EEPROG @QOx00F3;
/* EEPROT register. */
volatile struct {
unsigned int BPROTO :
unsigned int BPROT1:
unsigned int BPROT2:
unsigned int BPROT3:
unsigned int BPROT4 :
unsigned int dummy 1 :
unsigned int dummy?2 :
unsigned int dummy 3 :
} EEPROT @O0x00F1;
#pragma DATA_SEG EEPROM_DATA
unsigned int VAR;
#pragma DATA_SEG DEFAULT
void EraseEEPROM (void) {
/* Function used to erase one word in the EEPROM. */
unsigned long int i;
EEPROG.BYTE = 1;
EEPROG.ERASE = 1;
EEPROG.EELAT = 1;
VAR = 0;
EEPROG.EEPGM =1;
for (1 = 0; 1<4000; i++) {
/* Wait until EEPROM is erased. */

PR RRRRRER

}

EEPROG.EEPGM = 0;

EEPROG.EELAT = 0;

EEPROG.ERASE = 0;
}

void WriteEEPROM (unsigned int val) {
/* Function used to write one word in the EEPROM. */
unsigned long int 1i;
EraseEEPROM() ;
EEPROG.ERASE = 0;
EEPROG.EELAT = 1;
VAR = val;
EEPROG.EEPGM = 1;
for (i = 0; 1i<4000; i++) {
/* Wait until EEPROM is written. */
}

HC(S)12 Compiler Manual 753

Porting Tips and FAQs
General Optimization Hints

EEPROG . EEPGM 0;

EEPROG.EELAT 0;

EEPROG.ERASE = 0;
}

void funcl (void) {
unsigned int 1i;
unsigned long int 11;
i = 0;
do
{
1++;
WriteEEPROM (1) ;
for (11 = 0; 11<200000; 11++) {
}
}
while (1);

}

volid main(void) {
EEPROT.BPROT4 = 0;
EEON=1;
WriteEEPROM(0) ;
funcl () ;

General Optimization Hints

Here are some hints how to reduce the size of your application:

¢ Check if you need the full startup code. For example, if you do not have any
initialized data, you can ignore or remove the copy-down. If you do not need any
initialized memory, you can remove the zero-out. And if you do not need both, you
may remove the complete startup code and directly set up your stack in your main
routine. Use INIT main in the prm file as the startup or entry into your main
routine of the application.

¢ Check the compiler options. For example, the -OdocF: Dynamic Option
Configuration for Functions compiler option increases the compilation speed, but it
decreases the code size. You can try -OdocF="-or”. Using the -Li: List of Included
Files option to write a log file displays the statistics for each single option.

¢ Check if you can use both IEEE32 for float and double. See the -T: Flexible Type
Management option for how to configure this. Do not forget to link the
corresponding ANSI-C library.

754 HC(S)12 Compiler Manual

Porting Tips and FAQs
Executing an Application from RAM

* Use smaller data types whenever possible (e.g., 16 bits instead of 32 bits).

s

* Have a look into the map file to check runtime routines, which usually have a ‘_
prefix. Check for 32-bit integral routines (e.g., _LADD). Check if you need the long
arithmetic.

¢ Enumerations: if you are using enums, by default they have the size of ‘int’. They
can be set to an unsigned 8-bit (see option -T, or use -TE1uE).

¢ Check if you are using switch tables (have a look into the map file as well). There are
options to configure this (see -CswMinSLB: Minimum Number of Labels for Search
Switch Tables for an example).

 Finally, the linker has an option to overlap ROM areas (see the -COCC option in the
linker).

Executing an Application from RAM

For performance reasons, it may be interesting to copy an application from ROM to RAM
and to execute it from RAM. This can be achieved following the procedure below.

1. Link your application with code located in RAM.

2. Generate an S-Record File.

3. Modify the startup code to copy the application code.

4. Link the application with the S-Record File previously generated.

Each step is described in the following sections. The £ ibo . abs application is used for an
example.

Link your application with code located in RAM.

We recommend that you generate a ROM library for your application. This allows you to
easily debug your final application (including the copying of the code).

ROM Library Startup File

A ROM Library requires a very simple startup file, containing only the definition from the
startup structure. Usually a ROM library startup file looks as follows:

#include "startup.h"

/* read-only: _startupData is allocated in ROM and ROM
Library PRM File */

struct _tagStartup _startupData;

You must generate a PRM file to set where the code is placed in RAM. As the compiler

generates absolute code, the linker should know the final location of the code in order to
generate correct code for the function call.

HC(S)12 Compiler Manual 755

Porting Tips and FAQs
Executing an Application from RAM

In addition, specify the name of the application entry points in the ENTRIES block of the
PRM file. The application’s main function, as well as the function associated with an
Interrupt vector, must be specified there.

Suppose you want to copy and execute your code at address 0x7000. Your PRM file will
look as in Listing A.22.

Listing A.22 Linker Parameter File

LINK fiboram.abs AS ROM_LIB
NAMES myFibo.o start.o
END

SECTIONS
MY_RAM READ_WRITE 0x4000 TO O0x43FF;
MY_ROM = READ_ONLY O0x7000 TO OxBFFF; /* Dest. Address in RAM area */
PLACEMENT
DEFAULT_ROM, ROM_VAR, STRINGS INTO MY_ROM;
DEFAULT_RAM INTO MY_RAM;
END
ENTRIES
myMain
END

NOTE You cannot use a main function in a ROM library. Please use another name for
the application’s entry point. In the example above, we have used *myMain”.

Generate an S-Record File

An S-Record File must be generated for the application. In this purpose, you can use the
Burner utility.

The file is generated when you click the '1st byte(msb)' button in the burner dialog.

NOTE Initialize the field 'From' with O and the field ‘Length’ with a value bigger than
the last byte used for the code. If byte OXFFFF is used, then Length must be at
least 10000.

Modify the Startup Code

The startup code of the final application must be modified. It should contain code that
copies the code from RAM to ROM. The application’s entry point is located in the ROM
library, so be sure to call it explicitly.

756 HC(S)12 Compiler Manual

Porting Tips and FAQs
Executing an Application from RAM

Application PRM File

The S-Record File (generated previously) must be linked to the application with an offset.

Suppose the application code must be placed at address 0x800 in ROM and should be
copied to address 0x7000 in RAM. The application’s PRM file looks as in Listing A.23.

Listing A.23 Linker Parameter File

LINK fiborom.abs

NAMES mystart.o fiboram.abs ansis.lib END

SECTIONS
MY _RAM = READ WRITE 0x5000 TO 0x53FF;
MY_ROM = READ_ONLY 0x0600 TO 0xO07FF;
PLACEMENT
DEFAULT ROM, ROM_VAR, STRINGS INTO MY ROM;
DEFAULT_RAM INTO MY_RAM;
END

STACKSIZE 0x100
VECTOR 0 _Startup /* set reset vector on startup function */
HEXFILE fiboram.sl OFFSET OxFFFF9800 /* 0x800 - 0x7000 */

NOTE The offset specified in the HEXFILE command is added to each record in the
S-Record File. The code at address 0x700 is encoded at address 0x800.

If CodeWarrior is used, then the CodeWarrior IDE will pass all the names in the
NAMES...END directive directly to the linker. Therefore, the NAMES...END directive
should be empty.

Copying Code from ROM to RAM

You must implement a function that copies the code from ROM to RAM.

Suppose the application code must be placed at address 0x800 in ROM and should be
copied to address 0x7000 in RAM. You can implement a copy function that does this as in
Listing A.24.

Listing A.24 Definition of the CopyCode() Function

/* Start address of the application code in ROM. */
#define CODE_SRC 0x800

/* Destination address of the application code in RAM. */
#define CODE_DEST 0x7000

HC(S)12 Compiler Manual 757

Porting Tips and FAQs
Executing an Application from RAM

#define CODE_SIZE 0x90 /* Size of the code which must be copied.*/

void CopyCode (void) {
unsigned char *ptrSrc, *ptrDest;

ptrSrc = (unsigned char *)CODE_SRC;

ptrDest = (unsigned char *)CODE_DEST;

memcpy (ptrDest, ptrSrc, CODE_SIZE) ;
}

Invoking the Application’s Entry Point in
the Startup Function

The startup code should call the application’s entry point, which is located in the ROM
library. You must explicitly call this function by its name. The best place is just before
calling the application’s main routine (Listing A.25).

Listing A.25 Invoking the Application’s Entry Point

void _Startup (void) {
set up stack pointer
zero out
copy down
CopyCode () ;
call main

Defining a dummy main function

The linker cannot link an application if there is no main function available. As in our case,
the ROM library contains the main function. Define a dummy main function in the startup
module (Listing A.26).

Listing A.26 Definition of a dummy main Function

#pragma NO_ENTRY

#pragma NO_EXIT

void main(void) {
asm NOP;

}

758 HC(S)12 Compiler Manual

Porting Tips and FAQs
Frequently Asked Questions (FAQs), Troubleshooting

Frequently Asked Questions (FAQs),
Troubleshooting

This section provides some tips on how to solve the most commonly encountered
problems.

Making Applications

If the compiler or linker crashes, isolate the construct causing the crash and send a bug
report to Freescale support. Other common problems are:

The compiler reports an error, but WinEdit does
not display it.

This means that WinEdit did not find the EDOUT file, i.e., the compiler wrote it to a place
not expected by WinEdit. This can have several causes. Check that the DEFAULTDIR:
Default Current Directory environment variable is not set and that the project directory is
set correctly. Also in WinEdit 2.1, make sure that the OUTPUT entry in the file
WINEDIT.INT is empty.

Some programs cannot find a file.

Make sure the environment is set up correctly. Also check WinEdit’s project directory.
Read the Input Files section of the Files chapter.

The compiler seems to generate incorrect code.

First, determine if the code is incorrect or not. Sometimes the operator-precedence rules of
ANSI-C do not quite give the results one would expect. Sometimes faulty code can appear
to be correct. Consider the example in Listing A.27:

Listing A.27 Possibly faulty code?

(x &y 1= 0)

evaluates as:

(y '=0))

but not as:

((x & y) = 0)

HC(S)12 Compiler Manual 759

Porting Tips and FAQs
Frequently Asked Questions (FAQs), Troubleshooting

Another source of unexpected behavior can be found among the integral promotion rules
of C. Characters are usually (sign—)extended to integers. This can sometimes have quite
unexpected effects, e.g., the if—condition in Listing A.28 is FALSE:

Listing A.28 if condition is always FALSE

unsigned char a, b;

-0 O

£

(a == ~b)

because extending a results in 0x0007, while extending b gives 0x00F8 and the '~'
results in OxFF07. If the code contains a bug, isolate the construct causing it and send a
bug report to Freescale support.

The code seems to be correct, but the
application does not work.

Check whether the hardware is not set up correctly (e.g., using chip selects). Some
memory expansions are accessible only with a special access mode (e.g., only word
accesses). If memory is accessible only in a certain way, use inline assembly or use the
‘volatile’ keyword.

The linker cannot handle an object file.

Make sure all object files have been compiled with the latest version of the compiler and
with the same flags concerning memory models and floating point formats. If not,
recompile them.

The make utility does not make the entire
application.

Most probably you did not specify that the target is to be made on the command line. In
this case, the make utility assumes the target of the first rule is the top target. Either put the
rule for your application as the first in the make file, or specify the target on the command
line.

The make utility unnecessarily re—compiles a
file.

This problem can appear if you have short source files in your application. It is caused by
the fact that MS—DOS only saves the time of last modification of a file with an accuracy of

760

HC(S)12 Compiler Manual

Porting Tips and FAQs
Frequently Asked Questions (FAQs), Troubleshooting

+2 seconds. If the compiler compiles two files in that time, both will have the same time
stamp. The make utility makes the safe assumption that if one file depends on another file
with the same time stamp, the first file has to be recompiled. There is no way to solve this
problem.

The help file cannot be opened by double
clicking on it in the file manager or in the
explorer.

The compiler help file is a true Win32 help file. It is not compatible with the windows 3.1
version of WinHelp. The program “winhelp.exe” delivered with Windows 3.1,
Windows 95 and Windows NT can only open Windows 3.1 help files. To open the
compiler help file, use Winhlp32. exe.

The winhlp32.exe program resides either in the windows directory (usually
C:\windows, C:\win95 or C: \winnt) or in its system (Win32s) or system32
(Windows 95, 98, Me, NT, 2000, XP, or 2003) subdirectory. The Win32s distribution also
contains Winhlp32.exe.

To change the association with Windows 95 or Windows NT either (1) use the explorer
menu *View->Options” and then the “File Types” tab or (2) select any help file and
press the Shift key. Hold it while opening the context menu by clicking on the right mouse
button. Select “Open with ..." from the menu. Enable the “Always using this program”
check box and select the winh1p32 . exe file with the “other” button.

To change the association with the file manager under Windows 3.1 use the
“File->Associate...” menu entry.

How can constant objects be allocated in ROM?

Use #pragma INTO_ROM: Put Next Variable Definition into ROM and the -Cc: Allocate
Constant Objects into ROM compiler option.

The compiler cannot find my source file. What is
wrong?

Check if in the default.env file the path to the source file is set in the environment variable
GENPATH. In addition, you can use the -I: Include File Path compiler option to specify
the include file path. With CodeWarrior, check the access path in the preference panel.

How can | switch off smart linking?
By adding a '+' after the object in the NAMES list of the prm file.

HC(S)12 Compiler Manual 761

Porting Tips and FAQs
Frequently Asked Questions (FAQs), Troubleshooting

With CodeWarrior and the ELF/DW ARF object-file format (see -F (-Fh, -F1, -Flo, -F2, -
F2o0,-F6, or -F7): Object-File Format) compiler option, you can link all in the object within
an ENTRIES. . . END directive in the linker prm file:

ENTRIES fibo.o:* END
This is NOT supported in the HIWARE object-file format.

How to avoid the ‘no access to memory’
warning?

In the simulator or debugger, change the memory configuration mode (menu Simulator >
Configure) to ‘auto on access’.

How can the same memory configuration be
loaded every time the simulator or debugger is
started?

Save that memory configuration under default.mem. For example, select
Simulator->Configure-> Save and enter ‘default.mem’.

How can a loaded program in the simulator or
debugger be started automatically and stop at a
specified breakpoint?

Define the postload.cmd file. For example:

bs &main t
g

How can an overview of all the compiler options
be produced?

Type in -H: Short Help on the command line of the compiler.

How can a custom startup function be called
after reset?

In the prm file, use:

INIT myStartup

762

HC(S)12 Compiler Manual

Porting Tips and FAQs
Frequently Asked Questions (FAQs), Troubleshooting

How can a custom name for the main() function
be used?

In the prm file, use:

MAIN myMain

How can the reset vector be set to the beginning
of the startup code?

Use this line in the prm file:

/* set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

How can the compiler be configured for the
editor?

Open the compiler, select File > Configuration from the menubar, and choose Editor
Settings.

Where are configuration settings saved?

In the project.ini file. With CodeWarrior, the compiler settings are stored in the
* .mcp file.

What should be done when “error while adding
default.env options” appears after starting the
compiler?

Choose the options set by the compiler to those set in the default.env file and then save
them in the project.ini file by clicking the save button in the compiler.

After starting up the ICD Debugger, an “lllegal
breakpoint detected” error appears. What could
be wrong?

The cable might be too long. The maximum length for unshielded cables is about 20 cm
and it also depends on the electrical noise in the environment.

HC(S)12 Compiler Manual 763

Porting Tips and FAQs
Frequently Asked Questions (FAQs), Troubleshooting

Why can no initialized data be written into the
ROM area?

The const qualifier must be used, and the source must be compiled with the -Cc: Allocate
Constant Objects into ROM option.

Problems in the communication or losing
communication.

The cable might be too long. The maximal length for unshielded cables is about 20 cm and
it also depends on the electrical noise in the environment.

What should be done if an assertion happens
(internal error)?

Extract the source where the assertion appears and send it as a zipped file with all the
headers, options and versions of all tools.

How to get help on an error message?

Either press F1 after clicking on the message to start up the help file, or else copy the
message number, open the pdf manual, and make a search on the copied message number.

How to get help on an option?

Open the compiler and type -H: Short Help into the command line. A list of all options
appears with a short description of them. Or, otherwise, look into the manual for detailed
information. A third way is to press F1 in the options setting dialog while a option is
marked.

| cannot connect to my target board using an ICD
Target Interface.

Communication may fail for the following reasons:

¢ Is the parallel port working correctly? Try to print a document using the parallel port.
This allows you to ensure that the parallel port is available and connected.

* Is the BDM connector designed according to the specification from P&E?

¢ If you are running a Windows NT or Win98 operating system, you need to install an
additional driver in order to be able to communicate with the software. See section
NT Installation Notice in the debugger ICD Target Interface Manual.

764 HC(S)12 Compiler Manual

Porting Tips and FAQs
EBNF Notation

* The original ICD Cable from P&E should not be extended. Extending this cable can
often generate communication problems. The cable should not be longer that the
original 25 cm.

¢ Maybe the PC is too fast for the ICD cable. You can slow down the communication
between the PC and the Target using the environment variable BMDELAY (e.g.,
BMDELAY=50).

EBNF Notation

This chapter gives a short overview of the Extended Backus—Naur Form (EBNF) notation,
which is frequently used in this document to describe file formats and syntax rules. A
short introduction to EBNF is presented.

Listing A.29 EBNF Syntax

ProcDecl = PROCEDURE " (" ArgList ")".

ArgList = Expression {"," Expression}.
Expression = Term ("*"|"/") Term.

Term = Factor AddOp Factor.

Addop =t |ron,

Factor = (["=-"] Number)|"(" Expression ")".

The EBNF language is a formalism that can be used to express the syntax of context-free
languages. The EBNF grammar consists of a rule set called — productions of the form:

LeftHandSide = RightHandSide.

The left-hand side is a non-terminal symbol. The right-hand side describes how it is
composed.

EBNF consists of the symbols discussed in the sections that follow.
¢ Terminal Symbols
* Non-Terminal Symbols
* Vertical Bar
* Brackets
* Parentheses
¢ Production End
* EBNF Syntax

¢ Extensions

HC(S)12 Compiler Manual 765

Porting Tips and FAQs
EBNF Notation

Terminal Symbols

Terminal symbols (terminals for short) are the basic symbols which form the language
described. In above example, the word PROCEDURE is a terminal. Punctuation symbols of
the language described (not of EBNF itself) are quoted (they are terminals, too), while
other terminal symbols are printed in boldface.

Non-Terminal Symbols

Non-terminal symbols (non-terminals) are syntactic variables and have to be defined in a
production, i.e., they have to appear on the left hand side of a production somewhere. In
the example above, there are many non-terminals, e.g., ArgList or AddOp.

Vertical Bar

The vertical bar * | ” denotes an alternative, i.e., either the left or the right side of the bar
can appear in the language described, but one of them must appear. e.g., the 31d production
above means “an expression is a term followed by eithera **” ora “/” followed by
another term.”

Brackets

Parts of an EBNF production enclosed by “ [” and “] ” are optional. They may appear
exactly once in the language, or they may be skipped. The minus sign in the last
production above is optional, both -7 and 7 are allowed.

The repetition is another useful construct. Any part of a production enclosed by “ {“ and
“} " may appear any number of times in the language described (including zero, i.e., it
may also be skipped). ArgList above is an example: an argument list is a single
expression or a list of any number of expressions separated by commas. (Note that the
syntax in the example does not allow empty argument lists...)

Parentheses

For better readability, normal parentheses may be used for grouping EBNF expressions, as
is done in the last production of the example. Note the difference between the first and the
second left bracket. The first one is part of the EBNF notation. The second one is a
terminal symbol (it is quoted) and may appear in the language.

Production End

A production is always terminated by a period.

766

HC(S)12 Compiler Manual

Porting Tips and FAQs
EBNF Notation

EBNF Syntax

The definition of EBNF in the EBNF language is:

Listing A.30
Production = NonTerminal "=" Expression ".".
Expression = Term {"|" Term} .
Term = Factor {Factor}.
Factor = NonTerminal

| Terminal

| "(" Expression ")"

| "[" Expression "]"

"{" Expression "}".

Terminal = Identifier | """ <any char> """.
NonTerminal = Identifier.

The identifier for a non-terminal can be any name you like. Terminal symbols are either
identifiers appearing in the language described or any character sequence that is quoted.

Extensions

In addition to this standard definition of EBNF, the following notational conventions are
used.

The counting repetition: Anything enclosed by “ {” and “} ” and followed by a
superseripted o hression x must appear exactly x times. x may also be a non-terminal. In the
following example, exactly four stars are allowed:

Stars = {"*"}4.

The size in bytes: Any identifier immediately followed by a number 7 in square brackets
(™ [” and *] ") may be assumed to be a binary number with the most significant byte
stored first, having exactly n bytes. See the example in Listing A.31.

Listing A.31 Example of a 4-byte identifier - FilePos

Struct = RefNo FilePos([4].

In some examples, text is enclosed by “<” and “>". This text is a meta-literal, i.e.,
whatever the text says may be inserted in place of the text (confer <any char> in
Listing A.31, where any character can be inserted).

HC(S)12 Compiler Manual 767

Porting Tips and FAQs

Abbreviations, Lexical Conventions

Abbreviations, Lexical Conventions

Table A.1 has some programming terms used in this manual.

Table A.1 Common terminology

Topic Description

ANSI American National Standards Institute

Compilation Source file to be compiled, includes all included header files

Unit

Floating Type Numerical type with a fractional part, e.g., float, double, long double

HLI High-level Inline Assembly

Integral Type Numerical type without a fractional part, e.g., char, short, int, long,
long long

Number Formats

Valid constant floating number suffixes are ‘£’ and ‘F’ for float and ‘1’ or ‘L’ for long
double. Note that floating constants without suffixes are double constants in ANSI. For
exponential numbers ‘e’ or ‘E’ has to be used. ‘-’ and ‘+’ can be used for signed
representation of the floating number or the exponent.

The following suffixes are supported (Table A.2):

Table A.2 Supported number suffixes

Constant Suffix Type

floating F float

floating L long double
integral U unsigned in t
integral uL unsigned long

Suffixes are not case-sensitive, e.g., ‘ul’, ‘Ul’, ‘ul’ and ‘UL’ all denote an
unsigned long type. Listing A.32 has examples of these numerical formats.

768

HC(S)12 Compiler Manual

Porting Tips and FAQs

Precedence and Associativity of Operators for ANSI-C

Listing A.32 Examples of supported number suffixes

float
float
float
float
double
double
double
double

*/
*/
*/
*/
*/
*/
*/
*/

+3.15f /*
-0.125f /~*
3.125f /*
0.787F /*
7.125 /*
3.E7 /*
8.E+7 /*
9.E-7 /*
3.21 /*
3.2el2L /*

long double */
long double */

Precedence and Associativity of Operators

for ANSI-C

Table A.3 gives an overview of the precedence and associativity of operators.

Table A.3 ANSI-C Precedence and Associativity of Operators

Operators

Associativity

left to right

o~ 4+ =+ =

*

&

(type)

sizeof

right to left

left to right

left to right

left to right

left to right

left to right

left to right

left to right

left to right

left to right

left to right

HC(S)12 Compiler Manual

769

Porting Tips and FAQs
List of all Escape Sequences

Table A.3 ANSI-C Precedence and Associativity of Operators (continued)

Operators Associativity
? right to left
= 4= -= *= /= %= &= "= |= <<= >>= right to left
. left to right

NOTE Unary +, - and * have higher precedence than the binary forms.

The precedence and associativity is determined by the ANSI-C syntax (ANSI/ISO 9899-
1990, p. 38 and Kernighan/ Ritchie, “The C Programming Language”, Second Edition,
Appendix Table 2-1).

Listing A.33 Examples of operator precedence and associativity

if (a == b&&c) and

if ((a == b)&&c) are equivalent.
However,

if (a == b|c)

is the same as
b) | c)

In Listing A.33, operator-precedence causes the product of (c*d) to be added to b, and that
sum is then assigned to a.

In Listing A.34, the associativity rules first evaluates c+=1, then assigns b to the value of
b plus (c+=1), and then assigns the result to a.

Listing A.34 3 assignments in 1 statement

a=>bb += ¢ += 1;

List of all Escape Sequences

Table A.4 gives an overview over escape sequences which could be used inside strings
(e.g., for printf):

770 HC(S)12 Compiler Manual

Porting Tips and FAQs

List of all Escape Sequences

Table A.4 Escape Sequences

Description Escape Sequence
Line Feed \n
Tabulator sign \t
Vertical Tabulator \v
Backspace \b
Carriage Return \r
Line feed \f
Bell \a
Backslash \\
Question Mark \?
Quotation Mark \ A
Double Quotation Mark \ "
Octal Number \ooo
Hexadecimal Number \xhh

HC(S)12 Compiler Manual

771

Porting Tips and FAQs
List of all Escape Sequences

772 HC(S)12 Compiler Manual

B

Global Configuration-File
Entries

This appendix documents the entries that can appear in the global configuration file. This
file is named mcutools.ini.

mcutools.ini can contain these sections:
¢ [Options] Section
o [XXX_Compiler] Section
¢ [Editor] Section

* Example

[Options] Section

This section documents the entries that can appear in the [Options] section of the file
mcutools.ini.

DefaultDir

Arguments
Default Directory to be used.

Description

Specifies the current directory for all tools on a global level (see also the
DEFAULTDIR: Default Current Directory environment variable).

Example

DefaultDir=C:\install\project

HC(S)12 Compiler Manual 773

Global Configuration-File Entries
[XXX_Compiler] Section

[XXX_Compiler] Section

This section documents the entries that can appear in an [XXX_Compiler] section of
the file mcutools. ini.

NOTE XXX s a placeholder for the name of the actual backend. For example, for the
HC12 compiler, the name of this section would be [HC12_Compiler].

SaveOnEXxit
Arguments
1/0
Description
Set to 1 if the configuration should be stored when the compiler is closed. Set to 0
if it should not be stored. The compiler does not ask to store a configuration in
either case.
SaveAppearance
Arguments
1/0
Description
Set to 1 if the visible topics should be stored when writing a project file. Set to O if
not. The command line, its history, the windows position, and other topics belong
to this entry.
SaveEditor
Arguments

1/0

774 HC(S)12 Compiler Manual

Global Configuration-File Entries
[XXX_Compiler] Section

Description

Set to 1 if the visible topics should be stored when writing a project file. Set to O if
not. The editor setting contains all information of the Editor Configuration dialog

box.

SaveOptions

Arguments
1/0

Description

Set to 1 if the options should be saved when writing a project file. Set to O if the
options should not be saved. The options also contain the message settings.

RecentProject0, RecentProjecti, ...

Arguments

Names of the last and prior project files

Description
This list is updated when a project is loaded or saved. Its current content is shown
in the file menu.

Example

SaveOnExit=1

SaveAppearance=1

SaveEditor=1

SaveOptions=1
RecentProject0=C:\myprj\project.ini
RecentProjectl=C:\otherprj\project.ini

HC(S)12 Compiler Manual 775

Global Configuration-File Entries
[XXX_Compiler] Section

TipFilePos

Arguments
Any integer, e.g., 236

Description

Actual position in tip of the day file. Used that different tips are shown at different
calls.

Saved

Always saved when saving a configuration file.

ShowTipOfDay

Arguments
071

Description
Should the Tip of the Day dialog box be shown at startup.
1: It should be shown
0: Only when opened in the help menu

Saved

Always saved when saving a configuration file.

TipTimeStamp
Arguments
date and time

Description

Date and time when the tips were last used.

776 HC(S)12 Compiler Manual

Global Configuration-File Entries
[Editor] Section

Saved

Always saved when saving a configuration file.

[Editor] Section

This section documents the entries that can appear in the [Editoxr] section of the
mcutools.ini file.

Editor Name

Arguments

The name of the global editor

Description
Specifies the name which is displayed for the global editor. This entry has only a
descriptive effect. Its content is not used to start the editor.

Saved

Only with Editor Configuration set in the File->Configuration Save Configuration
dialog box.

Editor_Exe

Arguments

The name of the executable file of the global editor

Description

Specifies the filename that is called (for showing a text file) when the global editor
setting is active. In the Editor Configuration dialog box, the global editor selection
is active only when this entry is present and not empty.

Saved

Only with Editor Configuration set in the File->Configuration Save Configuration
dialog box.

HC(S)12 Compiler Manual 777

Global Configuration-File Entries
Example

Editor_Opts

Arguments

The options to use the global editor

Description

Specifies options used for the global editor. If this entry is not present or empty,
“%£” is used. The command line to launch the editor is built by taking the
Editor_Exe content, then appending a space followed by this entry.

Saved
Only with Editor Configuration set in the File->Configuration Save Configuration
dialog box.

Example

[Editor]

editor_name=notepad
editor_exe=C:\windows\notepad.exe
editor_opts=%f

Example

Listing B.1 shows a typical mcutools. ini file.

Listing B.1 A Typical mcutools.ini File Layout

[Installation]
Path=c:\Freescale
Group=ANSI-C Compiler

[Editor]

editor_name=notepad
editor_exe=C:\windows\notepad.exe
editor_opts=%f

[Options]
DefaultDir=c:\myprj

[XXXX_Compiler]
SaveOnExit=1

778 HC(S)12 Compiler Manual

Global Configuration-File Entries
Example

SaveAppearance=1

SaveEditor=1

SaveOptions=1

RecentProjectO=c: \myprj\project.ini
RecentProjectl=c:\otherprj\project.ini
TipFilePos=0

ShowTipOfDay=1

TipTimeStamp=Jan 21 2006 17:25:16

HC(S)12 Compiler Manual

779

Global Configuration-File Entries
Example

780 HC(S)12 Compiler Manual

C

Local Configuration-File
Entries

This appendix documents the entries that can appear in the local configuration file.
Usually, you name this file project.ini, where project is a placeholder for the
name of your project.

A project. ini file can contain these sections:
¢ [Editor] Section
¢ [XXX_Compiler] Section

* Example

[Editor] Section

Editor Name

Arguments

The name of the local editor

Description

Specifies the name that is displayed for the local editor. This entry contains only a
descriptive effect. Its content is not used to start the editor.

Saved

Only with Editor Configuration set in the File->Configuration Save Configuration
dialog box. This entry has the same format as the global Editor Configuration in
the mcutools. ini file.

HC(S)12 Compiler Manual 781

Local Configuration-File Entries
[Editor] Section

Editor Exe

Arguments

The name of the executable file of the local editor

Description

Specifies the filename that is used for a text file when the local editor setting is
active. In the Editor Configuration dialog box, the local editor selection is only
active when this entry is present and not empty.

Saved

Only with Editor Configuration set in the File->Configuration Save Configuration
dialog box. This entry has the same format as for the global Editor Configuration in
the mcutools. ini file.

Editor_Opts

Arguments

Local editor options

Description

Specifies options that should be used for the local editor. If this entry is not present
or empty, “%£” is used. The command line to launch the editor is built by taking
the Editor_Exe content, then appending a space followed by this entry.

Saved

Only with Editor Configuration set in the File->Configuration Save Configuration
dialog box. This entry has the same format as the global Editor Configuration in
the mcutools. ini file.

Example [Editor] Section

[Editor]
editor_name=notepad

782 HC(S)12 Compiler Manual

Local Configuration-File Entries
[XXX_Compiler] Section

editor_exe=C:\windows\notepad.exe
editor_opts=%f

[XXX_Compiler] Section

This section documents the entries that can appear in an [XXX_Compiler] section of a
project.ini file.

NOTE XXX is a placeholder for the name of the actual backend. For example, for the
HC12 compiler, the name of this section would be [HC12_Compiler].

RecentCommandLineX
NOTE X is aplaceholder for an integer.

Arguments

String with a command line history entry, e.g., “fibo.c”
Description

This list of entries contains the content of the command line history.
Saved

Only with Appearance set in the File->Configuration Save Configuration dialog
box.

CurrentCommandLine

Arguments

String with the command line, e.g., “fibo.c -wl”

Description

The currently visible command line content.

HC(S)12 Compiler Manual 783

Local Configuration-File Entries
[XXX_Compiler] Section

Saved

Only with Appearance set in the File->Configuration Save Configuration dialog
box.

StatusbarEnabled

Arguments
1/0

Special

This entry is only considered at startup. Later load operations do not use it
afterwards.

Description

Is status bar currently enabled.
1: The status bar is visible
0: The status bar is hidden

Saved

Only with Appearance set in the File->Configuration Save Configuration dialog
box.

ToolbarEnabled

Arguments
1/0

Special

This entry is only considered at startup. Later load operations do not use it
afterwards.

Description

Is the toolbar currently enabled.
1: The toolbar is visible
0: The toolbar is hidden

784 HC(S)12 Compiler Manual

Local Configuration-File Entries
[XXX_Compiler] Section

Saved

Only with Appearance set in the File->Configuration Save Configuration dialog
box.

WindowPos

Arguments
10 integers, e.g.,“0,1,-1,-1,-1,-1,390,107,1103, 643"

Special

This entry is only considered at startup. Later load operations do not use it
afterwards.

Changes of this entry do not show the “*” in the title.

Description
This number contains the position and the state of the window (maximized) and
other flags.

Saved

Only with Appearance set in the File->Configuration Save Configuration dialog
box.

WindowFont

Arguments

size: == 0 -> generic size, < 0 -> font character height, > 0 font cell height
weight: 400 = normal, 700 = bold (valid values are 0 — 1000)

italic: 0 ==no, 1 ==yes

font name: max 32 characters.

Description

Font attributes.

HC(S)12 Compiler Manual 785

Local Configuration-File Entries
[XXX_Compiler] Section

Saved

Only with Appearance set in the File->Configuration Save Configuration dialog
box.

Example

WindowFont=-16,500,0,Courier

Options

Arguments
-W2

Description

The currently active option string. This entry is quite long as the messages are also
stored here.

Saved

Only with Options set in the File->Configuration Save Configuration dialog box.

EditorType

Arguments
0/1/2/3

Description

This entry specifies which Editor Configuration is active.

0: Global Editor Configuration (in the file mcutools.ini)

1: Local Editor Configuration (the one in this file)

2: Command line Editor Configuration, entry EditorCommandLine
3: DDE Editor Configuration, entries beginning with EditorDDE

For details see Editor Configuration.

Saved

Only with Editor Configuration set in the File->Configuration Save Configuration
dialog box.

786 HC(S)12 Compiler Manual

Local Configuration-File Entries
[XXX_Compiler] Section

EditorCommandLine

Arguments

Command line for the editor.

Description

Command line content to open a file. For details see Editor Configuration.

Saved

Only with Editor Configuration set in the File->Configuration Save Configuration
dialog box.

EditorDDECIlientName

Arguments

”

Client command, e.g., “[open (%$£f)]

Description
Name of the client for DDE Editor Configuration. For details see
Editor Started with DDE.

Saved

Only with Editor Configuration set in the File->Configuration Save Configuration
dialog box.

EditorDDETopicName

Arguments

Topic name. For example, “system”

Description
Name of the topic for DDE Editor Configuration. For details, see
Editor Started with DDE

HC(S)12 Compiler Manual 787

Local Configuration-File Entries
Example

Saved

Only with Editor Configuration set in the File->Configuration Save Configuration
dialog box.

EditorDDEServiceName

Arguments

Service name. For example, “system”

Description

Name of the service for DDE Editor Configuration. For details, see
Editor Started with DDE.

Saved

Only with Editor Configuration set in the File->Configuration Save Configuration
dialog box.

Example

Listing C.1 shows a typical configuration file layout (usually project.ini):

Listing C.1 A Typical Local Configuration File Layout

[Editor]

Editor_Name=notepad
Editor_Exe=C:\windows\notepad.exe
Editor_Opts=%f

[XXX_Compiler]
StatusbarEnabled=1
ToolbarEnabled=1
WindowPos=0,1,-1,-1,-1,-1,390,107,1103,643
WindowFont=-16,500,0,Courier
Options=-wl
EditorType=3
RecentCommandLineO=fibo.c -w2
RecentCommandLinel=fibo.c
CurrentCommandLine=fibo.c -w2
EditorDDEClientName=[open (%f)]
EditorDDETopicName=system

788 HC(S)12 Compiler Manual

Local Configuration-File Entries
Example

EditorDDEServiceName=msdev
EditorCommandLine=C:\windows\notepad.exe %f

HC(S)12 Compiler Manual 789

Local Configuration-File Entries
Example

790 HC(S)12 Compiler Manual

D

Using the Linux Command
Line Compiler

This appendix documents the HC12 Compiler command line program. The compiler
program is named chc12 and is located in the prog subfolder of the CodeWarrior
installation path. The compiler program can be ran from a shell command line or specified
in a makefile.

Command Line Arguments

Enter chc12 -h to display a list of available arguments and options. Compiler options
are described in the chapter “Compiler Options”. The color setting options such as
WmsgCE are available for the Windows operating system only.

Command Examples

The following examples demonstrate some simple uses of the linux version of the HC12
command line compiler.

One method of setting paths to library files is to use the -Env option with the variable
LIBPATH with a colon-separated list of directories.

chcl2 main.c -Env”LIBPATH=/usr/lib;/usr/bin/lib”

To set the maximum number of error messages to 5 and create the err . 1og error file and
a listing file in the current directory enter:

chcl2 main.c -WmsgNe5 -WErrFileOn -Lasm

Using a Makefile

The maker command allows you to control and define the build process. The maker
program reads a file called makefile or Makefile. This file determines the relationships
between the source, object and executable files.

HC(S)12 Compiler Manual 791

Using the Linux Command Line Compiler
Using a Makefile

Once you have created your Makefile and your corresponding source files, you are ready
to use the maker command. If you have named your Makefile either Makefile or
makefile, maker will recognize it. If maker does not recognize your makefile or it uses a
different name, you can specify maker -f mymakefile. The order in which
dependencies are listed is important. If you simply type maker and then return, maker
will attempt to create or update the first dependency listed.

The makefile has instructions for a specific project. Following is a sample makefile for an
example application called banked_data used with the maker command and an
explanation of some of the assignments.

Change the following paths with the appropriate paths for your
machine.

TOOLS_PATH=/home/sources/X/prog
HC12_LIB=/home/sources/X/1lib

APP_NAME=banked_data.abs
PRMFILE=prm/Simulator_linker.prm
BBLFILE=prm/burner.bbl
BUILDLOG=build.log

o
Tools definition

o
CcC = $(TOOLS_PATH) /chcl2

LD = $(TOOLS_PATH) /linker

BURN = $(TOOLS_PATH) /burner

o
Build tool options

o
CFLAGS = -I"$(HC12_LIB)/hcl2c/include" -CPUHCS12X -D_ NO_FLOAT
-D__FAR_DATA -Mb -PSegObj

LD_FLAGS = -M

B

BINDIR=bin

792 HC(S)12 Compiler Manual

Using the Linux Command Line Compiler
Using a Makefile

OFILES = $(patsubst %.c,$(BINDIR)/%.0,$(filter %$.c,$(CFILES)))
OFILES += $(patsubst %.cpp,$(BINDIR)/%.0,$(filter %.cpp,$(CFILES)))
VPATH = $ (PWD) /src

absfile: .INIT $(OFILES)
@echo -n "Linking ..."
@$(LD) $(PRMFILE) $(COMMON_FLAGS) $(LD_FLAGS) -Add{$(LIBS)}
-Add{$ (OFILES)} -O${APP_NAME} >> $(BUILDLOG)
@echo "done"

srec: absfile
@echo -n "Generating srecord ..."
@$ (BURN) -Env"ABS_FILE=S$ (APP_NAME)" -f $(BBLFILE) >> $(BUILDLOG)
@echo "done"
S (BINDIR) /%.0 : %.cC
@echo -n "*** Compiling $< ... -->$S@ ..."
@S$(CC) S$(CFLAGS) -objn="$@" $< >> $(BUILDLOG)
@echo "done"

$(BINDIR) /mc9s12xdp512.0:$(HC12_LIB) /hcl2c/src/mc9sl12xdp512.c
@echo -n "*** Compiling $< ... -->$S@ ..."
@$(CC) $(CFLAGS) -objn="$@" $< >> $(BUILDLOG)
@echo "done"

JINIT
@if [! -e $(BINDIR)];then mkdir $(BINDIR);fi
@if [-e $(BUILDLOG)];then rm -f $(BUILDLOG);fi

@echo $(OFILES)

-rm -f $(OFILES)
-rm -f *.abs
-rm -f *.map
-rm -f *.bpt

HC(S)12 Compiler Manual 793

Using the Linux Command Line Compiler
Using the .hidefaults File

-rm -f *.mrk
-rm -f *.log
-rm -f *.phy
-rm -f *.s19
-rm -f *.map

You will notice in the makefile that the HC12 compiler and linker programs are assigned
to the CC and LD macros under the tools definition commented section.

o o __
Tools definition
o __
CC = $(TOOLS_PATH) /chcl2

LD = $(TOOLS_PATH) /linker

The final binary executable file is also specified in the makefile.
APP_NAME=banked_data.abs

You can examine compiler errors and warnings in a specified log file, for example,
build. log is specified in the makefile. Common errors occur when include files or
source files cannot be found. Make sure that path assignments are correct and accessible.

Using the .hidefaults File

A .hidefaults file can be used to set environment variables. A sample file looks as
follows:

OBJPATH=. /bin

TEXTPAH=. /bin

GENPATH=/home/sources/X/1lib/hcl2c/include; /home/sources/X/1lib/hcl2c
/src;./src; ./prm

LIBPATH=/home/sources/X/lib/hcl2c/include

794 HC(S)12 Compiler Manual

Index

Symbols
-1153

444

444, 486
$ 446

$0 121
${} 121
%(ENV) 151
% 151

% 151
%E 151
%e 151

%f 151
%N 150
%n 151
%p 150

Numerics
0Ob 445

A
abort 568, 594
About 75,77,78,79, 80
About Box 116
.abs 73
abs 595
Absolute
functions 449
Absolute variables 446
and linking 449
ABSPATH 105
acosf 596
-AddIncl 154
@address 446
ahcl2.exe 70
align 399
Alignment 524
__alignof__ 445,457
alloc.c 567
-Ansi 156, 383, 385
ANSI-C 179, 180, 386

Reference Document 443
Standard 443
Application File Name 80
Argument 533
Array
_ far 452
Arrays with unknown size 746
asctime 597
asin 598
asinf 598
#asm 460
__asm 156,445
asm 460
_asm 445,747
asm 156, 445, 460
__asm 553
-Asr 157
Assembler 553

Assembler for HC12 preference panel 75

assert 599
assert.h 590
Associativity 769
atan 600

atan2 601

atan2f 601

atanf 600

atexit 568, 602
atof 603

atoi 604

atol 605

auto keyword 443

B

BANKED Memory Model 558
__BANKED__ 257

batch file 90

*.bbl 76

-BfaB 159,394
-BfaGapLimitBits 161
-BfaTSR 163

-BfaTSRoff 392, 394
-BfaTSRon 393,394

HC(S)12 Compiler Manual

795

Big Endian 384
_ BIG_ENDIAN__ 385
bin 72
Binary Constants 445
binplugins 72
BIT 404
Bit Fields 472
_ BIT_SEG 401,404
_ BITFIELD_LSBIT_FIRST__ 159, 390, 394,
745
_ BITFIELD_LSBYTE_FIRST__ 159, 394, 745
_ BITFIELD_LSWORD_FIRST__ 159, 391,
394, 745
_ BITFIELD_MSBIT_FIRST__ 159, 390, 394,
745
_ BITFIELD_MSBYTE_FIRST__ 159, 390,
391, 394,745
_ BITFIELD_MSWORD_FIRST__ 159, 391,
394, 745
_ BITFIELD_NO__TYPE__SIZE_REDUCTIO
N__ 394
_ BITFIELD_NO_TYPE_SIZE_REDUCTION_
_ 163,392,745
_ BITFIELD_TYPE__SIZE_ REDUCTION__
394
_ BITFIELD_TYPE_SIZE_REDUCTION__ 16
3,392,745
Bitfields 524, 745
@bool 746
Branch
Optimization 478
Sequence 480
Tree 480
break keyword 443
browse information 73
bsearch 606
BUFSIZ 587
Build Extras preference panel 73
Build Tools 70
Burner 77
Burner Preference Panel 76
burner.exe 71

C

.c 141

-C++ 165

C++ 540

C++ comments 156, 182

Call Protocol 533

Caller/Callee Saved Registers 556
calloc 567, 608

case keyword 443

-Cc 167,405,409, 411,431, 477,761, 764
-Ccx 169, 740, 743

ceil 609

ceilf 609

-Cf 172,173

char 461

char keyword 443

CHAR_BIT 582

_ CHAR_IS_16BIT__ 335,394
_ CHAR_IS_32BIT__ 335,394
_ CHARL_IS_64BIT__ 335,394
_ CHAR_IS_8BIT__ 335,394

_ CHAR_IS_SIGNED___ 335,394
_ CHAR_IS_UNSIGNED___ 335,394
CHAR_MAX 582

CHAR_MIN 582

chcl2.exe 70

-Ci 173,385

clearerr 610

ClientCommand 101

clock 611

clock_t 589
CLOCKS_PER_SEC 589

-Cn 177

-Cni 179, 385

_ CNI__ 179, 385

-CnMUL 179

CODE 401, 404, 408, 438

CODE GENERATION 149, 150
Code Size 464

CODE_SECTION 401, 474

_ CODE_SEG 401, 404, 408, 438
CODE_SEG 401, 474
CodeWarrior 757,761, 762,763
CodeWarrior IDE 70, 72

796

HC(S)12 Compiler Manual

CodeWarrior project window 40
CodeWarrior with COM 102
CodeWright 100

color 349, 350, 351, 352, 353
COM 72,102

Command Line Arguments 75, 77,78, 79, 80

comments 747
Common Source Files 561
{Compiler} 121
Compiler
Configuration 96
Control 112
Error
Messages 116
Error Feedback 118
Include file 141
Input File 117, 141
Menu 107
Menu Bar 94
Messages 113
Option 110
Option Settings Dialog 110
Standard Types Dialog Box 109
Status Bar 94
Tool Bar 93
Compiler for HC12 Preference Panel 78
COMPOPTIONS 123, 126, 145
const 167,481
const keyword 443
CONST_SECTION 167,404, 474
CONST_SEG 404,474
Constant Function 502
continue keyword 443
COPY 516
Copy down 450, 564
Copy Template 80
Copying Code from ROM to RAM 757
COPYRIGHT 127
cos 612
cosf 612
cosh 613
coshf 613
Cosmic 739
-Cp 182

-CpDIRECT 184
-CpDPAGE 186
-CpEPAGE 188
-CpGPAGE 190
-Cppc 182
-CpPPAGE 192
-CpRPAGE 194
-Cpu 196
-Cq 198,200
CREATE_ASM_LISTING 407
-Cs08 200
-CsIni0 200
-CswMaxLF 200
-CswMinLB 202
-CswMinLF 204
-CswMinSLB 206, 755
ctime 614
CTRL-S 106
ctype 570
ctype.h 591
-Cu 147,208, 416, 428
Current Directory 120, 128
CurrentCommandLine 783
YocurrentTargetName 75
Custom PRM files

Using 80
-Cv 213
-CVolWordAcc 211
-Cx 213

D
-D 214
DATA_SECTION 408, 474
DATA_SEG 408, 474, 500
__DATE__ 383
Debugger

External or third-party 74
Decoder

using to generate disassembly listing 75, 78

decoder.exe 70

Default Directory 773

default keyword 443
DEFAULT.ENV 120, 128, 129, 137
default.env 145

HC(S)12 Compiler Manual

DEFAULTDIR 121, 128, 141
DefaultDir 773
#define 236, 444
define directive 214
defined 444
__DEMO_MODE__ 384
difftime 615
DIG 582
DIRECT 401, 404, 408, 438
__ DIRECT_SEG 401, 404, 408, 438
Directive
#define 236, 444
#elif 444
#else 444
#endif 444
#error 444
#if 444
#ifdef 444
#ifndef 444
#include 238, 444
#line 444
#pragma 444
#undef 444
Preprocessor 444
Disassembly Listing
Generating with decoder 75, 78
Display generated command lines in message
window 75,77,78,79, 80
div 616
div_t 588
Division 389, 461
do keyword 443
DOS length 153
double keyword 443
_ DOUBLE_IS_DSP__ 336,396
_ DOUBLE_IS_IEEE32__ 336,396
_ DOUBLE_IS_IEEE64__ 172,336, 396
download 450
DPAGE 401, 404, 408, 438
_ DPAGE__ 186
_ DPAGE_ADR__ 186
_ DPAGE_SEG 401, 404, 408, 438
__dptr 444,456, 520

E

EABI 393

EBNF 765

-Ec 216

Editor 781

Editor_Exe 777,782

Editor_Name 777, 781

Editor_Opts 778, 782

EditorCommandLine 787

EditorDDEClientName 787

EditorDDEServiceName 788

EditorDDETopicName 787

EditorType 786

EDOM 581

EDOUT 142

-Eencrypt 218

EEPROM 751

-Ekey 220

ELF/DWAREF 86, 109, 449, 540, 762

ELF/DWAREF Object-File Format 86

__ELF_OBJECT_FILE_FORMAT__ 223,390

#elif 444

#else 444

else keyword 443

Embedded Application Binary Interface 393

#endasm 460

Endian 384

#endif 444

ENTRIES 450

enum keyword 443

_ ENUM_IS_16BIT__ 336, 395

_ ENUM_IS_32BIT__ 336,395

_ ENUM_IS_64BIT__ 336,395

_ ENUM_IS_8BIT__ 336, 395

_ ENUM_IS_SIGNED__ 336, 395

_ ENUM_IS_UNSIGNED__ 336, 395

-Env 221

ENVIRONMENT 120, 129

Environment
COMPOPTIONS 126, 145
COPYRIGHT 127
DEFAULTDIR 121, 128, 141
ENVIRONMENT 120, 129
ENVIRONMENT 119

798

HC(S)12 Compiler Manual

ERRORFILE 130
File 120
GENPATH 132, 134, 135, 141, 227
HICOMPOPTIONS 126
HIENVIRONMENT 129
HIPATH 132,135
INCLUDETIME 133
LIBPATH 132, 134, 138, 141, 142, 227
LIBRARYPATH 134, 141, 142, 227
OBJPATH 135, 142
TEXTPATH 136, 230, 245, 252
TMP 137
USELIBPATH 138
USERNAME 139
Variable 105, 119, 125
Variables Section 120

Environment Variable 397

EOF 587
EPAGE 401, 404, 408, 438
__EPAGE__ 188

_ EPAGE_ADR__ 188
_ EPAGE_SEG 401, 404, 408, 438
EPROM 450
EPSILON 582
__eptr 444,456
ERANGE 581
errno 581
errno.h 581
Error
Handling 571
Listing 142
Messages 116
#error 444, 446
Error Format
Microsoft 356
Verbose 356
ERRORFILE 130
Escape Sequences 770
exit 568,617
EXIT_FAILURE 588
EXIT_SUCCESS 588
exp 618
expf 618
Explorer 89, 120

Extended Backus-Naur Form, see EBNF
extern keyword 443

F
-F1 223,390, 476
-Flo 223
-F2 223,390, 476
F2 94
-F20 223
-F6 223
-F7 223
fabs 281, 619
fabsf 281, 619
FAR 401, 404, 408, 438, 540
@far 746
_ far 444,450, 512, 520
Arrays 452
Keyword 451
far 444,450
_ FAR_SEG 401, 404, 408, 438
fclose 620
feof 621
ferror 622
fflush 623
fgetc 624
fgetpos 625
fgets 626
-Fh 223,390
_ FILE__ 383
FILE 587
File
Environment 120
Include 141
Manager 120
Names 464
Object 142
Source 141
FILENAME_MAX 587
float keyword 443
float.h 581
_ FLOAT_IS_DSP__ 336, 396
_ FLOAT_IS_IEEE32__ 172,336,395
_ FLOAT_IS_IEEE64__ 336, 395
Floating Point 522

HC(S)12 Compiler Manual

799

floor 627 H

floorf 627 -H 225,762,764
FLT_RADIX 581 .h 141
FLT_ROUNDS 581 HALT 567, 568
fmod 628 HC(S)12 Simulator 69, 70
fopen 629 HC12 Compiler Option Settings dialog box 54
FOPEN_MAX 587 HC12__ 196
for keyword 443 HC12DG128 517
fpos_t 587 __HCS12__ 196
fprintf 631 __HCS12X__ 196
fputc 632 __HCS12XE__ 196
fputs 633 heap.c 567
Frame Help 75,77,78,79, 80

Stack 534 Hexadecimal Constants 446
fread 634 HICOMPOPTIONS 126
free 567, 635 HIENVIRONMENT 129
freopen 636 HIPATH 132
frexp 637 HIWARE Object-File Format 86
frexpf 637 __HIWARE__ 384
Frontend 443 __HIWARE_OBJECT_FILE_FORMAT__ 223,
fscanf 638 390
fseek 639 hiwave.exe 71, 74
fsetpos 640 HLI 229
ftell 641 HOST 148, 150
Function Pointer 512, 523 HUGE_VAL 585
fwrite 642 -

I

G -1 141,227,761
Generate disassembly listing 1/0 Registers 450

with decoder 75,78 -Ica 229
Generating a Library 561 ICD 764
GENPATH 105, 132, 134, 135, 141, 227, 761 Icon 90
getc 643 ide.exe 70
getchar 644 1IEEE 522
getenv 645 #if 444
gets 646 if keyword 443
gmtime 647 #ifdef 444
goto 464 #ifndef 444

goto keyword 443

Implementation Restriction 461
GPAGE 401, 404, 408, 438

Importer for HC12 Preference Pane 79

_ GPAGE__ 190 #include 238, 444
__GPAGE_ADR__ 190 Include Files 141, 464
_ GPAGE_SEG 401, 404, 408, 438 INCLUDETIME 133

groups, CodeWarrior 40

800 HC(S)12 Compiler Manual

.ini 96

Initialization of banked variables 528

INLINE 279, 411
inline 279, 499

Inline Assembler, see Assembler

INPUT 148, 150
int keyword 443
_INT_IS_16BIT__ 335,395
__INT_IS_32BIT__ 335,395
__INT_IS_64BIT__ 335,395
__INT_IS_8BIT__ 335,395
INT_MAX 583
INT_MIN 583
Intel 384
Internal IDs 464
__Interrupt 445
Interrupt 459, 460, 538, 747
keyword 459
vector 459
@interrupt 747
__interrupt 459
interrupt 445, 521
Interrupt Procedure 537
INTO_ROM 167,412
_IOFBF 587
_IOLBF 587
_IONBF 588
IPATH 135
isalnum 648
isalpha 648
iscntrl 648
isdigit 648
isgraph 648
islower 648
isprint 648
ispunct 648
isspace 648
isupper 648
isxdigit 648

J
jmp_buf 585
Jump Table 480

K

Keyword
_ far 451
__interrupt 459
auto 443
break 443
case 443
char 443
const 443
continue 443
do 443
double 443
else 443
enum 443
extern 443
float 443
for 443
goto 443
if 443
int 443
Keyword 443
long 443
register 443
return 443
short 444
signed 444
sizeof 444
static 444
struct 444
switch 444
typedef 444
union 444
unsigned 444
void 444
volatile 444
while 444

L

-La 230

Labels 464

labs 650
LANGUAGE 148, 150
_ LARGE__ 257

HC(S)12 Compiler Manual

801

-Lasm 232
-Lasmc 234
Lazy Instruction Selection 541
dct 744
Iconv 583
Idexp 651
Idexpf 651
-Ldf 236, 383
Idiv 652
Idiv_t 588
Lexical Tokens 464
-Li 238
lib 73
libmaker 73
libmaker.exe 70
LIBPATH 105, 132, 134, 138, 141, 142,227
Library
Files 565
Generation 561
library 73
Library Files 561
LIBRARYPATH 134, 141, 142, 227
-Lic 240
-LicA 241
-LicBorrow 242
-LicWait 244
Limits
Translation 461
limits.h 582
__ LINE__ 383
#line 444
Line Continuation 124
LINK_INFO 414
Linker for HC12 preference panel 49, 80
Linker PRM file 64
linker.exe 70
Little Endian 384
_ LITTLE_ENDIAN__ 385
-L1 245
-Lm 247
-LmCfg 249
-Lo 252
locale.h 583
localeconv 653

Locales 570

localtime 654

log 655

log10 656

log10f 656

logf 655

long keyword 443

_ LONG_DOUBLE_IS_DSP__ 336, 396

_ LONG_DOUBLE_IS_IEEE32__ 336, 396

_ LONG_DOUBLE_IS_IEEE64__ 172, 336,
396

_ LONG_IS_16BIT__ 336,395

_ LONG_IS_32BIT__ 336,395

_ LONG_IS_64BIT__ 336,395

_ LONG_IS_8BIT__ 336,395

_ LONG_LONG_DOUBLE_DSP__ 336,396

_ LONG_LONG_DOUBLE_IS_IEEE32__ 336,

396

_ LONG_LONG_DOUBLE_IS_IEEE64__ 172,

336, 396
_ LONG_LONG_IS_16BIT__ 336, 395
_ LONG_LONG_IS_32BIT__ 336, 395
_ LONG_LONG_IS_64BIT__ 336, 395
_ LONG_LONG_IS_8BIT__ 336, 395
LONG_MAX 583
LONG_MIN 583
longjmp 657
LOOP_UNROLL 416
-Lp 253
-LpCfg 254
-LpX 256
st 565

M

Macro 214
Expansion 464
Predefined 383

maker.exe 71

malloc 567, 658

MANT_DIG 582

-Map 258

mark 417

math.h 585, 694

MAX 582

802

HC(S)12 Compiler Manual

MAX_10_EXP 582
MAX_EXP 582
-Mb 257, 564
MB_LEN_MAX 583, 589
mblen 568, 659
mbstowcs 568, 660
mbtowc 568, 661
.mcp 763
MCUTOOLS.INT 97, 122
memchr 662
memcmp 663
memcpy 281, 664
memmove 664
Memory Model 558
Memory Models 511
memset 281, 665
MESSAGE 150,419
MESSAGES 149
Messages 75, 77,78, 79, 80
Microsoft 356

Developer Studio 101

Visual Studio 83
MIN 582
MIN_10_EXP 582
MIN_EXP 582
Missing Prototype 747
mktime 666
-Ml 257,564
modf 667
modff 667
__MODULO_IS_POSITIV__ 390
Modulus 389, 461
-Ms 257,564
msdev 101
MS-DOS file system 153
_ MWERKS__ 384

N

-N 259

NAMES 761

NEAR 401, 404, 408, 438, 540
__near 444, 455,512,520

near 444,455

_ NEAR_SEG 401, 404, 408, 438

__NO_DPAGE__ 186
NO_ENTRY 421,537,555
_ NO_EPAGE__ 188
NO_EXIT 423,537
NO_FRAME 425, 537
__NO_GPAGE_ 190
NO_INIT 751
NO_INLINE 427
NO_LOOP_UNROLL 428
_ NO_PPAGE__ 192

_ NO_RPAGE__ 194
NO_STRING_CONSTR 431, 486
-NoBeep 261
-NoDebuglnfo 262
-NoEnv 264
NON_BANKED 516
-NoPath 265

NULL 587

Numbers 464

0]
.0 142
-Oa 267
-Ob 268
-Obfv 268
Object
File 142
Object-File Formats 85
-ObjN 270
OBJPATH 105, 135, 142
-Oc 272
-Od 274
-OdocF 147, 149, 274,754
-Odocft 386
-Of 276
offsetof 587
-0i 147,279
-Oilib 281
-0l 284,539
-Ona 286
-OnB 288, 539, 540
-OnB=a 549
-OnB=b 550
-OnB=1 550

HC(S)12 Compiler Manual

803

-OnB=t 551
-Onbf 289
-Onbt 291
-Onca 293
ONCE 432
-Oncn 295
-OnCopyDown 297
-OnCstVar 299
-One 300
-Onf 276,539
-OnP 302,539
-OnP=a 542
-OnP=b 542
-OnP=c 542
-OnP=d 542
-OnP=e 543
-OnP=f 543
-OnP=g 543
-OnP=h 544
-OnP=i 544
-OnP=j 544
-OnP=k 544
-OnP=l 545
-OnP=m 545
-OnP=n 546
-OnP=p 546
-OnP=q 546
-OnP=r 547
-OnP=t 547
-OnP=u 547
-OnP=v 548
-OnPMNC 304
-Ont 305
-Onu 313
operator
444
#it 444
defined 444
OPTIMIZATION 148, 150
Optimization
Branches 478
Lazy Instruction Selection 541
Shift optimizations 478
Strength Reduction 478

Time vs. Size 266
Tree Rewriting 479
__OPTIMIZE_FOR_SIZE__ 266, 385
__OPTIMIZE_FOR_TIME__ 266, 385
__OPTIMIZE_REG__ 311
OPTION 433
Option
CODE GENERATION 149, 150
HOST 148, 150
INPUT 148, 150
LANGUAGE 148, 150
MESSAGE 150
MESSAGES 149
OPTIMIZATION 148, 150
OUTPUT 148, 150
Scopes 149
STARTUP 149
TARGET 149
VARIOUS 149, 150
__OPTION_ACTIVE__ 386
Options 75, 77,78, 79, 80, 773, 786
-Or 147,311, 499, 539
-Os 266, 385, 480
-Ot 266, 385, 536
-Ou 313
OUTPUT 148, 150

P

P&E 764

Parameter 533
Register 533

Parsing Recursion 464

Path List 123

-Pe 315

-PEDIV 317

perror 668

PIC 401, 529

-Pic 320

__PIC__ 320

_ PIC_SEG 401

-PicRTS 322

-Pio 324

piper.exe 71

PLACEMENT 741

804

HC(S)12 Compiler Manual

_ PLAIN_BITFIELD_IS_SIGNED__ 336, 393,
394, 396
_ PLAIN_BITFIELD_IS_UNSIGNED__ 336,
393,394,396
Pointer
_ far 451
Compatibility 457
Type 523
Position-Independent Code 529
pow 669
powf 669
PPAGE 401, 404, 408, 438
__ PPAGE__ 192
_ PPAGE_ADR__ 192
_ PPAGE_SEG 401, 404, 408, 438
__pptr 444,456
#pragma 444
align 399
CODE_SECTION 474
CODE_SEG 401, 474, 540
CONST_SECTION 167, 474
CONST_SEG 404,474,741
CREATE_ASM_LISTING 407
DATA_SECTION 474
DATA_SEG 408, 474,741
DPAGE 526
EPAGE 526
GPAGE 526
NEAR 536
PPAGE 526
RPAGE 526
FAR 540
INLINE 279, 411
INTO_ROM 167,412
LINK_INFO 414
LOOP_UNROLL 416
mark 417
MESSAGE 419
NEAR 540
NO_ENTRY 421, 537,555
NO_EXIT 423,537
NO_FRAME 425, 537
NO_INLINE 427
NO_LOOP_UNROLL 428

NO_STRING_CONSTR 431, 486
ONCE 432
OPTION 386, 433
REALLOC_OBJ 436
SHORT 540
STRING_SEG 438
TEST_CODE 440
TRAP_PROC 442, 459, 537,538
SAVE_ALL_REGS 538
SAVE_NO_REGS 538
#pragma section 741
Precedence 769
Predefined Macro 383
Preprocessor
Directives 444
_PRESTART 516
printf 568, 670
printf.c 568
PRM file 50, 64
PRM Files
Custom 80
PRM files
Template 80
Procedure
Call Protocol 533
Interrupt 537
Return Value 534
Stack Frame 534
Variable, see Function Pointer
__PROCESSOR_X4__ 330
-Prod 123, 326
__ PRODUCT_HICROSS_PLUS__ 384
{Project} 121
project.ini 123, 126, 145
%projectFileDir 74
%projectFileName 74
%projectFilePath 74
%projectSelectedFiles 74
-PSeg 327
ptrdiff_t 386, 587
__ PTRDIFF_T_IS_CHAR__ 388,389
__PTRDIFF_T_IS_INT__ 388,389
__PTRDIFF_T_IS_LONG__ 388,389
__PTRDIFF_T_IS_SHORT__ 388, 389

HC(S)12 Compiler Manual

805

_ PTRMBR_OFFSET_IS_16BIT__ 336 -Rpt 333

_ PTRMBR_OFFSET_IS_32BIT__ 336 __rptr 445,456
__PTRMBR_OFFSET_IS_64BIT__ 336
__PTRMBR_OFFSET_IS_8BIT__ 336 S
putc 671 SAVE_ALL_REGS 538
putchar 672 SAVE_NO_REGS 538
puts 673 SaveAppearance 774
PVCS 138 SaveEditor 774
-Px4 330 SaveOnExit 774
SaveOptions 775
Q scanf 682
gsort 674 SCHAR_MAX 582
-Qvpt 332 SCHAR_MIN 582
SEEK_CUR 588

R SEEK_END 588
raise 676 SEEK_SET 588
RAM 757 Segment 540
rand 677 SHORT 541
RAND_MAX 589 Segmentation 474
realloc 567, 678 @ “SegmentName” 448
REALLOC_OBJ 436 Select File to Compile dialog box 56
RecentCommandLine 783 Select File to Link dialog box 67
Recursive comments 747 Service Name 101
Register setbuf 683

initialization 564 setjmp 684

Parameter 533 setjmp.h 585
register keyword 443 setlocale 685
regservers.bat 72 setvbuf 686
remove 679 Shift optimizations 478
rename 6380 SHORT 404, 408, 540
Restriction short keyword 444

Implementation 461 SHORT Segments 541
return keyword 443 _ SHORT_IS_16BIT__ 335,395
Return Value 534 _ SHORT_IS_32BIT__ 335,395
rewind 681 __SHORT_IS_64BIT__ 335,395
RGB 349, 350, 351, 352, 353 __SHORT_IS_8BIT__ 335,394
ROM 481, 757,761 __SHORT_SEG 404, 408, 475, 500
ROM libraries 564 -ShowAboutDialog 71
ROM_VAR 147, 167,477,516 -ShowBurnerDialog 71
RPAGE 401, 404, 408, 438 ShowConfigurationDialog 71
_ RPAGE__ 194 -ShowMessageDialog 71
_ RPAGE_ADR__ 194 -ShowOptionDialog 71
__RPAGE_SEG 401, 404, 408, 438 -ShowSmartSliderDialog 71
-Rpe 333 ShowTipOfDay 776

806 HC(S)12 Compiler Manual

SHRT_MAX 583
SHRT_MIN 583
sig_atomic_t 586
SIG_DFL 586
SIG_ERR 586
SIG_IGN 586
SIGABRT 586
SIGFPE 586
SIGILL 586
SIGINT 586
signal 687
signal.c 567
signal.h 586
Signals 567
signed keyword 444
SIGSEGV 586
SIGTERM 586
Simulink preference panel 81
sin 688
sinf 688
sinh 689
Size
Type 521
size_t 386, 587
_ SIZE T _IS_UCHAR__ 388,389
__SIZE T _IS_UINT__ 388,389
__SIZE_T_IS_ULONG__ 388,389
__SIZE_T_IS_USHORT__ 388,389
sizeof keyword 444

SKIP1 550
SKIP2 550
_ SMALL__ 257
Smart
Control 112
Sliders 78

Source File 141
YosourceFileDir 74
YosourceFileName 74
%sourceFilePath 74
%sourceLineNumber 74
YsourceSelection 74
YosourceSelUpdate 74
Special Modifiers 150
sprintf 690

sqrt 694
sqrtf 694
srand 695
sscanf 696
Stack
Frame 534
Standard Types 109
start 91
start12.c 564
start12b.o 564
start12l.o 564, 565
start12s.0 564
STARTUP
Option group 149
Predefined section 516
Startup
Command-Line Options 71
Files 563
loading configuration at 123
options 71
startup.c 564
static keyword 444
StatusbarEnabled 784
stdarg 457
stdarg.h 457,590
__STDC__ 156, 383, 385
stddef.h 586
stderr 588
stdin 588
stdio.h 587
stdlib. 568
stdlib.c 568
stdlib.h 588, 695
stdout 379, 588
strcat 700
strchr 701
strcmp 702
strcoll 703
strepy 281, 704
strecspn 705
Strength Reduction 478
strerror 706
strftime 707
string.h 589

HC(S)12 Compiler Manual

807

STRING_SECTION 438

STRING_SEG 438
STRINGS 516
Strings 450

strlen 281, 709
strncat 710
strncmp 711
strncpy 712
strpbrk 713

strrchr 714

strspn 715

strstr 716
strt12bp.o 564, 565
strt12lp.o 564, 565
strt12sp.o 564, 565
strtod 716

strtok 718

strtol 719

strtoul 721

struct keyword 444
strxfrm 722
switch keyword 444
%symFileDir 75
%symFileName 75
%symFilePath 75
synchronization 90
{System} 121
system 723

T

-T 335,521
tan 724

tanf 724

tanh 725
tanhf 725
TARGET 149

Target Settings preference panel 47, 73

YotargetFileDir 75
YotargetFileName 75
YotargetFilePath 75
Template PRM files
Using 80
termination 90
TEST_CODE 440

TEXTPATH 105, 136, 230, 245, 252, 253

Third-party debugger, using 74
time 726

time.h 589
__TIME__ 383
time_t 589

@tiny 746

Tip of the Day 91
TipFilePos 776
TipTimeStamp 776
TMP 137
TMP_MAX 588
tmpfile 727

tmpnam 728

tolower 729
ToolbarEnabled 784
Topic Name 101
toupper 730
Translation Limits 461

TRAP_PROC 442,459,537, 538,747

_ TRIGRAPHS__ 173,385
Type
Alignment 524
Declarations 464
Floating Point 522
Pointer 523
Size 521
Sizes 78
typedef keyword 444

U

UCHAR_MAX 582
UINT_MAX 583
ULONG_MAX 583
UltraEdit 101

#undef 444

ungetc 731

union keyword 444
UNIX 120

unsigned keyword 444
Use custom PRM file 80

Use Decoder to generate Disassembly Listing 75,

78
Use template PRM file 80

808

HC(S)12 Compiler Manual

Use third-party debugger 74
USELIBPATH 138
USERNAME 139
USHRT_MAX 583

\

-V 342

va_arg 457,732

va_end 732

__va_sizeof _ 445,458

va_start 732

VARIOUS 149, 150

VECTOR 459

__VERSION__ 384

viprintf 733

-View 343

Visual C++ 83

void keyword 444

volatile 472

volatile keyword 444

vprintf 733

vsprintf 568, 733
__VTAB_DELTA_IS_16BIT__ 336,396
__VTAB_DELTA_IS_32BIT__ 336,396
__VTAB_DELTA_IS_64BIT__ 336,396
__VTAB_DELTA_IS_8BIT__ 336, 396

W

-W1 380

-W2 381,744

/wait 91

#warning 444, 446

wchar_t 386, 587

_ WCHAR_T_IS_UCHAR__ 388
_ WCHAR_T_IS_UINT__ 388

_ WCHAR_T_IS_ULONG___ 388
_ WCHAR_T_IS_USHORT__ 388
wcstombs 568, 735

wctomb 568, 734

-WErrFile 345

while keyword 444

WindowFont 785

WindowPos 785

Windows 120

Winedit 100

-Wmsg8x3 347

-WmsgCE 349

-WmsgCF 350

-WmsgCI 351

-WmsgCU 352

-WmsgCW 353

-WmsgFb 348, 354, 357, 359, 361, 363, 365
-WmsgFbi 354

-WmsgFbm 354

-WmsgFi 348, 356, 361, 363, 365
-WmsgFim 356

-WmsgFiv 356

-WmsgFob 358, 361

-WmsgFoi 359, 360, 363, 365
-WmsgFonf 362

-WmsgFonp 359, 361, 363, 364, 365
-WmsgNe 366

-WmsgNi 367

-WmsgNu 368

-WmsgNw 370

-WmsgSd 371

-WmsgSe 372

-WmsgSi 373

-WmsgSw 374

-WOutFile 375

-Wpd 377

-WStdout 379

Z

Zero
out 450, 564
page 541

HC(S)12 Compiler Manual

809

810 HC(S)12 Compiler Manual

	Overview
	Using the Compiler
	Introduction
	Compiler environment
	Project directory
	Editor

	Using CodeWarrior to manage a project
	New Project Wizard
	Analysis of the project files and folders

	Compilation with the Compiler
	Linking with the Linker

	Application Programs (Build Tools)
	Startup Command-Line Options
	Highlights
	CodeWarrior Integration
	Combined or Separated Installations
	Target Settings preference panel
	Build Extras preference panel
	Assembler for HC12 preference panel
	Burner preference panel
	Compiler for HC12 preference panel
	Importer for HC12 preference panel
	Linker for HC12 preference panel
	Simulink preference panel
	CodeWarrior Tips and Tricks

	Integration into Microsoft Visual Studio (Visual C++ V5.0 or later)
	Object-File Formats
	HIWARE Object-File Format
	ELF/DWARF Object-File Format
	Tools
	Mixing Object-File Formats

	Graphical User Interface
	Launching the Compiler
	Interactive Mode
	Batch Mode

	Tip of the Day
	Main Window
	Window Title
	Content Area
	Toolbar
	Status Bar
	Menu Bar
	File Menu
	Editor Settings dialog box
	Save Configuration dialog box
	Environment Configuration Dialog Box
	Compiler Menu
	View Menu
	Help Menu

	Standard Types dialog box
	Option Settings dialog box
	Compiler Smart Control dialog box
	Message Settings dialog box
	Changing the Class associated with a Message
	Retrieving Information about an Error Message

	About ... dialog box
	Specifying the Input File
	Use the Command Line in the Toolbar to Compile
	Message/Error Feedback
	Use Information from the Compiler Window
	Use a User-Defined Editor

	Environment
	Current Directory
	Environment Macros
	Global Initialization File (mcutools.ini)
	Local Configuration File (usually project.ini)
	Paths
	Line Continuation
	Environment Variable Details
	COMPOPTIONS: Default Compiler Options
	COPYRIGHT: Copyright entry in object file
	DEFAULTDIR: Default Current Directory
	ENVIRONMENT: Environment File Specification
	ERRORFILE: Error filename Specification
	GENPATH: #include “File” Path
	INCLUDETIME: Creation Time in Object File
	LIBRARYPATH: ‘include <File>’ Path
	OBJPATH: Object File Path
	TEXTPATH: Text File Path
	TMP: Temporary Directory
	USELIBPATH: Using LIBPATH Environment Variable
	USERNAME: User Name in Object File

	Files
	Input Files
	Source Files
	Include Files

	Output Files
	Object Files
	Error Listing
	Interactive Mode (Compiler Window Open)

	File Processing

	Compiler Options
	Option Recommendation
	Compiler Option Details
	Option Groups
	Option Scopes
	Option Detail Description
	-!: filenames to DOS length
	-AddIncl: Additional Include File
	-Ansi: Strict ANSI
	-Asr: It is assumed that HLI code saves written registers
	-BfaB: Bitfield Byte Allocation
	-BfaGapLimitBits: Bitfield Gap Limit
	-BfaTSR: Bitfield Type-Size Reduction
	-C++ (-C++f, -C++e, -C++c): C++ Support
	-Cc: Allocate Constant Objects into ROM
	-Ccx: Cosmic Compatibility Mode for Space Modifiers and Interrupt Handlers
	-Cf: Float IEEE32, doubles IEEE64
	-Ci: Tri- and Bigraph Support
	-Cn: Disable compactC++ features
	-Cni: No Integral Promotion
	-Cppc: C++ Comments in ANSI-C
	-CpDIRECT: DIRECT Register Value
	-CpDPAGE: Specify DPAGE Register
	-CpEPAGE: Specify EPAGE Register
	-CpGPAGE: Specify GPAGE Register
	-CpPPAGE: Specify PPAGE Register
	-CpRPAGE: Specify RPAGE Register
	-Cpu: Generate code for specific HC(S)12 families
	-Cq: Propagate const and volatile qualifiers for structs
	-CswMaxLF: Maximum Load Factor for Switch Tables
	-CswMinLB: Minimum Number of Labels for Switch Tables
	-CswMinLF: Minimum Load Factor for Switch Tables
	-CswMinSLB: Minimum Number of Labels for Search Switch Tables
	-Cu: Loop Unrolling
	-CVolWordAcc: Do not reduce volatile word accesses
	-Cx: No Code Generation
	-D: Macro Definition
	-Ec: Conversion from 'const T*' to 'T*'
	-Eencrypt: Encrypt Files
	-Ekey: Encryption Key
	-Env: Set Environment Variable
	-F (-Fh, -F1, -F1o, -F2, -F2o,-F6, or -F7): Object-File Format
	-H: Short Help
	-I: Include File Path
	-Ica: Implicit Comments in HLI-ASM Instructions
	-La: Generate Assembler Include File
	-Lasm: Generate Listing File
	-Lasmc: Configure Listing File
	-Ldf: Log Predefined Defines to File
	-Li: List of Included Files
	-Lic: License Information
	-LicA: License Information about every Feature in Directory
	-LicBorrow: Borrow License Feature
	-LicWait: Wait until Floating License is Available from Floating License Server
	-Ll: Statistics about Each Function
	-Lm: List of Included Files in Make Format
	-LmCfg: Configuration of List of Included Files in Make Format
	-Lo: Object File List
	-Lp: Preprocessor Output
	-LpCfg: Preprocessor Output configuration
	-LpX: Stop after Preprocessor
	-M (-Ms, -Mb, -Ml): Memory Model
	-Map: Define mapping for memory space 0x4000-0x7FFF
	-N: Display Notify Box
	-NoBeep: No Beep in Case of an Error
	-NoDebugInfo: Do not Generate Debug Information
	-NoEnv: Do not Use Environment
	-NoPath: Strip Path Info
	-O (-Os, -Ot): Main Optimization Target
	-Obfv: Optimize Bitfields and Volatile Bitfields
	-ObjN: Object filename Specification
	-Oc: Common Subexpression Elimination (CSE)
	-OdocF: Dynamic Option Configuration for Functions
	-Of or -Onf: Create Sub-Functions with Common Code
	-Oi: Inlining
	-Oilib: Optimize Library Functions
	-Ol: Try to Keep Loop Induction Variables in Registers
	-Ona: Disable Alias Checking
	-OnB: Disable Branch Optimizer
	-Onbf: Disable Optimize Bitfields
	-Onbt: Disable ICG Level Branch Tail Merging
	-Onca: Disable any Constant Folding
	-Oncn: Disable Constant Folding in case of a New Constant
	-OnCopyDown: Do Generate Copy Down Information for Zero Values
	-OnCstVar: Disable CONST Variable by Constant Replacement
	-One: Disable any low-level Common Subexpression Elimination
	-OnP: Disable Peephole Optimization
	-OnPMNC: Disable Code Generation for NULL Pointer to Member Check
	-Ont: Disable Tree Optimizer
	-Or: Allocate Local Variables into Registers
	-Ou and -Onu: Optimize Dead Assignments
	-Pe: Preprocessing Escape Sequences in Strings
	-PEDIV: Use EDIV instruction
	-Pic: Generate Position-Independent Code (PIC)
	-PicRTS: Call Runtime Support Position Independent
	-Pio: Include Files Only Once
	-Prod: Specify Project File at Startup
	-PSeg: Assume Objects are on Same Page
	-Px4: Do Not Use ?BNE or ?BEQ
	-Qvtp: Qualifier for Virtual Table Pointers
	-Rp (-Rpe, -Rpt): Large Return Value Type
	-T: Flexible Type Management
	-V: Prints the Compiler Version
	-View: Application Standard Occurrence
	-WErrFile: Create "err.log" Error File
	-Wmsg8x3: Cut filenames in Microsoft Format to 8.3
	-WmsgCE: RGB Color for Error Messages
	-WmsgCF: RGB Color for Fatal Messages
	-WmsgCI: RGB Color for Information Messages
	-WmsgCU: RGB Color for User Messages
	-WmsgCW: RGB Color for Warning Messages
	-WmsgFb (-WmsgFbi, -WmsgFbm): Set Message File Format for Batch Mode
	-WmsgFi (-WmsgFiv, -WmsgFim): Set Message Format for Interactive Mode
	-WmsgFob: Message Format for Batch Mode
	-WmsgFoi: Message Format for Interactive Mode
	-WmsgFonf: Message Format for no File Information
	-WmsgFonp: Message Format for no Position Information
	-WmsgNe: Number of Error Messages
	-WmsgNi: Number of Information Messages
	-WmsgNu: Disable User Messages
	-WmsgNw: Number of Warning Messages
	-WmsgSd: Setting a Message to Disable
	-WmsgSe: Setting a Message to Error
	-WmsgSi: Setting a Message to Information
	-WmsgSw: Setting a Message to Warning
	-WOutFile: Create Error Listing File
	-Wpd: Error for Implicit Parameter Declaration
	-WStdout: Write to Standard Output
	-W1: No Information Messages
	-W2: No Information and Warning Messages

	Compiler Predefined Macros
	Compiler Vendor Defines
	Product Defines
	Data Allocation Defines
	Various Defines for Compiler Option Settings
	Option Checking in C Code
	ANSI-C Standard Types 'size_t', 'wchar_t' and 'ptrdiff_t' Defines
	Macros for HC12

	Division and Modulus
	Macros for HC12

	Object-File Format Defines
	Bitfield Defines
	Bitfield Allocation
	Bitfield Type Reduction
	Sign of Plain Bitfields
	Type Information Defines

	Compiler Pragmas
	Pragma Details
	#pragma align (on|off): Turn alignment on or off
	#pragma CODE_SEG: Code Segment Definition
	#pragma CONST_SEG: Constant Data Segment Definition
	#pragma CREATE_ASM_LISTING: Create an Assembler Include File Listing
	#pragma DATA_SEG: Data Segment Definition
	#pragma INLINE: Inline Next Function Definition
	#pragma INTO_ROM: Put Next Variable Definition into ROM
	#pragma LINK_INFO: Pass Information to the Linker
	#pragma LOOP_UNROLL: Force Loop Unrolling
	#pragma mark: Entry in CodeWarrior IDE Function List
	#pragma MESSAGE: Message Setting
	#pragma NO_ENTRY: No Entry Code
	#pragma NO_EXIT: No Exit Code
	#pragma NO_FRAME: No Frame Code
	#pragma NO_INLINE: Do not Inline next function definition
	#pragma NO_LOOP_UNROLL: Disable Loop Unrolling
	#pragma NO_RETURN: No Return Instruction
	#pragma NO_STRING_CONSTR: No String Concatenation during preprocessing
	#pragma ONCE: Include Once
	#pragma OPTION: Additional Options
	#pragma REALLOC_OBJ: Object Reallocation
	#pragma STRING_SEG: String Segment Definition
	#pragma TEST_CODE: Check Generated Code
	#pragma TRAP_PROC: Mark function as interrupt function

	ANSI-C Frontend
	Implementation Features
	Keywords
	Preprocessor Directives
	Language Extensions
	Implementation-Defined Behavior
	Translation Limitations

	ANSI-C Standard
	Integral Promotions
	Signed and Unsigned Integers
	Arithmetic Conversions
	Order of Operand Evaluation
	Rules for Standard-Type Sizes

	Floating-Type Formats
	Floating-Point Representation of 500.0 for IEEE
	Representation of 500.0 in IEEE32 Format
	Representation of 500.0 in IEEE64 Format
	Representation of 500.0 in DSP Format

	Volatile Objects and Absolute Variables
	Bitfields
	Signed Bitfields

	Segmentation
	Example of Segmentation without the -Cc Compiler Option
	Example of Segmentation with the -Cc Compiler Option

	Optimizations
	Peephole Optimizer
	Strength Reduction
	Shift Optimizations
	Branch Optimizations
	Dead-Code Elimination
	Constant-Variable Optimization
	Tree Rewriting

	Using Qualifiers for Pointers
	Defining C Macros Containing HLI Assembler Code
	Defining a Macro
	Using Macro Parameters
	Using the Immediate-Addressing Mode in HLI Assembler Macros
	Generating Unique Labels in HLI Assembler Macros
	Generating Assembler Include Files (-La Compiler Option)

	Generating Compact Code
	Compiler Options
	-Or: Register Optimization
	-Oi: Inlining: Inline Functions

	__SHORT_SEG Segments
	Defining I/O Registers
	Programming Guidelines
	Constant Function at a Specific Address
	HLI Assembly
	Post and Pre Operators in Complex Expressions
	Boolean Types
	printf() and scanf()
	Bitfields
	Struct Returns
	Local Variables
	Parameter Passing
	Unsigned Data Types
	Inlining and Macros
	Data Types
	Short Segments
	Qualifiers

	HC(S)12 Backend
	Memory Models
	SMALL memory model
	BANKED memory model
	LARGE memory model

	Non-ANSI Keywords
	Data Types
	Scalar Types
	Floating-Point Types
	Bitfields

	Paged Variables
	Position-Independent Code (PIC)
	Register Usage
	Call Protocol and Calling Conventions
	Argument Passing
	Return Values
	Returning Large Results

	Stack Frames
	Calling a __far Function
	__far and __near
	Pragmas
	TRAP_PROC
	NO_ENTRY
	NO_EXIT
	NO_FRAME

	Interrupt Functions
	#pragma TRAP_PROC
	Interrupt Vector Table Allocation

	Debug Information
	Segmentation
	Optimizations
	Lazy Instruction Selection
	Peephole Optimizations
	Peephole index optimization (-OnP=x to disable it)
	Branch Optimizations
	Constant Folding
	Volatile Objects

	Programming Hints

	High-Level Inline Assembler for the Freescale HC(S)12
	Syntax
	Mixing HLI Assembly and HLL
	Special Features

	ANSI-C Library Reference
	Library Files
	Directory Structure
	How to Generate a Library
	Common Source Files
	Target Dependent Files for HC12

	Startup Files
	Startup Files for the Freescale HC12

	Library Files

	Special Features
	Memory Management -- malloc(), free(), calloc(), realloc(); alloc.c, and heap.c
	Signals - signal.c
	Multi-byte Characters - mblen(), mbtowc(), wctomb(), mbstowcs(), wcstombs(); stdlib.c
	Program Termination - abort(), exit(), atexit(); stdlib.c
	I/O - printf.c
	Locales - locale.*
	ctype
	String Conversions - strtol(), strtoul(), strtod(), and stdlib.c

	Library Structure
	Error Handling
	String Handling Functions
	Memory Block Functions
	Mathematical Functions
	Memory Management
	Searching and Sorting
	System Functions
	Time Functions
	Locale Functions
	Conversion Functions
	printf() and scanf()
	File I/O

	Types and Macros in the Standard Library
	errno.h
	float.h
	limits.h
	locale.h
	math.h
	setjmp.h
	signal.h
	stddef.h
	stdio.h
	stdlib.h
	time.h
	string.h
	assert.h
	stdarg.h
	ctype.h

	The Standard Functions
	abort()
	abs()
	acos() and acosf()
	asctime()
	asin() and asinf()
	assert()
	atan() and atanf()
	atan2() and atan2f()
	atexit()
	atof()
	atoi()
	atol()
	bsearch()
	calloc()
	ceil() and ceilf()
	clearerr()
	clock()
	cos() and cosf()
	cosh() and coshf()
	ctime()
	difftime()
	div()
	exit()
	exp() and expf()
	fabs() and fabsf()
	fclose()
	feof()
	ferror()
	fflush()
	fgetc()
	fgetpos()
	fgets()
	floor() and floorf()
	fmod() and fmodf()
	fopen()
	fprintf()
	fputc()
	fputs()
	fread()
	free()
	freopen()
	frexp() and frexpf()
	fscanf()
	fseek()
	fsetpos()
	ftell()
	fwrite()
	getc()
	getchar()
	getenv()
	gets()
	gmtime()
	isalnum(), isalpha(), iscntrl(), isdigit(), isgraph(), islower(), isprint(), ispunct(), isspace(), isupper(), and isxdigit()
	labs()
	ldexp() and ldexpf()
	ldiv()
	localeconv()
	localtime()
	log() and logf()
	log10() and log10f()
	longjmp()
	malloc()
	mblen()
	mbstowcs()
	mbtowc()
	memchr()
	memcmp()
	memcpy() and memmove()
	memset()
	mktime()
	modf() and modff()
	perror()
	pow() and powf()
	printf()
	putc()
	putchar()
	puts()
	qsort()
	raise()
	rand()
	realloc()
	remove()
	rename()
	rewind()
	scanf()
	setbuf()
	setjmp()
	setlocale()
	setvbuf()
	signal()
	sin() and sinf()
	sinh() and sinhf()
	sprintf()
	sqrt() and sqrtf()
	srand()
	sscanf()
	strcat()
	strchr()
	strcmp()
	strcoll()
	strcpy()
	strcspn()
	strerror()
	strftime()
	strlen()
	strncat()
	strncmp()
	strncpy()
	strpbrk()
	strrchr()
	strspn()
	strstr()
	strtod()
	strtok()
	strtol()
	strtoul()
	strxfrm()
	system()
	tan() and tanf()
	tanh() and tanhf()
	time()
	tmpfile()
	tmpnam()
	tolower()
	toupper()
	ungetc()
	va_arg(), va_end(), and va_start()
	vfprintf(), vprintf(), and vsprintf()
	wctomb()
	wcstombs()

	Appendices
	Porting Tips and FAQs
	Migration Hints
	Porting from Cosmic
	Allocation of Bitfields
	Type Sizes and Sign of char
	@bool Qualifier
	@tiny and @far Qualifier for Variables
	Arrays with Unknown Size
	Missing Prototype
	_asm(“sequence”)
	Recursive Comments
	Interrupt Function, @interrupt
	Defining Interrupt Functions

	How to Use Variables in EEPROM
	Linker Parameter File
	The Application

	General Optimization Hints
	Executing an Application from RAM
	ROM Library Startup File
	Generate an S-Record File
	Modify the Startup Code
	Application PRM File
	Copying Code from ROM to RAM
	Invoking the Application’s Entry Point in the Startup Function

	Frequently Asked Questions (FAQs), Troubleshooting
	Making Applications

	EBNF Notation
	Terminal Symbols
	Non-Terminal Symbols
	Vertical Bar
	Brackets
	Parentheses
	Production End
	EBNF Syntax
	Extensions

	Abbreviations, Lexical Conventions
	Number Formats
	Precedence and Associativity of Operators for ANSI-C
	List of all Escape Sequences

	Global Configuration-File Entries
	[Options] Section
	DefaultDir

	[XXX_Compiler] Section
	SaveOnExit
	SaveAppearance
	SaveEditor
	SaveOptions
	RecentProject0, RecentProject1, ...
	TipFilePos
	ShowTipOfDay
	TipTimeStamp

	[Editor] Section
	Editor_Name
	Editor_Exe
	Editor_Opts

	Example

	Local Configuration-File Entries
	[Editor] Section
	Editor_Name
	Editor_Exe
	Editor_Opts
	Example [Editor] Section

	[XXX_Compiler] Section
	RecentCommandLineX
	CurrentCommandLine
	StatusbarEnabled
	ToolbarEnabled
	WindowPos
	WindowFont
	Options
	EditorType
	EditorCommandLine
	EditorDDEClientName
	EditorDDETopicName
	EditorDDEServiceName

	Example

	Using the Linux Command Line Compiler
	Command Line Arguments
	Command Examples

	Using a Makefile
	Using the .hidefaults File

	Index

